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Complements of plane curves with logarithmic Kodaira dimension zero

By Hideo KOJIMA
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Abstract. We prove that logarithmic geometric genus of a complement of plane
curve with logarithmic Kodaira dimension zero is equal to one.

1. Introduction.

Let $B\subset P^{2}$ be a reduced projective plane curve defined over the complex number
field $C$ . To study the curve $B$ , the logarithmic Kodaira dimension $\overline{\kappa}(P^{2}-B)$ of $P^{2}-B$

plays an important role. There are some results for the calculation of $\overline{\kappa}(P^{2}-B)$ (see
[18] and [20], etc.). In [12], Miyanishi and Sugie studied the structure of $P^{2}-B$ when
$\overline{\kappa}(P^{2}-B)=-\infty$ by using the $A^{1}$ -ruling theorem (cf. [11, Chapter $I]$ ). In [16] (or [15]),
Tsunoda classified rational cuspidal curves (i.e., rational curves with only cusps as
singularities) $B$ of $\overline{\kappa}(P^{2}-B)=1$ with unique singular points by using the structure
theorem of non-complete algebraic surfaces with $\overline{\kappa}=1$ due to Kawamata [6] (see also
[11, Chapter $II$ ] $)$ . Recently, in [8], Kishimoto studied rational cuspidal curves $B$ of
$\overline{\kappa}(P^{2}-B)=1$ with two singular points.

In the present article, we shall study the case $\overline{\kappa}(P^{2}-B)=0$ , mainly using the
classification theory of affine surfaces with $\overline{\kappa}=0$ in [9]. The main result is the following
theorem.

THEOREM 1.1. Let $B\subset P^{2}$ be a reduced projective plane curve whose complement
has logarithmic Kodaira dimension zero. Then the following assertions hold true:

(1) $\overline{p}_{g}(P^{2}-B)=1$ , where $\overline{p}_{g}(P^{2}-B)$ denotes the logarithmic geometric genus of
$P^{2}-B$ .

(2) If $B$ is not an irreducible nonsingular cubic curve then each irreducible com-
ponent of $B$ is a rational curve.

(3) $\#(B)$ ($=the$ number of irreducible components of $B$) $\leq 3$ and the equality holds if
and only if $P^{2}-B\cong C$ ’

$\times C^{*}$ , where $C^{*}=C-\{0\}$ .
(4) If $B$ is an irreducible rational curve then $B$ has unique singular point and the

number of analytic branches of $B$ at the singular point is equal to two.

In [15], Tsunoda obtained the same result as Theorem 1.1 when $B$ is irreducible.
As applications of Theorem 1.1, we study the fundamental groups and the to-

pological Euler characteristics of the surfaces $P^{2}-B$ with $\overline{\kappa}(P^{2}-B)=0$ in \S 5.
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By a $(-n)$ -curve $(n\geq 1)$ we mean a nonsingular complete rational curve with self-
intersection number $(-n)$ . A reduced effective divisor $D$ is called an SNC-divisor (resp.
an $NC$-divisor) if $D$ has only simple normal crossings (resp. normal crossings). Let
$f$ : $X_{1}\rightarrow X_{2}$ be a birational morphism between smooth surfaces $X_{1}$ and $X_{2}$ and let
$D_{i}(i=1,2)$ be a divisor on $X_{i}$ . We denote the direct image of $D_{1}$ on $X_{2}$ (resp. the
total transform of $D_{2}$ on $X_{1}$ , the proper transform of $D_{2}$ on $X_{1}$ ) by $f_{*}(D_{1})$ (resp. $f^{*}(D_{2})$ ,
$f^{\prime}(D_{2}))$ . We refer to [5] for the definitions of the logarithmic Kodaira dimension $\overline{\kappa}$ , the
logarithmic geometric genus $\overline{p}_{g}$ , the logarithmic $n$-genus $\overline{P}_{n}(n\geq 1)$ and the logarithmic
irregularity $\overline{q}$, etc.

The author would like to express his gratitude to Professor Masayoshi Miyanishi
who gave the author valuable advice and encouragement during the preparation of the
present article.

2. Preliminaries.

We recall some basic notions in the theory of peeling (cf. [13] and [1]). Let $(X, B)$

be a pair of a nonsingular projective surface $X$ and an SNC-divisor $B$ on $X$ . We
call such a pair $(X, B)$ an $SNC$-pair. A connected curve $T$ consisting of irreducible
components of $B$ (a connected curve in $B$ , for short) is a twig if the dual graph of $T$ is a
linear chain and $T$ meets $B-T$ in a single point at one of the end components of $T$ , the
other end of $T$ is called the tip of $T$ . A connected curve $R$ (resp. $F$ ) in $B$ is a rod (resp.
fork) if $R$ (resp. $F$ ) is a connected component of $B$ and the dual graph of $R$ (resp. $F$ ) is a
linear chain (resp. the dual graph of the exceptional curves of a minimal resolution of a
non-cyclic quotient singularity). A connected curve $E$ in $B$ is rational (resp. admissible)
if each irreducible component of $E$ is rational (resp. if there are no (-1)-curves in
Supp(E) and the intersection matrix of $E$ is negative definite). An admissible rational
twig $T$ in $B$ is maximal if $T$ is not extended to an admissible rational twig with more
irreducible components of $B$ .

Let $\{T_{\lambda}\}$ (resp. $\{R_{\mu}\},$ $\{F_{v}\}$ ) be the set of all admissible rational maximal twigs
(resp. all admissible rational rods, all admissible rational forks), where no irreducible
components of $T_{\lambda}’ s$ belong to $R_{\mu}’ s$ or $F_{v}’ s$ . Then there exists a unique decomposition of
$B$ as a sum of effective $Q$-divisors $B=B^{I}+$ Bk(B) such that

i) Supp(Bk(B)) $=(\bigcup_{\lambda}T_{\lambda})\cup(\bigcup_{\mu}R_{\mu})\cup(\bigcup_{v}F_{v})$ ,
$ii)$ $(B^{I}+K_{X}\cdot Z)=0$ for every irreducible component $Z$ of Supp(Bk(B)).

