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Abstract. The purpose of this paper is to define and study an important class
in weights on O*-algebras which is possible to develop the Tomita-Takesaki theory in
O*-algebras. The Connes cocycle theorem for weights on von Neumann algebras is
generalized to the case of O¥-algebras.

1. Introduction.

Weights on O¥-algebras (that is, linear functionals that take positive, but not
necessarily finite values) appear naturally in the studies of the unbounded Tomita-
Takesaki theory and the quantum physics. Thus the investigations of weights on O*-
algebras are important both for study of structure of the O*-algebras and their physical
applications. Further, the weights on O*-algebras exhibit some pathological phe-
nomena which don’t occur for weights on C*- and W*-algebras. From this viewpoint
we defined and studied systematically weights and quasi-weights on O*-algebras in the
previous paper [12]. In particular, we have investigated the regularity of (quasi-)
weights; that is the question when a (quasi-)weight can be represented as sup,f, where
{f,} 1s a net of positive linear functionals. We also defined and studied an important
class of regular (quasi-)weights suitable for developing the Tomita-Takesaki theory for
O*-algebras.

In this paper we shall continue the study of standard (quasi-)weights. Let .# be a
closed O*-algebra on a dense subspace Z in a Hilbert space #. After defining the
algebraic positive cone 2(.#), the operational positive cone .#, and the corresponding
(quasi-)weights we come to the problem of the GNS-construction. Then we face
the following problem: If ¢ is a (quasi-)weight then in the bounded case the set
N, = {Xe;p(XTX) < oo} is a left ideal of .#. This is not so in general. To
circumvent this difficulty we introduce the set 9t, = {X € ./#; p((4X )(4X)) < oo for all
A € .} which is always a left ideal of .#. Then we construct the GNS-representation
n, and the vector representation 4, by the method similar to that used for positive linear
functionals. That is, 7, is a *-homomorphism of .# onto the O*-algebra 7,(.#) on the
dense subspace Z(m,) in the Hilbert space J#,, and 4, is a linear map of 9, into Z(n,)
satisfying A,(AX) = n,(A4)A,(X) for all A€ .# and X € N,. In order that m, carries
enough structure of ./ the left ideal 9t, must be sufficiently rich. This is not at all
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guaranteed. In the extreme there are non-zero (quasi-)weights ¢ such that SR; has many
elements but 9, = {0}. To avoid situations leading to noninteresting representations
we define notions of faithfulness, semifiniteness and o-weak continuity of (quasi-)
weights. If ¢ is a faithful semifinite (quasi-)weight on 2(.#) such that =, (%), %(n,) =
%(n,), then the map A, defined by 4,(7,(X)) = 4,(X), X € N, is a generalized vector
for the O*-algebra n,(.#) i.e. A, is a linear map of the left ideal Z(4,) = 7,(N,) into
% (n,) satistying A,(n,(A4)m,(X)) = n,(A4)A,(ny(X)) for all A e .# and X € N,. Using
(quasi-)standard generalized vectors defined and studied in [10], we define the notion of
(quasi-)standardness of ¢ as follows: ¢ is said to be standard (resp. quasi-standard) if
the generalized vector 4, is standard (resp. quasi-standard). We demonstrate that if ¢
is standard, then the modular automorphism group {o/},.p of ‘Jij/) NN, is defined and
@ is a {of}-KMS (quasi-)weight. If ¢ is quasi-standard, then it can be uniquely
extended to a standard quasi-weight ¢ on the positive cone 2 (rm,(.#).,.) of the gen-
eralized von Neumann algebra n,(.#). . We shall generalize the Connes cocycle
theorem for (quasi-)-weights on von Neumann algebras to O*-algebras. In we have
generalized the Connes cocycle theorem for standard generalized vectors. As the notion
of generalized vectors is spatial, such a generalization is possible to a certain extent, but
the notion of (quasi-)weights is purely algebraic and the algebraic properties don’t reflect
the topological properties in general, and so such a generalization for weights have some
difficult problems. Let ¢ and y be faithful, o-weakly continuous and semifinite (quasi-)
weights on #(.#) such that 7, and ny are self-adjoint. We consider the matrix algebra

MR M(C) on I ® Z:
X X
{X:< 1 12); X,-je/%}
Xo1 X»

and a faithful, o-weakly continuous semifinite (quasi-)weight ¢ on 2(.# @ M,(C)) by
O(XTX) = p(X] X1y + X1, X01) + W(X, X100 + X, X0), X = (X) € M ® My(C).

In case of von Neumann algebras, A5((Z(A45)* N Z(A5))?) is total in #;, and n, and
are unitarily equivalent, and further 7n,(.#) and nm,(.#) are von Neumann algebras,
which imply the Connes cocycle theorem [24]. In case of O*-algebras these properties
do not hold automatically. Hence we should consider the following questions:

A. When is 45((2(45)" ﬂ@(/lg))z) total in #;? When are n, and 7, unitarily
equivalent?

B. Let .# be a generalized von Neumann algebra. When is 7,(.#) a generalized
von Neumann algebra?

For Question A we have the result that if 47((2(4,)" N @(/1(;))2) is total in #, and
Ai((@(/li)* ﬂ@(/ll/c/))z) is total in %, then the following statements are equivalent:

(i) m, and m; are unitarily equivalent.

(i) M(m,,7y) (7, ny) and (zny,n,) 1(ny,n,) are nondegenerate x-subalgebras
of the von Neumann algebras n,(.#)., and ry(.#).,, respectively, where II(r,7,) is the
intertwining space for x-representations z; and 7.

(i) 4y ,(2(4;,)) is dense in A, and 4, ,(Z(4; ,)) is dense in #;, where 4, ,
and A, , are generalized vectors for 1l(ny,n,) and I(m,, 7, ), respectively.
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(iv) A5(2(A5)* N D(AS))?) is total in .

In this case, we obtain that ¢ and y are quasi-standard if and only if @ is quasi-
standard, and then the cocycle [Dy : D@| associated with the (quasi-)weight ¥ on
P(ny(M),,.) with respect to the (quasi-)weight @ on 2P(n,(.4).,.) is defined, but 7, (.#)
is not a generalized von Neumann algebra in general even if .# is a generalized von
Neumann algebra, and so the cocycle [Dy : D] for the generalized von Neumann
algebra 7, (/). does not necessarily induce the cocycle [Dy : Dg] associated with the
(quasi-)weight  on 2(.#) with respect to the (quasi-)weight ¢ on (/).

We also consider Question B and show that if .# is a generalized von Neumann
algebra with strongly dense bounded part and ¢ is strongly faithful, then x,(.#) is
spatially isomorphic to .#, and so it is a generalized von Neumann algebra and the
cocycle [Dy: Dg| for the generalized von Neumann algebra .# is well-defined.

2. Preliminaries.

Here we state some definitions and the basic properties concerning O*-algebras [4,
14, 17, 19, 21] and generalized vectors for O*-algebras [1, 9, 10, 11].

