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Abstract. Using the covering game, we prove that every (lightface) P1
2-set of

positive Lebesgue measure contains a member which is arithmetical in 0 ]. This

result generalizes a result for P1
1 due to Sacks and Tanaka.

1. Introduction.

The Sacks-Tanaka Theorem ([7], [9]) says that if a P1
1-set of real numbers has

positive Lebesgue measure then it contains a hyperarithmetical element. (Here we are

dealing with lightface P1
1-sets.) This theorem is a result about basis problems: whether

de®nable sets of real numbers have de®nable members. The Sacks-Tanaka theorem was

generalized by A. S. Kechris [2] to all odd levels of analytical hierarchy, under the

assumption of determinacy of all in®nite games associated with projective sets. In the

present paper, we extend the Sacks-Tanaka theorem to the lowest even level of analytical

hierarchy, namely to (lightface) P1
2.

Theorem. Assume 0] exists. Then every P
1
2-set of real numbers with positive

Lebesgue measure has a member which is arithmetical in 0].

We prove this theorem by applying covering games. This kind of games has been

used in order to show that determinacy of in®nite games implies Lebesgue measurability

and other regularity properties of pointsets. For general information about games and

their role in descriptive set theory, see Moschovakis' textbook [4] or Martin and Kechris'

survey paper [3]. In Section 2, we introduce covering games. Then we prove a few

lemmas which we need. The proof of main theorem is given in Section 3, where we also

give some remarks about the result.

2. Covering games.

Let C be the Cantor space, i.e. the set f0; 1go topologized with the product to-

pology, taking f0; 1g discrete. Let fJngn Ao enumerate, in a straightforward way, the
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basic clopen sets in C. Let fGkgk Ao recursively enumerate all the ®nite unions

of Jn's.

We give the standard product measure on C. In what follows, this product measure

is called the Lebesgue measure. This abuse of language would cause little confusion,

since the Cantor space C and the unit interval [0, 1] are measure theoretically quite

similar. In fact, removing an appropriate countable set (i.e., the sequences of 0's and 1's

having only ®nitely many places for 1) from C, we obtain a measure space which is

(arithmetically) isomorphic to [0, 1]. For this reason, we also call elements of C reals.

Let us denote the Lebesgue measure, its inner and outer extensions by m, m� and

m�, respectively. We may assume, without loss of generality, that the enumeration fJng

and fGkg have been made so that the relations m�Jn� < p=�q� 1� and m�Gk� <

p=�q� 1� are recursive with respect to n, k, p, g (ranging over o), as well as the

relations with ``>'' replacing ``<''.

Let EHC� C. The projection of E onto the ®rst coordinate space is denoted by

pE:

pE � fa A C : �bb A C��ha; bi A E �g:

Covering games have been introduced by L. Harrington in order to give a simpler

proof of a theorem of J. Mycielski and S. Swierczkowski ([5]) that the Axiom of

Determinacy implies every set of real numbers is Lebesgue measurable. The game which

we are going to describe is so-called ``unfolded version'' of a covering game.

This version has been invented by R. M. Solovay and A. S. Kechris.

Let EHC� C. Let P � pE. Given a rational number e > 0, we consider the

following two-person in®nite game:

�I� a0; b0 a1; b1 � � �

& % & %

�II� k0 k1 � � �

where ai; bi A f0; 1g and ki A o. We impose the following restriction on Player II's

choices: ki must satisfy m�Gki� < e=8 i for all i A o. A course of choices of Player I

speci®es a pair of reals

a � �a0; a1; . . . ; ai; . . .�

and

b � �b0; b1; . . . ; bi; . . .�

while Player II speci®es an open subset G of C:

G � Gk0 UGk1 U � � � UGki U � � � :
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Player I wins if ha; bi A E and a B G. Otherwise Player II wins. We call this game the

unfolded covering game associated with E and e and denote it by G
��E : e�. The measure

of P and winning strategies in G
��E : e� are related to each other as the next lemma

shows.

Lemma 1. Let EHC� C. Let e > 0 be rational. Let P � pE. Consider the game

G
��E : e�.

(1) If Player I has a winning strategy, then m��P�V e.

(2) If Player II has a winning strategy, then m��P� < 8e.

