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Abstract. We consider a semilinear elliptic equation in a varying thin
domain of R". This thin domain degenerates into a geometric graph when a
certain parameter tends to zero. We determine a limit equation on the graph
and we prove that a solution of the PDE converges to a solution of the limit
equation. Conversely, when a solution of the limit equation is given, we con-
struct a solution of the PDE approaching a solution of the limit equation.

§1. Introduction.

We consider a situation that a domain Q({) of R" (n = 2) is a varying thin domain
whose size in some directions vanishes when { tends to zero. We assume the boundary
0Q({) is decomposed into two portions X({) and I'({) and the size of 2({) in the
normal direction on X({) vanishes as { — 0. In this situation, we consider a boundary

value problem

Au+ f(u) =0 in Q((),

ou
(1.1) 5,=0 on X({),
u=ag on I'({)

where v denotes the unit outward normal vector on 0Q((), f'is a function on R and a; is
a function on I'({). For some domains, we can determine a limit problem of on a
low dimensional domain.

Many researchers have studied PDEs on thin domains and associated low di-
mensional equations. Among them, Yanagida has studied the existence of a stable
stationary solution of reaction-diffusion equations when an associated one-dimensional
equation has a stable stationary solution. Hale and Raugel have studied the upper
semi-continuity at { =0 of the attractors of reaction-diffusion equations on a thin L-
shaped domain of R?. Yanagida [9] classified graphs according to stability on non-

constant steady states of a reaction-diffusion equation.
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In this paper, we specify some varying thin network-shaped domains (see Figure 1)
which approach some geometric graphs (see Figure 2) and we consider on such a
domain ©({) and an associated equation on a graph %. The first purpose is to prove a
solution of on Q({) converges uniformly to a solution of the limit equation on ¥
as { tends to zero. The second purpose is, when a solution of the limit equation on ¥
exists, to prove the existence of a solution of on Q({) which approaches it as
{—0.

An outline of this paper is as follows: In §2, we deal with a simple graph ¥ and a
varying thin domain Q({) which degenerates into % and we describe a result in this
special case and prove it. In §3, we deal with a more general graph % and a network-
shaped domain Q({) and describe a similar result to §2 (cf. [Theorem 2). In §4, we
consider a certain inverse problem of [Theorem 2. We prove that if the linearized
equation around a solution of the limit equation has no zero eigenvalue, then the PDE

has a solution which approaches it.

ACKNOWLEDGMENT. | wish to express my sincere gratitude to Professor Shuichi

Jimbo for valuable advice and comments, and I thank Referees for valuable comments.

§2. A simple case.

We consider a simple graph ¢ such that several line segments meet one point, that
is, @ is a set which consists of a point O and line segments E;=0V; (j=1,...,N,N=2)
(see Figure 3). To simplify an argument, O is the origin and /; > 0 denotes the length
of E;. Let x=(xi1,...,x,) = (x1,x’) e R". We define thin cylinder regions D;({) <
R" (j=1,...,N) as

Di(¢) ={Rix:{l <x <, |X'| <{d;} for {€(0,(]
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where each d; is a positive constant and R; 1s an orthogonal transformation satisfying
detR, =1 and Rje; = [ 'V for e; = (1,0,...,0). We take constants / >0 and {, >0
such that D;({) # & and D;({)ND;({) = & for j# j and (e (0,{,]. We denote by
I;({) a portion of the boundary dD;({) which approaches ¥; and by I;({) a portion
which approaches O. Namely,

L) ={Rix:x1 =1, |x'| £{d},
Q) = {Rx - x1 = U, |¥'| £ ().

Let J be an open set of R" which contains O and satisfies JND;({.) = & and dJN
1

i(
oD;((,) =L(,) for 1<j<N and 0 U Di( C*))UJ)\(UJ Ji(C)) is € (if n=2,
each connected component is C*). We define a varying region J({) = R" as

J(&)=A{(/l)x:xeJ} for {e(0,,].

Now, we define a varying domain Q({) c R" (0<{={,) as

(UD )UJ ¢) for {e(0,¢,]

(see Figure 4). We remark that 69({)\(UJZII](C)) is C* and (). ,Q() =%. We will

call such domains as simple network-shaped domains in this paper.
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In this situation, we study the convergence of a solution of a boundary value

problem
Au+ f(u) =0 inQ(0),
(2.1) %:o on X({),
u=a; on () for j=1,...,N
where X(() is a set X(¢) = 0Q(0)\(\J;", (1)), fis a real valued function on R such that
(2.2) [ eC*(R), limsup f() <0, liminf £(£) >0,

and each g is a real valued continuous function on /;({) which approaches a certain
constant g;, that is,
(2.3) lim sup |aj ((x) —a;| =0 for j=1,...,N.