Let & be a dense subspace in a Hilbert space #. We denote by #(Z) the set of
all linear operators X from 2 into & such that 2(X*) > % and X*% < 2. Then
Z1(2) is a x-algebra with the usual operations and the involution X — XT = X*[,.
A x-subalgebra of #1(2) is called an O*-algebra on % in # according to the
Schmiidgen book though it is also called by an Op®-algebra in many papers.
Throughout this paper we assume that an O*-algebra has always an identity operator.
Let .# be an O*-algebra on %. The locally convex topology on % defined by
the family {|| ||y;X € #} of seminorms: ||&||, = || X¢|| (€ 2) is called the graph
topology on &, which is denoted by ¢,. If the locally convex space Z[t,] is com-
plete, then .# is said to be closed. We put

I(u)y= () 2(X) and X = X[ (X €M)
Xe

Then %(.#) equals the completion of Z[t,] and .4 = {X;X e .#} is a closed O*-
algebra on Z(.#) which is the smallest closed extension of .# and it is called the closure
of .. Hence ./ is closed if and only if & = 2(4). If " (M) = Nye s 2(X*) =
9D( M), then 4/ is said to be essentially self-adjoint, and if Z*(.4) = 2, then ./ is said
to be self-adjoint. We define the weak commutant M, of f-invariant subset .# of
L1(2) as follows:

My ={C e B(A); (CXE|n) = (CE| XTn)

for each &, yeZ and X € 4},
where %(#) is the set of all bounded linear operators on #. Then ./, is a *-invariant
weakly closed subspace of #(#°), but it is not necessarily an algebra. Further, if .Z is
self-adjoint, then 4,2 < &, and M,% < 2 if and only if ./, is a von Neumann

algebra and X is affiliated with (%))’ for each X € .#. Let ./ be an O*-algebra on &
in #. We call the locally convex topology defined by the family {P¢: ,;&,ne Z} (resp.
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{Pe;Ce2},{P:CeP}) of seminorms:  Pg,(X) = |[(X¢[n)| (resp.  P:(X) = || X<,
P:(X) = | X¢E|| + | XTE|), X €4 the weak topology (resp. strong topology, strong*
topology) on ./ and denote it by 7, (resp. 7,,7)). We put

G (M) = {{fn} c @;iHXénHz < oo for each Xe%}
n=1

and call the locally convex topology defined by the family {Py (3 {&}, {m.} €
G*(M)} (resp. {Pyey; 1} e@o"(,/%)},{P&n};{én} € 9% (M)}) of seminorms:

0

> (xé,n,)

n=1

Py iy (X) =

" 12
(reSP- Py (X) = (Z HXénH2> v Pl (X) =Py (X) + P{fn}(X*))
n=1

the a-weak topology (resp. a-strong topology, a-strong* topology) on .4 and denote it by
Tow (T€SP. Tgy, Ts). A closed O*-algebra .# on & in A is said to be a generalized von
Neumann algebra on 9 if M9 <P and M =M ={X e L (2);CX cXCCe
MY, Tt is known that ./ is a generalized von Neumann algebra on Z if and only if .#
equals the strong*-closure of the O*-algebra (./4))'[, on & in Z'(Z) [T].

A (*-)homomorphism 7z of a x-algebra .o/ onto an O*-algebra on Z in # is said to
be a (*-)representation of .«/. We here denote & and # by Z(n) and #,, respectively.
A x-representation 7 of .o/ is said to be closed (resp. self-adjoint) if the O*-algebra 7(.</)

is closed (resp. self-adjoint). Let 7 be a s-representation of .«/. We put

9(r) = Q/ 9(@)7 (x) = n(x) F@(fz):

9w)= () 9r(0), 70 =) Ty ¥l

—_—

Then 7 is a closed *-representation of .o/ such that 7(.«/) = n(/) and it is called the
closure of n, and n* is a closed representation of .o/ and it is called the adjoint of =. Let
n; and 7, be x-representations of .o/. We define the intertwining space 11(ny,n;) for =
and 7, as follows:

(7, mp) ={CeB(Hp, #r); CZ(m)c P(ny) and Cri(x)E = m(x)CE
for each xe o/ and (e %(m)},

and this is an important tool in representation theory [21].

We next introduce the notion of generalized vectors which is a generalization of
cyclic vectors for O¥-algebras [1I]. Let .# be an OT-algebra on % such that
MyD = D. A map A of A into @ is said to be a generalized vector for ./ if the
domain Z(4) of A is a left ideal of .#,4 is a linear map of Z(4) into 2 and
MXA) = XA(A) for all X € .# and 4 € Z(1). Suppose that a generalized vector A for
A satisfies the condition:
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() A(2(A)'N2(A)?) is total in A
Then we define the commutant 1 of A which is a generalized vector for the von
Neumann algebra ./, as follows:

G2 ={K e M;*x e st. Ki(X)=XE for all X e 2(1)},
M(K)=¢k, Kea(x).

A generalized vector 4 for .# is said to be cyclic and separating if the above condition (i)
and the following condition (ii) hold:

(i) 2°((2(A) NZ(19))?) is total in .
Suppose /4 is a cyclic and separating generalized vector for .# and put

GO ={Ae (M) e A st AV(K) = K&y for all K e Z(A)},
1NA)=Cy, A D(05).

Then A is a cyclic and separating generalized vector for the von Neumann algebra
(). So the maps AX)— AX),Xe2()N2() and A°(4)— A“(4%), 4 €
G2 " Ng(A€) are closable in # and their closures are denoted by S; and Sj«,
respectively. Let S :JAAJ/ 2 and S e :Jiccdiff be the polar decompositions of S;
and S, respectively. Then we see that S; = Sj«, and Jye( M) Jye = A, and
Al (MY A58 = () for all te R by the Tomita fundamental theorem [25]. But, we
don’t know how the unitary group {4.},.p acts on the O*-algebra .#, and so we
define a system which has the best properties:

A generalized vector A for . is said to be standard if the following conditions hold:

(S); 4 is cyclic and separating.

(S), 4%2 <2 and Al A} = M for each teR.

S)y A(@(A) ND(1)47E = 2(2)' N 2(J) for each 1€ R.

For standard generalized vectors we have obtained the following

THEOREM 2.1 ([11] Theorem 5.5). Suppose A is a standard generalized vector for
M. Then the following statements hold:

(1) S, =8«, and so J, = J;« and A; = Aje.

(2) {6}},.r is a one-parameter group of x-automorphisms of M, where a-(X) =
AYXAT" for X e M and teR.

(3) A satisfies the KMS-condition with respect to {a}}, that is, for each
X, Y e 2(A)'ND()) there exists an element fy.y of A(0,1) such that

Ly y(0) = (At XDIAY)) and  fy y(t+i) = (AY")|A(a](XT))

for all te R, where A(0,1) is the set of all complex-valued functions, bounded and
continuous on 0 < Imz <1 and analytic in the interior.

