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Abstract. Based upon an intuition from electrostatics one might suspect that

there is no topological ball in Euclidean space of dimension dV 2 which carries

a nonconstant Dirichlet ®nite harmonic measure. This guess is certainly true for

d � 2. However, contrary to the above intuition, it is shown in this paper that

there does exist a topological ball in Euclidean space of every dimension dV 3

on which there exists a nonconstant Dirichlet ®nite harmonic measure.

The purpose of this paper is to show rather unexpectedly the existence of a to-

pological ball in Euclidean space of every dimension greater than or equal to three on

which there exists a nonconstant Dirichlet ®nite harmonic measure. In order to clarify

the signi®cance of our result we begin with explaining de®nitions of harmonic measures,

topological balls, and related notion.

Consider a bounded domain W in the Euclidean space R
d of dimension dV 2 and

an arbitrary subset E of the boundary qW of W. We denote by 1E the characteristic

function of the set E. The upper class UE�W� of E on W is the upper class U1E �W�,

which consists of all positive superharmonic functions s on W such that lim infx!y s�x�V

1E�y� for all y A qW. Then the harmonic function x 7! o�x;E;W� on W given by

o�x;E;W� :� HW

1E
�x� :� inf

s AUE�W�
s�x� �x A W��1�

is referred to as the harmonic measure of E with respect to W (cf. e.g. [1]). It is known

that one of the following three exclusive cases occurs: o�� ;E;W�1 0 on W; o�� ;E;W�1

1 on W; o�� ;E;W� is not constant and 0 < o�� ;E;W� < 1 on W. We say that o �

o�� ;E;W� is Dirichlet ®nite (in®nite, resp.) on W if its Dirichlet integral
�
W
j`o�x�j2 dx is

®nite (in®nite, resp.). We denote by

OHmD
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the class of all bounded Euclidean domains W such that every harmonic measure

o�� ;E;W� is Dirichlet in®nite on W for every EH qW unless o�� ;E;W� is constant on

W. Electrostatically speaking, especially in the case d � 3, W B OHmD means that there

is a subdivision of qW into two parts E and qWnE such that if the electrode qWnE is

grounded and the other electrode E is positively charged suitably with a ®nite energy,

then there produces a unit potential di¨erence between these two electrodes so that the

con®guration �W;E; qWnE� functions as an electric condenser. Thus W A OHmD means

that, no matter how we decompose qW into two parts E and qWnE, the con®guration

�W;E; qWnE� does not function as an electric condenser.

We say that a bounded domain M in R
d �dV 2� is a topological ball if there is a

homeomorphism h of M � M U qM onto the unit closed ball Bd � Bd US dÿ1 such that

h�M� � Bd and h�qM� � S dÿ1, where Bd is the unit ball fx A R
d
: jxj < 1g in R

d and

S dÿ1 � qBd is the unit sphere fx A R
d
: jxj � 1g in R

d . Our study has been motivated

by the feeling that topological balls must belong to OHmD. This feeling comes from

the following electrostatical guess in the case d � 3. Consider the decomposition of the

boundary qM of a topological ball M in R
3 into two electrodes E and qMnE and

let qMnE be grounded. Since E and qMnE are put together very tightly no matter how

we choose EH qM, all charges put on the electrode E must instantly go to the earth

through the electrode qMnE so that any con®guration �M;E; qMnE� cannot function as

an electric condenser. The ®rst evidence backing up the above feeling is the following

result obtained in [6], [7], and Herron-Koskela [3]:

Theorem A. If the topological ball M � Bd �dV 2�, then M belongs to the class

OHmD.

We soon realized that what is important in the proof of the above result is, in

addition to that Bd is a topological ball, the smoothness of qBd � S dÿ1. We then

obtained the following result in [11]:

Theorem B. If a topological ball M in R
d �dV 2� has a C 2 boundary qM, then

M belongs to the class OHmD.