We call the divisor Bk(B) the bark of $B$ and say that $B^{I}+K_{X}$ is produced by the peeling
of $B$ .

DEFINITION 2. 1 (cf. [13, 1. 11]). An SNC-pair $(X, B)$ is almost minimal if, for
every irreducible curve $C$ on $X$ , either $(B^{I}+K_{X}\cdot C)\geq 0$ or the intersection matrix of
$C+$ Bk(B) is not negative definite.

We have the following result due to Miyanishi and Tsunoda [13].

LEMMA 2.2 (cf. [13, Theorem 1.11]). Let $(X, B)$ be an $SNC$-pair. Then there exists
a birational morphism 71: $X\rightarrow W$ onto a nonsingular projective $su$ face $W$ such that the
following four conditions (i) – (iv) are satisfted:
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(i) $C$ $:=\mu_{*}(B)$ is an SNC-divisor.
(ii) $\mu_{*}$ Bk(B) $\leq$ Bk(C) and $\mu_{*}(B^{I}+K_{X})\geq C^{I}+K_{W}$ .
(iii) $\overline{P}_{n}(X-B)=\overline{P}_{n}(W- C)$ for every integer $n\geq 1$ . In particular, $\overline{\kappa}(X-B)=$

$\overline{\kappa}(W-C)$ .
(iv) The pair $(W, C)$ is almost minimal.

We call the pair $(W, C)$ as in Lemma 2.2 an almost minimal model of $(X, B)$ .
The following result follows from [1, Lemma 6.20] and [13, Theorem 2.11 (1)].

Note that a rod (resp. a fork) is called a club (resp. an abnormal club) in [1].

LEMMA 2.3. Let $(X, B)$ be an $SNC$-pair with $\overline{\kappa}(X-B)\geq 0$ . Assume that any
rational twig of $B$ is admissible. If $(X, B)$ is not almost minimal then there exists $a$

$(-1)$ -curve $E$, not contained in $B$, such that one of the following holds:
(i) $ E\cap B=\emptyset$ .
(ii) $(E\cdot B)=1$ and $E$ meets an irreducible component of Supp(Bk(B)).
(iii) $(E\cdot B)=2$ and $E$ meets two different connected components of $B$ such that one

of the connected components is a rational rod $R_{v}$ of $B$ and $E$ meets a tip of $R_{v}$ .
Further, $\overline{P}_{n}(X-(B+E))=\overline{P}_{n}(X-B)$ for any $n\geq 1$ and hence $\overline{\kappa}(X-(B+E))=$

$\overline{\kappa}(X-B)$ .

LEMMA 2.4. Let $(X, B)$ be an almost minimal $SNC$-pair with $\overline{\kappa}(X-B)=0$ and
$\overline{p}_{g}(X-B)=1$ . Assume that $X$ is rational and $B$ is connected. Then $B+K_{X}\sim 0$ and
$B$ is a nonsingular elliptic curve or a loop of nonsingular rational curves.

PROOF. See [9, Proposition 1.5 (1)] or [21, Reduction theorem]. $\square $

Now we recall the construction of a strongly minimal model of a nonsingular affine
surface with $\overline{\kappa}=0$ (cf. [9, \S 2]). Let $S=Spec(A)$ be a nonsingular affine surface with
$\overline{\kappa}(S)=0$ and let $(X, B)$ be an SNC-pair with $X-B=S$ . We call such a pair $(X, B)$

an $SNC$-completion of $S$ . Note that $S$ is rational by [9, Theorem 1.6]. Let $(W, C)$ be
an almost minimal model of $(X, B)$ . By contracting (-1)-curves $E$ with $(E\cdot C)\leq 1$

successively, we obtain a birational morphism $v$ : $W\rightarrow V$ such that $(F\cdot v_{*}(C))>1$ for
any (-1)-curve $F$ on $V$. Put $D:=v_{*}(C)$ and $S^{\prime}:=V-D$ . We call the surface $S^{\prime}$ a
strongly minimal model of $S$ . By [9, Lemmas 2.3 and 2.4 and Corollary 2.5], we have
the following result.

LEMMA 2.5. With the same notation and the assumptions as above, the following
assertions hold:

(1) $S^{\prime}$ is an afftne open subset of $S$ and $S-S^{\prime}$ is an empty set or a disjoint union of
the afftne lines A.

(2) $D$ is an $NC$-divisor. Furthermore, if $\overline{p}_{g}(S)=0$ then $D$ becomes an SNC-divisor
and the pair $(V, D)$ is almost minimal.

(3) $\overline{P}_{n}(S^{\prime})=\overline{P}_{n}(S)$ for any $n\geq 1$ . In particular, $\overline{\kappa}(S^{\prime})=\overline{\kappa}(S)=0$ .

DEFINITION 2.6. Let $S=Spec(A)$ be a nonsingular affine surface with $\overline{\kappa}(S)=0$

and let $(X, B)$ be an SNC-completion of $S$ . We call the pair $(X, B)$ (resp. the surface
$S)$ to be strongly minimal if $(X, B)$ is almost minimal and $(E\cdot B)>1$ for any (-1)-curve
$E$ on $X$ (resp. if there exists a strongly minimal model $S^{\prime}$ of $S$ such that $S=S^{\prime}$ ). Note
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that if $S$ is strongly minimal and $\overline{p}_{g}(S)=0$ then $S$ has a strongly minimal SNC-
completion by Lemma 2.5 (2).

LEMMA 2.7. Let $S=Spec(A)$ be a nonsingular afftne $su$ face with $\overline{\kappa}(S)=0$ and let
$(X, B)$ be an $SNC$-completion of $S$ such that $(B_{i}\cdot B-B_{i})\geq 3$ for any (-1)-curve $B_{i}\subset B$.