Weakening the above conditions (S), and (S);, we define and study the notion of
quasi-standard generalized vectors which enable us to extend the Tomita-Takesaki
theory. A generalized vector A for .# is said to be quasi-standard if the above condition
(S); and the following condition hold:

(QS) 4.2 <  for each teR.
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For quasi-standard generalized vectors we have the following

THEOREM 2.2.  Supposed 1 is a quasi-standard generalized vector for M and then put

wc?

D) ={X el ;3 yeD st. X2°(K)=Ké&y, "Ke2())}
{ AX)=¢x, Xez(h)

Then J. is a standard generalized vector for the generalizd von Neumann algebra MY, such
that A < 7,2¢=2° and

D) ={X el ;}{A4,} € D) and ¢y e D st. A, 8 — XE Véed

wce)

and 2(A,) — Ex}

AX)=¢x, Xez(h).

Proor. It is shown similarly to the proof of Theorem 5.11) that 2 is a
generalized vector for .4 such that A< 1,4 =1 and

D) ={X eM! ;*{4,} € D(1°) and ¢y e T st. A, 8 — XE Ve

we?
and A“(4,) — &y}
MX)=Cx, Xeg(d)
Hence / is a cyclic and separating generalized vector for ./ . Further, since 4.9 <
9 and o} (M}) = M, for each te R where o} (4) = A} A47¥, it follows that

w
AL X AFECE = Al X o™, (C)A7EE = CAL X A7i¢
for each X e ./

I Ced) e and teR. This implies A XA;" e #! . for each
X e, and te R. Hence we have o} (/") = 4", for each t e R. Tt follows from
the definition of Z that ¢/ (2(2)'NZ(1) = 2(2)'NZ(J) for all teR. Thus 7 is a
standard generalized vector for M. This completes the proof.

3. Standard weights.

In this section we define and study the notions of standard (quasi-)weights and
quasi-standard (quasi-)weights on O*-algebras. Let .# be a closed O*-algebra on Z in
. For a subspace .4 of .# we put

P(N) = {ZX,ij; Xee N (k=1,2,...,n), neN}
k=1

and call it the positive cone generated by /. A map ¢ of P(M) into Ry U{+0o0} is
said to be a weight on P(M) if

(W) o(4+ B) =9(A4) +¢(B), A4,Be P(M);

(W) p(ad) = ap(d), A eP(M), 220,
where 0 - (+00) =0. A map ¢ of the positive cone 2 () generated by a left ideal 9t of
A into R, is said to be a quasi-weight on (/) if it satisfies the above conditions (W),
and (W), for 2(9), and then 9 is denoted by 9,. Let ¢ be a quasi-weight on
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P(M). We denote by Z(p) the subspace of .# generated by {X'X;X e 9N,}. Since
N, is a left ideal of .#, we have
%(p) = the linear span of {Y'X; X,Y eMN,},

and so each ), ockY,IXk (o € C, X, Y € N,) is represented as ZjﬁjZ;Zj for some
B; € C and Z; e 9N,. Then we can define a linear functional ¢ on %(p) by

(P<Z o Y;iXk> =Y Bw(Z]Z).
k J
It is easily shown that
(YT X)? <op(YTY)p(XTX), X,YeNR, (3.1)
We put
Ny ={X eNyp(X'X) =0}, 1,(X)=X+N,eN,/N;p, XeEN,.

Then it follows from (3.1) that ./, is a left ideal of 9, and 4,(N,) = %,/./, is a pre-
Hilbert space with the inner product

(Ap(X)12(Y)) = 9(Y'X), X, Y €N,

We denote by #, the Hilbert space obtained by the completion of the pre-Hilbert space

Jp(W,). We define a *-representation z) of . by

g(A)dp(X) = 2p(AX), Ae.dl, XeR,

and denote by 7, the closure of ng. We call the triple (7, A,, #,) the GNS-construction
for p. Let ¢ be a weight on Z(.#) and put

N, = {X € M;p((AX)"(4X)) < oo for all Ae.u}.

Then 9t, is a left ideal of .# and the restriction p[2(,) of ¢ to the positive cone
P(N,) is a quasi-weight on Z (/) and it is called the quasi-weight on P (M) generated
by ¢ and is denoted by ¢,. We denote by (7, 4,, #,) the GNS-construction for the
quasi-weight ¢, generated by 9. We need the notions of faithfulness and semifiniteness
of (quasi-)weights:

DerINITION 3.1, Let ¢ be a (quasi-)weight on 2(.#). If ¢(ATA)=0,4Ae .4
implies 4 = 0, then ¢ is said to be faithful. 1f there exists a net {U,} in ‘thp N 9%, such
that |U,|| <1 for each o and {U,} converges strongly to I, then ¢ is said to be
semifinite.

We have defined in the notion of semifiniteness of (quasi-)weights which is
stronger than that of semifiniteness defined above. Let ¢ be a faithful semifinite (quasi-)
weight on 2(.4). Then it is easily shown that m, is a *-isomorphism and the gen-
eralized vector 4, for the O-algebra n,(.#) is defined by

Ayp(my(X)) = 2p(X), X eN,.
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Suppose
1 (M) D (ry) = D(my),
(S)2 Ap((N,)%) is total in .
Then we can define a generalized vector A, for the von Neumann algebra n, (M), by

@(/15) ={Ke ”(p(fﬂ)évﬁ@( € I(ny)

s.t. KA,(r,(X)) = m)(X)ék, X e Ny}
A5(K) = ¢k, Kea(A).

Further, suppose

(S A(2(A8)" N 2(A5))%) is total in .

Then, the generalized vector A° for the von Neumann algebra (7, (.# )y,) is defined by

D(Ay) ={A e (n,(M),)'s *Cae Ay

s.t. AAS(K) = K&y, YK e 9(A5)}
AS(A) =&y, AeD(Af)

and A, ((2(4,9)"N2(4, ‘N?) is total in #,. Hence, the maps A,(X)— A,(XT),
Xe ‘RT ng%, and A,(A) = A5(A7), A e @(A“) NZ(4,) are closable in #, and their
closures are denoted by S, and SAcr respectlvely Let S, = J, Al/ 2and S ae = A;cA A
be the polar decomposmons of S, and Sac, respectively. Then we see that Sp = Sy,
and by the Tomita fundamental theorem  J e (g (M )o)' T g = my (M )’ and

w

A”;c(nw(,/%) )AAu = (n,(M),)" for all te R. But, we don’t know how the unitary

group {4’.},.p acts on the O*-algebra 7, (./#), and so we define a system which has the
4
best properties:

DEerINITION 3.2. A faithful semifinite (quasi-)weight ¢ on 2(.) is said to be quasi-
standard if the above conditions (S);, (S)2, (S); and the following condition (S); hold:

(S)4 AAttg(nw) c Y(n,) for all teR.
Further, if
(S)s AZ;cnq,(%)AAm =n,(.4) for all teR,
then ¢ is said to be essentially standard, and in addition if
(S)s Ag;cnq,(m;mm(p) At = (M NN,) for all 1€ R,
then ¢ is said to be standard.

