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Abstract. Generalizing a well-known group-theoretical notion we define
transversals for (association) schemes. Two results on transversals of schemes
are offered. Firstly, we show that a closed subset in a scheme possesses a factor
scheme if it possesses a transversal. Secondly, we characterize the Coxeter
schemes in terms of transversals. (Coxeter schemes are exactly those schemes
which can be identified with the buildings in the sense of Tits). The second
result may be viewed as a “‘thick version” of the characterization of Coxeter
groups by the existence of “minimal coset representatives”. On the other hand, the
characterizing conditions given in this result are similar to the well-known “gate
property” defined for chamber systems having a Coxeter matrix as type. Thus, our
second main result may be viewed as a unified treatment of these two results.

1. Introduction.

Let (X,G) be an association scheme.’

Let H be a closed subset of G, and let T be a subset of G. We shall say that 7' is a
transversal of H in X if, for any two elements y and z in X, |yT NzH| = 1. If, for each
element ¢g in G, |TNgH| =1, we shall say that T is a transversal of H in G.

It is straightforward that, via [6; Theorem A], both types of transversals, trans-
versals in X as well as transversals in G, generalize naturally the well-known group-
theoretical concept of (left) transversals (cf., e.g., [2]).

It is easy to see that each transversal of a closed subset H, say, in X is a transversal
of H in G (cf., e.g., Theorem 1). However, the converse of this does not hold. We shall
say more about the relationship between the two types of transversals in and
in [Theorem 3. Apart from these two (elementary) theorems, the present note contains
two main results in which we study the connection between transversals of closed subsets
of G and the structure of (X, G) itself.

The first of these main result is [Theorem 2. This theorem says that, for each closed

subset H, say, of G, the scheme (X, G) possesses a factor scheme over H if H possesses a
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transversal in X. (It seems that there are only a few general conditions which guarantee
that a closed subset of G gives rise to a factor scheme of (X, G). One such condition
was given in [5; (1.9)].)

The second main result (Theorem 4) is a characterization of the Coxeter schemes in
terms of transversals. Coxeter schemes were defined in [6]. They are exactly those
schemes which, via [6; Theorem E|, correspond to the (regular) buildings in the sense of
Tits (cf., e.g., [4]). Using [6; Theorem A], our second main result may be viewed as a
“thick version™ of the characterization of Coxeter groups by the existence of ““‘minimal
coset representatives”. On the other hand, the characterizing conditions given in this
result are similar to the ‘““gate property” defined in for chamber systems having a
Coxeter matrix as type.> Thus, our second main result may be viewed as a unified
treatment of these two results.

We conclude this note with a corollary of the two main results. This corollary
(which is due to M. Rassy) sheds some light on the exceptional character of the Coxeter

schemes within the theory of association schemes.

2. The results.

Let us briefly fix the basic notation and terminology which we shall use throughout
this note. (It is borrowed from [6].)
Let X be a set.
We define
ly :=={(x,x)|xe X}.
Let r denote a subset of X x X. We set

*

r={(2)|(z») er}.
For each eclement x of X, we set

xr:={yeX|(x,y)er}.
Let G be a partition of X x X such that ¢ ¢ G and 1y € G. Let us assume that,
for each element g in G, ¢g* is an element of G. Then the pair (X, G) will be called an

association scheme if, for any three elements d,e, and f in G, there exists a cardinal

> In fact, when translating our proof (more precisely the proofs of our and our

3) into the language of chamber systems, we obtain an alternate (and, as we believe, a technically less
complicated) proof of the main result of [3]. Let us also mention here that the main result of [3] as stated there
is not correct. The definition of “gated stars” as given there leads to counterexamples. On the other hand, the
main result of remains true if one changes the definition of “gated stars” according to our definition of
TL(N) as given below.
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number a4 such that, for any two elements y and z in X, (y,z) € f implies that
\yd Nze*| = agey.?
In the following, we shall always say ‘““‘scheme” instead of ‘“‘association scheme”.
Let (X,G) be a scheme.
We shall always write 1 instead of 1y.

