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Abstract. Generalizing a well-known group-theoretical notion we de®ne

transversals for (association) schemes. Two results on transversals of schemes

are o¨ered. Firstly, we show that a closed subset in a scheme possesses a factor

scheme if it possesses a transversal. Secondly, we characterize the Coxeter

schemes in terms of transversals. (Coxeter schemes are exactly those schemes

which can be identi®ed with the buildings in the sense of Tits). The second

result may be viewed as a ``thick version'' of the characterization of Coxeter

groups by the existence of ``minimal coset representatives''. On the other hand, the

characterizing conditions given in this result are similar to the well-known ``gate

property'' de®ned for chamber systems having a Coxeter matrix as type. Thus, our

second main result may be viewed as a uni®ed treatment of these two results.

1. Introduction.

Let �X ;G� be an association scheme.1

Let H be a closed subset of G, and let T be a subset of G. We shall say that T is a

transversal of H in X if, for any two elements y and z in X, jyT V zHj � 1. If, for each

element g in G, jT V gHj � 1, we shall say that T is a transversal of H in G.

It is straightforward that, via [6; Theorem A], both types of transversals, trans-

versals in X as well as transversals in G, generalize naturally the well-known group-

theoretical concept of (left) transversals (cf., e.g., [2]).

It is easy to see that each transversal of a closed subset H, say, in X is a transversal

of H in G (cf., e.g., Theorem 1). However, the converse of this does not hold. We shall

say more about the relationship between the two types of transversals in Theorem 1 and

in Theorem 3. Apart from these two (elementary) theorems, the present note contains

two main results in which we study the connection between transversals of closed subsets

of G and the structure of �X ;G� itself.

The ®rst of these main result is Theorem 2. This theorem says that, for each closed

subset H, say, of G, the scheme �X ;G� possesses a factor scheme over H if H possesses a
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transversal in X. (It seems that there are only a few general conditions which guarantee

that a closed subset of G gives rise to a factor scheme of �X ;G�. One such condition

was given in [5; (1.9)].)

The second main result (Theorem 4) is a characterization of the Coxeter schemes in

terms of transversals. Coxeter schemes were de®ned in [6]. They are exactly those

schemes which, via [6; Theorem E], correspond to the (regular) buildings in the sense of

Tits (cf., e.g., [4]). Using [6; Theorem A], our second main result may be viewed as a

``thick version'' of the characterization of Coxeter groups by the existence of ``minimal

coset representatives''. On the other hand, the characterizing conditions given in this

result are similar to the ``gate property'' de®ned in [3] for chamber systems having a

Coxeter matrix as type.2 Thus, our second main result may be viewed as a uni®ed

treatment of these two results.

We conclude this note with a corollary of the two main results. This corollary

(which is due to M. Rassy) sheds some light on the exceptional character of the Coxeter

schemes within the theory of association schemes.

2. The results.

Let us brie¯y ®x the basic notation and terminology which we shall use throughout

this note. (It is borrowed from [6].)

Let X be a set.

We de®ne

1X :� f�x; x� j x A Xg:

Let r denote a subset of X � X . We set

r� :� f�y; z� j �z; y� A rg:

For each element x of X, we set

xr :� fy A X j �x; y� A rg:

Let G be a partition of X � X such that q B G and 1X A G. Let us assume that,

for each element g in G; g� is an element of G. Then the pair �X ;G� will be called an

association scheme if, for any three elements d; e, and f in G, there exists a cardinal

2 In fact, when translating our proof (more precisely the proofs of our Proposition 2 and our Proposition

3) into the language of chamber systems, we obtain an alternate (and, as we believe, a technically less

complicated) proof of the main result of [3]. Let us also mention here that the main result of [3] as stated there

is not correct. The de®nition of ``gated stars'' as given there leads to counterexamples. On the other hand, the

main result of [3] remains true if one changes the de®nition of ``gated stars'' according to our de®nition of

TL�N� as given below.
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number adef such that, for any two elements y and z in X, �y; z� A f implies that

jyd V ze�j � adef .3

In the following, we shall always say ``scheme'' instead of ``association scheme''.