We remark that a faithful semifinite (quasi-)weight ¢ is standard (resp. essentially
standard, quasi-standard) if and only if the generalized vector A, for n,(.#) induced by
¢ is standard (resp. essentially standard, quasi-standard). Hence by Theorem 2.1 we
have the following results for standard (quasi-)weights:
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THEOREM 3.3. Suppose ¢ is a faithful semifinite standard (quasi-)weight on

P(M). Then the following statements hold:

(1) Sp=Suc, and so J, =J e and Ay = A 4.

(2) There exists a one parameler group {a} }te g Of x-automorphisms of M such that
ny(af (X)) = A)m,(X)4," for all X € .4 and te R.

(3) ¢isa{a]}- KMS (quasi-)weight, that is, for any X,Y € ‘ﬁT NN, there exists an
element fy.y of A(0,1) such that fy y(1) = p(Yo{ (X)) and fy y(t+1) = (o (X)Y) for
all t e R, where A(0,1) is the set of all complex-valued functions, bounded and continuous
on 0 <Imz <1 and analytic in the interior.

We next consider quasi-standard (quasi-)weights. Let ¢ be a faithful semifinite
quasi-standard (quasi-)weight on #(.#). We put
I(Ay) ={A e n,(M)y; *Es€D(m,)

we?

st. A45(K) = K&y, 'K € 2(4))},
A, (A) =&y, AeD(4,).

Then it is easily shown that A, is a generalized vector for the generalized von Neumann
algebra m,(.#),,. such that

wC

4

Ad,= 4, and A5=4,. (3.2)
We now put
@(Z AL‘M) =Y AP, {Ai} = 2(4,).
k 3
Then ¢ is a faithful semifinite quasi-weight on 2(r,(.#),,.) such that
(n5(my(M)y.), A7) 1s unitarily equivalent to (m,(.4)y., A,), (3.3)

that is, there exists a unitary operator U of ., onto J#; such that UA,(A) = A;(A4) for
each 4 € 7(A,) and n;(B) = UBU* for each B e n,(.#),,.. The above ¢ is said to be

the quasi-weight on P(r,(M),,.) induced by ¢. By (3.2), (3.3) and we have
the following

THEOREM 3.4. Suppose ¢ is a faithful semifinite quasi-standard (quasi-)weight on
P(M). Then the quasi-weight ¢ on P(m,(M)y,) induced by ¢ is standard, and so it is a

)
WC
{a?},. " KMS quasi-weight, where a7(A) = AZCCAAAC( Aemn,( M),  teR.

wc?

Conversely we consider when a KMS (quasi-)weight is standard.

Tueorem 3.5. Let {a},.p be a one-parameter group of x-automorphisms of
M.  Suppose ¢ is a {o,}-KMS (quasi-)weight on P (M) such that /Iw((ﬁljﬂ N ‘Rw)z) is total
in #,. Then the following statements hold:

(1) The map 1,(X) — 2,(X1), X € ETET NN, is a closable conjugate-linear operator in
H,y. Let S, be the closure of the above operator do(X) = Ap(XT) and S, =J, A1/2 the
polar decomposition of S,.
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(2) 4)05(X) = Ay (X)), X eR,, "1€R.
(3) ¢ is standard if and only if the following statements hold:
(i) 4, is well-defined.
(i) AL(2(AL) ND(AE)?) is total in H,.
(%ii) Jp A (2(A,)" ND(A,)) = A, (D(A,) ND(A,)).
(iv)  (Jpd, (A)|45(A47)) =0, Vde D(A,°)" ND(A4,).
Proor. We put
Uidp(X) = 2p(s(X)), X eN,.
Since ¢ is {o,}-KMS (quasi-)weight on 2(.#), for any X, Y € ‘ﬁjﬂ N9, there exists an
element fy  of A(0,1) such that

fr.y() =¢(w(X)Y) and fy y(t+i) =¢(Yo (X)), "teR.

We now have
lim | U (X) = 2p(X) | = Tim{ (e (X) o, (X)) = (o, (X) X)
— (X (X)) + p(XTX)}
= 1m{2p(X1X) = fyi (1) = fyp(t+1)}

=0

for each X e‘JET NN,, which implies that {U}, g is a strongly continuous one-
parameter group of unitary operators on #,. Let {X,} be any sequence in ‘JET ng%,
such that lim,_, 4,(X,) =0 and lim,_, /l(ﬂ( ) ¢ For any Y e 9&* Nn%, we have

lim sup|/, y(1) = (4 J(NITE)| = lim sup|(Z,(Y)|Ui(2,(X])) = &)

n—x ;cp —% teR
< lim [|Z,(Y)] 12, (X)) = €]l

lim sup |fy, y(1+1)| =0,

n—=% teR

and hence there exists an element f of A4(0,1) such that f(7) = (4,(Y)|U,¢) and
f(t+1i)=0forall te R. Hence we have f =0, and so ¢ =0. Thus the statement (1)
holds. The statement (2) is shown similarly to the proof of Lemma 3.8). We show
the statement (3). It is clear that if ¢ is standard, then the statements (i) ~ (iv)
hold. Conversely suppose the statements (i) ~ (iv) hold. We put

TAS(A) = J,AL(A7), A€ D(AS) ND(AL).

Then T is a well-defined from (iii) that T is positive and T = J, pSac = JypJ g4 A/2 We
put U =JyJ . Then U is a unitary operator on #,. Since T* =S /*luJ and
JpAo(D(A5)" N Z(A,)) is a core for S, it follows from (iv) that T is a positive self-
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adjoint operator in #,, and so U =1 and J, =J 1. Hence we have 4, = 4 455 which
implies by (2) that ¢ is standard. This completes the proof.

4. Generalized Connes cocycle theorem for weights.

In this section we generalize the Connes cocycle theorem for weights on O*-
algebras. In we studied to generalize the Connes cocycle theorem and the
Pedersen-Takesaki Radon-Nikodym theorem to generalized von Neumann algebras in
case of standard generalized vectors. As the notion of generalized vectors is spatial,
such a generalization is possible to a certain extent, but the notion of (quasi-)weights is
purely algebraic and not spatial and the algebraic properties don’t reflect to the to-
pological properties in general (for example, n,(.#) is not necessarily a generalized von
Neumann algebra when .# is a generalized von Neumann algebra), and so such gen-
eralizations for (quasi-)weights have some difficult problems. We first need the notion
of o-weak continuity of (quasi-)weights. Let .# be a closed O*-algebra on & in #.

DerINITION 4.1. For any X € 9t, we put
ox(4) = p(XT4X), Ae..

Then ¢y is a positive linear functional on .#. If ¢y is g-weakly continuous for each
X eN,, then ¢ is said to be g-weakly continuous.

LEmMMA 4.2. Let ¢ be a (quasi-)weight on P(M). Then the following statements
hold:

(1) @ is o-weakly continuous if and only if ¢y y is a g-weakly continuous linear
functional on M for each X,Y e N,, where

Py y(A4) = o(YTAX), Ae..