()

By the assumption and (2.3), we can easily to show a-priori bound of solutions
of because of Hopf’s maximum principle (see Protter and Weinberger [7]). By an
argument similar to the monotone method (see Sattinger [10]), we obtain a solution of
2.1).
Now, we prepare a certain system of ordinary differential equations used in main
results. The system of ODEs is

W' () + f((s) =0 on O0<s</ forj=1,...,N,

Y1 (0) = --- = Yy (0),
(2.4) N
Z;dj”‘llﬁ/(o) =0,
=
(W) = for j=1,...,N,

where each y; is a function on an interval [0,/], the second condition of implies
that the solution is continuous at O and the third condition implies that the sum of flux
vanishes at O (see Yanagida [9]).

The equation is not a usual 2-points boundary value problem. However, we
can prove the existence of solutions by using the Green function. Indeed, applying the
maximum principle with the assumption and second and third condition of [(2.4), we
have a-priori bound of solutions of [2.4]. From easy calculation, any solution of is
a fixed point of a map Z : (Y,...,¥y) — (¢1,...,0y) on C([0,/1]) x --- x C([0, ly])
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N I
:ZJ Gix (5, O f (Wi (8) dt + wy(s) (1< j<N)
=1

where G is the Green function

G 1) = .
lj_t n—1 ./n_
Ta <d] +<a— l]>s> 0<s=<t=I,
—sd Y, —t
G/,k(S,l)_ljl.aS k <lk ) 0=s=1l, 0Zt<l, j#k,
j
N d.nfl
_ J
“—Z [
=1 Y

and f™ is a continuous function

& &z¢
SrO=1re =<
f(=8) ¢= -4,

¢ = max{|a|, |¢] : £(¢) = 0}.

It is easy to show that the map % is a compact map on a certain bounded ball.
Therefore, we obtain a solution of [2.4).

Now, we present one of the main results as follows:

THEOREM 1. Suppose that a sequence {(,,},_, < (0,,] satisfies lim,,_.o. (,, = 0 and
that w,, is any solution of (2.1) at { ={,,. Then, there exist a subsequence {{y}i—; <
{Cnt_y and a solution = (Yy,...,Yy) of (2.4) such that

lim  sup [ (x) — b()| = 0,
k— o0 Xej(ém(k))
(2.5)
lim  sup [ty (x) — Ym0 R/._lx)] =0 for 1<j<N
k=% xeD;(Cipy) ‘
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where 1y is the orthogonal projection to the first coordinate mix = x| and b(\y) is the value

of Y at O, that is, b(y) = Y, (0) = --- = Yn(0).

We first prove a proposition which is necessary in the proof. The following

proposition is proved by the maximum principle.

PROPOSITION 2.1. Let Q = R" be a bounded domain with a piecewise C3 boundary
0Q which is decomposed into the sets 2 and I, that is, 0Q =2 UI and XNT" = . Let
A1 = 21(Q) be the first eigenvalue of the eigenvalue problem

Ap+2p=0 in Q,

0
6—?:0 on X,
p=0 on I.

Assume h(x) < Ay in Q and ue C*(Q)NCHQUX)NCYQUT) satisfies

Au+h(x)uz=0 in Q,

0
8_320 on X,
uzso on I

Then, u <0 in Q.

PRrOOF OF PropPOSITION 2.1.  We take the first eigenfunction ¢; > 0 in 2. We define
6 >0 as

0" =inf{d > 0: u(x) — ¢ (x) <0 in QUZYJ.

Suppose u attains its positive maximum u(x’) >0 at some points x' € QU2X. Then,

u —5/¢ attains its maximum 0 at x’ e QU2X and we obtain 5/ > 0 and
1
A(u é/¢1> (h(X) ;L])(ll é/¢l)

= —i(u—0"¢y) + (1 — h(x))d'¢,

Applying the maximum principle and E. Hopf’s lemma (see Gilbarg and Trudinger
[1]), we obtain u(x) —d6'¢,(x) =0 in Q. Therefore u is also the first eigenfunction. This

is contrary to the assumption /(x)<A;. We complete the proof of [Proposition 2.1|.
0
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PrOOF OF THEOREM 1. We take a positive constant

c; = max{max{[{|: f(&) =0, e R}, max{|a;| +1:1 =< j < N}}.

