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Abstract. The purpose of this paper is to define and study an important class

in weights on O�-algebras which is possible to develop the Tomita-Takesaki theory in

O�-algebras. The Connes cocycle theorem for weights on von Neumann algebras is

generalized to the case of O�-algebras.

1. Introduction.

Weights on O�-algebras (that is, linear functionals that take positive, but not

necessarily finite values) appear naturally in the studies of the unbounded Tomita-

Takesaki theory and the quantum physics. Thus the investigations of weights on O�-

algebras are important both for study of structure of the O�-algebras and their physical

applications. Further, the weights on O�-algebras exhibit some pathological phe-

nomena which don’t occur for weights on C�- and W�-algebras. From this viewpoint

we defined and studied systematically weights and quasi-weights on O�-algebras in the

previous paper [12]. In particular, we have investigated the regularity of (quasi-)

weights; that is the question when a (quasi-)weight can be represented as supa fa where

f fag is a net of positive linear functionals. We also defined and studied an important

class of regular (quasi-)weights suitable for developing the Tomita-Takesaki theory for

O�-algebras.

In this paper we shall continue the study of standard (quasi-)weights. Let M be a

closed O�-algebra on a dense subspace D in a Hilbert space H. After defining the

algebraic positive cone PðMÞ, the operational positive cone Mþ and the corresponding

(quasi-)weights we come to the problem of the GNS-construction. Then we face

the following problem: If j is a (quasi-)weight then in the bounded case the set

N
�
j 1 fX A M; jðX yXÞ < yg is a left ideal of M. This is not so in general. To

circumvent this di‰culty we introduce the set Nj 1 fX A M; jððAX ÞyðAX ÞÞ < y for all

A A Mg which is always a left ideal of M. Then we construct the GNS-representation

pj and the vector representation lj by the method similar to that used for positive linear

functionals. That is, pj is a �-homomorphism of M onto the O�-algebra pjðMÞ on the

dense subspace DðpjÞ in the Hilbert space Hj, and lj is a linear map of Nj into DðpjÞ

satisfying ljðAX Þ ¼ pjðAÞljðXÞ for all A A M and X A Nj. In order that pj carries

enough structure of M the left ideal Nj must be su‰ciently rich. This is not at all

1991 Mathematics Subject Classification. Primary 47D40; Secondary 46L10, 46K10.

Key Words and Phrases. O�-algebras, generalized von Neumann algebras, standard (quasi-)weights, KMS-

(quasi-)weights.

Supported in part by Japan Society for the Promotion Science, 1997.

Supported in part by Japan Private School Promotion Fundation, 1997.



guaranteed. In the extreme there are non-zero (quasi-)weights j such that N�
j has many

elements but Nj ¼ f0g. To avoid situations leading to noninteresting representations

we define notions of faithfulness, semifiniteness and s-weak continuity of (quasi-)

weights. If j is a faithful semifinite (quasi-)weight on PðMÞ such that pjðMÞ 0wDðpjÞH

DðpjÞ, then the map Lj defined by LjðpjðXÞÞ ¼ ljðXÞ;X A Nj is a generalized vector

for the O�-algebra pjðMÞ i.e. Lj is a linear map of the left ideal DðLjÞ1 pjðNjÞ into

DðpjÞ satisfying LjðpjðAÞpjðXÞÞ ¼ pjðAÞLjðpjðXÞÞ for all A A M and X A Nj. Using

(quasi-)standard generalized vectors defined and studied in [10], we define the notion of

(quasi-)standardness of j as follows: j is said to be standard (resp. quasi-standard) if

the generalized vector Lj is standard (resp. quasi-standard). We demonstrate that if j

is standard, then the modular automorphism group fsj
t gt AR of N

y
j VNj is defined and

j is a fsj
t g-KMS (quasi-)weight. If j is quasi-standard, then it can be uniquely

extended to a standard quasi-weight j on the positive cone PðpjðMÞ 00wcÞ of the gen-

eralized von Neumann algebra pjðMÞ 00wc. We shall generalize the Connes cocycle

theorem for (quasi-)-weights on von Neumann algebras to O�-algebras. In [10] we have

generalized the Connes cocycle theorem for standard generalized vectors. As the notion

of generalized vectors is spatial, such a generalization is possible to a certain extent, but

the notion of (quasi-)weights is purely algebraic and the algebraic properties don’t reflect

the topological properties in general, and so such a generalization for weights have some

di‰cult problems. Let j and c be faithful, s-weakly continuous and semifinite (quasi-)

weights on PðMÞ such that pj and pc are self-adjoint. We consider the matrix algebra