If $(X, B)$ is not strongly minimal then there exists $a$ $(-1)$ -curve $E$, not contained in $B$, such
that $(E\cdot B)=1$ and $\overline{P}_{n}(X-(B+E))=\overline{P}_{n}(X-B)$ for any $n\geq 1$ .

PROOF. If $(X, B)$ is almost minimal then the assertion is clear by the definition of
strongly minimality and Lemma 2.5 (3). Suppose that $(X, B)$ is not almost minimal.
Since $\overline{\kappa}(X-B)=0$ and $(B_{i}\cdot B-B_{i})\geq 3$ for any (-1)-curve $B_{i}\subset B$, we know that any
rational twig of $B$ is admissible by virtue of [17, Step (3) in the proof of Theorem 1.3].
Further, $B$ is connected and $S$ contains no complete curves since $S$ is affine. Hence the
assertion follows from Lemma 2.3. $[$

We state the classification of strongly minimal affine surfaces with $\overline{\kappa}=0$ . For
more details, see [9].

LEMMA 2.8 (cf. [9, Theorems 0.1, 4.5 and 5.4]). Let $S$ be a strongly minimal
nonsingular afftne $su$ face with $\overline{\kappa}(S)=0$ . Then we have:

(1) $S$ is one of the $su$ faces in Table 1 where $m(S),$ $e(S)$ and $\pi_{1}(S)$ are respectively

Table 1
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$(n\geq$

(a) $H[k, -k]$ (b) $H[-1,0, -1]$

Figure 1

the least positive integer such that $\overline{P}_{m(S)}(S)>0$, the topological Euler characteristic of $S$

and the fundamental group of $S$ .
(2) Assume further that $\overline{p}_{g}(S)=0$ and $e(S)\leq 1$ . Let $(V, D)$ be a strongly minimal

$SNC$-completion of S. Then the configuration of $D$ is one of (a) – (e) in Figure 1 where
each line represents a nonsingular rational curve and each number indicates the self-
intersection number of the corresponding curve.

COROLLARY 2.9. Let $S$ be a nonsingular afftne $su$ face with $\overline{\kappa}(S)=0$ . Then the
following assertions hold:

(1) $e(S)\geq 0$ and the equality holds if and only if $S$ is strongly minimal and of type
$O(1,1,1)$ or $H[-1,0, -1]$ .

(2) Assume that $e(S)=\overline{p}_{g}(S)=0,$ $i.e.,$ $S$ is of type $H[-1,0, -1]$ . Let $(V, D)$ be
an $SNC$-completion of $S$ such that $(D_{i}\cdot D-D_{i})\geq 3$ for any (-1)-curve $D_{i}\subset D.$ Then
$(V, D)$ is strongly minimal and the configuration of $D$ is given as (b) in Figure 1.

PROOF. By Lemmas 2.5 (1), 2.7 and 2.8, the assertions are clear. $\square $

3. Proof of Theorem 1.1, part I.

In this section, we prove Theorem 1.1 when the curve $B$ is reducible. We prove
some lemmas to be used later.

LEMMA 3.1. Let $V$ be a nonsingular projective $su$ face with $q(V):=h^{1}(V, \mathscr{O}_{V})=0$

and let $D$ be a non-zero reduced effective divisor on V. Then

$\overline{q}(V-D)\geq\#(D)-\rho(V)$ ,
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where $\rho(V)$ is the Picard number of V. Furthermore, the equality holds provided
$\rho(V)=1$ .

PROOF. Let $D=\sum_{i}D_{i}$ be the irreducible decomposition of $D$ . Since $q(V)=0$ ,
we get

$\overline{q}(V-D)=\dim_{Q}Ker(\bigoplus_{i}Q[D_{i}]\rightarrow Pic(V)\otimes Q)$

by [2, Lemma 2]. Hence

$\overline{q}(V-D)\geq\#(D)-\rho(V)$ .

If $\rho(V)=1$ then the natural map $\oplus_{i}Q[D_{i}]\rightarrow$ Pic(V) $\otimes Q$ is surjective. So $\overline{q}(V-D)=$

$\#(D)-1$ . lm

LEMMA 3.2. Let $S$ be a nonsingular afftne $su$ face with $\overline{\kappa}(S)=0$ . Then $\overline{q}(S)\leq 2$ .
Moreover, $\overline{q}(S)=2$ if and only if $S\cong C’$ $\times C^{*}$ .

PROOF. By [3, Theorem $II$ ], the assertions are clear. See also [7, Theorem 2.8 and
Corollary 2.9]. $[$

Now we shall prove Theorem 1.1 when $B$ is reducible.

LEMMA 3.3. With the same notation as in Theorem 1.1, $\#(B)\leq 3$ and the equality
holds if and only if $P^{2}-B\cong C$ ’

$\times C^{*}$ . In particular, if $\#(B)=3$ then $\overline{p}_{g}(P^{2}-B)=1$ .

PROOF. We note that $\overline{p}_{g}(C^{*}\times C^{*})=1$ . Lemma 3.1 implies that $\overline{q}(P^{2}-B)=$

$\#(B)-1$ . So, by Lemma 3.2, we know that $\#(B)\leq 3$ and the equality holds if and only
if $P^{2}-B\cong C$ ’

$\times C^{*}$ . $[$

Among the assertions of Theorem 1.1, (3) and (1) in the case $\#(B)\geq 3$ are verified.
Next we consider the case $\#(B)=2$ .

LEMMA 3.4. With the same notation as in Theorem 1.1 assume that $\#(B)=2$ .
Then $\overline{p}_{g}(P^{2}-B)=1$ .