(2)  Suppose ¢ is a-weakly continuous on Z(p), then ¢ is a-weakly continuous.
(3) Suppose ¢ is faithful, o-weakly continuous and semifinite. Then A, is a
semifinite generalized vector for m,(.) such that /1(/,((@(/1(,,)T ﬂ@(/l(/,))z) is total in H,.

Proor. (1) This follows since any ¢y y is a linear combination of {¢y ; X; € 90, }.

(2) This is almost trivial.

(3) Since ¢ is semifinite, there exists a net {U,} in 9&; NN, such that | U,|| <1 for
all o and {U,} converges strongly to I. Take an arbitrary X € 9,. Since ¢y is a o-
weakly continuous positive linear functional on the bounded part .#;, of ., it follows
that gy can be extended to a g-weakly continuous positive linear functional ¢§ on the
von Neumann algebra ,". Hence we have

n(/’(Ud) € Q(A(P)T N @(A(ﬂ)v vav

7o (Un) 2 (X)) = 0y (UL )

< |2 (X)II?
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for all o« and
|70, (Us) 2 (X) = 2 (X) 1> = 05 (U, — I)'(U, = I)) = 0,

which implies that A, is semifinite. Further, it follows that 7,(UsU,X) € (QZ(A(/,)TH
9(4,))* and

lir[r} Ay(my(UpUs X)) = hr}} 7 (Up)7tp(Us) 2 (X))

= /1(0()()7
= Ay(mp(X)),

which implies that A,,,((@(A(,,)Tﬂ@(/l(p))z) is total in .
Let ¢ and ¥ be faithful, o-weakly continuous semifinite (quasi-)weights on 2(.#)
such that 7, and =, are self-adjoint. Let M>(C) be the 2 x 2-matrix algebra on C and

put
I 0 0 1 0 0 0 0
11 <O O)a 12 (0 0)7 21 (1 0)7 22 (0 1)

Every element X of .# ® M,(C) is represented as

X1 X
X = =X ®@En+Xn2®En+ X ®Ey+ Xn® Exn.
Xo1 X»

We put
O(XTX) = p(X], X1 + X3, Xo1) + (X, X12 + XD, X0),
X =(Xy) e M @ M(C).
Then we have the following

Lemma 4.3. (1) 0 is a faithful, o-weakly continuous, semifinite (quasi-)weight on
P(M @ Mr(C)) such that my is self-adjoint and

gﬁg = {X = <X)lj € %@ MQ(C); Xll;X21 € ‘ﬁ(/, and Xlz,Xzz € %l/,}.
(2) )t(,,(‘ﬁ(,,ﬂm;) is dense in #, and /L/,(%pﬂﬂ?L) is dense in Hy.

Proor. (1) It is easily shown that 0 is a faithful, o-weakly continuous (quasi-)
weight on 2(.# ® M,(C)) such that 7y is self-adjoint and

‘ﬁg = {X = (X)U € %@Mz(C); X117X21 € ‘ﬁw and Xlz,Xzz € mw}.

Let {U,} and {V} be nets in ‘Ji; N9, and ‘th// NNy, respectively such that | U,| <1 for
all o and || V]| <1 for all § and {U,} and {Vs} converge strongly to I. Considering

U, 0
o J[n V.
( 0 Vﬁ) e N, NNy, T, p,

we can show that 6 is semifinite.
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(2) Take an arbitrary X € 9%,. We have VX € ‘Jl(,,ﬂ‘ﬁj//,

12 (VsX) = 2(X)|1* = ox (Vs — D) (Vs — 1))

for each f, and hence it follows from the g-weak continuity of ¢y that A,(9t, N SRT)
dense in . Slmllarly, /L/,(‘Jiw mm*) is dense in .
By Lemma 4.2, (4) and [Lemma 4.3, (1) we have

Jo((MNRy)?) is total in . (4.1)

Hence we can define the generalized vector A, for the von Neumann algebra
no(M @ My(C)).,, and so to decide it we first define the following map A,y

9(45,) = {K e W(my,my); "1 e D(my)
s.t. Ki,(X) =my(X)y, X eN,},
A8 (K)=n, Ked(As,).
Then we have the following

LemmA 4.4. A, is a linear map of (A, ) into %(my) satisfying

(i) CKeZ(4,,) and A, ,(CK)=CA, ,(K) for each Ceny(M), and K e
D(A4,);

(i) CKeZ(4,)and 4,(CK) = CA, ,(K) for each C e l(ny,n,) and K € (4, ).

We here put
A =N, ® En), A= 1g(My ® Eny),
Hy = g(Ny @ Enn), Ay = Ap(MNy @ En),
and
(X)Z/lo(X@El]), Xe%w,
(X) = /1()(X®E21), X e iTt(,,,
Ugﬂl/,(X) = lg(X@Elz), X e m,’p,
U4/L/,(X) = /1(-)(X®E22), Xe ﬂtl,,.

Then {#;},_, 4 is a set of mutually orthogonal closed subspaces of #, such that
Hy = H D > (—B Hs @ Ay, and U; and U, (resp. Us and U,) can be extended to the
isometries from %, (resp. #,) to ) and #> (resp. #3 and #,), and they are also

X Xlz) e M ® M>(C), my(X)

denoted by U, and U, (resp. Us and U,). For X = <
X1 X»

i1s given by the matrix:

Uiry(X11) Uy Uy (X12) Uy
Uy (X21) Uy Usmy(X22) Uy
0 0

0

0 0
0 0
Usmy(X1) U Usmy (X12) U
0 X X

Usny (X21) U5 Usmy (X22) Uy
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We now have the following results for the von Neumann algebras 7y(.# ® M,(C)),, and
(no(M ® My(C)),,)" and the generalized vector Aj:

w
LeEMMA 4.5.
(M ® Mr(C)),,
U C Ul* 0 U1C2U3>k 0 Cie nﬁﬂ(%)\:v?
0 UzCl Uz* 0 U2C2U4* Cz € H(?Zl/,,ﬂ(/)),
)| nGuy 0 Us G4 U 0 " Gell(ng,my), [
0 UsC3 Uy 0 UsCy Uy Cy e my (M),
(mo (M ® M(C))y,)'
U1A11U1* U1A12U2* 0 0
U, An U Uy An Uy 0 0 o
= X (AU7BU)EQ[¢7W7 (l,]:1,2> ,
0 0 UsBiU; UsBpUf
0 0 UsB Uy UsBpUf
where
Ae (TL'Q,(%);,)/, Be (nl//(%)\:v)lv
W, , =1 (4,B); AC=CB and A*C = CB”*
for all Cell(ny,n,)
and
U1C1 Ul* 0 U1C2U3* 0 C1 € @(/1(;),
0 U,C,US 0 U, US C,e (A5 ),
I(45) = C= T Gl Gedie |
U3C3U1* 0 U3C4U3* 0 C3 € 9(A¢7l/f)’
0 UsGUS 0 UsCoUy Cye 9(/1‘2)
UM;(Cl)
U4, ,(C)
a0y =| TV ceady).
Usdy, 4 (Gs)
U4ll/€(C4)

In bounded case A;((2(A5)" N 9(/15))2) is total in ), but in unbounded case this
fact doesn’t necessarily hold even if ¢ and  are standard. We have the following result

for this problem:

THEOREM 4.6. Let ¢ and  be faithful, a-weakly continuous, semifinite (quasi-)
weights on P (M) such that n, and my are self-adjoint.  Suppose A,((2(A4,)" N @(A;))z)
is total in #, and A} ((2(Ay)" ﬂ@(/ll/‘i))z) is total in #y. The following statements are
equivalent:
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(i) =, and my are unitarily equivalent.
(i) (=, 7my) (7, 7y) and (g, n,) WU(ny,7,) are nondegenerate x-subalgebras of
the von Neumann algebra n,(M),, and my (M), respectively.