Let �X ;G� be a scheme.

We shall always write 1 instead of 1X .

For any two elements e and f in G, we de®ne

e f :� fg A G j aefg 0 0g:

Let F denote a subset of G such that q0F . We shall say that F is closed if, for

any two elements d and e in F, d �e is a subset of F.

Now we are ready to state our ®rst result.

Theorem 1. Let �X ;G� be a scheme, and let H denote a closed subset of G. Then,

for each subset T of G, the following conditions are equivalent.

(a) T is a transversal of H in X.

(b) T is a transversal of H in G which, for each element t in T, satis®es

f1g � t�tVH.

Again, let �X ;G� be a scheme.

Let F denote a subset of G. For each element B in fX ;Gg and, for each element b

in B, we de®ne

bF :� 6
f AF

b f :

For each subset E of G, we de®ne

EF :� 6
e AE

eF :4

Let H denote a closed subset of G. We set

X=H :� fxH j x A Xg:

For each element g in G, we set

gH
:� f�yH; zH� j z A yHgHg:

We set

G==H :� fgH j g A Gg

3 Let us emphasize here that this de®nition of association schemes is more general than the usual one

(cf., e.g., [1]).

4 This de®nes a multiplication on the power set of G. We shall call this multiplication the complex

multiplication.
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and

�X ;G�H :� �X=H;G==H�:

In general, it seems to be unknown whether or not the pair �X ;G�H is a scheme.

However, if jX j A N , �X ;G�H is a scheme; see [5; (1.9)]. The following theorem o¨ers

another su½cient condition for �X ;G�H to be a scheme.

Theorem 2. Let �X ;G� be a scheme, and let H denote a closed subset of G. Assume

that H possesses a transversal in X. Then �X ;G�H is a scheme.

Once again, let �X ;G� be a scheme.

For each subset F of G, we shall denote by hFi the intersection of all closed subsets

of G which contain F.

We set

Inv�G� :� fg A G j jhfggij � 2g:

Let L denote a subset of Inv�G�.

Let g denote an element of hLi. Then, by [6; Theorem 1.4.1(i)] and [6; Lemma

1.4.5(i)],

q0 f j A N j g A L jg:

We set

mL�g� :� minf j A N j g A L jg:

For each subset F of G, we abbreviate mL�F� :� fmL� f � j f A Fg.

For each subset N of L, we de®ne

TL�N� :� 7
h A hNi

fg A hLi j fmL�g� � mN�h�g � mL�gh�g:

Theorem 3. Let �X ;G� be a scheme, and let L denote a subset of Inv�G�. Then, for

each subset N of L, TL�N� is a transversal of hNi in X if and only if TL�N� is a

transversal of hNi in G.

The following theorem is the second main result of the present note.5

Theorem 4. Let �X ;G� be a scheme, and let L be a subset of Inv�G� such that

�X ;G� is L-constrained. Then the following conditions are equivalent.

(a) For each subset N of L, TL�N� is a transversal of hNi in G.

(b) For each subset N of L with jNjU 2, TL�N� is a transversal of hNi in G.

(c) �X ;G� is a Coxeter scheme with respect to L.

5 ``L-constrained'' schemes as well as ``Coxeter schemes with respect to L'' were de®ned in [6; Section

5.1]. We shall repeat the de®nition in the beginning of Section 7.
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Recall that, by [6; Theorem E], there exists a natural way to identify Coxeter

schemes and (regular) buildings. Thus, Theorem 4 can be viewed as an algebraic

characterization of (regular) buildings.

Note that Theorem 4 remains true if in condition (a) (or (b)) we replace the letter

``G '' with the letter ``X ''. (This follows from Theorem 3.)

Corollary. Let �X ;G� be a scheme, and let L be a subset of Inv�G� such that

�X ;G� is a Coxeter scheme with respect to L. Then, for each subset N of L, we have the

following.

(i) For each element g in G, jghNij � jhNij.

(ii) jhNij divides jGj.

(iii) �X ;G�hNi
is a scheme.