Applying the maximum principle to [2.1) with [2.2)] and (2.3), any solution u,, of at
{ =, satisfies

sup |upm(x)| <1 for m= 1.
xeQ(n)

Let & > 0 be small so that

(2.6) n’ey” > sup | f'(¢)|

|€]<2c1+1

and let 0 <0 <0y < &. Without loss of generality, we may take {, > 0 small so that
{1 <0y and {, <y — 0.

To see the behavior of u, on a thin portion D;({), we define a cylinder domain
(e, f,7) = R (<, 7>0) as

Qo f,7) ={y =, ¥) e R" 1 < yy <B, || <}
and we define functions w; ,, on Q((l,/;,d;) as
Wim(¥) = um(R;(11,0y"))  (ve QUL L, dj),mz 1,1 < jSN).
To see the behavior of u,, on J({), we define a portion J,, () < £2({) which contains

J({) as

N
Ju(€) = ( {Rix: {1 < xp < eo, || < Cdj}> UJ()

J=1

(see Figure 5) and we define functions v, on a fixed domain J ({,) as

Um<y) — um((ém/g*)y) (y € ‘]SO(C*))
We define functions y; ,,(s) on [01,/; — 1] as

1

wj}m(S):WJ | de,m(S,y,)dyl (51 ésélj—él)
(f y'I<d;

for m=1and 1 £ j < N where Bd’;‘l is an n — 1 dimensional ball of a radius d; and

|B/~1| is its n— 1 dimensional measure.
J



680 S. Kosual

J(©)
Jel(©)
—
| e®
Figure 5

It is easy to see that the function v, satisfies

Ayom + (G /T f (o) =0 in Jy (2,

ovy,

=0 on 0Q(¢,) N, (C,)

(2.7)

for m =1 and the function wj,, satisfies

P(m‘/‘}j»m +f(W}7m) = 0 in Q(Claljadj)a

OWj,m
ov

(2.8)
—0 on 0Q(¢, I, d;) N AQ(— o0, 0, d;)

for m=1 and 1 £ j <N where 4, is the Laplacian

n 02
Ay - Z—Z

i=1 ayl

and P; denotes the differential operator

Z

In this situation, Jimbo [4] has proved that the partial derivative owj/dy, of the

Py =

éyl ﬁyl

solution of is bounded in such a cylinder domain and that the restriction of

owj ¢/0y; to a certain portion of the boundary is bounded.



Semilinear elliptic equation 681

LemmA 2.2. There exists a constant ¢; = ¢3(¢1,d1) > 0 such that

#M’éc’z for y e Q(01,; — 1, d)),
Y1
ow; 2
Z )| Skl for yed0Ll ~01.d)N Q0. 2.d)
2 1

for m>1and 1 << N.
We omit the proof (see Jimbo [4; Lemma 3.7, 3.8]).

LemMma 2.3. There exists a constant ¢3 > 0 such that

J Wom(¥) =¥ ()P dy S 38, (mz1,1<j<N).
Q(51 »lj_51 d/)

Proor ofF LEmMA 2.3. From the Poincaré inequality, there exists a constant ¢4 > 0

such that

2
J \<d |M.}I',m(yl7yl)_wj,m(yl>| dyl
y'|<d;

le’|<df

<ol e O 0S5 S50
y'|<d;

1 2

Wj,m(ylyyl)—mj , wiom(1, X" dx'| dy’
d; |x'|<d;

From and Lemma 2.2, we have

Vw31, )P dy = — Wy (0) Ay Wi () dy

JQ((;IJ/(;MJI) JQ((51J/‘517dl)

R
=CiJ Wom(¥) —2 (») dy
001, l—ov,d) ) 0y} L)

+c;j () dy
Q(O]l 01 d])
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ow;
= CanJ Wi m(l; — 61, y') =2
v'I<d; ol ) on

(1]'_517y/)dy/

+ Wi (). W.m(3)) dy
JO(01,i—01,dy)

= CrznlB,}}‘1|{201€z + 13 + ey sup If(é)\}

|§'\<c1

Thus, we complete the proof of Lemma 2.3.

O

LEMMA 2.4, There exist a subsequence {m(k)};_,, ¥, ,, € C°([01,]; —d1]) (1<j=<N)

and a constant b such that

(2.9) lim - sup |v,(y) = b =0,
% yed(l)

(2.10) im - sup |y 00 (5) = 00 ()| = O,

k=0 5 <s<lj—oy

(2.11) Jim sup (W) (0) — ¥, (1) =0
=0 yedQ(d, l-br,dy)

for 1 < j<N.

