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Abstract. By generalizing Erlijman's method, we construct a subfactor from a

fusion rule algebra with quantum 6 j-symbols which produce periodic commuting squares.

This construction produces the same subfactor as Ocneanu's asymptotic inclusion for the

subfactor which is generated by the original periodic commuting square. This result can

be applied to the quantum SU�n�k subfactors which is the same as Hecke algebra

subfactors of type A of Wenzl for example, which shows that Erlijman's construction gives

the same subfactor as the asymptotic inclusion.

1. Introduction.

V. F. R. Jones introduced the index for subfactors in [10] and he found his

celebrated polynomial invariant for knots by using the subfactor theory in [11]. This

work has revealed an unexpected relation between the subfactor theory and the

3-dimensional topology. A. Ocneanu's paragroup theory (see [17], [18], [19], [14], [30]

for the de®nition of paragroup for example) also has revealed the deep relation between

the subfactor theory and the quantum group theory, 3-dimensional topology and rational

conformal ®eld theory etc. (See [1], [8], [9], [19], [20], [22], [24], [29] etc. for these

topics.)

A. Ocneanu ([17 ], [18]) introduced the asymptotic inclusion M4�M 0 VMy�HMy

for a factor inclusion NHM, where NHM � M0 HM1 HM2 H � � � HMy �4y

n�0
Mn

is the Jones tower. In the following we will also use the notation MIN � Mÿ1 I
Mÿ2 I � � � for the downward basic construction. The notion ``asymptotic inclusion'' is

regarded as the right analogue of the quantum double construction of Drinfel'd [3] (see

[23] and [9]). In [21] he claimed that the combinatorial data satisfying Moore±Seiberg

axiom ([16]) in the rational conformal ®eld theory can be constructed after passing to the

asymptotic inclusion from a given paragroup (see [9, Section 5]). He also says in [24]

that if the fusion graph of the asymptotic inclusion M4�M 0 VMy�HMy is connected

then the system of My ÿMy bimodules are braided and non-degenerate. And if we

have a braided and non-degenerate system of bimodules then we get Reshetikhin±

Turaev type invariant based on surgery ([26]). So the asymptotic inclusions are im-

portant for these reasons and others.

Most fundamental examples of the asymptotic inclusions are subfactors generated by

commuting squares of two-sided sequence of Jones projections;
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heÿn; . . . ; eÿ1; e1; . . . ; eni H heÿnÿ1; . . . ; eÿ1; e1; . . . ; en�1i

V V

heÿn; . . . ; eÿ1; e0; e1; . . . ; eni H heÿnÿ1; . . . ; eÿ1; e0; e1; . . . ; en�1i:

Here Jones projections feigi AZ satisfy the following relations;

eieiG1ei � bÿ2ei; for i A Z;

eiej � ejei; whenever ji ÿ jj0 2;

where b � 2 cos�p=N�. We remark that the above commuting squares have periodicity

2 in the sense of Wenzl (see [27, page 357] for the de®nition of periodicity of commuting

squares). The indices of the subfactors were ®rst computed by M. Choda in [2]. The

above subfactor is easily shown to be isomorphic to the asymptotic inclusion of Jones'

subfactor with the principal graph An. A proof of this fact follows from a general fact

that the commuting square

M 0
ÿk VM04M 0

0 VMk H M 0
ÿkÿ1 VM04M 0

0 VMk�1

V V

M 0
ÿk VMk H M 0

ÿkÿ1 VMk�1

generates the asymptotic inclusion for a large enough k.

Another fundamental example is group case, which was ®rst claimed in [18, III.3]

(see [15, Appendix] for a complete proof ). That is, if we start with a ®nite group G and

consider the subfactor RG
HR, where R is the AFD II1 factor, then the asymptotic

inclusion is of the form RG�G
HRG, where G � G acts freely on R with G embedded

into G � G with a map g 7! �g; g�. This example gives one of the reason why the

asymptotic inclusion is analogous to the quantum double construction.

Recently J. Erlijman showed in [4] that the following commuting squares of two-

sided sequence of generators fgigi AZ of Hecke algebra of type B, C, D produce the

asymptotic inclusion for the Hecke algebra subfactors of type B, C, D of Wenzl [28]:

hgÿn; . . . ; gÿ1; g1; . . . ; gni H hgÿnÿ1; . . . ; gÿ1; g1; . . . ; gn�1i

V V

hgÿn; . . . ; gÿ1; g0; g1; . . . ; gni H hgÿnÿ1; . . . ; gÿ1; g0; g1; . . . ; gn�1i:

In these cases the commuting squares have the period 2. But in the Hecke algebra of

type A case, they have the period n �nV 2� in general. And the period 2 case is

nothing but the above examples of two-sided sequence of Jones projections. J. Erlijman

also showed in [5] that even in the Hecke algebra of type A case the subfactor generated

by the above commuting square is isomorphic to the asymptotic inclusion for the Hecke

algebra subfactors of type A of Wenzl.