(i) 4y ,(2(4, w)) is dense in A, and A, ,(Z(A, ,)) is dense in Hy.
(iv) A5(2(A5)" ND(A N?) is total in J/o

PrOOF. (i) < (ii) This follows from ([6] Theorem 3.2).
(i) = (iii) There exists a unitary transform W of J#, onto %, such that W%(n,) =
P (ny) and m,(X) = W*ny (X)W for all X e.#. Then we have

{9( ou) ={WC; Ceg(4,)},
A ,(WC) = WAL(C), CeD(A).

Hence, 4, ,(%(4,,)) is dense in . Similarly, 4j (Z(4, ,)) is dense in 7.
(iii) = (iv) By we have

A5(2(45)" N D(45))°)

UiCi4,(Dy) + Ui Co Ay, (D3) C1,Dy € Z(A5)" N D(AY),

_ UCi4y, ,(D2) + UG (Da) | C2, D2, C5, D5 € 2(4y) ), 42
UsC345(D1) + UsCady ,(D3) |7 C3,D3,C5,D;5 € 9(Ay ), | '
UsC3 A}, ,(Dy) + UsCady(Dy) Cy, Dy € D(A5)" ND(A)

which implies since 2(47)"N2(47) and Z(Ay) NZ(4;) are nondegenerate
that A5((2(A45)" N Z(A45))?) is total in #;.

(iv) = (i) Since A5((2(45)" ﬂ@(/lg))z) is total in ), it follows that A" is well-
defined and

2(4y°)
Ajj € 7(4,),
Bje 9(A)) (i,j=1,2) st
B4, ,(C C3A5(A
UiAdnUs UidpUs 0 0 gy (G) = GAS (An),
_ - U4 U U Ap Uy 0 0 . BZIA;’¢(C3):C3A;C(A21),
0 0 UsBiUs  UsBuUj | Andy (C) = G4 (Bn), ’
0 0 UsBo1 Uy UsBpUjf
4021 Vs 4D22 Uy A12A12,¢(C2):C2A|ZC(BZ2)
for '¢, ea@(/lé/ (p)
and "Cs € (4, )
Ul/l;"(An)
Uy A5 (Aa)
AS(A) = ¢ A A
i) UsA5(Bp) | € 7(4y)
UsAf (B)
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Then we have

US1 U; 0 0 0
G 0 0 UsS), Ui 0
A 0 Us Sy U 0 0 ’
0 0 0 UsSnU;

where S;; (i,j=1,2) is a closed operator defined by
St A, (An) = 4,5(A47),
S22+ Ay (B2) — Ay (B3,),
Siz : Ay (Bi2) — 4,5 (4),
Sa1 + A, (A1) = Ay (Byy).

Let S; = J,-inlj/ % be the polar decomposition of Sj; (i,j=1,2). Then we have

UyAn Uy 0 0 0
o 0 Ur Ay U 0 0
A0 0 0 Us A U3* 0 ’
0 0 0 Usdop Uj
UJnUp 0 0 0
b 0 0 UrJ 12 U 0
4 0 UsJy Us 0 0
0 0 0 U U;

Then it follows from that

0 wuU; 0 0
LUF 0 00
C=Jye Tis
o 0 0 U
0 0 LU 0
0 0 U112 Us 0
0 0 0 UrJ12Jn Uy
| v Uy 0 0 0
0 UsdonJo U3 0 0
e ny(M & Ma(C))...

Hence we have

Crg(X)C =ny(X), "X e.ll @ My(C),
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which implies that W = Jy»Jy; is a unitary tranform of J, onto ) such that
n,(X) = Wy (X)W, "Xe..
This completes the proof.

PROPOSITION 4.7. Let ¢ and \ be faithful, a-weakly continuous, semifinite (quasi-)
weights on P(M) such that m, and my are self-adjoint. The following statements are
equivalent:

(i) ¢ and  are quasi-standard (quasi-)weights which satisfy one of (1)~(iv) in
Theorem 4.6.

(i) O is quasi-standard.

ProoF. (i) = (ii) By there exists a unitary transform W of #, onto
Ay such that W%(n,) = Z(ny) and n,(X) = W*ny (X)W for all X € .4. Since W* e
(my, m,), it follows that

Wy = {(A, WAW™); A e (my(M)y,)'},

W
which implies by [Lemma 4.3 and [4.3] that for each A4 € (n,(.#),)" (i,j=1,2)
Uidn Ui UiAnUs 0 0
Ait U2A21 Ul* U2A22 Uz* 0 0 it
A 0 0 UsWA W U;  UsWapw*u; |-
0 0 UsWAn W Ui UsWAnRW* Uy
Uy Al AnA7'Ur Ui A Ay Uy 0 0
Ur A3 Ay AU Up Al A A5 U 0 0
0 0 UsAs WAL WA Uy Us A, WA W* 45,1 Uy
0 0 Us A WA W A U Usdy WA W* A5 Uy

€ (ro(M ® Ma(C))y,)".
Hence we have by

WALAWAT W = AL WAL WA, (4.4)
WAL Ap AW = A WA W* 455, (4.5)
WAL AR AW = AL, WAL W A5, (4.6)
WAL AN AW = A, WAy WA (4.7)

It follows from and (4.5) that A" W*ALW, AW AL W e my( M), for all 1€ R,
and hence

A9 (my) = WAL (AW AL W)W D(my) = D(my)
for all e R. Similarly,

A9 (r,) = D(n,), "teR.
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Hence we have
A4 D(mg) = Z(mp), "teR.
Therefore, 0 is quasi-standard.

(i) = (i) Since AS((Z(A5)* ND(AE))?) is total in #p, it follows from (4.2) that
A;((@(A;)*ﬂ@(/l;))z) and A@((@(Ai)*ﬂ@(/lj,))z) are total in , and J, respec-
tively. Furthermore, since AZ;)-C@(EO) < 9(ny) for all teR, it follows from [4.3)
that 4%..%(n,) = %(n,) and AZ;"@(W) c 9(ny) for all e R. Therefore, ¢ and y are

14 y
quasi-standard. This completes the proof.