As a response to the criticism that the C2 assumption in the above result is too

strong, we succeeded in weakening it to the C1 condition or rather the Lipschitz

condition. Actually these are special cases of the following more general result. We say

that a boundary point y A qW of a bounded domain W in R
d �dV 2� is graphic if one of

the following two conditions is satis®ed: there are a neighborhood U of y, a Cartesian

coordinate x � �x1; . . . ; xdÿ1; xd� � �x 0; xd�, and a continuous function j�x 0� of x 0 such
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that �qW�VU is represented as the graph of xd � j�x 0� and WVU is situated on only

one side of the graph; there are a neighborhood U of y, a polar coordinate �r; x� �rV 0;

x A S dÿ1�, and a continuous function j�x�V 0 of x such that �qW�VU is represented as

the graph of r � j�x� and WVU is situated on only one side of the graph. A bounded

domain WHR
d is referred to as a continuous domain if every boundary point of W is

graphic. Clearly C1-domains or more generally Lipschitz domains are special con-

tinuous domains. Then we have the following result (cf. [9], [10]):

Theorem C. If a topological ball M in R
d �dV 2� is a continuous domain, then

M belongs to the class OHmD.

In view of these results we are tempted to suspect that every topological ball

belongs to the class OHmD. Actually this is true for all topological balls in the two

dimensional Euclidean space R
2. In fact, by the Riemann mapping theorem there is a

conformal homeomorphism h of any topological ball (i.e. Jordan domain) MHR
2 onto

the unit disc B2 and this mapping h can be extended to a homeomorphism of M � M U

qM onto the closed unit disc B2 � B2 US1 by the CaratheÂodory theorem. This with the

conformal invariance of the harmonicity and that of the Dirichlet ®niteness and

Theorem A instantaneously implies the following result (cf. e.g. [6]).

Theorem D. Any topological ball in R
2 belongs to the class OHmD.

By virtue of this result, hereafter in this paper, we may and will assume that the

dimension d of the base Euclidean space R
d is at least three: dV 3. To continue the

study in the direction of Theorems A, B, and C, it is therefore of compelling importance

to determine whether or not there is a topological ball M in R
d �dV 3� that does not

belong to OHmD. Contrary to our intuition mentioned thus far it turned out that the

following rather surprising result holds, to prove which is the chief object of this paper.

2. Main Theorem. For every dimension dV 3 there exists a topological ball M in

R
d that does not belong to the class OHmD.

A harmonic function w is said to be a harmonic measure on M in the sense of Heins

[2] if the greatest harmonic minorant of w and 1ÿ w is the constant function zero. It

is easy to see that a harmonic measure o�� ;E;M� of any boundary set EH qM with

respect to M is a harmonic measure on M in the sense of Heins. It is known (cf. e.g.

[6]) that the Royden harmonic boundary D�M� of M is connected if and only if there are

no nonconstant Dirichlet ®nite harmonic measures on M in the sense of Heins. Thus

the main theorem 2 above implies the following: for every dimension dV 3 there exists
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a topological ball M in R
d whose Royden harmonic boundary D�M� is disconnected.

Actually it is known (cf. [6], [7 ], [9], [10], [11]) that topological balls M in Theorem A,

B, C, and D all have connected Royden harmonic boundaries D�M�. To prove the

above main theorem 2 we only have to exhibit an example of an M B OHmD. We will

construct an example of M with a bit more properties than really required, which is

inspired by the so called Keldysh ball obtained in the celebrated paper [4] to show a

phenomenon related to the stability of the Dirichlet problem.

3. Example. For each dimension dV 3 there exist a topological ball M in R
d and

a compact subset E of the boundary qM of M with the following properties:

(a) every point of the boundary qM of M is regular with respect to the harmonic

Dirichlet problem on M;

(b) the surface area jqMj of qM is ®nite;

(c) the surface areas jEj of E and jqMnEj of qMnE are both strictly positive;

(d) the harmonic measure o�� ;E;M� of E relative to M is Dirichlet ®nite and is not

constant, i.e.

0 <

�
M

j`o�x;E;M�j2 dx < y:�4�

To construct an M and an E in the above example we need two simple lemmas

concerning harmonic and superharmonic functions. We ®x an R
d �dV 3� and identify

the hyperplane R
dÿ1 � f0g in R

d with R
dÿ1. Let a � �a1; . . . ; adÿ1� be a point in R

dÿ1

�� R
dÿ1 � f0g� and r a positive number. We call the open set

Q�a; r� � fx � �x1; . . . ; xdÿ1� A R
dÿ1

: jx i ÿ a ij < r �1U iU d ÿ 1�g

in R
dÿ1 a ¯at cube in R

d or simply a cube in R
dÿ1 and a its center and r its interior

radius or simply radius. The number �d ÿ 1�1=2r may be called the exterior radius of

Q�a; r�. We denote by B�a; r� � Bd�a; r� the open ball in R
d with radius r centered at a.