For any two elements ¢ and f in G, we define

ef :={ge Glay #0}.

Let F denote a subset of G such that ¢J # F. We shall say that F is closed if, for
any two elements d and e in F, d*e is a subset of F.

Now we are ready to state our first result.

THEOREM 1. Let (X, G) be a scheme, and let H denote a closed subset of G. Then,
for each subset T of G, the following conditions are equivalent.

(@) T is a transversal of H in X.

(b) T is a transversal of H in G which, for each element t in T, satisfies
{1} =ttNH.

Again, let (X,G) be a scheme.
Let F denote a subset of G. For each element B in {X, G} and, for each element b

in B, we define

bF := ) bf.

feF
For each subset E of G, we define

EF = ) eF.*

eeE

Let H denote a closed subset of G. We set
X/H :={xH |xe X}.
For each element g in G, we set
9" :={(yH,zH)|z € yHgH}.
We set

G//H :={g"|g e G}

3 Let us emphasize here that this definition of association schemes is more general than the usual one

(cf, e.g., [1).

4 This defines a multiplication on the power set of G. We shall call this multiplication the complex
multiplication.
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and
(X, 6)" = (X/H,G//H).
In general, it seems to be unknown whether or not the pair (X,G)” is a scheme.

However, if |[X|e N, (X,G)" is a scheme; see [5; (1.9)]. The following theorem offers

another sufficient condition for (X,G)” to be a scheme.

THEOREM 2. Let (X, G) be a scheme, and let H denote a closed subset of G. Assume

that H possesses a transversal in X. Then (X,G)™ is a scheme.

Once again, let (X, G) be a scheme.

For each subset F of G, we shall denote by {F') the intersection of all closed subsets
of G which contain F.

We set

Inv(G) :={g e G[[{{g})| =2}
Let L denote a subset of Inv(G).
Let g denote an element of (L). Then, by [6; Theorem 1.4.1(i)] and [6; Lemma
1.4.5(1)],
D #{jeN|gel’}.
We set
#(g) :==min{jeN|geL'}.
For each subset F of G, we abbreviate y; (F) := {u, (f)|f € F}.
For each subset N of L, we define

Tu(N):= () g€ <L Hmlo) +nx(m)} = palgh)}
hed{N)
THEOREM 3. Let (X, G) be a scheme, and let L denote a subset of Inv(G). Then, for
each subset N of L, Tr(N) is a transversal of {N) in X if and only if Ty (N) is a
transversal of {(N) in G.

The following theorem is the second main result of the present note.’

THEOREM 4. Let (X, G) be a scheme, and let L be a subset of Inv(G) such that
(X, G) is L-constrained. Then the following conditions are equivalent.

(a) For each subset N of L, Tr(N) is a transversal of {(N) in G.

(b) For each subset N of L with |[N| <2, T (N) is a transversal of {N) in G.

() (X,G) is a Coxeter scheme with respect to L.

> “[-constrained” schemes as well as “Coxeter schemes with respect to L” were defined in [6; Section

5.1]. We shall repeat the definition in the beginning of Section 7.
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Recall that, by [6; Theorem E|, there exists a natural way to identify Coxeter
schemes and (regular) buildings. Thus, can be viewed as an algebraic
characterization of (regular) buildings.

Note that remains true if in condition (a) (or (b)) we replace the letter
“G” with the letter “X”. (This follows from [Theorem 3.)

COROLLARY. Let (X,G) be a scheme, and let L be a subset of Inv(G) such that
(X, G) is a Coxeter scheme with respect to L. Then, for each subset N of L, we have the
following.

(1) For each element g in G, |g{N)| = |[{N)|.

(ii) [KND| divides |G]|.

(i) (X,G)YN is a scheme.