Proor oF LEMMA 2.4. For j=1,..., N, we define a pair of functions w’,, and w7,

as
W (9) = Wm(luyy +02,¥") (v e Q(=1,1,4))),
W]em(y):W/m(gmyl—I_l]_éby/) (y€Q<_1717d1))

It is easy to see that w’,, and w’, satisfy an equation

Aw+Cf(w)=0 in O(-1,1,d),

ow _
ov

(2.12)
0 on 0Q(—1,1,d;) N Q(—o0, 0, d;)

for m=1and 1 £j < N.
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Applying the Schauder interior estimates and boundary estimates (see Gilbarg and
Trudinger [1]) to [2.7) and [2.12), there exists a constant ¢s > 0 such that |[v,,]| .. Ty =
cs, ||sz7mﬂcz(m)) < cs, \Mf’mﬂcz(m)) <csform=land 1 << N. We
have also (Y ullc1s,,5-0) = €1 + €2 and (Wl c1(006,,4-0,.4) no0(-c0, 20,d)) = €1+ €2+
((n— l)cz)l/ *¢, for 1 £j <N by Lemma 2.2. From the Ascoli-Arzela theorem, there

exist a subsequence {m(k)},_, and functions

v € CHUI(C)), Woowis, € CHO(=1/2,1/2,d)),
Wi, o0 € CO(aQ(éblj _627dj) NoQ(—wo, Oovdj))a
wj,oc € CO([élvlj _61])7

such that

/35130 15 ity = JS»OO”CI(Q<—1/2,1/2,¢-)> =0,
lim [Jw?, ) — 1?00‘|C1(Q(—1/2,1/27dj)) =0,

ILTEO W), miey — Wj,ooHCO(aQ((sz,l,-—(sz,dj)maQ(—oo,oo,d,.)) =0,

klgl;lc le‘,m(k) - wijOHCO([&J/—él]) =0,

for 1 < j<N. Thus, we obtain (2.10).

By the definition of v, and wj,, and Lemma 2.2, we have

-2
£

)
G

| moPa =S| WP
J(C,) J(Cn)

Cnfz
sio | atorax

20 (Cm

o Oty
- {Jw) ) e s [t dx}

|JgO(Cm)| C:l—zcl sup |f(é)|

N
-2 -1
é cme 102 Z |B‘Z | + n—2
j=1 ém I€]<er

—0 (m— o).

Thus, |V,v,| =0 in J({,) and we obtain |2.9).
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To prove (2.11), we show w’, =y, ,(62), W', =¥ ([ —d2) and wj(y) =

W o (y1) on y = (yy,") € 0001, — 61,d;) N dQ(—00, 00,d;) for 1 < j < N. By a similar
argument to the proof of that v, is a constant function, w’, and w®  are constant
functions. Thus, we have

[V, 00 (02) = w7 |

1
< 102~y O+ | W @3
J 7

-0 (k— o)

by the definition of w?,, and and we obtain w® | =; ,(62). In a similar way, we
obtain wf, = ([ —J2).

From Lemma 2.2 and [2.8), we have

| B0 () = ¥y ()
Q1,=01,d)

aW] m , )2
pu— —7 _ / d
JQ(&J,——&,%-) ( ayl <y) lpj,m(yl) 'y

+J Vo m (01, )| dy
0(01,1;—01,d))

|é‘<€1

< !Bé:_l!{zcglj + (2160 + i3 + ey sup |f(5)\)}-
Applying the trace theorem with and [2.10), we obtain

| ()~ by () dsy =0 (1S N),
OQ((Sl,lj—&halj)ﬂ@Q(—oo,w%)

Thus, we obtain (2.11).
LEMMA 2.5.  Functions V; ,, and \; ., satisfy

1

.13 Vo) ] SOl ) =0

O <s<l—d, mz1),

(2.14) W)+ (o (5) =0 (01 <s <l —d),
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(2.15) i sup () — ) (9)] = 0

k=0 5 <s<l—oy

for 1 < j<N.
ProoF OF LEMMA 2.5. We take an arbitrary ¢(s) € C;°((d1,; —d1)). Then, we have
0= {Powym(y) + 1 (W.m())}(31) dy
Q01,5=01,d))
li=o1

_ {wgl W ()8 () + j

01

S Wm(y1, ")) dy’(é(h)} dy

[y'|<d;

by the equation (2.8). Thus, we obtain (2.13).
By the above equation, [Lemma 2.3 and |2.10), applying Schwarz’s inequality, we

have

-3

] B 00800+ 10, )

1

| W5 08" () + L (1) B0)}
0(61,[i—01,d;)