Then

Bdÿ1�a; r�HQ�a; r�HBdÿ1�a; �d ÿ 1�1=2r�:

We denote by Q�a; r� the closure of Q�a; r�. We single out the particular boundary point

b � �a1 � r; a2; . . . ; adÿ1� of Q�a; r� in R
dÿ1, which will be referred to as the distinguished

boundary point of Q�a; r�.

Let G be an arbitrary domain in R
d containing a Q�a; r�. We will seriously use

the following fact: every point of Q�a; r� is a regular boundary point of the domain

GnQ�a; r� with respect to the Dirichlet problem on GnQ�a; r�. This is assured by the
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following criterion of regularity (cf. e.g. Kuran [5] and also [8; Appendix]): a boundary

point y of a domain W in R
d is regular for the Dirichlet problem if there is a truncated

¯at cone (i.e. �d ÿ 1�-dimensional cone) with vertex y contained in the complement

R
dnW of W.

The hyperplanes fx A R
dÿ1

: x i � a ig �1U iU d ÿ 1� divide Q�a; r� into 2dÿ1

congruent small cubes Q�ak; r=2� �1U kU 2dÿ1�. The points ak �1U kU 2dÿ1� are

referred to as subcenters of Q�a; r�. Let fak : 1U kU 2dÿ1g be subcenters of a cube

Q � Q�a; r� and let Qk � Q�ak; �r=2�l� �1U kU 2dÿ1�, where 0 < l < 1. Then the

family fQ1; . . . ;Q2 dÿ1g is said to be regularly distributed in Q with index l A �0; 1�.

We ®x a cube Q0 :� Q�0; 1� in R
dÿ1�� R

dÿ1 � f0g� and a ball B0 :�

Bd�0; 3�d ÿ 1�1=2� in R
d , which contains Q0. The ®rst auxiliary result is the following:

5. Lemma. For any number e > 0 there exists a le A �0; 1� with the following

property: for any cube QHQ0 and for any family fQi : 1U iU 2dÿ1g of congruent cubes

Qi regularly distributed in Q with any index l A �le; 1�, any continuous positive super-

harmonic function s on B0 such that sV 1 on 6
1UiU2 dÿ1 Qi satis®es sV 1ÿ e on Q.

Proof. Take a ball B1 � Bd�0; 2�d ÿ 1�1=2�. Let w A C�B1�VH�B1nQ0� such that

wjqB1 � 0 and wjQ0 � 1 as a result of every point in Q0 being regular. Here H�G�

denotes the class of all harmonic functions on an open set G in R
d . We set Q�l� �

Q�0; lÿ1� for l A �1=2; 1� so that Q0 HQ�l�HQ�l�HB1. Since wjQ0 � 1, there is a

le A �2=3; 1� such that wjQ�le�V 1ÿ e. Fix an arbitrary l A �le; 1� so that Q�le�IQ�l�

and wjQ�l�V 1ÿ e. Let r A �0; 1� be the radius of Q and ak be the center of Qk and set

Q 0
k :� Q�ak; r=2�. We consider a function wk on �r=2�lB1 � ak HB0 given by

wk�x� � w��r=2�ÿ1
l
ÿ1�xÿ ak��:

Observe that �r=2�lQ�l� � ak � Q 0
k and �r=2�lQ0 � ak � Qk. Therefore wk A C�B 0�V

H�B 0nQk� such that wkjqB
0 � 0, wkjQk � 1, and wkjQ

0
k V 1ÿ e, where B 0 � �r=2�lB1 �

ak. Since sVwk on the boundary of B 0nQk, the minimum (comparison) principle

assures that sVwk on B 0nQk. Thus we can conclude that sjQ 0
k V 1ÿ e for every k.

However 6
1UkU2 dÿ1 Q

0
k � Q and therefore we deduce sjQV 1ÿ e as desired. r

With every e > 0 we associate a number l�e� which is the in®mum of the set of

le appeared in the above lemma.