Proof. (1) Suppose that Player I has a winning strategy s in G
��E : e�. Let S be

the set of courses of legal moves of Player II:

S � fg A oo
: �Ei��m�Gg�i�� < e=8 i �g:

Let H be the set of pairs of reals which Player I speci®es by playing according to s while

Player II plays legally:

H � fha; bi A C� C : �bg A S��Ei��ha�i�; b�i�i � s�g�0�; . . . ; g�i ÿ 1���g:

Let Q � pH. It is easy to see that S is closed (in fact, lightface P
0
1 ) and H and Q are

S
1
1. Since s is a winning strategy of Player I, we have HHE. Therefore QHP.

Being S
1
1, Q is Lebesgue measurable. Therefore, in order to prove m��P�V e, it is

su½cient to show m�Q�V e.

Suppose contrary, that m�Q� < e. Then there exists a sequence fnpgp Ao of integers

such that

QH 6
p Ao

Jnp and
X

p Ao

m�Jnp� < e:

For each i A o let ui be the smallest integer u such that

X

pVu

m�Jnp� <
e

8 i
:

Let g�i� � ki be an index of the ®nite sum

Gki � 6fJnp : ui U p < ui�1g:

Then g is a course of legal choices of Player II in G
��E : e� which defeats s.

Contradiction.

(2) Suppose that t is a winning strategy of Player II in G
��E : e�. Let D be the

union of all open sets Gk which t tells Player II to choose against Player I's choices:

D � 6fGt�a0;b0;...;ai ;bi� : a0; . . . ; ai; b0; . . . ; bi A f0; 1g; i A og:
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Straightforward computation shows m�D� < 8e. Since t is winning of Player II, we have

PHD. r

From the proof of Lemma 1, we can extract the following e¨ective version. Note

that we are dealing with relativized lightface pointclasses.

Lemma 2. Let EHC� C. Let e > 0 be rational. Let P � pE. Consider the game

G
��E : e�.

(1) If Player I has a winning strategy s, then P contains a S
1
1�s�-set Q whose

Lebesgue measure is not less than e.

(2) If Player II has a winning strategy t, then P is contained in a S
0
1�t�-set D whose

Lebesgue measure is less than 8e.

We need the following lightface version of the result of Mycielski and

Swierczkowski.

Lemma 3. Let G be an adequate pointclass. Suppose that the game G
��E : e� is

determined for all EHC� C in G and for every rational e > 0. Then every b
C
G-set in C

is Lebesgue measurable.

Proof. Suppose that a Lebesgue non-measurable set PHC in b
C
G exists. Let Bi

and Bo be Borel sets such that Bi HPHBo, m�Bi� � m��P� and m�Bo� � m��P�. Then

m�BonBi� > 0. By the Lebesgue density theorem, there exists a ®nite binary sequence s

such that for the corresponding basic clopen set Ns � fa A C : aI sg we have

m�Ns V �BonBi�� >
8

9
m�Ns�:

From this it follows that

m��Ns VP� <
1

9
m�Ns�

and

m��Ns VP� >
8

9
m�Ns�:

Let P 0 � fa A C : s_a A Pg. This set belongs to b
C
G since this pointclass is closed

under recursive substitutions. By the inequalities above, we have m��P
0� < 1=9 and

m��P 0� > 8=9. Let EHC� C be a G-set such that P 0 � pE. Then by Lemma 1, neither

player has a winning strategy in G
��E : 1=9�. r

Finally, we see how 0] is related to existence of de®nable winning strategy. It is

well-known that P
1
1-Determinacy is equivalent to the existence of 0]. See [1] and
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Chapter 7 of [6] for the detail. From D. A. Martin's proof of P1
1-Determinacy from 0],

we obtain the following

Lemma 4. Assume 0] exists. For every P1
1-game, either Player I has a winning

strategy or Player II has a winning strategy which is recursive in 0].

Proof. We freely use terminology from [4]. Let AHoo be a P1
1-set. Let T be a

recursive tree on o� o such that a A A if and only if T�a� is a wellfounded tree. For

each ®nite sequence s from o, let T�s� be the set of t A o<o such that `h�t�U `h�s� and

h�sj`h�t��; ti A T . Then for every a A oo, we have T�a� � 6
n Ao

T�ajn�.

Now we consider two games. The ®rst is the ordinary game on o with pay-o¨ set

A, for which we are to prove the lemma. Call this gameG�A�. The second game is de®ned as

follows: Player I chooses a2n A o and an order preserving function fn on T�a0; a1; . . . ; a2n�

(under the Kleene-Brower ordering) into @o1
, while Player II chooses a2n�1 A o. Moreover,

we impose the following restriction on Player I's choices: fn�1 must be an extension of fn.