In this paper we generalize her construction of subfactors to a fusion rule algebra

with quantum 6 j-symbols which produce periodic commuting squares. We prove that

this construction produces the same subfactor as the asymptotic inclusion for the

subfactor generated by the original periodic commuting square. We also give some
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examples and if we apply this result in the case of fusion rule algebras of SU�n�k WZW

models, which is the same as Hecke algebra subfactors of type A of Wenzl [27], we get

the same result as in [5]. That is, the above two-sided sequence of Hecke algebra of

type A generators produces the asymptotic inclusion of the Hecke algebra subfactor of

type A.

According to the A. Ocneanu's theory as in [24] and [9], we can get a lot of

combinatorial data of RCFT and Reshetikhin±Turaev type topological invariants by our

method.

Acknowledgement. The author would like to thank Prof. Y. Kawahigashi for

fruitful discussions and comments.

2. Quantum double construction for subfactors arising from periodic commuting

squares.

We start with a ®nite fusion rule algebra A with quantum 6 j-symbols satisfying

unitarity, tetrahedral symmetry, and the pentagon equation (see [19] [7] for the de®nitions

of these). We denote the standard basis of A by fajgj A J . Fix an element h � aj for

some j A J and take ®nite powers hk of h and decompose them into sums of basis in A.

Thus we get a fusion rule subalgebra B of A generated by h and quantum 6 j-symbols

restricted to the subalgebra B.

We assume that hn � � � id, that is, hn contains an element � � id in the expression

of hn as a sum of elements in the basis of B. Here id represents the identity element of

the fusion rule algebra A. We take the smallest n satisfying the condition hn � � � id

and denote it by the same n. Then a natural ®nite grading arises in the elements of the

basis of B as follows. We set Wk for all k �mod n� a subset of B consist of elements

of the basis of B which appear in the expression of hk as a sum of the elements in the

basis of B. Then the basis of B is decomposed into a union of ®nite subsets W0,

W1; . . . ;Wnÿ1 so that they satisfy the following.

1. � � id A W0, h A W1,

2. if x is in Wk, then x � h can be decomposed into a sum of elements in Wk�1 for

k; k � 1 A N �mod n�.

Definition 2.1. We call a fusion rule subalgebra B generated by an element h A A

of a fusion rule algebra A periodic when the generator h of B satis®es hn � id. The

smallest such n is called the preiod of the subalgebra B.

We remark that if the system B is periodic with the period n, then it produces a

periodic commuting square with the same period n in the following way. Hence we get

a subfactor with the ®nite index. (See [27] Lemma 1.4.) We make a double sequence

of string algebras fAk; lgk; l which is a modi®ed version of the original string algebra

construction from a paragroup as follows. First we put � in the two upper left corners.

Then we pass to the right by multiplying the generator h from the right and pass to the

downward direction by multiplying h from the left. In this way we get periodic

commuting squares of string algebras with the period n both in the horizontal and

vertical directions.
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Aÿ1;1 H Aÿ1;2 H Aÿ1;3 � � � ! P

V V V V

A0;0 H A0;1 H A0;2 H A0;3 � � � ! Q

V V V V V

A1;0 H A1;1 H A1;2 H A1;3 � � � ! R1

V V V V V

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Here we used the notations PHQHR1 HR2 � � � because the tower is not obtained

by the iteration of the Jones' basic constructions. Note that the grading of the vertices

of these commuting squares are illustrated as follows:

0 1 � � � nÿ 2 nÿ 1 0 � � �

0 1 2 � � � nÿ 1 0 1 � � �

1 2 3 � � � 0 1 2 � � �

2 3 4 � � � 1 2 3 � � �

3 4 5 � � � 2 3 4 � � �

.

.

.

.

.

.

.

.

.

� � �
.

.

.

.

.

.

.

.

.

� � �

nÿ 1 0 1 � � � nÿ 2 nÿ 1 0 � � �

0 1 2 � � � nÿ 1 0 1 � � �

.

.

.

.

.

.

.

.

.

� � �
.

.

.

.

.

.

.

.

.