Let us conclude this section with an elementary observation the proof of which will
be left to the reader. Let (X, G) be a scheme, let L denote a subset of Inv(G), and let N
denote a subset of L. We define

UL(N) = l()v{g e Ly | {ur(g) +1} = u(9l)}.

It follows immediately from the definitions of 7 (N) and UL (N) that T.(N) = UL(N).
However, if (X,G) is a Coxeter scheme with respect to L, we have T, (N)= U.(N).

3. The proof of Theorem 1.

Let T denote a subset of G.

We first shall prove that condition (a) of [Theorem 1 implies condition (b) of that
theorem. In order to do so, we assume that 7" is a transversal of H in X.

Let g denote an element in G. We first wish to show that |TNgH| = 1.

Let y and z be elements in X such that (y,z) €g.

First of all, as T is assumed to be a transversal of H in X, we have ¢J # yT NzH.
Thus, as (y,z)€g, [6; Lemma 1.2.4] implies that ge TH. Therefore, there exists
an element ¢, say, in 7 such that getH. Now, by [6; Lemma 1.2.5(1)], te gH. In
particular, as te T, 1 < |TNgH|.

We still have to show that |TNgH| <1. Let r and s denote two elements in
TNgH. We shall be done if we succeed in showing that r =s.

Since r,s € gH, we have g e rH NsH; see [6; Lemma 1.2.5(i)]. Since g € rH and
(y,z) € g, [6; Lemma 1.2.4] implies that ¢J # yrNzH. Similarly, we obtain from g € sH
and (y,z) eg that & # ysNzH. Let v denote an element in yrNzH, and let w denote
an element in ysNzH. Since re T, ve yT'NzH. Similarly, as se T, we yTNzH.

Thus, as 7T is assumed to be a transversal of H in X, v =w. It follows that r =s.
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Thus, we have proved that T is a transversal of H in G. Let us now show that, for
each element ¢ in 7, {1} =¢*tNH.

It is clear that 1 € *#N H. In order to show that *tN H < {1}, let us denote by g
an element in t*#N H. We have to prove that g = 1.

Let y and z be elements in X such that (y,z) € g. Then, as g € ¢*¢, [6; Lemma 1.2.4]
implies that ¥ # yt* Nzt*. Let x denote an element in yt*Nzt*. Then y, ze xT N yH.
(Recall that g e H.) Thus, as T is assumed to be a transversal of H in X, y ==z It
follows that g = 1.

Let us now prove that condition (b) of [Theorem 1 implies (a) of that theorem. In
order to do so, we assume that 7" is a transversal of H in G.

Let y and z denote two elements in X. We wish to show that |yTNzH| = 1.

Let g denote the uniquely determined element in G which satisfies (y,z) € g. Since
T is assumed to be a transversal of H in G, we have & # TNgH. Let t denote an
element in TNgH. Since t € gH, g € tH; see [6; Lemma 1.2.5(i)]. Thus, as (y,z) € g, we
obtain from [6; Lemma 1.2.4] that ¢J # ytNzH. In particular, as te T, 1 < |yT NzH|.

We still have to show that |yTNzH| <1. Let v and w denote two elements in
yT NzH. We shall be done if we succeed in showing that v = w.

Let d (respectively e, f) denote the uniquely determined element in G which satisfies
(v,w) ed (respectively (y,v)ee, (y,w)e f). Then we have de H and e, feT.
Moreover, we have f € ed. Thus, as [TNeH| <1, e= f. It follows that e € ed. Thus,
by [6; Lemma 1.2.5(ii)], d* € e*e. Now we have d* € e*eN H. Thus, by hypothesis,
d*=1. It follows that v=w.

4. The proof of Theorem 2.

By [6; Proposition 1.5.3], G//H is a partition of X/H x X/H. Moreover, from [6;
Theorem 1.3.1], we derive easily that 1y 5 € G//H. Finally, it follows from [6; Lemma
1.2.5(1)] that, for each element g in G, (¢f7)" is an element of G//H.