THEOREM 4.8 (Generalized Connes cocycle theorem). Suppose ¢ and \ are faithful,
a-weakly continuous, semifinite, quasi-standard (quasi-)weights on P(.M) which satisfy
one of (1)~(v) in Theorem 4.6. Then there exists a strongly continuous map
te Rw— U, en,( M), uniquely determined, such that

we?

(i) U, is unitary for each te R,
(i) Uy = U,af“’ (Us) for each s,te€ R,

(iii) JIA‘ZF(WA wi) = WU;J,A;C (AU W* for each A € r,(M),,. for each t € R, where
W is a unitary transform of H#, onto #y such that W%(n,) = %(ny) and ny,(X) =
Wr,( X)W for all X € M;

(iv) for any Ae (WIN ; w) ﬂ‘ﬁjﬁ and Be ;N (WTSRL W) there exists an element
F4p of A(0,1) such that

Fu5(t) = $(AUa" (B)),

Fag(t+i) = U(a" (WBWH WU AW,
for all te R, where ¢ and  are the quasi-weights induced by ¢ and s, respectively.
Proor. We put
2(Ay) = {mp(X); X € Ry},
AY(my(X)) = Wiy(X), X eRy.
Then it is easily shown that Ag is a generalized vector for 7m,(.#) such that
9((45)) = {W"KW;K € 2(4;)},
(AN (W KW) = W*A((K), KeD(A);

I((4))) = {W"AW; A € D(4])},
(AN (W AW) = WA (A), Ae D(Af);

Hence we have

Alt

(A?ﬁ)“@(”"’) = W*A"’f W%(n,) < 9(n,)
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for all e R, and so Ai is quasi-standard. By A, and A—z are standard
generalized vectors for the generalized von Neumann algebra m,(.#),., and so

it follows from ([10] MTheorem 3.3) that there exists a strongly continuous map
teRw— U en,(M),, satisfying the conditions (i) ~ (iv) and it is identical with the

wC
Connes cocycle [DAY : DA,), (= 434;{") associated with A with respect to A,. This
completes the proof.

The map te R+— U, en(p(%)xc, uniquely determined by the above theorem, is
called the cocycle associated with the quasi-weight \y with respect to the quasi-weight @,
and denoted by [Dy : Dp|. It follows from (4.6) that the cocycle [D@ : Dy], associated
with ¢ with respect to  equals W[Dy : D@|/ W*. By (iii) and (iv) in we
have

(i) ;" (zy (X)) = WIDJ : Dgl, 0" (x,(X))[DV : DGl W*, "X € 4, "1 R

(iv)’ for any X € ‘RL N9y and Y e N, N %Tl// there exists an element Fy y of 4(0,1)
such that

Fy.y(t) = (my(X)[DJ : Dl,0," (m,(Y))),

Fy y(t+1) = 00" (zy(Y))[D§ : DIy (X)),
for all r e R.

COROLLARY 4.9. Suppose ¢ and  are faithful, o-weakly continuous, semifinite,
standard (quasi-)weights which satisfy one of (i) ~ (iv) in Theorem 4.6 and n,(M) is a
generalized von Neumann algebra. Then there exists a strongly continuous map
te R— [DY : Dg|, € M, uniquely determined, such that

(i) [Dy : Dg|, is unitary for each te€ R;

(ii) [Dy : Dgl,,, = [Dy : Dol,of ([DY : Dyly):;

(i) o) (X) = [DY : Dgl,a?(X)[Dy : Dgl’, "X € .4 for each t e R;

(iv) for any X € ‘ﬁ;ﬂiﬁw and Y e N, ﬂ‘ﬁfp there exists an element Fy y of A(0,1)
such that

Fy,y(t) = 9(X[Dy : Dg),55(Y)),
Fy,y(t+i) = y(a! (Y)[Dy : Dg],X)
for all teR.

This [Dy : Dg] is called the cocycle associated with the (quasi-)weight W with respect
to the (quasi-)weight @.

5. Standard weights on generalized von Neumann algebras with strongly dense
bounded part.

An seen in [Corollary 4.9, if 7,(.#) is a generalized von Neumann algebra, then the
generalized Connes cocycle theorem for weights on O¥-algebras becomes the best
form. In this section we show that if .# is a generalized von Neumann algebra with
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strongly dense bounded part and ¢ is a strongly faithful, o-weakly continuous (quasi-)
weight on #(.#), then m,(.4) is spatially isomorphic to .#, and so it is a generalized
von Neumann algebra.

LEmMMA 5.1.  Let ./ be a self-adjoint O*-algebra on 9 in H such that M) = (M)’

and ¢ a a-weakly continuous (quasi-)weight on P(M). Then there exists a normal

x-homomorphism 7@, of (M) onto (r,(M).)" such that 7,(A) = n,(A) for all A e ).

w w
PrOOF. Since ¢, can be extended to a o-weakly continuous positive linear
functional on .#; for each X e 9%,, it follows that
7112
ox(AT4) < ||A|IPpx (1), "Ae My,
which implies

my (M) < 7y ( M),

(Al < [|]l, "4 € Mp. (5.1)

We now have the following:

If {4,} is any uniformly bounded net in .#; such that 4, — A4 € (#) weakly (resp.
strongly, strongly*), then {r,(4,)} converges weakly (resp. strongly, strongly*) to an
element of #(#,). (5.2)

In fact, for each X,Y €9, we have

i (my(42) = 7(Ap)) ()25 (1) = 1 gy, y (A = Ay)

&,

and so we put

B(2p(X), 2p(Y)) = Tim(z, (As) 2 (X)[2(Y)) X, Y €N,

By B is a bounded sesquilinear form on 4,(9,) x 4,(9,), and so it can be extended
to a bounded sesquilinear form on #, x #,. It hence follows from the Riesz theorem
that {n,(4,)} converges weakly (resp strongly, strongly*) to an element of #(J,).
Since ./, = (.4})', it follows from the Kaplansky density theorem that for each

w

Ae (%V’V)’ there exists a net {4,} in .#) such that ||4,|| < ||4]| for all « and 4, — 4
strongly*, and so we put

w,(A) = s* —limn,(4,), Ae (M)
By (5.2) 7,(A) is well-defined, i.e., it is independent for taking a net {4,} in .#;, and 7,
is a normal *-homomorphism of (.#])" to %(#,). Hence, it follows that
w,((#))") is a von Neumann algebra. (5.3)

We finally show that
np(M)" = Tp((My)') = (myp(M),,)". (5.4)
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In fact, take an arbitrary C e m,(.#5)'. Since X is affiliated with (.Z))" = .#; for each
X € ., there exists a net {4,} in .#, which converges og-strongly* to X. Hence we
have

lim [|7, (42)25(Y) = 7p(X)2p(Y) || = lim 9y ((4s — X)' (42 — X))
=0
and
lim [z, (A1) 2(Y) = 7, (X)25(Y)|| = 0
for each Y e N, and so
(Crp(X)29(Y)|25(2)) = him(Cry(42)2(Y) | 2(2)
= lim(CAy(Y) | m,(4})2,(2))

= (CAy(Y)| ”rp(XT)iw(Z))

for all Y,ZeMN,. Hence, Cen,(M),. Thus we have n,(.4) = n,(M),, which
implies by (5.3) that

my(Mp)" = Ty((My)') = (my(M)y,)" = my(Mp)".