Let G0 be a bounded regular domain in the sense that every boundary point of G0

is regular for the Dirichlet problem on G0. Take a compact subset K of G0 such that

G :� G0nK is again a regular domain. Suppose there is a union L of a ®nite number of

polygonal line segments contained in G except possibly for their end points such that
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dis�L;K� > 0. Let �Ti�iV1 be a sequence of closed sets Ti which is the closure of an open

set T�
i HG with piecewise smooth boundary qT�

i such that Ti ITi�1 IL �1U i < y�,

dis�T1;K� > 0, and 7
iV1

Ti � L. The second auxiliary result we need is the following:

6. Lemma. Let u A C�G0�VH�G� with ujqG0 � 0 and ujK � 1 and let ui A C�G0�V

H�GnTi� with uijTi U qG0 � 0 and uijK � 1 �1U i < y�. Then �ui�iV1 converges to u on

G in the Dirichlet integral DG� f � :�
�

G
j`f �x�j2 dx:

lim
i!y

DG�ui ÿ u� � 0:�7�

Proof. We denote by W 1;2�G� the Sobolev space on G with exponent 2, i.e.

W 1;2�G� is the space of functions f A L2�G� having distributional gradients `f with

j`f j A L2�G� so that the Dirichlet integral DG� f � �
�

G
j`f �x�j2 dx � k j`f j;L2�G�k2 of f

can be de®ned. The space W 1;2�G� is a Banach space with the norm k f ;W 1;2�G�k :�

�k f ;L2�G�k2 �DG� f ��
1=2

. We denote by W
1;2
0 �G� the Sobolev null space on G, i.e.

the closure of Cy

0 �G� in the Banach space W 1;2�G�. For convenience we also use the

mutual Dirichlet integral DG� f ; g� :�
�

G
`f �x� � `g�x� dx for two functions f and g in

W 1;2�G�. It is easy to see that ui A W 1;2�G� for every iV 1. Let i < j and observe that

ui ÿ uj � 0 on q�GnTj�. Hence we easily see that ui ÿ uj A W
1;2
0 �GnTj�. Since uj A

W 1;2�GnTj�VH�GnTj�, uj is a weak solution of Duj � 0 on GnTj and a fortiori

�

GnTj

`uj�x� � `�ui ÿ uj��x� dx � 0

or DGnTj
�uj; ui ÿ uj� � 0. Clearly DG�uj ; ui ÿ uj� � DGnTj

�uj; ui ÿ uj� since ui � uj � 0 on

Tj and qTj is piecewise smooth. Hence we have DG�uj; ui� � DG�uj�. Observe that

DG�ui ÿ uj� � DG�ui� ÿ 2DG�ui; uj� �DG�uj� � DG�ui� ÿDG�uj�:

This shows that �DG�ui��iV1 is a decreasing convergent sequence and so is

�DG�ui ÿ uj��jVi and

lim
i!y

lim
j!y

DG�ui ÿ uj�

� �

� lim
i!y

lim
j!y

�DG�ui� ÿDG�uj��

� �

� 0:�8�

By the minimum principle we see that �ui�iV1 is an increasing sequence dominated by

u on G0. Hence uy :� limi!y ui A H�GnL� and 0U ui U uy U u on G0nL, which shows

that uy A C�G0nL�, uyjqG0 � 0, and uyjK � 1. Since the Newtonian capacity of L is

zero because of dV 3, there is a continuous map V of the one point compacti®cation R
d

of R
d to the extended half interval �0;y� such that V A H�RdnL� with V jL � y and
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V�y� � limx!y V�x� � 0. The maximum principle yields uU uy � eV on GnL for any

e > 0. Hence uy � u on GnL so that limj!y uj � u locally uniformly on GnL. This

shows that �j`uj ÿ `uij�jVi converges to j`uÿ `uij a.e. on G. Hence by the Fatou

lemma

DG�ui ÿ u� �

�

G

lim inf
j!y

j`ui�x� ÿ `uj�x�j
2

� �

dx

U lim inf
j!y

�

G

j`ui�x� ÿ `uj�x�j
2
dx � lim

j!y
DG�ui ÿ uj�:

This with (8) implies (7), which is to be shown. r

We turn now to the construction of M and EH qM in Example 3. Reversing the

process we ®rst construct E before determining M. These sets E and M will be subsets

of B0 :� Bd�0; 3�d ÿ 1�1=2�. We will construct cubes Qi1��� in in B0 V �Rdÿ1 � f0g� for each

nV 1, where i1 � 1 and 1U ik U 2dÿ1 �2U kU n�. The construction is by induction.