Let us conclude this section with an elementary observation the proof of which will

be left to the reader. Let �X ;G� be a scheme, let L denote a subset of Inv�G�, and let N

denote a subset of L. We de®ne

UL�N� � 7
l AN

fg A hLi j fmL�g� � 1g � mL�gl�g:

It follows immediately from the de®nitions of TL�N� and UL�N� that TL�N�JUL�N�.

However, if �X ;G� is a Coxeter scheme with respect to L, we have TL�N� � UL�N�.

3. The proof of Theorem 1.

Let T denote a subset of G.

We ®rst shall prove that condition (a) of Theorem 1 implies condition (b) of that

theorem. In order to do so, we assume that T is a transversal of H in X.

Let g denote an element in G. We ®rst wish to show that jT V gHj � 1.

Let y and z be elements in X such that �y; z� A g.

First of all, as T is assumed to be a transversal of H in X, we have q0 yT V zH.

Thus, as �y; z� A g, [6; Lemma 1.2.4] implies that g A TH. Therefore, there exists

an element t, say, in T such that g A tH. Now, by [6; Lemma 1.2.5(i)], t A gH. In

particular, as t A T , 1U jT V gHj.

We still have to show that jT V gHjU 1. Let r and s denote two elements in

T V gH. We shall be done if we succeed in showing that r � s.

Since r; s A gH, we have g A rH V sH; see [6; Lemma 1.2.5(i)]. Since g A rH and

�y; z� A g, [6; Lemma 1.2.4] implies that q0 yrV zH. Similarly, we obtain from g A sH

and �y; z� A g that q0 ysV zH. Let v denote an element in yrV zH, and let w denote

an element in ysV zH. Since r A T , v A yT V zH. Similarly, as s A T , w A yT V zH.

Thus, as T is assumed to be a transversal of H in X ; v � w. It follows that r � s.
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Thus, we have proved that T is a transversal of H in G. Let us now show that, for

each element t in T, f1g � t�tVH.

It is clear that 1 A t�tVH. In order to show that t�tVHJ f1g, let us denote by g

an element in t�tVH. We have to prove that g � 1.

Let y and z be elements in X such that �y; z� A g. Then, as g A t�t, [6; Lemma 1.2.4]

implies that q0 yt� V zt�. Let x denote an element in yt� V zt�. Then y, z A xT V yH.

(Recall that g A H.) Thus, as T is assumed to be a transversal of H in X, y � z. It

follows that g � 1.

Let us now prove that condition (b) of Theorem 1 implies (a) of that theorem. In

order to do so, we assume that T is a transversal of H in G.

Let y and z denote two elements in X. We wish to show that jyT V zHj � 1.

Let g denote the uniquely determined element in G which satis®es �y; z� A g. Since

T is assumed to be a transversal of H in G, we have q0T V gH. Let t denote an

element in T V gH. Since t A gH, g A tH; see [6; Lemma 1.2.5(i)]. Thus, as �y; z� A g, we

obtain from [6; Lemma 1.2.4] that q0 ytV zH. In particular, as t A T , 1U jyT V zHj.

We still have to show that jyT V zHjU 1. Let v and w denote two elements in

yT V zH. We shall be done if we succeed in showing that v � w.

Let d (respectively e, f ) denote the uniquely determined element in G which satis®es

�v;w� A d (respectively �y; v� A e, �y;w� A f ). Then we have d A H and e; f A T .

Moreover, we have f A ed. Thus, as jT V eHjU 1, e � f . It follows that e A ed. Thus,

by [6; Lemma 1.2.5(ii)], d � A e�e. Now we have d � A e�eVH. Thus, by hypothesis,

d � � 1. It follows that v � w.

4. The proof of Theorem 2.

By [6; Proposition 1.5.3], G==H is a partition of X=H � X=H. Moreover, from [6;

Theorem 1.3.1], we derive easily that 1X=H A G==H. Finally, it follows from [6; Lemma

1.2.5(i)] that, for each element g in G, �gH�� is an element of G==H.