S P + SO
0(01,;—01,d))

| R U e VAL
0001, j=01,d))

o ) = SOy (D))
001, =01, d)

= (Hcﬁ”Hm + 1l sup If’(f)|>~

1] < 2¢
(GBI, 00 = om0 a0

n—11\1/2
+ (lj|ij ) / ||1Pj,m(k) om — Wj,m(k)||L2(Q((51,1,-7(51,d,-))}

—0 (k— o0)

where ; ) o m1 denotes a composite function V; ) © 71(y) = ¥ ) (¥1). Thus, we

obtain [2.14).
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We have W, ,,(01) = ¥ (01) and W, (i —01) = ¥ (i —61) as k — oo for
1 <j=<N by (2.10). Thus, from (2.13) and (2.14), we obtain (2.15). O

LeEmMmA 2.6.

lim o sup e (9) =¥ (1) =0 for 1< /<N
=0 yEQ(()z l 52 d)

Proor oF LEMMA 2.6. For j=1,..., N, we define a pair of comparison functions
6!, and 6 as

Jj,m

L sw @I - G
sup () =¥ (1)l (v e Q02,1 02, ).

Then, we have

[E] e

=0 in Q(dy, [ —02,d),

Wim(h) = Ol SO on 0002,y = 2,d)).

Applying the maximum principle, we have wj ) < @me(k) in Q02,1 —62,d;). In

a similar way, we have 6, =W k) in Q(02,/ —d2,d;). Thus, we obtain
2.6. ]

In order to see the asymptotic behavior of w; ) in Q(Li)l, 02, d;) U O(I; 52,lj,d )

we define functions v,bjs’nj(k) and sz’n;(k) on an interval [{,,/,&] and tp],:( and lpj ik
an interval [/; — &, /] (1 £j < N) as follows:
Each of lp;,j( and "

- 1s a unique solution of

'(lﬁ,,,1<)()+f(l# 0) =0 Cu! <5 <),

Uiy G ) =0 £ sup Jutpo (x) = B,
x€J(Cnry)

v +(k) (20) = ¥, (0) £ sup W) (V) — ¥ (1)1,
\ y€Q(02,1i—02,d;)

respectively, and each of Y&

e,— . . .
ol and wj,m(k) is also a unique solution of
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(W) () + LWy () =0 (= e <5< 1)),

Votoli—e) = (=) £ sup () =¥ ()],
' yGQ((Sz (52 d)

7i
\ xerj(Cm(k))

respectively. It comes from and that each equation has a unique solution.

Then, we obtain

{%7 ()(yl)
(2.16)
N ()(yl)

II/\

(k)(y) = lpjs,;,r(k)(yl) (y € Q(Z:m l €0, ))7

(k)(y) = ‘pﬁ’,:(k)(yl) (ye 0 — e, 1, dy)).

II/\

Indeed, we can see the function w(x) = vvﬂm(k)(xl,ém(k)_lx’) - sz’rz(k) (x1) satisfies

Aw(x) + h(x)w(x) =0 in QL)L €0, Cmit ),

E(x) =0 on 0Q( Ll €0, S @) \({x1 = Ly} U {x1 = e0}),
w(x) <0 on 09l !, €0, Cmd;) N ({x1 = L 1} U {x1 = &0})
where /4 is a function A(x fo xl,g(lk)x’) + (1 — t)lkjf’nf(k) (x1))dt. Let A, be

the first eigenvalue of the followmg elgenvalue problem

Ap+ 24 =0 in Q! €0, Sy dy),

g—ﬁ =0 on aQ(Z:m [, &0, Cm )\({X] Cm(k)l} U {xl = 8()}),

$=0 on 0Q(Cmuyls €0, Cniry ) N ({x1 = Gy [} U {x1 = &0}).

We have A = 7n%(eo — (i) 1)™* > h(x) by [2.6). Applying [Proposition 2.1, we obtain
w(x) 0 in QG €0, Cmiyd;). In a similar way, we obtain (2.16).

Let 7, = limj .., %‘S.,’;;f(k) and 7 = limg_, l,b;’,f(k) for 1 £ j <N and we define
functions y;(s) on [0,/] (j=1,...,N) as

Yi(s) = ¢ W0 (s) (a0 <5 <lj— &),
Ui (s) (h—eoSs<1)).