Let us now denote by d,e and f three elements of G, and let us denote by y and z
elements in X such that (y,z) € f. In order to prove [Theorem 2, we have to show that
|(yH)(d")N (zH)(e™)*| does not depend on the choice of the pair (yH,zH) e f¥.

By hypothesis, H possesses a transversal 7, say, in X. We set

U:=y(TNHdH)NzHe*H.

Then, as (y,z) € f,

U= > > ay

beTNHAH ce HeH
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On the other hand, we claim that
Ul = [(yH)(d") N (zH)(")"].
First of all, it is clear that, for each element x in U,
xH e (yH)(d")N (zH) (™).

Let v and w denote two elements in U which satisfy vH = wH. Then, as U < yT,
we must have v,w € yT. On the other hand, vH = wH says that v e wH. It follows that
v,we yT'NwH. Thus, as T is a transversal of H in X, v=w.

Now we have shown that

() @)NEH) ) 1= > D any
be TNHAH ceHeH

In particular, |(yH)(d®)N(zH)(e")*| does not depend on the choice of the pair
(yH,zH) e f7.

5. The proof of Theorem 3.

Let N denote a subset of L, and let ¢ be an element of 7y (N). By [Theorem 1, we
just have to show that t*#N{N) < {1}.

Let g denote an element in *#tN<{N). Since get*t, tetg”; see [6; Lemma
1.2.5(ii)]. Thus, as g € <N, the definition of T, (N) yields u; (¢) + un(g*) = u, (7). Tt
follows that uy(g*) =0, so that we have g* = 1. It follows that g = 1.

6. Free monoids and Coxeter maps.

Let L denote a set.

We shall denote by F(L) the free monoid over L. The multiplication of F(L) will
be denoted by *, the unit element by 1.

A map from {N < L||N| =2} to (N\{0,1})U{Re} is called a Coxeter map of L.

We shall denote by v the set of pairs

(dxlxlxedxe)

such that /e L and d,e e F(L).
Let & and k be elements of L such that & # k. Let n be an element in N. If 0 = n,
we set f,(h,k):=1. If 1 <n and if /;,...,/, are elements of {h, k} such that, for each

element i in {1,...,n}, [; =h if and only if i is odd, we define
f,(h k) =1 *-- %1,

Let m denote a Coxeter map of L.
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If m({h,k}) e N, we abbreviate
£u(h k) = Ein iy (B k).
We shall denote by w,, the set of pairs
(dxf,,(hk)«edxf,(k h)«e)

with hke L, h#k, m({h,k}) e N, and d,e e F(L).
By <{w,,> we shall denote the smallest equivalence relation on L containing w,,. Let
d and e be elements of F(L). We occasionally shall write d ~,, e instead of (d,e) € {w,, ).

We set

X =Wy, Uv,

and we shall denote by <x,,> the smallest equivalence relation on L containing X,,.
We shall denote by 4 the uniquely determined monoid homomorphism from F(L)
to the additive monoid N satisfying LA < {1}.
We set

F, (L) := {f e F(L) | min(f{x,,»)A = f1}.°

For each subset N of L, we abbreviate F,,(N) :=F(N)NF,(L).

7. The proof of Theorem 4.

Let (X,G) denote a scheme.
For any two elements 4 and k of Inv(G) with & # k, we set

Mg({h,k}) := {ne N\{0} |1 € (hk)"}
and

min Mg({h,k}) if Mg({h,k}) # &

me({h,k}) == {NO if Mg({h,k}) =@.

Let T denote a subset of Inv(G).

By [6; Lemma 1.2.1(ii)], the power set R(G) of G is a monoid with respect to the
complex multiplication. We shall denote by p; the uniquely determined monoid ho-
momorphism p from F(L) to R(G) such that, for each element / of L,Ip = {/}.

We shall denote by m the restriction of mg to {N < L||N|=2}. It is obvious that

m is a Coxeter map of L.