Let us now denote by d; e and f three elements of G, and let us denote by y and z

elements in X such that �y; z� A f . In order to prove Theorem 2, we have to show that

j�yH��dH�V �zH��eH��j does not depend on the choice of the pair �yH; zH� A f H .

By hypothesis, H possesses a transversal T, say, in X. We set

U :� y�T VH dH�V zHe�H:

Then, as �y; z� A f ,

jU j �
X

b AT VHdH

X

c AHeH

abcf :
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On the other hand, we claim that

jU j � j�yH��dH�V �zH��eH��j:

First of all, it is clear that, for each element x in U,

xH A �yH��dH�V �zH��eH��:

Let v and w denote two elements in U which satisfy vH � wH. Then, as U J yT ,

we must have v;w A yT . On the other hand, vH � wH says that v A wH. It follows that

v;w A yT VwH. Thus, as T is a transversal of H in X ; v � w.

Now we have shown that

j�yH��dH�V �zH��eH��j �
X

b AT VHdH

X

c AHeH

abcf :

In particular, j�yH��dH�V �zH��eH��j does not depend on the choice of the pair

�yH; zH� A f H .

5. The proof of Theorem 3.

Let N denote a subset of L, and let t be an element of TL�N�. By Theorem 1, we

just have to show that t�tVhNiJ f1g.

Let g denote an element in t�tVhNi. Since g A t�t, t A tg�; see [6; Lemma

1.2.5(ii)]. Thus, as g A hNi, the de®nition of TL�N� yields mL�t� � mN�g
�� � mL�t�. It

follows that mN�g
�� � 0, so that we have g� � 1. It follows that g � 1.

6. Free monoids and Coxeter maps.

Let L denote a set.

We shall denote by F�L� the free monoid over L. The multiplication of F�L� will

be denoted by �, the unit element by 1.

A map from fNJLj jNj � 2g to �Nnf0; 1g�U f@0g is called a Coxeter map of L.

We shall denote by v the set of pairs

�d � l � l � e; d � e�

such that l A L and d; e A F�L�.

Let h and k be elements of L such that h0 k. Let n be an element in N . If 0 � n,

we set fn�h; k� :� 1. If 1U n and if l1; . . . ; ln are elements of fh; kg such that, for each

element i in f1; . . . ; ng, li � h if and only if i is odd, we de®ne

fn�h; k� :� l1 � � � � � ln:

Let m denote a Coxeter map of L.
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If m�fh; kg� A N , we abbreviate

fm�h; k� :� fm�fh;kg��h; k�:

We shall denote by wm the set of pairs

�d � fm�h; k� � e; d � fm�k; h� � e�

with h; k A L, h0 k, m�fh; kg� A N , and d; e A F�L�.

By hwmi we shall denote the smallest equivalence relation on L containing wm. Let

d and e be elements of F�L�. We occasionally shall write d@m e instead of �d; e� A hwmi.

We set

xm :� wm U v;

and we shall denote by hxmi the smallest equivalence relation on L containing xm.

We shall denote by l the uniquely determined monoid homomorphism from F�L�

to the additive monoid N satisfying LlJ f1g.

We set

Fm�L� :� ff A F�L� jmin�fhxmi�l � flg:6

For each subset N of L, we abbreviate Fm�N� :� F�N�VFm�L�.

7. The proof of Theorem 4.

Let �X ;G� denote a scheme.

For any two elements h and k of Inv�G� with h0 k, we set

MG�fh; kg� :� fn A Nnf0g j 1 A �hk�ng

and

mG�fh; kg� :�
minMG�fh; kg� if MG�fh; kg�0q

@0 if MG�fh; kg� � q.

�

Let T denote a subset of Inv�G�.

By [6; Lemma 1.2.1(ii)], the power set R�G� of G is a monoid with respect to the

complex multiplication. We shall denote by rL the uniquely determined monoid ho-

momorphism r from F�L� to R�G� such that, for each element l of L; lr � flg.

We shall denote by m the restriction of mG to fNJLj jNj � 2g. It is obvious that

m is a Coxeter map of L.