PROOF. Put $S:=P^{2}-B$ . Note that $\overline{p}_{g}(S)\leq 1$ because $\overline{\kappa}(S)=0$ . Suppose to the
contrary that $\overline{p}_{g}(S)=0$ . Let $B=B_{1}+B_{2}$ be the irreducible decomposition of $B$ . Let
$\mu$ : $W\rightarrow P^{2}$ be a composite of blowing-ups such that $C:=\mu^{-1}(B)$ becomes an SNC-
divisor and that $\mu$ is the shortest among such birational morphisms. From now on, we
call such a morphism $\mu$ a minimal $SNC$-map for the pair $(P^{2}, B)$ . Note that $W-C=$
$S$ . Since $\overline{p}_{g}(W-C)=\overline{p}_{g}(S)=0$ , each irreducible component of $C$ is a nonsingular
rational curve and the dual graph of $C$ is a tree by [11, Lemma I.2.1.3]. So $B_{1}$ and
$B_{2}$ are rational cuspidal curves and meet in only one point $P$ . Hence $e(S)=e(P^{2})-$

$e(B_{1})-e(B_{2}-\{P\})=3-2-1=0$ . By Corollary 2.9 (1), $S$ is of type $H[-1,0, -1]$ .
Let $C_{i}(i=1,2)$ be the proper transform of $B_{i}$ on $W$ . Assume that $(C_{j}\cdot C-C_{j})$

$\geq 3$ for any (-1)-curve $C_{j}\subset C$ . Then, by Corollary 2.9 (2), the configuration of $C$ is
given as (b) in Figure 1. Since each component of $C-(C_{1}+C_{2})$ has negative self-
intersection number, $D_{4}$ is one of $\{C_{1}, C_{2}\}$ and either $\{C_{1}, C_{2}\}\cap\{D_{1}, D_{2}, D_{3}\}=\emptyset$ or
$\{C_{1}, C_{2}\}\cap\{D_{5}, D_{6}, D_{7}\}=\emptyset$ . Then there exists $P_{1}\in P^{2}$ such that $D_{i}+D_{i+1}+D_{i+2}=$
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$\mu^{-1}(P_{1})$ , where $i=1$ or 5. This is a contradiction. So there exists a(-1)-curve $H$ in
Supp(C) such that $(H\cdot C-H)\leq 2$ . By the minimality of $\mu$ , we know that $H=C_{1}$ or
$C_{2}$ . Assume that $H=C_{1}$ . We claim that:

Claim. $(C_{1}\cdot C-C_{1})=2$ .

PROOF. If $(C_{1}\cdot C-C_{1})=1$ then $\overline{\kappa}(W- C)$ $=\overline{\kappa}(W-(C-C_{1}))=0$ . Since $W-$

$(C-C_{1})=P^{2}-B_{2}$ , we have $\overline{\kappa}(P^{2}-B_{2})=0$ . In the next section, we prove that if
$D\subset P^{2}$ be an irreducible rational cuspidal curve then $\overline{\kappa}(P^{2}-D)\neq 0$ (cf. Lemmas 4.1
and 4.2). So we have a contradiction.

The above claim implies that there exists a unique singular point $Q\in B_{1}$ other than
$P$ . Then, since $Q$ is a cusp of $B_{1}$ , there exists a unique decomposition of $\mu^{-1}(Q)$ as a
sum of non-zero reduced effective divisors $\mu^{-1}(Q)=E+F+G$ such that the following
three conditions are satisfied:

(i) $F$ and $G$ are connected.
(ii) $E$ is a unique (-1)-curve in $\mu^{-1}(Q)$ and hence each component of $F+G$ has

self-intersection number $\leq-2$ .
(iii) $(E\cdot F)=(E\cdot G)=(E\cdot C_{1})=1$ .

The dual graph of $C$ is given as in Figure 2, where we put $\tilde{C}:=C-(C_{1}+E+F+G)$ .
We have $(C_{1}\cdot\tilde{C})=1$ .

Let $v$ : $W\rightarrow W^{\prime}$ be a sequence of contractions of (-1)-curves and subsequently
contractible curves in $C$, starting with the contraction of $C_{1}$ , such that $C^{\prime}:=v_{*}(C)$ is
an SNC-divisor and that the contraction of any (-1)-curve in $C^{\prime}$ makes the image of
$D^{\prime}$ lose the simple normal crossing property (the SNC-property, for short). Then
$(v_{*}(E)^{2})$ $\geq 0$ and the weighted dual graphs of $v_{*}(F)$ and $v_{*}(G)$ are the same as those
of $F$ and $G$ . Further, $(C_{i}^{\prime}\cdot C^{\prime}-C_{i}^{\prime})\geq 3$ for any (-1)-curve $C_{i}^{\prime}\subset C^{\prime}$ because the dual
graph of $C$ is a tree. Since $W^{\prime}-C^{\prime}=S$ is of type $H[-1,0, -1]$ , the configuration of
$C^{\prime}$ is given as (b) in Figure 1 by Corollary 2.9 (2). Since $(v_{*}(E)^{2})$ $\geq 0,$ $v_{*}(E)=D_{4}$ or
$D_{5}$ . If $v_{*}(E)=D_{4}$ then $v_{*}(C_{1}+\tilde{C})=0$ and $D_{5}+D_{6}+D_{7}=v_{*}(F)$ or $v_{*}(G)$ . This is
a contradiction because $v_{*}(F)$ and $v_{*}(G)$ contain no irreducible curves with self-
intersection number $\geq-1$ . If $v_{*}(E)=D_{5}$ then $v_{*}(\tilde{C})=D_{1}+\cdots+D_{4}$ and $F$ and $G$ are
irreducible (-2)-curves. This is also a contradiction because the intersection matrix of
$E+F+G$ is then not negative definite. $\square $

The assertion (2) of Theorem 1.1 follows from Lemma 3.5 below.

LEMMA 3.5 (cf. [10, Lemma 4]). Let $B\subset P^{2}$ be a reduced curve. Assume that
$\overline{\kappa}(P^{2}-B)\leq 1$ and $B$ contains a non-rational curve. Then $B$ is an irreducible nonsingular
cubic curve.