Player I wins if he can make all moves legally. Player II wins otherwise, i.e., if he can

make his opponent impossible to carry on. Call this game G ��T�. It is a closed game

on a certain uncountable set. Hence by the Gale-Stewart Theorem, it is determined.

In G ��T�, two players together specify a sequence a � �a0; a1; . . .�. At the same

time, Player I tries to build up an order preserving mapping of T�a� into @o1
which

witnesses the wellfoundedness of T�a�, hence witnesses a A A.

If Player I has a winning strategy in G ��T�, then it can be used in G�A�: simply

forget fn's. This yields a winning strategy of Player I in G�A�.

On the other hand, suppose Player II has a winning strategy t� in G ��T�. We may

assume without loss of generality that t� is de®nable in the constructible universe L with

only one parameter @o1
. In G�A�, let Player II play using t� with fn being the unique

order preserving mapping of T�a0; . . . ; a2n� into f@1; . . . ;@kg (where k is the cardinality

of T�a0; . . . ; a2n�). It is easy to check that this is a winning strategy of Player II in G�A�,

using the fact that the uncountable cardinals form a class of indiscernibles in L under

the assumption of the existence of 0].

Let us denote this strategy of Player II by t. Since t� is de®nable in L, the set-

theoretic sentence t�a0; . . . ; a2n� � b can be written by a formula fa0;...;a2n;b, which

depends on �a0; . . . ; a2n; b� in a recursive way, and the cardinals @1; . . . ;@k and @o1
:

t�a0; . . . ; a2n� � b () L � fa0;...;a2n;b�@1; . . . ;@k;@o1
�

() fa0;...;a2n;b A 0]:

Hence t is recursive in 0]. r
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3. Proof of the theorem and some remarks.

We are ready to prove the main theorem. Let A be a P
1
2-set in C of positive

Lebesgue measure. We know that every A is Lebesgue measurable (by Lemma 3). By

the density argument just like the proof of Lemma 3, we may assume without loss of

generality that m�A� > 8=9. Let P � CnA and let EHC� C be a P
1
1-set such that

P � pE. Consider the game G
��E : 1=9�. This is a P

1
1-game in which (by Lemma 1)

Player I does not have a winning strategy. Then by Lemma 4, Player II has a winning

strategy t which is recursive in 0]. By Lemma 2, there is a S
0
1�t�-set D such that PHD

and m�D� < 1=9. Let K � CnD. Then K is a compact P0
1�t�-set such that AIK and

m�K� > 8=9. In particular, K is not empty.

We show how to ®nd a member of K which is arithmetical in t. Since K is P
0
1�t�,

there exist a set R1 of ®nite sequences of 0's and 1's such that

(1) R1 is recursive in t;

(2) if s is an initial segment of some t A R1, then s A R1;

(3) R1 has in®nitely many members;

(4) K � fa A C : �En��ha�0�; . . . ; a�nÿ 1�i A R1�g.

Using this set R1, we de®ne a real a1 inductively: let a1�n� � 0 if in®nitely many

sequences extending ha1�0�; . . . ; a1�nÿ 1�; 0i are in R1. Otherwise let a1�n� � 1. It

is easy to verify that a1 A K and a1 is arithmetical in t. Since t is recursive in 0], the

real a1 is arithmetical in 0]. Thus we have found a member of A which is arithmetical

in 0]. r

Remark 1. The condition ``with positive Lebesgue measure'' cannot be dropped

from the theorem. To see this, let b be a P
1
2-singleton which is not arithmetical in 0]

(for example, the double sharp 0]]). Then let A be the set of a A C in which b is

arithmetical. Then A is a P
1
2-set which has the cardinality of the continuum. Clearly, it

does not contain any member which is arithmetical in 0].

Remark 2. If 0] does not exist, then some P
1
2-set with positive measure may fail to

contain de®nable members. To see this, let c be a Cohen real over L. Then in L�c�, the

set of all non-constructible reals is a P
1
2-set of measure 1 (see Theorem 3.1 of [8]).

But it contains no ordinal-de®nable reals because HOD � L holds in L�c�.

Remark 3. Using unfolded Banach-Mazur games (see 6G.11 of [4]), we can get the

Baire category version of the theorem: if 0] exists, then every non-meager P1
2-set of reals

contains a real which is arithmetical in 0].
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