First let Qi1 � Q�0; 1�, where i1 runs over f1g so that i1 � 1. Consider a sequence

�ln�nV2 given by

ln � maxfl�2ÿn�; 1ÿ 2ÿng �nV 2�:

Here recall that the number l�e� is introduced right after the proof of Lemma 5. Next

take the family fQi1i2 : 1U i2 U 2dÿ1g of congruent cubes Qi1i2 regularly distributed in

Qi1 with index l2. Suppose congruent cubes Qi1��� ik �i1 � 1; 1U ij U 2dÿ1 �2U jU k��

have been constructed for each 1U kU nÿ 1. Then let fQi1��� inÿ1in : 1U in U 2dÿ1g be

regularly distributed in Qi1��� inÿ1
with index ln for each i1 � � � inÿ1. Now we de®ne the set

E by

E � 7
1Un<y

6
i1��� in

Qi1��� in

 !

;

where the union is taken over i1 � 1 and 1U ik U 2dÿ1 �2U kU n�. The set E is a

compact, totally disconnected and perfect subset of B0 V �Rdÿ1 � f0g�. We compute the

area (i.e. the �d ÿ 1�-dimensional Hausdor¨ measure in essence) jEj of E and show that

0 < jEj < y:�9�

To see this let r be the radius of Qi1��� inÿ1
. Then the radius of Qi1��� inÿ1in is �r=2�ln and thus

jQi1��� inÿ1
j � �2r�dÿ1 and jQi1��� inÿ1in j � �rln�

dÿ1. Hence
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6
1UinU2 dÿ1

Qi1��� inÿ1in

�

�

�

�

�

�

�

�

�

�

� l
dÿ1
n jQi1��� inÿ1

j:

Since jQi1 j � 2dÿ1, we conclude that

6
i1��� in

Qi1��� in

�

�

�

�

�

�

�

�

�

�

� 2dÿ1
Y

2UjUn

lj

 !dÿ1

and a fortiori we deduce

jEj � 7
1Un<y

6
i1��� in

Qi1��� in

 !�

�

�

�

�

�

�

�

�

�

� 2dÿ1
Y

2Uj<y

lj

 !dÿ1

:

By the choice of ln we have 1V
Q

2Uj<y
lj V

Q

2Uj<y
�1ÿ 2ÿj� > 0, which assures the

validity of (9).

For each nV 1 let un be such that un A C�B0�VH
ÿ

B0

�

6
i1��� in

Qi1��� in

�

and unjqB0 �

0 and un
�

�6
i1��� in

Qi1��� in � 1. Observe that un is positive and superharmonic on B0. Since

ln A �l�2ÿn�; 1�, Lemma 5 assures that un V 1ÿ 2ÿn on every Qi1��� inÿ1
on which unÿ1 � 1.

By the maximum principle we conclude that �un�nV1 is decreasing on B0 and

jun�x� ÿ unÿ1�x�jU 2ÿn �x A B0; nV 2�:

Hence �un�nV1 is uniformly convergent on B0 and we denote by u the limit function of

�un�nV1 on B0. Then u A C�B0�VH�B0nE�, ujqB0 � 0, and ujE � 1. The function 1ÿ u

plays the role of barrier (in the wider sense) at each point of E for the region B0nE with

respect to the harmonic Dirichlet problem on B0nE.

We next de®ne a system of polygonal line segments li1��� in as follows: li1 is the

straight line segment joining the point b0 � �3�d ÿ 1�1=2; 0; 0; . . . ; 0� of the boundary

of B0 with the distinguished boundary point bi1 of Qi1 , where i1 � 1; li1i2 is a simple

polygonal line segment joining the point bi1 with the distinguished boundary point bi1i2

of Qi1i2 . The arcs li1i2 �1U i2 U 2dÿ1� lie on Qi1

�

6
i2
Qi1i2

except for their end points; the

arcs li1i2 do not intersect one another anywhere except at bi1 . The simple polygonal line

segment li1��� inÿ1in connect the distinguished boundary point bi1��� inÿ1
of Qi1��� inÿ1

with the

distinguished boundary point bi1��� inÿ1in of Qi1��� inÿ1in . Here the arcs li1��� inÿ1in �1U in U 2dÿ1�

remain within the domain Qi1��� inÿ1

�

6
in
Qi1��� inÿ1in

except for their end points and they do

not have points of intersection apart from bi1��� inÿ1
. Moreover we assume that fli1��� inÿ1in :