Figure 2
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PROOF. Since $B$ contains a non-rational curve, $\deg B\geq 3$ . By virtue of [4,
Theorem 4], we have $\overline{\kappa}(P^{2}-B)=\kappa(B+K_{P^{2}}, P^{2})=\kappa((\deg B-3)\ell, P^{2})$ , where 1 is a
line on $P^{2}$ and $\kappa(B+K_{P^{2}} , P^{2})$ denotes the $(B+K_{P^{2}})$ -dimension of $P^{2}$ (cf. [5]). If
$\deg B\geq 4$ then $\kappa((\deg B- 3)?, P^{2})=2$ . So $\deg B=3$ and hence $B$ is an irreducible
nonsingular cubic curve. $\square $

4. Proof of Theorem 1.1, part II.

In this section, we treat the case where $B$ is irreducible. All results in this section
except for Lemma 4.3 are stated in [15], where their proofs however are not given. For
the sake of completeness, we give the proofs which use the classification theory of the
affine surfaces with $\overline{\kappa}=0$ (cf. \S 2). In [14], Orevkov independently gave the proofs of
Lemmas 4.1 and 4.2. Our proofs are almost the same as Orevkov’s.

Assume that $\overline{p}_{g}(P^{2}-B)=0$ and $B$ is irreducible. Then, by using the same
argument as in the proof of Lemma 3.4, we know that $B$ is a rational cuspidal curve.
If $B$ is nonsingular, $B$ is a line or a conic and $\overline{\kappa}(P^{2}-B)=-\infty$ . So #Sing(B) $\geq 1$ .
By [18, Theorem (II)], #Sing(B) $\leq 2$ . Here we note that $e(P^{2}-B)=e(P^{2})-e(B)=$

$3-2=1$ .
We shall consider the cases #Sing(B) $=1$ and #Sing(B) $=2$ separately.

LEMMA 4.1. If $B\subset P^{2}$ is a rational cuspidal curve with #Sing(B) $=1$ . Then
$\overline{\kappa}(P^{2}-B)\neq 0$ .

PROOF. Suppose that $\overline{\kappa}(P^{2}-B)=0$ . Let $\mu$ : $W\rightarrow P^{2}$ be a minimal SNC-map for
$(P^{2}, B)$ (cf. the proof of Lemma 3.4) and let $C_{1}$ be the proper transform of $B$ on $W$ .
Let $P$ be the unique singular point of $B$ . Then there exists a unique decomposition of
$\mu^{-1}(P)$ as a sum of nonzero reduced effective divisors $\mu^{-1}(P)=E+F+G$ such that the
conditions (i) – (iii) for $\mu^{-1}(Q)$ as in the proof of Lemma 3.4 hold. The dual graph of
$C:=\mu^{-1}(B)=C_{1}+E+F+G$ is given as in Figure 3.

Since $(C_{1}\cdot C+K_{W})=-1<0$ and $\overline{\kappa}(W-C)=0$ , we know that $(C_{1})^{2}<0$ by the
theory of Zariski decomposition (cf. [17, the proof of Theorem 1.3]). If $(C_{1})^{2}=-1$

then $\overline{\kappa}(W- C)$ $=\overline{\kappa}(W-(C-C_{1}))=0$ because $(C_{1}\cdot C-C_{1})=1$ . Since $C-C_{1}=$

$\mu^{-1}(P)$ can be contracted to a smooth point, we have $\overline{\kappa}(W- (C-C_{1} ))$ $=-\infty$ , which is
a contradiction. So $(C_{1})^{2}\leq-2$ .

Suppose that $(W, C)$ is strongly minimal (cf. Definition 2.6). Then, in view of
$e(W- C)$ $=1$ , we know that the configuration of $C$ is given as one of (a), (c), (d) and
(e) in Figure 1. Since $C$ contains a unique (-1)-curve $E$ , the configuration of $C$ is
either (a) or (e). If the case (a) occurs then $C$ contains a curve with non-negative self-
intersection number, which is a contradiction. If the case (e) occurs then $E+F+G=$
$D_{1}+D_{3}+D_{4}+\cdots+D_{9}$ since $C_{1}$ is irreducible. This is also a contradiction because

Figure 3
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the intersection matrix of $D_{1}+D_{3}+D_{4}+\cdots+D_{9}$ is then not negative definite. Hence
there exists a(-1)-curve $H$ , not contained in $C$ , such that $(H\cdot C)=1$ by Lemma 2.7.

Let $v$ : $W\rightarrow W^{\prime}$ be a sequence of contractions of (-1)-curves and subsequently
contractible curves in $C+H$ , starting with the contraction of $H$ , such that $C^{\prime}:=v_{*}(C)$

is an SNC-divisor and that the contraction of any (-1)-curve in Supp(C $’$ ) makes the
image of $C^{\prime}$ lose the SNC-property. Then $(C_{i}^{\prime}\cdot C^{\prime}-C_{i}^{\prime})\geq 3$ for any (-1)-curve $ C_{i}^{\prime}\subset$

$C^{\prime}$ because the dual graph of $C+H$ is a tree. Since $e(W^{\prime}-C^{\prime})=e(W-C)-1=0$

and $\overline{p}_{g}(W^{\prime}-C^{\prime})=0$ by Lemma 2.7, $W^{\prime}-C^{\prime}$ is of type $H[-1,0, -1]$ and $(W^{\prime}, C^{\prime})$ is
strongly minimal by Corollary 2.9 (2). The configuration of $C^{\prime}$ is then given as (b)
in Figure 1. We note that $Q:=v(H)$ is a unique fundamental point of $v$ . Since
each component of $C$ has negative self-intersection number, $Q\in D_{4}$ . Then either
$v^{\prime}(D_{1}+D_{2}+D_{3})$ or $v^{\prime}(D_{5}+D_{6}+D_{7})$ is contained in $F$ or $G$ . We consider the case
$v^{\prime}(D_{1}+D_{2}+D_{3})\subset F$ or $G$ . The case $v^{\prime}(D_{5}+D_{6}+D_{7})\subset F$ or $G$ can be treated
similarly. Since $Q\in D_{4},$ $v^{\prime}(D_{i})(i=1,2)$ is a(-2)-curve and a terminal component of
$C$ . We can factor the map $\mu=\mu_{1}\circ\mu_{2}$ : $W\rightarrow P^{2}$ so that $\mu_{2*}(v^{\prime}(D_{3}))$ is a unique (-1)-
curve in Supp $\mu_{2*}(E+F+G)$ . Then, since $v^{\prime}(D_{i})(i=1,2)$ is a(-2)-curve and a
terminal component of $C,$ $\mu_{2*}(v^{\prime}(D_{i}))(i=1,2)$ remains as a(-2)-curve. This is a
contradiction because the intersection matrix of $\mu_{2*}(v^{\prime}(D_{1}+D_{2}+D_{3}))\subset\mu_{1}^{-1}(P)$ is then
not negative definite. $\square $