� � �

We can show that the connection on the above commuting squares is ¯at in the

following sense, that is, the horizontal string algebra A0;k (resp. Aÿ1;k) commutes with

the vertical string algebra Al;0 (resp. Al;1). (See [17 ], [18], [12] or [13] for the de®nition

of the ¯atness in the usual period 2 case.) To prove it, we ®rst remark that the above

de®nition of the ¯atness in the case of double sequence of periodic commuting squares

is equivalent to the next condition, that is, the following identity holds for any choice

of bimodules x1; . . . ; x2nÿ1, y1; . . . y2mÿ1 and intertwiners x1; . . . ; x2n, h1; . . . ; h2m (cf. [13,

Theorem 2.1]).

��!
�n h

��!
�n h

��!
�n h

� ���!
x1

x1 ���!
x2

x2 � � � x2nÿ1 ���!
x2n

�

hn �

?
?
y

h1

?
?
?
y

?
?
?
y

h1

y1 y1

hn �

?
?
y

h2

?
?
?
y

?
?
?
y

h2

y2 y2 � 1:

.

.

.

.

.

.

y2mÿ1 y2mÿ1

hn �

?
?
y

h2m

?
?
?
y

?
?
?
y

h2m

� ���!
x1

x1 ���!
x2

x2 � � � x2nÿ1 ���!
x2n

�
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In the above diagram we pass to the right by tensoring h (resp. h) from the right in

the left (resp. right) half of the horizontal paths and pass to the downward by tensoring

h (resp. h) from the left in the upper (resp. lower) half of the vertical paths. Then this

identity is shown by a slight modi®cation of the original proof in the canonical period

two case ([7, Section 4]) if we have the pentagon relation which is one of the axioms for

the quantum 6 j-symbols. This ¯atness condition is used later to de®ne a surface

bimodule which has the generator h as the labels of the edges on the boundary.

Because the vertical string algebra has the period n, the vertical graphs are not

the (dual) principal graph of the subfactor PHQ in spite of the ¯atness when the

period n is greater than 2. But we can get the principal graph of the subfactor by using

the following ``orientation reversing'' method of [6, page 459] (cf. [6, Corollary 3.4,

Corollary 3.6]). We change the construction in the vertical direction from multiplying

only h to multiplying h and h alternately. Note that the system B contains h by the

de®nition of periodicity of B and the Frobenius reciprocity, i.e., we have hnÿ1
� h. So

we obtain a subsystem of B consisting of elements of the basis appearing in the ®nite

alternating products of h and h. We denote this subsystem by C. In this way we get

the grading of the commuting squares changed as follows:

0 1 2 � � � nÿ 1 0 1 � � �

0 1 2 3 � � � 0 1 2 � � �

nÿ 1 0 1 2 � � � nÿ 1 0 1 � � �

0 1 2 3 � � � 0 1 2 � � �

nÿ 1 0 1 2 � � � nÿ 1 0 1 � � �

.

.

.

.

.

.

.

.

.

.

.

.

� � �
.

.

.

.

.

.

.

.

.

� � �

We denote these modi®ed commuting squares as follows:

Bÿ1;1 H Bÿ1;2 H Bÿ1;3 � � � ! N

V V V V

B0;0 H B0;1 H B0;2 H B0;3 � � � ! M

V V V V V

B1;0 H B1;1 H B1;2 H B1;3 � � � ! M1

V V V V V

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Here we remark that the subfactor NHM is identical to PHQ.

Because of the ¯atness of the connection and Wenzl's dimension estimate [27,

Theorem 1.6], we conclude that the vertical graphs are the (dual) pricipal graph of

this subfactor. (See [6, Corollary 3.4, Corollary 3.6].) So we obtain the canonical

double sequence of higher relative commutants by applying the ``orientation reversing''

method to both horizontal and vertical directions. (See [6, Theorem 3.5].) The

grading of the vertices again changes as follows:
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0 nÿ 1 0 � � � nÿ 1 0 nÿ 1 � � �

0 1 0 1 � � � 0 1 0 � � �

nÿ 1 0 nÿ 1 0 � � � nÿ 1 0 nÿ 1 � � �

0 1 0 1 � � � 0 1 0 � � �

nÿ 1 0 nÿ 1 0 � � � nÿ 1 0 nÿ 1 � � �
.

.

.

.

.

.

.

.

.

.

.

.

� � � .

.

.

.

.

.

.

.

.