1U in U 2dÿ1g is congruent with flj1��� jnÿ1jn : 1U jn U 2dÿ1g for every pair of i1 � � � inÿ1

and j1 � � � jnÿ1.
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Let D0 be the set of points not further away from li1 than a number d1 A �0; 1� and

belonging to B0nQi1 � �ÿy;y�; let Di1��� inÿ1
�nV 2� be the set of points not further

away from 6
in
li1��� inÿ1in than a number dn A �0; 1� and belonging to B0 V

ÿÿ

Qi1��� inÿ1

�

6
in

Qi1��� inÿ1in

�

� �ÿy;y�
�

. By choosing dn > 0 further small we may suppose that the

following conditions are satis®ed: Di1��� inÿ1
is contained in B0 V

ÿÿ

Qi1��� inÿ1

�

6
in
Qi1��� inÿ1in

�

�

�ÿy;y�
�

except for the points of Di1��� inÿ1
lying on the hyperplanes x1 � �bi1��� inÿ1

�1 and

x1 � �bi1��� inÿ1in�
1 �1U in U 2dÿ1�; the set Di1��� inÿ1

is the closure of a topological ball; the

surface area jqDi1��� inÿ1
j of qDi1��� inÿ1

is not greater than �2ÿd�1�nÿ22ÿn �nV 2� and also

jqD0jU 2ÿ1. Finally we set F0 :� D0, F1 :� F0 UDi1 , and Fn :� Fnÿ1 U
ÿ

6
i1��� in

Di1��� in

�

�nV 2�. We also set Fy :� 6
0Un<y

Fn. Clearly E � FynFy.

We choose �dn�nV1 further small so as to have the following situation. Set v :� u,

the function de®ned above. Recall that v A C�B0�VH�B0nE� with vjqB0 � 0 and

vjE � 1. Clearly 0 < d < y for d � DB0
�v�. Let vn A C�B0�VH�B0nE UFn� with vnjFn U

qB0 � 0 and vnjE � 1 �nV 0�. We maintain that �dn�nV1 can be made so small that

DB0
�vn ÿ vnÿ1�U d=4n�2 �nV 0�;�10�

where we understand that vÿ1 � v. We ®rst use Lemma 6 for G � B0, L � li1 , and

Ti � D0 with d1 < 1=i to conclude that by choosing d1 > 0 small enough we can deduce

that DB0
�v0 ÿ v�U d=42. Again we use Lemma 6 for G � B0nD0, L � 6

i1i2
li1i2 , and

Ti � Di1 with d2 < 1=i to conclude that by choosing d2 > 0 su½ciently small we have

DB0
�v1 ÿ v0� � DB0nF0

�v1 ÿ v0�U d=43. Assume that by repeating the same process we

have chosen positive numbers d1; . . . ; dn so small that DB0
�vk ÿ vkÿ1�U d=4k�2

�0U kU nÿ 1�. Then, by making dn�1 > 0 smaller, using Lemma 6 again for

G � B0nFnÿ1, L � 6
i1��� in�1

li1��� in�1
, and Ti � Di1��� in with dn�1 < 1=i we conclude that

DB0
�vn ÿ vnÿ1�U d=4n�2. We have thus completed the induction of choosing �dn�nV1

further so small as to make (10) valid. We can of course moreover assume that �dn�nV1

is a strictly decreasing zero sequence.

We are now ready to de®ne the required topological ball M in Example 3 as

follows:

M :� B0n�E UFy�:�11�

It is not di½cult to see that M is in fact a topological ball in R
d only by taking a close

look at the construction of M. For the sake of completeness, however, we will ascertain

in the sequel that M is certainly a topological ball in R
d . For each x A qB0 and r A

�0; 6�d ÿ 1�1=2�, the set fx A qB0 : jxÿ xj < rg is referred to as a spherical cap on qB0 of

chordal radius, or simply radius, r centered at x. In the sequel spherical caps considered
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are all on qB0. We see that Fy V qB0 is the closure of a spherical cap S0 centered at

�3�d ÿ 1�1=2; 0; . . . ; 0� A qB0 : Fy V qB0 � S0. Observe that

qM � �qB0nS0�U �qFynS0�:

We will show that there is a homeomorphism h of qFynS0 onto S0 ®xing the boundary

of S0 in qB0 so that, by setting hj�qB0nS0� � identity, h is a homeomorphism of qM

onto qB0. By the construction of M, we will then see that h is extended to a ho-

meomorphism of M onto B0 such that h�M� � B0 so that we can conclude that M is a

topological ball. In other words, by speci®cally deforming qFynS0 topologically to S0,