LEMMA 4.2. If $B\subset P^{2}$ be a rational cuspidal curve with #Sing(B) $=2$ then
$\overline{\kappa}(P^{2}-B)\geq 1$ .

PROOF. By [18, Theorem (IV)], $\overline{\kappa}(P^{2}-B)\geq 0$ . Suppose that $\overline{\kappa}(P^{2}-B)=0$ . Let
$P_{1}$ and $P_{2}$ be two singular points of $B$ . Let $\mu$ : $W\rightarrow P^{2}$ be a minimal SNC-map for
$(P^{2}, B)$ . Then there exists a unique decomposition of $\mu^{-1}(P_{i})(i=1,2)$ as a sum of
non-zero reduced effective divisors $\mu^{-1}(P_{i})=E_{i}+F_{i}+G_{i}$ such that the conditions
(i) – (iii) for $\mu^{-1}(Q)$ as in the proof of Lemma 3.4 hold, where we consider respectively
$E,$ $F$ and $G$ as $E_{i},$ $F_{i}$ and $G_{i}$ . Let $C_{1}$ be the proper transform of $B$ on $W$ and $C:=$

$\mu^{-1}(B)=C_{1}+\sum_{i=1}^{2}(E_{i}+F_{i}+G_{i})$ . The dual graph of $C$ is given as in Figure 4.
We consider the following two cases separately.

Case 1: $(C_{1})^{2}\neq-1$ . Then all (-1)-curves in $C$ are exhausted by $E_{1}$ and $E_{2}$

and $(E_{i}\cdot C-E_{i})=3(i=1,2)$ . If $(W, C)$ is strongly minimal then it follows from
$e(W- C)$ $=1$ that the configuration of $C$ is given as one of (a), (c), (d) and (e) in

Figure 4
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Figure 5

Figure 1. This is, however, a contradiction. So there exists a(-1)-curve $H$ , not
contained in $C$ , such that $(H\cdot C)=1$ by Lemma 2.7. Let $v$ : $W\rightarrow W^{\prime}$ be a sequence
of contractions of (-1)-curves and subsequently contractible curves in $C+H$ , starting
with the contraction of $H$ , such that $C^{\prime}:=v_{*}(C)$ is an SNC-divisor and that the
contraction of any (-1)-curve in Supp(C $’$ ) makes the image of $C^{\prime}$ lose the SNC-
property. We know that $Q:=v(H)$ is a unique fundamental point of $v$ and the
configuration of $C^{\prime}$ is given as (b) in Figure 1 by the same argument as in the proof of
Lemma 4.1.

Since $(H\cdot C)=1$ , we may assume that $(H\cdot E_{1}+F_{1}+G_{1})=0$ . Then $ v_{*}(E_{1})^{2}\geq$

$-1$ and the dual graphs of $v_{*}(F_{1})$ and $v_{*}(G_{1})$ are the same as those of $F_{1}$ and $G_{1}$ . So
$v_{*}$ $(E_{1} )$ $=D_{4}$ or $D_{5}$ . Since each component of $v_{*}(F_{1})$ and $v_{*}(G_{1})$ has self-intersection
number $\leq-2,$ $v_{*}(E_{1})=D_{5}$ . Hence $F_{1}$ and $G_{1}$ are (-2)-curves. This contradicts that
the intersection matrix of $E_{1}+F_{1}+G_{1}$ is negative definite.

Case 2: $(C_{1})^{2}=-1$ . Let $f$ : $W\rightarrow W^{\prime}$ be the contraction of $C_{1}$ and put $C^{\prime}$

$:=$

$f_{*}(C)$ . The dual graph of $C^{\prime}$ is given as in Figure 5 where the dual graphs of $F_{i}^{\prime}:=$

$f_{*}(F_{i})$ and $G_{i}^{\prime}:=f_{*}(G_{i})(i=1,2)$ are the same as those of 6 and $G_{i}$ .
The divisor $C^{\prime}$ contains no (-1)-curves. If $(W^{\prime}, C^{\prime})$ is strongly minimal then the

configuration of $C^{\prime}$ must be (a) in Figure 1. Then $k=0$ in Figure 1 (a) and $F_{1},$ $F_{2}$ ,
$G_{1}$ and $G_{2}$ are (-2)-curves. This is a contradiction because the intersection matrix of
$E_{i}+F_{i}+G_{i}(i=1,2)$ is then not negative definite. So there exists a(-1)-curve $H^{\prime}$ ,
not contained in $C^{\prime}$ , such that $(H^{\prime}\cdot C^{\prime})=1$ by Lemma 2.7. Let $v$ : $W^{\prime}\rightarrow W^{\prime\prime}$ be a
sequence of contractions of (-1)-curves and subsequently contractible curves in $C^{\prime}+H^{\prime}$ ,
starting with the contraction of $H^{\prime}$ , such that $C^{\prime\prime}:=v_{*}(C^{\prime})$ is an SNC-divisor and that
the contraction of any (-1)-curve in Supp(C’) makes the image of $C^{\prime\prime}$ lose the SNC-
property. By the same argument as in the proof of Lemma 4.1, we know that $Q:=$

$v(H^{\prime})$ is a unique fundamental point of $v$ and the configuration of $C^{\prime\prime}$ is given as (b) in
Figure 1.