MnM2ðCÞ on DnD:

X ¼
X11 X12

X21 X22

� �

; Xij A M

� �

and a faithful, s-weakly continuous semifinite (quasi-)weight y on PðMnM2ðCÞÞ by

yðX yXÞ ¼ jðX y
11X11 þ X

y
21X21Þ þ cðX y

12X12 þ X
y
22X22Þ; X ¼ ðXijÞ A MnM2ðCÞ:

In case of von Neumann algebras, Lc
yððDðLc

yÞ
�
VDðLc

yÞÞ
2Þ is total in Hy, and pj and pc

are unitarily equivalent, and further pjðMÞ and pcðMÞ are von Neumann algebras,

which imply the Connes cocycle theorem [24]. In case of O�-algebras these properties

do not hold automatically. Hence we should consider the following questions:

A. When is Lc
yððDðLc

yÞ
�
VDðLc

yÞÞ
2Þ total in Hy? When are pj and pc unitarily

equivalent?

B. Let M be a generalized von Neumann algebra. When is pjðMÞ a generalized

von Neumann algebra?

For Question A we have the result that if Lc
jððDðLc

jÞ
�
VDðLc

jÞÞ
2Þ is total in Hj and

Lc
cððDðLc

cÞ
�
VDðLc

cÞÞ
2Þ is total in Hc, then the following statements are equivalent:

(i) pj and pc are unitarily equivalent.

(ii) IIðpj; pcÞ
�IIðpj; pcÞ and IIðpc; pjÞ

�IIðpc; pjÞ are nondegenerate �-subalgebras

of the von Neumann algebras pjðMÞ 0w and pcðMÞ 0w, respectively, where IIðp1; p2Þ is the

intertwining space for �-representations p1 and p2.

(iii) Lc
c;jðDðLc

c;jÞÞ is dense in Hj and Lc
j;cðDðLc

j;cÞÞ is dense in Hc, where Lc
c;j

and Lc
j;c are generalized vectors for IIðpc; pjÞ and IIðpj; pcÞ, respectively.
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(iv) Lc
yððDðLc

yÞ
�
VDðLc

yÞÞ
2Þ is total in Hy.

In this case, we obtain that j and c are quasi-standard if and only if y is quasi-

standard, and then the cocycle ½Dc : Dj� associated with the (quasi-)weight c on

PðpcðMÞ 00wcÞ with respect to the (quasi-)weight j on PðpjðMÞ 00wcÞ is defined, but pjðMÞ

is not a generalized von Neumann algebra in general even if M is a generalized von

Neumann algebra, and so the cocycle ½Dc : Dj� for the generalized von Neumann

algebra pjðMÞ 00wc does not necessarily induce the cocycle ½Dc : Dj� associated with the

(quasi-)weight c on PðMÞ with respect to the (quasi-)weight j on PðMÞ.

We also consider Question B and show that if M is a generalized von Neumann

algebra with strongly dense bounded part and j is strongly faithful, then pjðMÞ is

spatially isomorphic to M, and so it is a generalized von Neumann algebra and the

cocycle ½Dc : Dj� for the generalized von Neumann algebra M is well-defined.

2. Preliminaries.

Here we state some definitions and the basic properties concerning O�-algebras [4,

14, 17, 19, 21] and generalized vectors for O�-algebras [1, 9, 10, 11].

Let D be a dense subspace in a Hilbert space H. We denote by L
yðDÞ the set of

all linear operators X from D into D such that DðX �ÞID and X �
DHD. Then

L
yðDÞ is a �-algebra with the usual operations and the involution X ! X y

1X �d
D
.

A �-subalgebra of L
yðDÞ is called an O�-algebra on D in H according to the

Schmüdgen book [21] though it is also called by an Op�-algebra in many papers.

Throughout this paper we assume that an O�-algebra has always an identity operator.