Because of Y, (s) = ¥; . (s) on 62 < s < e and ¥; . (s) = . (s) on [j —eg < s < j — o,

(Y,...,y,) satisfies (2.5) and (2.4) except the compatibility condition
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N
n—1.,1 _
(2.17) 251]. //(0) = 0.
=

Therefore, we check the above condition.
By the definition of wj,, and [2.15), we get

Wy, m(k)
a)’l

/

(¢0, ¥") dy

k— o0 k— o0

N
lim ¢! ”)J Aty () (x) dx = lim ZJ
(Cm(k ‘y |<d

N
=D 1By 1 (e0).
=1

On the other hand, by [Lemma 2.6 and [2.16), we have

N £
im Gt [ =D 1B |y ds

J=1

Since and each y; satisfies ¥ (s) + f();(s)) =0 on 0 < s < [;, we obtain

Z|B§1|¢80 Z|le|j /() ds

|
.MZ

I
—_

&0
B L W' (s) ds

J

=

= Z B3 W (o) — 5 (0)}.

j:

Thus, we obtain and we complete the proof of [Theorem 1. O

§3. Network-shaped domains.

In this section, we consider a more general network-shaped domain Q({) for
(e€(0,{,). We assume Q({) is a union of simple network-shaped domains

Qi(¢) (i=1,...,N’) defined in § (see Figure 6). Namely, we assume

v
= ggi(é)

where each Q;({) satisfies the following:
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Figure 6

Q) is a wunion of a junction region J;({) and thin cylinder regions
D; ) (g=1,...,N;), that is,

Qi) = (6 D;q(f)) UJi({)
q=1

and each ) (>0 Q;({) is a union of straight line segments which meet one point. If the
intersection of ;({) and Q;({) (i #i') is not empty, then there is a pair of thin
cylinder regions D; ,({) and Dy ,({) such that ;({)NQ:({) = D; ()N D o({) and
that D; ,({)UD; ,({) is a cylinder region for any 0 < { < (..

Let N > 0 be the number of connected components of Ul.va,; »(£). We denote by
Dj({) one of the connected components of ULPDL »({) for 1 £ j < N and we denote by
{d; the radius of the circular cross section of each cylinder region D;({). We remark

Q({) is represented by

N’ N
Q) = (Ulli(é)) U (Ule(C))
i= j=

We denote by % the geometric graph |) r~082(). Let V; be a point
mc>oji(€) (i=1,...,N') or a extreme point of ¥ (;':N’+1,...,N”). Let E; be a
line segment ﬂ§>0Df'(‘:) (j=1,...,N). We remark ¢ is a union of V; (i=1,...,N")
and E; (j=1,...,N). We assume each E; has its direction and we denote by /; its

length. We denote by 1(j) and x(j) numbers of the startpoint and the endpoint of E;
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Ve

Figure 7

respectively, that is, V) ;) denotes the startpoint of E; and ¥, denotes the endpoint of
it. Without loss of generality, we may assume () < x(j) for j=1,...,N (see Figure
7).

We define C%(%) as a set of continuous functions on %, that is,

CUG) ={p=(h,--- ¢n) : ;€ C°(0,1]) (1=j=N),
any ¢,(l;) and ¢;(0) with x(j) = 1(j') =i have

an equal value for each i=1,...,N'}.
We denote by b;(¢) the value of ¢ e C%(%) at V;, that is,

. ¢j(0) if 1()) =1,
bild) = {qﬁj(z,-) it (j) = i.

We define mappings 7; on R" (j=1,...,N) as
Tix=Rix+ Vi, xeR"

where each R; is an orthogonal transformation satisfying detR; =1 and Rje; =
L (Vs — Vijy) for e =(1,0,...,0). By using 7;, we have 7;7'D;(¢) = 0(0,1;,(d)).
For @ € C%(Q({)) and ¢ e C°(%), we define d(Q({); D, ¢) as

N N’

d(Q(0);D,4) =Y sup |B(x) = d(mio T %)+ sup |B(x) — bi(g)].
=1 xeD;({) i=1 xeJi({)
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Now, we consider a boundary value problem,

Au+ f(u) =0 in Q((),

ou
3.1 g
(3.1) ™ 0 on X({),
u=a; on [;({) for NN+1=<i<N"

where f satisfies [2.2), each I;({) is a portion of dQ({) which degenerates into V;, that is,
O ={Tx x(j) =i,y =1, |X|<ld} (N'+1=i<N"),
each a;; is a continuous function on [;({) which converges to a constant a;, that is,

(3.2) lim sup|a;¢(x) —a| =0 (N'+1=i<N"),
=0 1)

and X(¢) = 0Q(O\(J Li ().
In this situation, we consider that the limit problem associated with is