� � �

We denote these canonical commuting squares as follows:

Cÿ1;1 H Cÿ1;2 H Cÿ1;3 � � � ! N

V V V V

C0;0 H C0;1 H C0;2 H C0;3 � � � ! M

V V V V V

C1;0 H C1;1 H C1;2 H C1;3 � � � ! M1

V V V V V

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

By using this canonical Jones tower NHMHM1 HM2 � � � HMy, we can construct

the asymptotic inclusion M4�M 0 VMy�HMy. We also get another subfactor

Q4�Q 0 VQy�HQy from the previous tower PHQHR1 HR2 � � � HQy. Again we

remark that this tower is di¨erent from the Jones tower for the inclusion PHQ.

We remark that the asymptotic inclusion M4�M 0 VMy�HMy is generated by the

following commuting squares:

Cn;04C0;n H Cn�1;04C0;n�1

V V

Cn;n H Cn�1;n�1;

and the subfactor Q4�Q 0 VQy�HQy is also generated by the commuting squares:

An;04A0;n H An�1;04A0;n�1

V V

An;n H An�1;n�1:

Now we give a graphical expression of bimodules arising from these subfactors

M4�M 0 VMy�HMy and Q4�Q 0 VQy�HQy. First remark that the generator h can

be identi®ed with M as an M-N bimodule by using canonical commuting squares as

above and the graphical expression as in Figure 2.1 (see [23] and [9] for a graphical

expression of bimodules).

So the graphical expressions of the bimodules arising from the subfactor M4

�M 0 VMy�HMy are exactly the same as the original ones in [23], [9] by this identi®-

cation of h � MMN and h � NMM .

Next we give graphical expressions of the bimodules arising from the subfactor

Q4�Q 0 VQy�HQy. The algebras Q � M, Q4�Q 0 VQy� and Qy are expressed as in

Figure 2.2, 2.3 and 2.4 respectively. Here the point is that we change all the labels of

edges on the boundary from MMN and NMM to the generator h. In particular Figure

2.2 is exactly the 2-dimensional expression of the string algebras with period n.
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Here Figure 2.2 actually represents Qop � Mop but we use this expression instead of the

upside-down picture for simplicity.

Similarly if we change the labels of the edges on the boundary from MMN and

NMM to h, we get a graphical expression of Q-Q bimodule as in Figure 2.5.

Here x is one of the elements in the basis of B. We denote this Q-Q bimodule by

Kx and call it a surface bimodule. In the following we use the notation I1W0 VC

which is a subset of the basis in the system C.

Theorem 2.2. The bimodule Kx above is irreducible. And the set of Q-Q bimodules

fKxgx AI makes an isomorphic system of Q-Q bimodules arising from the subfactor

�NHM�G �PHQ�, i.e., the system fAxgx AI of M-M bimodules as above.

Figure 2.1

Figure 2.2 Figure 2.3
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Proof. From the commuting squares with the following gradings

0 1 2 3 � � � 0 1 2 � � � ! M � Q

nÿ 1 0 1 2 � � � nÿ 1 0 1 � � � ! M1

0 1 2 3 � � � 0 1 2 � � � ! M2

nÿ 1 0 1 2 � � � nÿ 1 0 1 � � � ! M3

.

.

.

.

.

.

.

.

.

.

.

.

� � � .

.

.

.

.

.

.

.

.

� � � .

.

.

.

.

.

and the graphical expression of Q � M and Q-Q bimodule, the set of bimodules

fKxgx AI really makes a system of Q-Q bimodules. The same method as in the proof of

Theorem 2.1 in [9] also works by using Wenzl's dimension estimate [27, Theorem 1.6]

in order to show the irreducibility of the inclusion QHRx. Here Rx denotes a von

Neumann algebra corresponding to Figure 2.6.

Here the edges of the boundaries are labelled by h except for the top two x's.

And a graphical inspection as in the proof of Theorem 2.1 in [9] shows that the

fusion rule and quantum 6 j-symbols of the system of surface bimodules depend only on

the labels on the top edges x A I of the surface bimodules and do not depend on the

labels of edges on the boundaries. So the above sytem of Q-Q bimodules fKxgx AI have

the same fusion rule and quantum 6 j-symbols as the system of Q-Q bimodule arising

Figure 2.4 Figure 2.5

Figure 2.6
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from the subfactor PHQ. r

From the above theorem we may and do use the notation Q for the two isomorphic

system of Q-Q bimodules as in the theorem.

Similarly we get an irreducible Q4�Q 0 VQy�-Q4�Q 0 VQy� bimodules expressed as

in Figure 2.7.

Here x and y are any pair of basis in I and the edges on the boundaries are labelled by

h. We denote this bimodule by Lx;y. The above theorem shows that this system

fLx;yg has the same fusion rule and quantum 6 j-symbols as the system fBx;yg of

M4�M 0 VMy�-M4�M 0 VMy� bimodules.