6 In the literature, the elements of Fm�L� are sometimes called m-reduced.
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Assume that hLi � G. The pair �X ;G� will be called L-constrained if, for each

element f of Fm�L�, jfrj � 1.

Assume that �X ;G� is L-constrained. The pair �X ;G� will be called a Coxeter

scheme with respect to L if, for any two elements d and e of Fm�L�, dr � er implies that

d@m e.

Lemma 1. Let �X ;G� be a scheme, and let L be a subset of Inv�G� such that �X ;G�

is a Coxeter scheme with respect to L. Then, for each subset N of L, we have the

following.

(i) For each element g in hNi, mL�g� � mN�g�.

(ii) For each element f in Fm�N�, there exists an element g in hNi such that

mN�g� � fl and fgg � fr.

Proof. (i) Let N denote a subset of L, and let g denote an element in hNi. Then,

by [6; Proposition 5.1.3(ii)], there exists an element d in Fm�N� such that mN�g� � dl and

fgg � dr.

By [6; Proposition 5.1.3(ii)], there also exists an element e in Fm�L� such that

mL�g� � el and fgg � er.

From fgg � dr and fgg � er we obtain that dr � er. Thus, as �X ;G� is assumed

to be a Coxeter scheme with respect to L, d@m e. In particular, dl � el. Now the

claim follows from mN�g� � dl and mL�g� � el.

(ii) Let N denote a subset of L, and let f denote an element of Fm�N�. Since

f A Fm�L�, there exists an element g in fr such that fgg � fr. Thus, by [6; Theorem

5.1.5], mL�g� � fl.

From f A F�N� we obtain that frJ hNi; use [6; Lemma 5.1.1] and [6; Theorem

1.4.1(i)]. Thus, as g A fr, g A hNi.

From g A hNi and mL�g� � fl we ®nally obtain that mN�g� � fl; see (i). r

Proposition 1. Let �X ;G� be a scheme, and let L be a subset of Inv�G� such that

�X ;G� is a Coxeter scheme with respect to L. Then, for each subset N of L, TL�N� is a

transversal of hNi in G.

Proof. Let N denote a subset of L.

Let us ®rst assume that there are two elements r and s in TL�N� such that

s A rhNi. Since s A rhNi, there exists an element h, say, in hNi such that s A rh.

Since s A rh and r A TL�N�,

mL�r� � mN�h� � mL�s�:
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On the other side, as s A rh, r A sh�; see [6; Lemma 1.2.5(i)]. Thus, as s A TL�N�,

mL�s� � mN�h
�� � mL�r�:

It follows that mN�h� � 0, so that h � 1. Since s A rh, this yields r � s.

What we have shown so far is that, for each element g in G, jTL�N�V ghNijU 1.

Let us now pick an element g in G, and let us denote by t an element in ghNi such that

mL�t� � min mL�ghNi�:

We de®ne

W :� fh A hNi jmin mL�th�U mL�t� � mN�h� ÿ 1g:

Clearly, we shall be done if we succeed in showing that q � W .

Let us assume, by way of contradiction, that q0W . Then q0 mN�W�. We

abbreviate

j :� min mN�W�;

and we pick an element h, say, in W such that

mN�h� � j:

Since h A hNi, we obtain from [6; Proposition 5.1.3(ii)] that there exists an element

d, say, in Fm�N� such that

mN�h� � dl

and

fhg � dr:

Note that 1 B W . Thus, as h A W , 10 h. Thus, as h A dr, 10 d. Therefore, there

exist elements d
0 in Fm�N� and l in N such that

d � d
0 � l:

Since d
0 A Fm�N�, we obtain from Lemma 1(ii) that there exists an element h 0, say,

in hNi such that

mN�h
0� � d

0l

and

fh 0g � d
0r:
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From mN�h
0� � d

0l and mN�h� � dl we obtain that mN�h
0� � j ÿ 1. Therefore,

h 0 B W :

By [6; Proposition 5.1.3(ii)], there exists an element c in Fm�L� such that

mL�t� � cl

and

ftg � cr:

Set

f :� c � d 0
;

and let e be an element in th 0. Then, as h 0 B W ,

mL�e� � mL�t� � mN�h
0� � cl� d

0l � fl:

From e A th 0 we also obtain that

e A crd 0r � �c � d 0�r � fr:

Therefore, we have fl A mL�fr�, and this implies that

f A Fm�L�;

see [6; Proposition 5.1.3(i)].