(V' + /() =0 on0<s<l forl<j=<N,

lﬁ = (lpl?"'?wN) € Co(g)a

3.3
33 S @) = X d0) forl i< N
K(j)=i 1(j)=i
bi(y) = a for N'+1<i<N".
By a similar argument to the proof of in §2, we obtain that a solution

u, of (3.1) at {={, approaches a solution y e C°(%) of as m — oo in the

following sense:

THEOREM 2. Suppose that a sequence {(,}_, < (0,(,] satisfies limy,—..(,, = 0 and
that u,, is any solution of (3.1) at { =, Then, there exist a subsequence {{y )}~ <
{Cn}_y and a solution Y of (3.3) such that

lim  d(Q(Cnw)); Uiy, ) = 0.

k—o0
Similarly, we have the following corollary:

CorROLLARY 3.1. Let {(,}_, be a sequence with lim,_.,(, =0. Suppose that
a;; satisfies (3.2) and sequences of functions {Hy,} "\, {Hu}_ = C%(R(C,)) approach

functions h,h e C°(%9) as m — oo respectively, that is,

lim d(2(); Hp,h) =0 and  lim d(Q(C,,); Hy, h) = 0.

m—ao0 m— o0
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If functions w,, (m = 1) satisfy

Aty + Hyy (Xt = Hyy(x) in 2(C,),

U,
%: 0 on 2(6}71)7
U = i ¢, on I;({,) for NN+1<i<N",

and sup,c g, |m(x)| < M where the positive constant M is independent of {,,. Then
there exist a subsequence {Cou ey < {lntmoy and = (Yy,...,¥,) € C°(Y) such that

[p//l—i—hj(S)lp]: J<S) O<S<lj fOrléJéNa

SodrN(0)= Y drN (L) for 1<i< N,

1(j)=i K(Jj)=i

L bi(Y) = a; for N'+1<i<N”

and that limy .. d(2(Sek)); Ume)> ¥) = 0.

REMARK. In the preceding theorem, when we replace the boundary condition on
I; () of by the Neumann boundary condition and we replace b;(¢) = a; of the
system by ¢;([j) =0 (x(j) = i), similar results hold by an argument similar to the
proof of [Theorem 1.

We may naturally consider the case that the thin domain converges to a smooth
curve instead of a straight line. In that generalized case, we can expect similar

mathematical phenomena, while several technical difficulties arise.

§4. Inverse problem.

In this section, we consider a certain inverse problem. We have stated a solution of
PDE approaches to a solution of an associated limit equation as ¢ tends to
zero. In that situation, conversely, the following problem occurs naturally:

When a solution of 1s given, can we prove the existence of a solution of
which approaches it?

We have a positive answer. Namely, we can prove that has a solution which
approaches a solution of when the solution of satisfies a certain condition.

Using the same notation as §3, we present a main result in this section.

THEOREM 3. Suppose that there exists a solution y = (Y, ..., ¥,) of (3.3) such that

the linearized equation



(4.1)

has no solution except the trivial solution (¢, ...

Semilinear elliptic equation
(¢ + /' (h)p; =0 on0<s<l for 1<j=N,

¢ = (¢17 ce a¢n> € CO(g)’
S g0 = Y AN for 1SS N

1(Jj)=i K(Jj)=i

L bi(¢) =0 for NN +1<i< N,

a¢n) = (07""())'

693

Namely, we suppose

the eigenvalue problem of the linearized equation around the solution W has no zero

eigenvalue. Then, there exists a constant {, > 0 such that the equation (3.1) has a solution
VY for any (e (0,{,] and that {¥;:0 < { <.} satisfies

(4.2)

lim d(Q({); Y, ¥) = 0.

(=0

PrOOF OF THEOREM 3. We construct an approximate solution of [3.I]. Let a

solution ¥ = (Y, ...

Lipschitz continuous function ¥

© 45

(bi(y) xeJi({)
(=) (o T-'x = ¢1)) xe D)

for] <i< N/,

= for 1(j) < N’ and k(j) =2 N' +1,

Uil = 2D (m o T 'x = 1) xe Dy(0)
for 1(j) < N’ and x(j) < N'.

We define a function ‘P((l) as the unique solution of

4y = —f(1%(x) in Q).
FUAS)
8—41/ =0 on X({),
v g on I;(¢) for N' +1 i< N,

Applying [Corollary 3.1, we obtain

(4.3)

(4.4)

lim d(2(0); " 4) = 0,

tim d(2(0); ", ) = 0.

,) of satisfy the assumption of [Theorem 3. We define a
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Let ¢; be an upper bound of 5”5(]), that is,

sup |?’£(1)(x)| <c¢; for any {>0.
xeQ(()

After this, let || - ||, denote a norm |lg||, = sup,co()lg(x)| of C(Q(0)).