M (M, resp.) is deformed topologically to B0 (B0, resp.). Now we start the construction

of a homeomorphism h of qFynS0 onto S0 ®xing the boundary of S0 in qB0. For the

purpose we choose spherical caps Si1��� in in S0 for each nV 1, where i1 � 1 and 1U

ik U 2dÿ1 �2U kU n�. The choice is by induction. First let Si1 be a spherical cap of

radius r1 > 0 such that Si1 HS0 where i1 � 1. Next take a family fSi1i2 : 1U i2 U 2dÿ1g

of spherical caps Si1i2 of the same radii r2 > 0 such that Si1i2 are mutually disjoint and

Si1i2 HSi1 . Suppose spherical caps Si1��� ik �i1 � 1; 1U ij U 2dÿ1 �2U jU k�� have been

chosen for each 1U kU nÿ 1. Then let fSi1��� inÿ1in : 1U in U 2dÿ1g be a family of

spherical caps Si1��� inÿ1in of the same radii rn > 0 such that Si1��� inÿ1in are mutually disjoint

and Si1��� inÿ1in HSi1��� inÿ1
for each i1 � � � inÿ1. It automatically follows that rn # 0. We then

set X0 :� S0 and Xn :� 6
i1��� in

Si1��� in for each nV 1, and ®nally set Y :� 7
nV1

Xn. We

decompose

qFynS0 � ��qFynS0�VF0�U 6
1Ui<y

��qFynS0�V �FinFiÿ1��

 !

UE

and similarly

S0 � �X 0nX1�U 6
1Ui<y

�X inXi�1�

 !

UY :

Since �qFynS0�VF0 is homeomorphic to X 0nX1 and these two sets have the boundary

of S0 in qB0 in common, we can construct a homeomorphism h of �qFynS0�VF0 onto

S0nX1 � X 0nX1 ®xing the boundary of S0 in qB0 such that h induces a natural cor-

respondence D0 ! s0 :� Si1 . Since �qFynS0�V �F1nF0� is homeomorphic to X 1nX2, h

can be continued to a homeomorphism of �qFynS0�VF1 onto S0nX2 such that h induces

a natural correspondence Di1 ! si1 :� 6
1UjU2 dÿ1 Si1 j . Suppose h can be continued to a

homeomorphism of �qFynS0�VFn onto S0nXn�1 such that h induces a natural cor-

respondence Di1��� in ! si1��� in :� 6
1UjU2dÿ1 Si1��� in j for every i1 � � � in. Then, since �qFynS0�
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V �Fn�1nFn� is homeomorphic to X n�1nXn�2, h can be continued to a homeomorphism of

�qFynS0�VFn�1 onto S0nXn�2 such that h induces a natural correspondence Di1��� in�1
!

si1��� in�1
:� 6

1UjU2 dÿ1 Si1��� in�1 j for every i1 � � � in�1. Hence we can extend h to a home-

omorphism of �qFynS0�nE onto S0nY in a special manner described above. By the

construction of E there exists a bijective correspondence between points x A E and

sequences i1i2 � � � in � � � �i1 � 1; 1U ik U 2dÿ1 �kV 2�� such that the sequence of sets Di1 ;

Di1i2 ; . . . ;Di1i2���in ; . . . converges to x. In this case we write x � x�i1i2 � � � in � � ��. Similarly

by the way Y is constructed there exists a bijective correspondence between points y A Y

and sequences i1i2 � � � in � � � as above such that the intersection of si1 ; si1i2 ; . . . ; si1i2���in ; . . . is

fyg. In this case we also write y � y�i1i2 � � � in � � ��. By the fashion h is determined, h

induces the natural correspondence Di1i2���in ! si1i2���in . Hence if we de®ne h : E ! Y by

h�x�i1i2 � � � in � � ��� � y�i1i2 � � � in � � ��

for every sequence i1i2 � � � in � � � �i1 � 1; 1U ik U 2dÿ1 �kV 2��, then h : qFynS0 ! S0 is

seen to be a homeomorphism of qFynS0 onto S0 ®xing the boundary of S0 in qB0. By

extending h to qM on setting h as identity on qB0nS0, we have thus constructed a

homeomorphism h of qM onto qB0. Since we have seen that qFynS0 is topologically

deformed to S0 ®xing the boundary of S0 in qB0, qFy � �qFynS0�US0 is seen to be

homeomorphic to a sphere. Hence q�E UFy� � qFy is homeomorphic to a sphere. By

the construction of E UFy, we see that E UFy is the closure of a region homeomorphic

to a ball bounded by the topological sphere q�E UFy� � qFy. Thus E UFy is the

closure of a topological ball, and again by the construction of M � B0n�E UFy�, we see

that M is homeomorphic to a ball bounded by the topological sphere qM. Because of

this we can extend h to a homeomorphism h of M onto B0 with h�M� � B0. Hence we

have ascertained that M is a topological ball.