® 1In the literature, the elements of F,(L) are sometimes called m-reduced.
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Assume that (L) = G. The pair (X,G) will be called L-constrained if, for each
element f of F,,(L), |fp| = 1.

Assume that (X, G) is L-constrained. The pair (X, G) will be called a Coxeter
scheme with respect to L if, for any two elements d and e of F,,(L), dp = ep implies that

d~,,e.

LeEmMA 1. Let (X, G) be a scheme, and let L be a subset of Inv(G) such that (X, G)
is a Coxeter scheme with respect to L. Then, for each subset N of L, we have the
following.

(1) For each element g in {N), u;(g9) = uy(9)

(i) For each element f in ¥,,(N), there exists an element g in {(N) such that
puy(9) =2 and {g} = 1p.

Proor. (i) Let N denote a subset of L, and let g denote an element in (N). Then,
by [6; Proposition 5.1.3(ii)], there exists an element d in F,,(N) such that u,(g) = d1 and
{g} =dp.

By [6; Proposition 5.1.3(ii)], there also exists an element e in F,,(L) such that
pr(g) = el and {g} = ep.

From {g} =dp and {g} = ep we obtain that dp = ep. Thus, as (X, G) is assumed
to be a Coxeter scheme with respect to L, d ~, e. In particular, d1 =eA. Now the
claim follows from uy(g) =d4 and u;(g) = el.

(i) Let N denote a subset of L, and let f denote an element of F,(N). Since
feF, (L), there exists an element g in fp such that {g} =fp. Thus, by [6; Theorem
5.1.5], u(g) =fA.

From f e F(N) we obtain that fp = (N); use [6; Lemma 5.1.1] and [6; Theorem
1.4.1(1)]. Thus, as gefp, ge {(N).

From g e (N) and y;(g) = f1 we finally obtain that uy(g) = fi; see (i). O

PropoOSITION 1. Let (X, G) be a scheme, and let L be a subset of Inv(G) such that
(X, G) is a Coxeter scheme with respect to L. Then, for each subset N of L, T((N) is a
transversal of {(N) in G.

Proor. Let N denote a subset of L.

Let us first assume that there are two elements r and s in 7.(N) such that
ser{N). Since ser{N), there exists an element A, say, in {N) such that s e rh.

Since serh and re T, (N),

pr(r) + wy (h) = g ().
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On the other side, as serh, resh*; see [6; Lemma 1.2.5(1)]. Thus, as se T, (N),

pr(s) + uy(h™) = wy (r).

It follows that uy(h) =0, so that 7= 1. Since s e rh, this yields r =s.
What we have shown so far is that, for each element g in G, |T.(N)Ng{N)| < 1.

Let us now pick an element g in G, and let us denote by ¢ an element in g{/N) such that
(1) = ming; (g<N ).
We define
W= {he (N [minp (th) < pp (1) + py(h) - 1}.

Clearly, we shall be done if we succeed in showing that ¢ = W.
Let us assume, by way of contradiction, that ¢ # W. Then J # uy(W). We

abbreviate
J = min uy (W),
and we pick an element 4, say, in W such that
py(h) = J.

Since h e (N), we obtain from [6; Proposition 5.1.3(ii)] that there exists an element
d, say, in F,,(N) such that

py(h) = da
and
{h} = dp.

Note that 1 ¢ W. Thus, as he W, 1 # h. Thus, as hedp, 1 #d. Therefore, there
exist elements d’ in F,,(N) and / in N such that

d=d x1.

Since d’ € F,,,(N), we obtain from [Cemma 1(ii) that there exists an element 4’, say,
in {(N) such that

py(h') =d'2
and

{h'} =d'p.
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From puy(h') =d’'A and py(h) = dA we obtain that uy(h') = j — 1. Therefore,
h¢w.
By [6; Proposition 5.1.3(ii)], there exists an element ¢ in F, (L) such that
pu (1) = ¢
and
{t} =cp.
Set
f:=cx*d,
and let ¢ be an element in th’. Then, as h' ¢ W,
pre) = pp(t) + py(h') = A+ d'2 = 2.
From e e th’ we also obtain that
eeepd’p = (cxd')p = fp.
Therefore, we have f1 e y; (fp), and this implies that
feF,(L);

see [6; Proposition 5.1.3(i)].