Let M be an O�-algebra on D. The locally convex topology on D defined by

the family fk kX ;X A Mg of seminorms: kxkX ¼ kXxk ðx A DÞ is called the graph

topology on D, which is denoted by tM. If the locally convex space D½tM� is com-

plete, then M is said to be closed. We put

~DDðMÞ ¼ 7
X AM

DðXÞ and ~XX ¼ Xd ~DDðMÞðX A MÞ:

Then ~DDðMÞ equals the completion of D½tM� and ~MM1 f ~XX ;X A Mg is a closed O�-

algebra on ~DDðMÞ which is the smallest closed extension of M and it is called the closure

of M. Hence M is closed if and only if D ¼ ~DDðMÞ. If D
�ðMÞ17

X AM
DðX �Þ ¼

~DDðMÞ, then M is said to be essentially self-adjoint, and if D�ðMÞ ¼ D, then M is said

to be self-adjoint. We define the weak commutant M
0
w of y-invariant subset M of

L
yðDÞ as follows:

M
0
w ¼ fC A BðHÞ; ðCXxjhÞ ¼ ðCxjX yhÞ

for each x; h A D and X A Mg;

where BðHÞ is the set of all bounded linear operators on H. Then M
0
w is a �-invariant

weakly closed subspace of BðHÞ, but it is not necessarily an algebra. Further, if M is

self-adjoint, then M
0
wDHD, and M

0
wDHD if and only if M

0
w is a von Neumann

algebra and X is a‰liated with ðM 0
wÞ

0 for each X A M. Let M be an O�-algebra on D

in H. We call the locally convex topology defined by the family fPx;h; x; h A Dg (resp.
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fPx; x A Dg; fP�
x ; x A DgÞ of seminorms: Px;hðX Þ ¼ jðXxjhÞj (resp. PxðXÞ ¼ kXxk;

P�
x ðX Þ ¼ kXxk þ kX yxkÞ, X A M the weak topology (resp. strong topology, strong*

topology) on M and denote it by tw (resp. ts; t
�
s ). We put

D
yðMÞ ¼ fxngHD;

Xy

n¼1

kXxnk
2 < y for each X A M

( )

and call the locally convex topology defined by the family fPfxng;fhng
; fxng; fhng A

D
yðMÞg (resp. fPfxng; fxng A D

yðMÞg; fP�
fxng

; fxng A D
yðMÞgÞ of seminorms:

Pfxng;fhngðX Þ ¼
Xy

n¼1

ðXxnjhnÞ

�����

�����

resp: PfxngðXÞ ¼
Xy

n¼1

kXxnk
2

 !1=2

; P�
fxng

ðXÞ ¼ PfxngðX Þ þ PfxngðX
yÞ

0
@

1
A

the s-weak topology (resp. s-strong topology, s-strong* topology) on M and denote it by

tsw (resp. tss; t
�
ss). A closed O�-algebra M on D in H is said to be a generalized von

Neumann algebra on D if M
0
wDHD and M ¼ M

00
wc 1 fX A L

yðDÞ;CX HXC C A

M
0
wg. It is known that M is a generalized von Neumann algebra on D if and only if M

equals the strong*-closure of the O�-algebra ðM 0
wÞ

0d
D

on D in L
yðDÞ [7].

A (�-)homomorphism p of a �-algebra A onto an O�-algebra on D in H is said to

be a (*-)representation of A. We here denote D and H by DðpÞ and Hp, respectively.

A �-representation p of A is said to be closed (resp. self-adjoint) if the O�-algebra pðAÞ

is closed (resp. self-adjoint). Let p be a �-representation of A. We put

Dð~ppÞ ¼ 7
x AA

DðpðxÞÞ; ~ppðxÞ ¼ pðxÞd
Dð~ppÞ;

Dðp�Þ ¼ 7
x AA

DðpðxÞ�Þ; p�ðxÞ ¼ pðx�Þ�d
Dðp �Þ; x A A:

Then ~pp is a closed �-representation of A such that ~ppðAÞ ¼ gpðAÞpðAÞ and it is called the

closure of p, and p� is a closed representation of A and it is called the adjoint of p. Let

p1 and p2 be �-representations of A. We define the intertwining space IIðp1; p2Þ for p1
and p2 as follows:

IIðp1; p2Þ ¼ fC A BðHp1 ;Hp2Þ; CDðp1ÞHDðp2Þ and Cp1ðxÞx ¼ p2ðxÞCx

for each x A A and x A Dðp1Þg;

and this is an important tool in representation theory [21].