Since qMnE is piecewise smooth, every point in qMnE is regular, which is seen by

e.g. the cone condition criterion. As before, 1ÿ u � 1ÿ v plays the role of barrier on M

for every point of E. Thus M is a regular domain and a fortiori the condition (a) of

Example 3 is satis®ed. Observe that, in addition to (9),

jqFyjU jqD0j �
X

2Un<y

6
i1��� inÿ1

qDi1��� inÿ1

�

�

�

�

�

�

�

�

�

�

U 2ÿ1 �
X

2Un<y

�2dÿ1�nÿ2 � �2ÿd�1�nÿ22ÿn � 1:

Therefore we see that jqMjU jqB0j � jqFyj � jEj < y so that the condition (b) of
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Example 3 is ful®lled. It is clear that jqMnEj > jqB0j=2 > 0. This with (9) assures the

validity of (c) in Example 3.

To complete the construction for Example 3 only the proof of (4) (i.e. the condition

(d) in Example 3) is left. We ®rst claim that

lim
n!y

vn�x� � o�x;E;M� �x A M�:�12�

Observe that vV vn V vn�1 V 0 on M �nV 0�. Therefore �vn�nV1 converges to a function

vy A C�B0nE�VH�M� such that 0U vy U 1 on B0nE and vyjFy U qB0 � 0. To prove

(12) we need to recall the de®nition (1) of o�� ;E;M�. Clearly vkjM A UE�M� and hence

vk Vo�� ;E;M� on M. On letting k " y we deduce vy Vo�� ;E;M� on M. To show

the reversed inequality, take an arbitrary s A UE�M� and any number l A �0; 1�. Since

lim infx!y s�x�V 1 for each y A E, there is a ball B�y; ry� � Bd�y; ry� �ry > 0� in R
d

such that s > l on B�y; ry�VM. Then the set U � 6
y AE

B�y; ry� is open, U IE, and

s > l on U VM. Because E � 7
1Uk<y

�FynFk� is compact and EHU , there is a

number k0 such that FynFk HFynFk HU for each kV k0. Fix an arbitrary kV k0. If

y A �qM�nU , then, since vk�y� � 0, lim infx AM;x!y l
ÿ1s�x�V 0 � vk�y�. If y A �qM�V

U , then, since l
ÿ1s > 1 and vk U 1 on M VU , lim infx AM;x!y l

ÿ1s�x�V 1V vk�y�.

Hence

lim inf
x AM;x!y

l
ÿ1s�x�V lim sup

x AM;x!y

vk�x�

for every y A qM, which implies, in view of the minimum (comparison) principle, that

l
ÿ1sV vk on M. On letting k " y and then l " 1, we obtain sV vy on M. By the

arbitrariness of s A UE�M�, we ®nally conclude that o�� ;E;M�V vy on M. The proof

of (12) is thus over.

Finally we turn to the proof of (4). Since DM�vn ÿ vnÿ1�UDB0
�vn ÿ vnÿ1�U d=4n�2

�nV 0�, we have for every j > 1 that

DM�vj ÿ v�1=2 U
X

0UiUj

DM�vi ÿ viÿ1�
1=2 U

X

0Ui<y

d
1=2=2 i�2 � d

1=2=2:

In view of (12) the Fatou lemma yields

DM�o�� ;E;M� ÿ v�1=2 U lim inf
j!y

DM�vj ÿ v�1=2 U d
1=2=2

and a fortiori we obtain that

jDM�o�� ;E;M��1=2 ÿDM�v�1=2jUDM�o�� ;E;M� ÿ v�1=2 U d
1=2=2:
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Since DM�v� � d > 0, the above inequality implies that

1

4
DM�v�UDM�o�� ;E;M��U

9

4
DM�v�;

which yields (4). The construction of M and EH qM in Example 3 is completed.
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