Assume first that f« /e F,(L). Then, by [Lemma 1(ii), there exists an element f in
G such that yu; (f) = (f+x/)A and {f} = (f«/)p. Since f*/=c=xd, the first equation
yields

pr(f) = (exd)A =i+ di = pu (1) + uy(h),
and the second one yields
{f} = (cxd)p=cpdp = th.

Clearly, this contradicts the choice of he W.
Assume now that f «/ ¢ F,,(L). Then, by [6; Corollary 3.1.6], there exist elements a,
b in F(L) and an element k in L such that

f=axkxb

and bx/ ~,, k*b.
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Assume first that g, (¢) < g, (a). Then, as f = c¢*d’, there exists an element e in
F(L) such that c¢xe=a. It follows that d'=exkxb. Thus, as bx/~,kxb,
d’ ~,exbxl contrary to deF,(L).

Assume now that u; (a) + 1 < u;(¢). Then, as f = c¢*d’, there exists an element e
in F(L) such that c=axkxe. It follows that exd' =b. Thus, as d=d"x*/,
exd=bx/. Thus, as bx/~,, kxb, exd~, kxb. Thus, as f =axkxb,

f~,axexd.

Since f € F,,(L), we now have that a x e € F,,(L). Thus, by [Lemma 1(ii), there exists

an element s in G such that

() = (axe)i

and

{s} = (axe)p.

We now shall prove that s € g{N)» and that g, (s) = u;(t) — 1. This contradiction
will conclude the proof of the proposition.

Since f~,axexd, fp=(axe)pdp; see [6; Lemma 5.1.2]. Thus, as e € fp,
{s} = (axe)p, and {h} =dp, we have e € sh = s(N). But we also have e th’ = t{(N)
and 7€ g(N). Therefore, by [6; Theorem 1.3.1], s€ g{N).

Since f ~,,axexd, we also have fA = (axe)A+dA. Thus, as
fi=cl+dl=pu (1) +di—1,
we have (axe)l =y, (t) —1. Thus, as u;(s) = (axe)d, u(s) =pu. (1) — 1. O

Let (X,G) be a scheme, and let L denote a subset of Inv(G). We define
En(L) :={f e F\,(L)[f1 e u,(fp)}.

Just in order to get familiar with the meaning of the set E,,(L), let us state the
following. Assume that (X, G) is L-constrained. Then, (X, G) is a Coxeter scheme with
respect to L if and only if E, (L) =F,(L). (This follows from [6; Theorem 5.1.5].)

PROPOSITION 2. Let (X, G) be a scheme, and let L be a subset of Inv(G) such that
(X, G) is L-constrained. Assume that the following two conditions hold.

(i) For any two elements ¢ and d in E, (L), cp = dp implies that ¢ ~,,d.

(i) For each subset N of L with |[N| =1, Tp.(N) is a transversal of {(N) in G.

Then (X,G) is a Coxeter scheme with respect to L.
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PrROOF. Assume, by way of contradiction, that (X, G) is not a Coxeter scheme
with respect to L. Then, by hypothesis (i), F, (L) & E,,(L). This means that ¢J #
F,,(L)\E,(L). We abbreviate

n:=min{fA|f e F,,(L)\E,(L)},
and we pick an element f, say, in F,,(L)\E,,(L) such that
fi=n.
Since f € F,,(L), there exists an element g in G such that

{g} =1p.

Since f ¢ E, (L),

ur(g) <nm—1.

Note that 1 € E,,(L). Thus, as f ¢ E,,(L), 1 #f. In particular, there exist elements
e in F,,(L) and / in L such that

f=ex/.