Assume ®rst that f � l A Fm�L�. Then, by Lemma 1(ii), there exists an element f in

G such that mL� f � � �f � l�l and f f g � �f � l�r. Since f � l � c � d, the ®rst equation

yields

mL� f � � �c � d�l � cl� dl � mL�t� � mN�h�;

and the second one yields

f f g � �c � d�r � crdr � th:

Clearly, this contradicts the choice of h A W .

Assume now that f � l B Fm�L�. Then, by [6; Corollary 3.1.6], there exist elements a,

b in F�L� and an element k in L such that

f � a � k � b

and b � l@m k � b.
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Assume ®rst that mL�c�U mL�a�. Then, as f � c � d 0, there exists an element e in

F�L� such that c � e � a. It follows that d
0 � e � k � b. Thus, as b � l@m k � b,

d
0
@m e � b � l, contrary to d A Fm�L�.

Assume now that mL�a� � 1U mL�c�. Then, as f � c � d 0, there exists an element e

in F�L� such that c � a � k � e. It follows that e � d 0 � b. Thus, as d � d
0 � l,

e � d � b � l. Thus, as b � l@m k � b, e � d@m k � b. Thus, as f � a � k � b,

f@m a � e � d:

Since f A Fm�L�, we now have that a � e A Fm�L�. Thus, by Lemma 1(ii), there exists

an element s in G such that

mL�s� � �a � e�l

and

fsg � �a � e�r:

We now shall prove that s A ghNi and that mL�s� � mL�t� ÿ 1. This contradiction

will conclude the proof of the proposition.

Since f@m a � e � d, fr � �a � e�rdr; see [6; Lemma 5.1.2]. Thus, as e A fr,

fsg � �a � e�r, and fhg � dr, we have e A shJ shNi. But we also have e A th 0
J thNi

and t A ghNi. Therefore, by [6; Theorem 1.3.1], s A ghNi.

Since f@m a � e � d, we also have fl � �a � e�l� dl. Thus, as

fl � cl� d
0l � mL�t� � dlÿ 1;

we have �a � e�l � mL�t� ÿ 1. Thus, as mL�s� � �a � e�l, mL�s� � mL�t� ÿ 1. r

Let �X ;G� be a scheme, and let L denote a subset of Inv�G�. We de®ne

Em�L� :� ff A Fm�L� j fl A mL�fr�g:

Just in order to get familiar with the meaning of the set Em�L�, let us state the

following. Assume that �X ;G� is L-constrained. Then, �X ;G� is a Coxeter scheme with

respect to L if and only if Em�L� � Fm�L�. (This follows from [6; Theorem 5.1.5].)

Proposition 2. Let �X ;G� be a scheme, and let L be a subset of Inv�G� such that

�X ;G� is L-constrained. Assume that the following two conditions hold.

(i) For any two elements c and d in Em�L�, cr � dr implies that c@m d.

(ii) For each subset N of L with jNj � 1, TL�N� is a transversal of hNi in G.

Then �X ;G� is a Coxeter scheme with respect to L.
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Proof. Assume, by way of contradiction, that �X ;G� is not a Coxeter scheme

with respect to L. Then, by hypothesis (i), Fm�L�PEm�L�. This means that q0

Fm�L�nEm�L�. We abbreviate

n :� minffl j f A Fm�L�nEm�L�g;

and we pick an element f, say, in Fm�L�nEm�L� such that

fl � n:

Since f A Fm�L�, there exists an element g in G such that

fgg � fr:

Since f B Em�L�,

mL�g�U nÿ 1:

Note that 1 A Em�L�. Thus, as f B Em�L�, 10 f. In particular, there exist elements

e in Fm�L� and l in L such that

f � e � l:

Since e A Fm�L�, the choice of f forces e A Em�L�. Thus, there exists an element f in

G such that

mL� f � � el

and

f f g � er:

Let us set N :� flg.