LemMMA 4.2, There exists a constant (' >0 such that if @ satisfies

(40 + /(P V()@ =0 in Q).
4.5 0P _
(4.5) 3 =0 on X({),
L D=0 on I;({) for NN+1=<i<N"

for any (e (0,('], then ® =0 in Q(().

PROOF OF LEMMA 4.2. Suppose there exists a sequence {(,,}-_; with lim,,...(,, =0
such that the equation (4.5) at { = {,, has a nontrivial solution W), #0 in Q((,,). Let
Wyn(x) = Wu(x)/|| Wil . Then, we obtain 1}, satisfies (4.5) and |W,||; =1 for any
m=1. By and applying [Corollary 3.1, we obtain a nontrivial solution of (4.1).
This contradicts the assumption of [Theorem 3. Thus we complete the proof of Lemma
4.2. ]

We consider the equation

(tu+ f(B =0 inQ@),
4.6 ou _
(4.6) 01)_0 on 2({),
Ll u=0 on I'({),

where @ € L*(2()) and I'({) = () I;({). Because of [Lemma 4.2, the equation has
a unique solution for each @. We denote by A:® the solution of for @.

LeMMA 4.3. There exist constants c; >0 and (" > 0 such that

4P| = 2| @],

for any (€ (0,("] and @ e C°(Q(()) satisfying A:® e C*(Q({)).

Proor oF LEMMA 4.3. We assume the contrary. Namely, we assume there exist a
sequence {(,,} >, with lim,, ., {, =0 and C° functions 6,, such that ||@,,] ¢, =1and
[4¢,Omll, =m for m=1. Let
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Ag @m(x)
Qm - m—a
Y =4 6.l
~ O (x)
0, =7
Y =Tz 6l

Then, @,, and 6, satisfy

y 1 ~ )
4Dy + (BB, = 6, in Q)
0D,
ﬁvn =0 on X(¢,,),
@, =0 on I'({,,),
||¢Wl L = 17
~ 1
O,l, =—.
160, <~

Applying [Corollary 3.1, we obtain a nontrivial solution of (4.1). This contradicts the
assumption of [Theorem 3. Thus we complete the proof of [Cemma 4.3. O

Let W; be a harmonic function

AW, =0 in Q(),

ow: _
v

We=a;; onlIj(({) for N+1=<i<N",

0 on X({),

and let Ué” = ‘PC(I) — W:. We define a sequence {Ug(p)}l‘;o:1 = CYQ)) as

= A" (ENUY — (U + W) for p2 1.

By the definition of A;, each Ug(p )is a C? function.
We take a constant 0 > 0 such that

-1
(4.7) 6 < min{ 1/2, (2(:2 sup |f”(é)|>

|§‘<01+1

For this , we can take a constant {, > 0 small so that
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0
(43) () = S = 5 for Ce (0.8

by (4.3) and (4.4). Then, we have the following:

LemMma 4.4.
1
for any p=1 and (€ (0,{,].

ProOF OF LEMMA 4.4. We prove for each { by the induction. It is
trivial that is satisfied at p = 1. We assume is satisfied at p = p’. We have
1570 = g < 1E () = FUO) + 1EG) = U]

The estimation of the first term of the right-hand side is

! 1
IE(U) = F(G),

/ 1
<o sup |0 - g,
|E| <1420

1
55

lIA

by [4.7). The estimation of the last term is

1 1
I1E(0) — oV

= |4 (EN G — () — A (BT~ )

by (4.8). Therefore ||U§(pl+1) - Ug(l)H < 0. We complete the proof of [Lemma 4.4 [

From Lemma 4.4, we have HUQV(”H) - Ug(p)Hg < Z*IHUC(I’) - UC(IH)HC for any p > 1.
We have immediately that the sequence {Uc(p )};O: . is a Cauchy sequence in C°(Q(()).
We denote by Ug(oo) the limit of Ug(p) as p — 0. We obtain UL_V(OO):FQV(UC(OO))ECZ(Q(C))
by the definition of F;. Let ¥ = U((OO) + W;. Then, ¥; satisfies and

J
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1 ‘ 1
I = ¥l = 1 = gl

0 1 1 1
= |F(U) - F(UD) + F(UY) = g,

lIA

1 ] 0 1
S A RN A RNt ADI

Thus, we obtain

1 1 0
1 — 2V <260 £ (8Y) — £(H),.

By [4.3) and [4.4), we obtain [4.2]. We complete the proof of [Theorem 3. O
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