Since e € F,,(L), the choice of f forces e € E,,(L). Thus, there exists an element f in
G such that

ur(f) = e

and

{/}=ep.
Let us set N := {/}.
From {g} =fp and {f} = ep we obtain that {g} = (ex/)p =epl/ = fI. Thus,
g<{N>=A{f.g}.

On the other hand, as |N| = 1, we obtain from hypothesis (ii) that & # T (N)Ng{N).
Let ¢ denote an element in 77 (N)Ng{N).
Assume first that + = f. Then g € ¢/, whence

pr () +uy() = up(9) <n—1=p (f) = u(1),

contrary to uy(l) = 1.
Assume now that 7 # f. Then, as € g{N) = {f, g}, t = g. In particular, as f € gl,
f etl. Therefore,
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ue(0) + un() = pu(f) =n—1.

Thus, as uy(/) =1, u;(t) =n—2. Thus, by [6; Lemma 5.1.1], there exists an element d
in F(L) such that d1=n—2 and 7€ dp.
From dA=n—-2 (and y;(f) =n—1) we conclude that

u(f)=di+1=(d=1)A
Moreover, from ¢ e dp we obtain that
fetl=dpl = (d=1)p.

Therefore, we have (dx/)Ae u;((dx/)p), and this implies that d«*/eF,,(L); see [6;
Proposition 5.1.3(1)]. It follows that d /e E,(L).

On the other hand, we have (dx/)p={f}=ep and e€cE,(L). Thus, by
hypothesis (i), d [ ~, e. It follows that f =ex/ ~,,d«/x/. In particular, f ¢ F,, (L),

contrary to our choice of f. O

Note that the following proposition (together with [Proposition 1 and [Proposition 2)
concludes the proof of Theorem 4.

PrOPOSITION 3. Let (X, G) be a scheme, and let L be a subset of Inv(G) such that
(X, G) is L-constrained.

Assume that, for each subset N of L with |N| =2, T (N) is a transversal of {(N) in
G. Then, for any two elements ¢ and d in E,,(L), cp =dp implies that ¢ ~,,d.

Proor. We set
2 = {(c,d) € En(L) x E, (L) | cp = dp,c £,,d}.
Let us assume, by way of contradiction, that ¢ # 2. We abbreviate
n :=min{ci|(c,d) € 2},

and we pick a pair (¢,d) in # which satisfies ¢l = n.
Since ce E,, (L), there exists an element g in cp such that u,(g9) =cA. Since

ceF, (L) and g € cp,

{9} =cp.

From {g} = ¢p and c¢p = dp we obtain that {g} =dp. Thus, as de E, (L), u;(g) = dA.
Thus, as u;(g) = ¢4,

cl =dA
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From (c,d) € 2 and ¢4 = d/ we conclude that 1 < n. Thus, there exist elements a
in E, (L) and % in L such that

c=axh.

Since a € F,,(L), there exists an element ¢ in G such that

{e} = ap.
(Recall that (X, G) is assumed to be L-constrained.) It follows that

{9} =cp=(axh)p=aph=eh.
Since 1 < ¢4 =dJ, there exist elements b in E, (L) and k in L such that
d=bxk.

We set N := {h,k}.

Since h # k, our hypothesis implies that ¢ # T (N)Ng{N). Let ¢ denote an
element in 77 (N)Ng{N).

From te g(N), geeh, and he N we obtain that /€ e{N). Thus, by [6; Lemma
1.2.5(1)], e t{N). Thus, there exists an element ¢ in (N) such that

e € tc.
Since te Ty (N), we now obtain that
1 (t) + py(c) = ug(e).
By [6; Proposition 5.1.3(ii)], there exists an element e in F, (L) such that
pr (1) = el
and
{t} =ep.
Since ¢ € (N ), we obtain from the same reference that there exists an element a’ in
F,,(N) with
un(c) =a'a

and

{c} =a'p.
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It follows that
u(e) =ei+a'l=(exa’)
and
eectc=epa’p=(exa)p.