We can also get the sets of irreducible Q4�Q 0 VQy�-Qy bimodules fLzg and

irreducible Qy-Qy bimodules fLpi
g as in Figure 2.8 and Figure 2.9 respectively by

changing the labels of the edges on the boundaries from MMN and NMM to h. The

irreducibility of these Q4�Q 0 VQy�-Qy and Qy-Qy bimodules are shown by the same

way as in [9, Theorem 4.1, Theorem 4.2].

Here the labellings pi are given by the elements of the subset of the minimal central

projections of Tube Q, the tube algebra of the system Q of Q-Q bimodules (see [24], [9]

for the de®nition of the tube algebra) which are reachable from � by the fusion graph of

the asymptotic inclusion M4�M 0 VMy�HMy (see [24]).

Now we can get the following theorem similarly.

Theorem 2.3. All the systems fLx;yg, fLzg, fLzg and fLpi
g consisting of four kinds

of bimodules arising from the subfactor Q4�Q 0 VQy�HQy have the same (Z2 graded )

fusion rules and quantum 6 j-symbols as those of four kinds of bimodules arising from the

subfactor M4�M 0 VMy�HMy. Hence the two systems make the same paragroups.

Figure 2.7
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Proof. By the graphical inspection as in the proof of Theorem 2.1 in [9] we can

easily see that the fusion rules and quantum 6 j-symbols of the system of these four kinds

of bimodules depend only on the labelling of x; y; z and pi. So we get the result.

Corollary 2.4. Two subfactors Q4�Q 0 VQy�HQy and M4�M 0 VMy�HMy

are isomorphic.

Proof. Because the two subfactors have ®nite index and ®nite depth, and have

the same paragroups, these are isomorphic by Popa's generating theorem for strongly

amenable subfactors [25].

In the following we give some applications of this result.

Example 2.5. We start with SU�n� WZW model with level k. We can get a

commutative fusion rule algebra with quantum 6 j-symbols. If we take the fundamental

generator h, then the resulting subfactor �PHQ�G �NHM� is the same as Hecke

algebra subfactor of type A of Wenzl. (See [6].) The above corollary shows that the

following commuting squares

hgÿn; . . . ; gÿ1; g1; . . . ; gni H hgÿnÿ1; . . . ; gÿ1; g1; . . . ; gn�1i

V V

hgÿn; . . . ; gÿ1; g0; g1; . . . ; gni H hgÿnÿ1; . . . ; gÿ1; g0; g1; . . . ; gn�1i

generate the asymptotic inclusion M4�M 0 VMy�HMy. Here gi's are the standard

generators of Hecke algebras satisfying the following relations:

gigi�1gi � gi�1gigi�1 for i A Z;

gigj � gjgi whenever ji ÿ jjV 2;

g2i � �qÿ 1�gi � q for i A Z;

where q � eGip=n.

The isomorphism for this example has been obtained by J. Erlijman [5] in-

dependently by a di¨erent method.

Example 2.6. Again we start with SU�n� WZW model with level k and take

another generator h di¨erent from the fundamental one, then the resulting subfactor is

Figure 2.8 Figure 2.9
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isomorphic to pPpH pQkp, where PHQ denotes Hecke algebra subfactor of type A

of Wenzl and p is a projection in P 0 VQk for some k. Here Qk is one of the von

Neumann algebras in the tower PHQHQ1 H � � � HQk H � � � which are generated by

the double sequences of the period n commuting squares as in [6] (see also [27 ]). In

this case we do not have natural generators for the commuting squares as in the pre-

vious example. But our method also works in such cases and we can construct the

asymptotic inclusions for many such subfactors. This is an advantage of our method.

Example 2.7. We start with a fusion rule algebra which consists of N-N bimodules

of a subfactor NHM with principal graph D2m for mV 2. If we take a bimodule

corresponding to one of the two tails of the principal graph D2m as a generator, then the

subsystem B � hhi has period 2 if m is even and period greater than 3 if m is odd.

This is because the contragredient map for D2m changes by mod 4, i.e., if m is even, we

have h � h and if m is odd, we have h0 h.

Remark 2.8. We can easily modify this method to the case when the subsystem B

has more than two generators. For example if we have m generators h1; h2; . . . ; hm
which are elements in the basis of A, then we take h � h1 � h2 � � � � � hm as a new

generator. And in this case we have to change the de®nition (De®nition 2.1) of the

periodicity. We say that the fusion rule subalgebra B generated by the above h is

periodic with the period n if the Bratteli diagram for fhkgk�0;1;2;...

has the period n.
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