From fgg � fr and f f g � er we obtain that fgg � �e � l�r � erl � f l. Thus,

ghNi � f f ; gg:

On the other hand, as jNj � 1, we obtain from hypothesis (ii) that q0TL�N�V ghNi.

Let t denote an element in TL�N�V ghNi.

Assume ®rst that t � f . Then g A tl, whence

mL�t� � mN�l� � mL�g�U nÿ 1 � mL� f � � mL�t�;

contrary to mN�l� � 1.

Assume now that t0 f . Then, as t A ghNi � f f ; gg, t � g. In particular, as f A gl,

f A tl. Therefore,
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mL�t� � mN�l� � mL� f � � nÿ 1:

Thus, as mN�l� � 1, mL�t� � nÿ 2. Thus, by [6; Lemma 5.1.1], there exists an element d

in F�L� such that dl � nÿ 2 and t A dr.

From dl � nÿ 2 (and mL� f � � nÿ 1) we conclude that

mL� f � � dl� 1 � �d � l�l:

Moreover, from t A dr we obtain that

f A tlJ drl � �d � l�r:

Therefore, we have �d � l�l A mL��d � l�r�, and this implies that d � l A Fm�L�; see [6;

Proposition 5.1.3(i)]. It follows that d � l A Em�L�.

On the other hand, we have �d � l�r � f f g � er and e A Em�L�. Thus, by

hypothesis (i), d � l@m e. It follows that f � e � l@m d � l � l. In particular, f B Fm�L�,

contrary to our choice of f. r

Note that the following proposition (together with Proposition 1 and Proposition 2)

concludes the proof of Theorem 4.

Proposition 3. Let �X ;G� be a scheme, and let L be a subset of Inv�G� such that

�X ;G� is L-constrained.

Assume that, for each subset N of L with jNj � 2, TL�N� is a transversal of hNi in

G. Then, for any two elements c and d in Em�L�, cr � dr implies that c@m d.

Proof. We set

P :� f�c; d� A Em�L� � Em�L� j cr � dr; cRm dg:

Let us assume, by way of contradiction, that q0P. We abbreviate

n :� minfcl j �c; d� A Pg;

and we pick a pair �c; d� in P which satis®es cl � n.

Since c A Em�L�, there exists an element g in cr such that mL�g� � cl. Since

c A Fm�L� and g A cr,

fgg � cr:

From fgg � cr and cr � dr we obtain that fgg � dr. Thus, as d A Em�L�, mL�g� � dl.

Thus, as mL�g� � cl,

cl � dl:
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From �c; d� A P and cl � dl we conclude that 1U n. Thus, there exist elements a

in Em�L� and h in L such that

c � a � h:

Since a A Fm�L�, there exists an element e in G such that

feg � ar:

(Recall that �X ;G� is assumed to be L-constrained.) It follows that

fgg � cr � �a � h�r � arh � eh:

Since 1U cl � dl, there exist elements b in Em�L� and k in L such that

d � b � k:

We set N :� fh; kg.

Since h0 k, our hypothesis implies that q0TL�N�V ghNi. Let t denote an

element in TL�N�V ghNi.

From t A ghNi, g A eh, and h A N we obtain that t A ehNi. Thus, by [6; Lemma

1.2.5(i)], e A thNi. Thus, there exists an element c in hNi such that

e A tc:

Since t A TL�N�, we now obtain that

mL�t� � mN�c� � mL�e�:

By [6; Proposition 5.1.3(ii)], there exists an element e in Fm�L� such that

mL�t� � el

and

ftg � er:

Since c A hNi, we obtain from the same reference that there exists an element a 0 in

Fm�N� with

mN�c� � a
0l

and

fcg � a
0r:
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It follows that

mL�e� � el� a
0l � �e � a 0�l

and

e A tc � era 0r � �e � a 0�r:

Therefore, we have �e � a 0�l A mL��e � a
0�r�, and this implies that e � a 0 A Fm�L�; see [6;

Proposition 5.1.3(i)]. It follows that e � a 0 A Em�L�.