Therefore, the statement (5.4) holds. This completes the proof.

As shown in [Lemma 4.7, if ¢ is a faithful, semifinite (quasi-)weight on 2(.#), then
m, is a x-isomorphism, but we don’t know whether 7, is a *-isomorphism in gen-
eral. For this we have the following

LEMMA 5.2. Suppose ¢ is a faithful, o-weakly continuous (quasi-)weight on
P(M). Then the following statements are equivalent:

(i) @, is a *-isomorphism.

(ii) The map m," from m,(Mp)[ts] to (My)'T,[Ts5) is closable.

w

Proor. (i) = (ii) Let {4,} be any net in .#, such that 7, — lim,n,(4,) =0 and
Tos — limyAd, = A e (M))'[,. By we have

7(d) = 7, — lim 7, (By),

where {Bs} is a uniformly bounded net in .#;, which converges g-strongly* to 4. And
we have

Him. [|7zp(As) 2 (X) = 7y(Bp) A (X)|* = lim gy (4 - By)' (4 — By))

=0
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for all X e 9,. Hence we have
7p(A)2(X) = liam 7y (Bp)Ap(X)
= lim 7,(4,)/(X)

=0

for all X e N,, and so 7,(4) =0. Since 7, is a *-isomorphism, we have A = 0.
(ii) = (i) Suppose 7,(4) =0, A € (.4,)'. Then there exists a net {4,} in .#; such
that ||4,|| <r for all « and 7,5 —lim,4, = A. By [Lemma 5.1 we have

Tos — lim 7;(A,) = 75(A) = 0.

Hence, 4 = 0. This completes the proof.

DEerINITION 5.3. A o-weakly continuous (quasi-)weight ¢ on 2(.#) is said to be
strongly faithful if ¢ is faithful and one of the conditions (i) and (ii) of Lemma 5.2 holds.

ProPOSITION 5.4. Let 4 be a self-adjoint O*-algebra on & in H such that
My = (ML), and ¢ a strongly faithful, a-weakly continuous (quasi-)weight on P (M) such
that m, is self-adjoint. Suppose (M) and (m,(M),)" satisfy one of the following
statements:

(1) they are standard von Neumann algebras.

(i) 4. and m,(M),, are properly infinite and of countable type.

w

(i) A and A, are separable and (M))" and (r,(M),)" are von Neumann algebras
of type III.
Then the O*-algebras M and n,(M) are spatially isomorphic.

Proor. It follows from [Lemma 3.1, 5.2 and Corollary 8.12, 8.13, 10.15) that
m, 1s spatial, that is, there exists a unitary transform U of # onto ), such that
,(A) = UAU* for all Ae (..)'. This implies that

U9 =%(n,) and m,(X)=UXU" (5.5)
for all X e ./. Take an arbitrary X € .#. For each {€Z and Y €9, we have
(g (X1) 24 (¥) UE) = lim(r (A1) (V)| UE)
= lign(UA];U*/Iq,(Y)Wf)
= (L(N)|UXQ),

where {A4,} is a net in ./, which converges g-strongly* to X. By the self-adjointness of
n, we have

UeP(n,) and n,(X)UE= UXC, (5.6)
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and further
(XTe|Un) = (UXTE|n)
= (”w(XT)Ué”ﬁ

= (C|U 7y (X))

for all (e Z and ne P(n,). Hence it follows from the self-adjointness of .# that
U*%(n,) < Z, which implies that the statement (5.5) holds. This completes the proof.

Throughout the rest of this section let .# be a self-adjoint generalized von Neumann
algebra on Z in # such that .4} = ()" and (.#])" is a standard von Neumann
algebra. We denote by W,(.#) the set of all strongly faithful, g-weakly continuous,
semifinite, quasi-standard quasi-weights ¢ on 2(.#) such that m, are self-adjoint.
Suppose ¢ € W(.4). By |Proposition 5.4 n,(.#) is a generalized von Neumann algebra

on %(n,) in #,, and so ¢ is standard. By we have the following

COROLLARY 5.5. For every ¢ € Wy(M) there exists a one-parameter group {al},.p
of x-automorphisms of M such that

(i) my(af (X)) = A)my(X)A4,", X € 4,1 €R;

(i) ¢ is a {a]}-KMS quasi-weight on P(M).

Suppose ¢, € Wi(.4). By [Proposition 5.4 n,(.#) and n,(.#) are generalized von
Neumann algebras, and ¢ and  are standard. Hence, by Corollary 4.7 we have the
following

COROLLARY 5.6. Suppose ¢,Wr€ W (M). Then, the cocycle [Dy: Dg| associated
with the quasi-weight \y with respect to the quasi-weight ¢ is well-defined in M, that is,
t— [Dy : Do, is a strongly continuous map of R into . satisfying the conditions
(i) ~ (iv) in Corollary 4.9.

We generalize the Pedersen-Takesaki theorem for standard weights on von
Neumann algebras to those on O*-algebras. Let 9 € W(.#). Since .4 is a generalized
von Neumann algebra, the quasi-weight ¢ on 2(.#) in is defined by

Ny = (X e M;°Ey € D(m,) sit. 7y (X)A5(K) = K&y K € (42},

@(Z X/IXk) = I l? DD XX e 2(Ny).
k k k

Using Theorem 4.2, 4.7), we can show the following results:

COROLLARY 5.7.  Suppose ¢,y € Wy(M). The following statements are equivalent:
(i) Yool = for each teR.

(i) ¢@o J,‘/' = ¢ for each te€ R.

(iii) [Dy : Dyl € M for each te R, where M°" ={X e Ml;c)(X)=X"1eR)}.
(iv) [Dy: Dgl, e 4" for each te R, where #M°" ={X € .M;af(X)=X"te R}.
(v) {[DV : Dgl,},cp is strongly continuous group of unitary elements of M.
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(n,(M),) Nry( M), such that b = ¢4, where ¢, is the quasi-weight on P(m,(M)..)

A. INnoug, W. KarRwowskl and H. Ocr

CoOROLLARY 5.8.  Suppose ¢,y € Wy(M). The following statements are equivalent:
(i) ¥ satisfies the KMS-condition with respect to {c7},_p.

(i) o/ =0o! for all teR.

(i) There exists a positive self-adjoint operator A in A affiliated with

w wC

induced by the quasi-weight on P (M) defined by

Ny = (X e.d; T,(X)ea(4)),

7A(X1X) = [ A4,(X0)|7, X e N,
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