Therefore, we have (exa’)ie u;((exa’)p), and this implies that exa’ € F,,(L); see [6;
Proposition 5.1.3(i)]. It follows that exa’ e E,(L).

On the other hand, we have ae E, (L) and ap = {e} = (exa’)p. Note also that
al =cl— 1, so that, by the choice of (c,d) e ?, (a,exa’) ¢ 2. Thus, we must have

a~,exa’

From this (and from ¢ =a /) we obtain that ¢ ~,exa’«xh. Thus, as ce F,(L), we

also have
a'xheF,(L).
Thus, as (X, G) is assumed to be L-constrained, there exist ¢’ € G with
{c'} = (a' x h)p =a'ph = ch.
It follows that
{9} =eh = tch=1tc'.

Similarly, we find b’ € F(N) such that

b~,exb
and
b’ xkeF,(L).

Moreover, we find d’, d € (N such that {d} =b'p, {d’'} = dk, and g € td’. (Recall that
cl=di.)

From g € t¢’Ntd' we obtain that ¢ # t*tNc’d’; see [6; Lemma 1.2.5(iv)]. On the
other hand, as ¢/, d' € (N), ¢'d"™* < (N). Therefore, by and [Theorem 3,
t*tNc'd™ < {1}. It follows that 1 € ¢’d™. Thus, by [6; Lemma 1.2.5(iii)], ¢’ = d’. Now

we have

(@'« h)p={c'} ={d'} = (b" = k)p.
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On the other hand, we have a’ x/, b’ xk € F,,(N) and h # k. Thus, by definition,
{a’ x h,b" x k} = {f,,(h, k), £, (k,h)}.
In particular, a’ *h ~,, b’ x k. It follows that
c=axh~yexa xh~,exb xk~,bxk=d,

contrary to the choice of (c,d). O

8. The proof of the corollary.

The second part of the corollary is an immediate consequence of its first part. (Use

[6; Theorem 1.3.1].) The third part of the corollary follows from [Theorem 2, [Theorem
3, and [Theorem 4. The first part of the corollary follows nearly immediately from the

following little lemma.

LemMA 2. Let (X, G) be a scheme, and let L be a subset of Inv(G) such that (X, G)
is L-constrained. Let N denote a subset of L, and let t denote an element in Ty (N). Then
we have the following.

(i) For each element h in {N), |th| = 1.

(i) Let e and f be elements of (N such that e # f. Then, if (X,G) is a Coxeter
scheme with respect to L, & =teNtf.

Proor. (i) Let i denote an element in {(N).

By [6; Proposition 5.1.3(ii)], there exists an element d, say, in F, (L) such that

p (1) = da

and

{t} =dp.

By the same reference, there exists an element e in F,,(N) such that

tiy(h) = e4

and

{h} =ep.

Let g denote an element in th, and set f:=d=xe. Then, by definition,

e (g) = pp(0) + py(h) = di+ el =f1.
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Moreover,
th =dpep = (d xe)p = fp.

In particular, f4 € y; (fp), and this implies that f € F,,(L); see [6; Proposition 5.1.3(i)].

Since (X, G) is assumed to be L-constrained, f € F,,,(L) implies that |fp| = 1. On
the other hand, we have th =fp. Thus, we also have |th| = 1.

(i) Assume, by way of contradiction, that ¢J # teNtf. Then, by [6; Lemma
1.2.5(iv)], @ # t*tNef”. On the other hand, as e, f € (N), ef” = (N). Therefore, by
Theorem 1 and Theorem 3, t*tNef™* < {1}. It follows that 1 eef*. Thus, by [6;
Lemma 1.2.5(iii)], e = f. U

In order to prove the first part of the corollary, let N denote a subset of L, and let ¢
denote an element in 77 (N). Then, by Lemma 2, [((N)| = [{N)|. Thus, the first claim
of the corollary follows from (more precisely, from [Proposition T)).
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