On the other hand, we have a A Em�L� and ar � feg � �e � a 0�r. Note also that

al � clÿ 1, so that, by the choice of �c; d� A P, �a; e � a 0� B P. Thus, we must have

a@m e � a 0
:

From this (and from c � a � h) we obtain that c@m e � a 0 � h. Thus, as c A Fm�L�, we

also have

a
0 � h A Fm�L�:

Thus, as �X ;G� is assumed to be L-constrained, there exist c 0 A G with

fc 0g � �a 0 � h�r � a
0rh � ch:

It follows that

fgg � ehJ tch � tc 0:

Similarly, we ®nd b
0 A F�N� such that

b@m e � b 0

and

b
0 � k A Fm�L�:

Moreover, we ®nd d 0, d A hNi such that fdg � b
0r, fd 0g � dk, and g A td 0. (Recall that

cl � dl.)

From g A tc 0 V td 0 we obtain that q0 t�tV c 0d 0�; see [6; Lemma 1.2.5(iv)]. On the

other hand, as c 0, d 0 A hNi, c 0d 0�
J hNi. Therefore, by Theorem 1 and Theorem 3,

t�tV c 0d 0�
J f1g. It follows that 1 A c 0d 0�. Thus, by [6; Lemma 1.2.5(iii)], c 0 � d 0. Now

we have

�a 0 � h�r � fc 0g � fd 0g � �b 0 � k�r:
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On the other hand, we have a 0 � h, b 0 � k A Fm�N� and h0 k. Thus, by de®nition,

fa 0 � h; b 0 � kg � ffm�h; k�; fm�k; h�g:

In particular, a 0 � h@m b 0 � k. It follows that

c � a � h@m e � a 0 � h@m e � b 0 � k@m b � k � d;

contrary to the choice of �c; d�. r

8. The proof of the corollary.

The second part of the corollary is an immediate consequence of its ®rst part. (Use

[6; Theorem 1.3.1].) The third part of the corollary follows from Theorem 2, Theorem

3, and Theorem 4. The ®rst part of the corollary follows nearly immediately from the

following little lemma.

Lemma 2. Let �X ;G� be a scheme, and let L be a subset of Inv�G� such that �X ;G�

is L-constrained. Let N denote a subset of L, and let t denote an element in TL�N�. Then

we have the following.

(i) For each element h in hNi, jthj � 1.

(ii) Let e and f be elements of hNi such that e0 f . Then, if �X ;G� is a Coxeter

scheme with respect to L, q � teV t f .

Proof. (i) Let h denote an element in hNi.

By [6; Proposition 5.1.3(ii)], there exists an element d, say, in Fm�L� such that

mL�t� � dl

and

ftg � dr:

By the same reference, there exists an element e in Fm�N� such that

mN�h� � el

and

fhg � er:

Let g denote an element in th, and set f :� d � e. Then, by de®nition,

mL�g� � mL�t� � mN�h� � dl� el � fl:
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Moreover,

th � drer � �d � e�r � fr:

In particular, fl A mL�fr�, and this implies that f A Fm�L�; see [6; Proposition 5.1.3(i)].

Since �X ;G� is assumed to be L-constrained, f A Fm�L� implies that jfrj � 1. On

the other hand, we have th � fr. Thus, we also have jthj � 1.

(ii) Assume, by way of contradiction, that q0 teV t f . Then, by [6; Lemma

1.2.5(iv)], q0 t�tV e f �. On the other hand, as e; f A hNi, e f �
J hNi. Therefore, by

Theorem 1 and Theorem 3, t�tV e f �
J f1g. It follows that 1 A e f �. Thus, by [6;

Lemma 1.2.5(iii)], e � f . r

In order to prove the ®rst part of the corollary, let N denote a subset of L, and let t

denote an element in TL�N�. Then, by Lemma 2, jthNij � jhNij. Thus, the ®rst claim

of the corollary follows from Theorem 4 (more precisely, from Proposition 1).
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