We may assume that $(H^{\prime}\cdot C^{\prime})=(H^{\prime}\cdot E_{2}^{\prime}+G_{2}^{\prime})=1$ . Then $v_{*}(E_{2}^{\prime})^{2}\geq 0,$ $(v_{*}(E_{1}^{\prime})\cdot$

$C^{\prime\prime}-v_{*}(E_{1}^{\prime}))=3$ and the dual graphs of $v_{*}(F_{1}^{\prime})$ and $v_{*}(G_{1}^{\prime})$ are the same as those of
$F_{1}$ and $G_{1}$ . So $v_{*}$ $(E_{1}^{\prime})$ $=D_{5}$ and $F_{1}$ and $G_{1}$ are (-2)-curves. This is a contra-
diction. $\square $

The proof of (1) of Theorem 1.1 is thus completed by Lemmas 3.3, 3.4 4.1 and 4.2.

PROOF 0F (4) 0F THEOREM 1.1. Let $B\subset P^{2}$ be an irreducible rational curve with
$\overline{\kappa}(P^{2}-B)=0$ . Then, by Lemmas 4.1 and 4.2 and [18, Theorems (II) and (III)], $B$ has
a unique singular point, say $P$, and $P$ is not a cusp. We denote the number of analytic
branches of $B$ at $P$ by $r_{P}(B)$ . Then $r_{P}(B)=2$ follows from Lemma 4.3 below.
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LEMMA 4.3. Let $D$ be an irreducible rational curve on a nonsingular projective
rational $su$ face $V$ with $\overline{\kappa}(V-D)=0$ . Let $s(D)$ be the number of singular points on $D$

which are not cusps. Then $s(D)\leq 1$ and if $s(D)=1$ then $r_{P}(D)=2$, where $P$ is the
singular point on $D$ which is not a cusp.

PROOF. Assume that $s(D)\geq 1$ . Let $f$ : $\tilde{V}\rightarrow V$ be a minimal SNC-map for $(V, D)$

and let $\tilde{D}:=f^{-1}(D)$ . Then $\tilde{D}$ contains loops of nonsingular rational curves. So
$\overline{p}_{g}(\tilde{V}-\tilde{D})=\overline{p}_{g}(V-D)=1$ . Let $(W, C)$ be an almost minimal model of $(\tilde{V},\tilde{D})$ .
Lemma 2.4 implies that $C$ is a loop of nonsingular rational curves. The dual graph of
$\tilde{D}$ then contains only one loop by the construction of almost minimal models (cf. [13],
etc.). Hence the assertions hold. $\square $

The proof of Theorem 1.1 is thus completed.

5. $\pi_{1}(P^{2}-B)$ and $e(P^{2}-B)$ .
In this section, we study the fundamental groups $\pi_{1}(P^{2}-B)$ and the topological

Euler characteristics $e(P^{2}-B)$ of the surfaces $P^{2}-B$ with $\overline{\kappa}(P^{2}-B)=0$ by using
Theorem 1.1.

PROPOSITION 5.1. Let $B\subset P^{2}$ be a reduced curve with $\overline{\kappa}(P^{2}-B)=0$ . Then
$\pi_{1}(P^{2}-B)$ is abelian. In particular, if $B$ is irreducible then $\pi_{1}(P^{2}-B)=Z/(\deg B)Z$ .

PROOF. Put $S:=P^{2}-B$ . Let $S^{\prime}$ be a strongly minimal model of $S$ . Then, by
Theorem 1.1 (1) and Lemma 2.8 (1), $\pi_{1}(S^{\prime})$ is an abelian group. So $\pi_{1}(S)$ is abelian
since $S^{\prime}$ is a Zariski open subset of $S$ . If $B$ is irreducible then $H_{1}(S;Z)\cong Z/(\deg B)Z$

by the duality. $\square $

PROPOSITION 5.2. Let $B\subset P^{2}$ be a reduced curve with $\overline{\kappa}(P^{2}-B)=0$ . Then

$e(P^{2}-B)=\{$
3, if $B$ is a nonsingular cubic curve

$3-\#(B)$ , otherwise.

PROOF. By Theorem 1.1, the assertion holds unless $\#(B)=2$ . So we consider the
case $\#(B)=2$ . Put $S$ $:=P^{2}-B$ .

Assume that $S$ is strongly minimal. Since $\overline{q}(S)=\#(B)-1=1$ by Lemma 3.1, $S$ is
of type $O(4,1)$ or $O(2,2)$ (cf. Table 1). If the latter case occurs then $S\cong P^{1}\times P^{1}-$

$(C_{1}+C_{2})$ , where $C_{i}(i=1,2)$ is a curve of bidegree $(1, 1)$ and $C_{1}+C_{2}$ is an SNC-
divisor (cf. [9, Theorem 3.1]). This is a contradiction because Pic(S) is then not a finite
group. Hence we know that $e(S)=1$ . Assume that $S$ is not strongly minimal. Let
$S^{\prime}$ be a strongly minimal model of $S$ . Since $S-S^{\prime}$ consists of disjoint $r$ affine lines
$A^{1}(r\geq 1)$ by Lemma 2.5 (1), we have $e(S)=e(S^{\prime})+r$ . Put $B^{\prime}:=P^{2}-S^{\prime}$ . Then $B^{\prime}$

is purely of codimension one. Since $\#(B^{\prime})=\#(B)+r=2+r$ , we have $S^{\prime}\cong C’$
$\times$ C’

and $r=1$ by Theorem 1.1 (3). Hence $e(S)=e(S^{\prime})+r=1$ . $[$

6. The case B is irreducible.

Let $B\subset P^{2}$ be an irreducible curve with $\overline{\kappa}(P^{2}-B)=0$ . Throughout this section,
we assume that $B$ is not a nonsingular cubic curve. Theorem 1.1 (4) implies that $B$ is
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a rational curve with unique singular point $P$ and $r_{P}(B)=2$ . Let $B_{1}$ and $B_{2}$ be two
analytic branches of $B$ at $P$ . Then we have the following three cases:

Case (I): $P$ is a smooth point of $B_{1}$ and $B_{2}$ .
Case (II): $P$ is a smooth point of either $B_{1}$ or $B_{2}$ , but not for both.
Case (III): $P$ is a singular point of $B_{1}$ and $B_{2}$ .
We call the curve $B$ to be of type (I) (resp. (II), (III)) if the case (I) (resp. (II),

(III) $)$ occurs.
We consider the case (I).

PROPOSITION 6.1. Suppose that $B$ is of type (I). Then $B$ is projectively equivalent to
one of the curves deftned by the following polynomials, where $(X, Y, Z)$ denotes the system

of homogeneous coordinates in $P^{2}$ and $d=\deg B$ .

Conversely, if $C_{t}$ is a curve whose deftning equation is one of the above list with
$\deg C_{t}=4$ or 5 then $\overline{\kappa}(P^{2}-C_{t})=0$ . Moreover, $C_{t}$ and $C_{s}$ are projectively equivalent if
and only if $t^{3}=s^{3},$ $i.e.,$

$t^{3}$ is the projective invariant.

PROOF. Since $B_{1}$ and $B_{2}$ are smooth at $P$ , the multiplicity of $B$ at $P$ is equal to
two. So the assertions follow from [20, Propositions 1 and 3] (or [19]). $\square $

We give examples of the cases (II) and (III). We denote by $F_{a},$ $M_{a}$ and 1 a
Hirzebruch surface of degree $a$ , the minimal section of $F_{a}$ and a general fiber of the
ruling on $F_{a}$ , respectively.

EXAMPLE 1. Let $C_{0},$ $C_{1}$ and $C_{2}$ be three irreducible curves on $F_{a}(a\geq 3)$ such that
$ C_{0}\sim M_{a}+(a+1)\ell$ (the relation $\sim$ represents the linear equivalence of divisors), $C_{1}=$

$M_{a},$ $ C_{2}\sim\ell$ and $C_{0}+C_{1}+C_{2}$ is an SNC-divisor. See Figure 6-(i). Let $\mu$ : $V\rightarrow F_{a}$ be
the composite of $(a-1)$ -times blowing-ups such that the configuration of $C^{\prime}$

$:=$

$\mu^{-1}(C_{0}+C_{1}+C_{2})$ is shown as in Figure 6-(ii), where $C_{i}^{\prime}(i=0,1,2)$ is the proper

0 $F_{a}(a\geq 3)$

-1
$V$

$\leftarrow\mu$
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$F_{b}(b\geq 5)$ $V$

$\leftarrow\mu$

Figure 7

transform of $C_{i}$ . Then we obtain the birational morphism $v$ : $V\rightarrow P^{2}$ which is the
contraction of the curve $C^{\prime}-(C_{0}^{\prime}+E_{a+1})$ in the order $C_{2}^{\prime}$ , E3, . . . , $E_{a},$ $C_{1}^{\prime}$ . Put $B:=$

$v(C_{0}^{\prime})$ . We know that $\deg B=a+1\geq 4$ . We have $\overline{\kappa}(V-C^{\prime})=\overline{\kappa}(F_{a}-(C_{0}+C_{1}+$

$C_{2}))=0$ because $C_{0}+C_{1}+C_{2}+K_{F_{a}}\sim 0$ . Since $E_{a+1}$ is a(-1)-curve and $(E_{a+1}\cdot C^{\prime}-$

$E_{a+1}$ $)$ $=1,\overline{\kappa}(V- (C^{\prime}-E_{a+1} ))$ $=\overline{\kappa}(V-C^{\prime})$ . So $\overline{\kappa}(P^{2}-B)=\overline{\kappa}(V^{\prime}-(C^{\prime}-E_{a+1}))=0$ .
The curve $B$ is of type (II).

EXAMPLE 2. Let $b,$ $s$ and $t$ be three integers such that $b\geq 5,$ $s,$
$t\geq 2$ and $s+t=$

$b-1$ . Let $C_{0},$
$\ldots,$

$C_{3}$ be four irreducible curves on $F_{b}$ such that $ C_{0}\sim M_{b}+b\ell$ , $ C_{1}\sim$

$C_{2}$ – 1, $C_{3}=M_{b}$ and $C_{0}+\cdots+C_{3}$ is an SNC-divisor. See Figure 7-(i). Let $\mu$ : $ V\rightarrow$

$F_{b}$ be the composite of $(s+t)$ -times blowing-ups such that the configuration of $C^{\prime}$

$:=$

$\mu^{-1}(C_{0}+\cdots+C_{3})$ is shown as in Figure 7-(ii), where $C_{i}^{\prime}(i=0, \ldots, 3)$ is the proper
transform of $C_{i}$ . Then we obtain the birational morphism $v$ : $V\rightarrow P^{2}$ which is the
contraction of the curve $C^{\prime}-(C_{0}^{\prime}+E_{s}+F_{t})$ in the order $C_{1}^{\prime},$ $E_{1},$

$\ldots,$
$E_{s-1},$ $C_{2}^{\prime},$ $F_{1},$

$\ldots$ ,
$F_{t-1},$ $C_{3}^{\prime}$ . Put $B:=v(C_{0}^{\prime})$ . We know that $\deg B=b\geq 5$ . Since $C_{0}+\cdots+C_{3}+K_{F_{b}}$ -

0, $\overline{\kappa}(P^{2}-B)=0$ (cf. Example 1). The curve $B$ is of type (III).
By the above examples, we have the following result.

PROPOSITION 6.2. For any integer $n\geq 4$ (resp. $\geq 5$ ), there exists an irreducible
rational curve $B\subset P^{2}$ of degree $n$ such that $\overline{\kappa}(P^{2}-B)=0$ and $B$ is of type (II) (resp.
(III) $)$ .
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