We next introduce the notion of generalized vectors which is a generalization of

cyclic vectors for O�-algebras [11]. Let M be an O�-algebra on D such that

M
0
wDHD. A map l of M into D is said to be a generalized vector for M if the

domain DðlÞ of l is a left ideal of M; l is a linear map of DðlÞ into D and

lðXAÞ ¼ XlðAÞ for all X A M and A A DðlÞ. Suppose that a generalized vector l for

M satisfies the condition:
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(i) lððDðlÞy VDðlÞÞ2Þ is total in H.

Then we define the commutant l
c of l which is a generalized vector for the von

Neumann algebra M
0
w as follows:

DðlcÞ ¼ fK A M
0
w;

bxK A D s:t: KlðX Þ ¼ XxK for all X A DðlÞg;

l
cðKÞ ¼ xK ; K A DðlcÞ:

(

A generalized vector l for M is said to be cyclic and separating if the above condition (i)

and the following condition (ii) hold:

(ii) l
cððDðlcÞ� VDðlcÞÞ2Þ is total in H.

Suppose l is a cyclic and separating generalized vector for M and put

DðlccÞ ¼ fA A ðM 0
wÞ

0
;
bxA A H s:t: AlcðKÞ ¼ KxA for all K A DðlcÞg;

l
ccðAÞ ¼ xA; A A DðlccÞ:

(

Then l
cc is a cyclic and separating generalized vector for the von Neumann algebra

ðM 0
wÞ

0. So the maps lðXÞ 7! lðX yÞ;X A DðlÞy VDðlÞ and l
ccðAÞ 7! l

ccðA�Þ;A A

DðlccÞ� VDðlccÞ are closable in H and their closures are denoted by Sl and Sl
cc ,

respectively. Let Sl ¼ JlD
1=2
l

and Sl cc ¼ Jl ccD
1=2
l cc be the polar decompositions of Sl

and Sl
cc , respectively. Then we see that Sl HSl

cc , and Jl ccðM 0
wÞ

0
Jl cc ¼ M

0
w and

D it
l
ccðM 0

wÞ
0
Dÿit
l
cc ¼ ðM 0

wÞ
0 for all t A R by the Tomita fundamental theorem [25 ]. But, we

don’t know how the unitary group fD it
l ccgt AR acts on the O�-algebra M, and so we

define a system which has the best properties:

A generalized vector l for M is said to be standard if the following conditions hold:

(S)1 l is cyclic and separating.

(S)2 D it
l ccDHD and D it

l ccMDÿit
l cc ¼ M for each t A R.

(S)3 D it
l ccðDðlÞy VDðlÞÞDÿit

l cc ¼ DðlÞy VDðlÞ for each t A R.

For standard generalized vectors we have obtained the following

Theorem 2.1 ([11] Theorem 5.5). Suppose l is a standard generalized vector for

M. Then the following statements hold:

(1) Sl ¼ Sl
cc , and so Jl ¼ Jl cc and Dl ¼ Dl

cc .

(2) fsl
t gt AR is a one-parameter group of �-automorphisms of M, where sl

t ðXÞ ¼

D it
lXDÿit

l for X A M and t A R.

(3) l satisfies the KMS-condition with respect to fsl
t g, that is, for each

X ;Y A DðlÞy VDðlÞ there exists an element fX ;Y of Að0; 1Þ such that

fX ;Y ðtÞ ¼ ðlðsl
t ðX ÞÞjlðYÞÞ and fX ;Y ðtþ iÞ ¼ ðlðY yÞjlðsl

t ðX
yÞÞ

for all t A R, where Að0; 1Þ is the set of all complex-valued functions, bounded and

continuous on 0U Im zU 1 and analytic in the interior.

Weakening the above conditions (S)2 and (S)3, we define and study the notion of

quasi-standard generalized vectors which enable us to extend the Tomita-Takesaki

theory. A generalized vector l for M is said to be quasi-standard if the above condition

(S)1 and the following condition hold:

(QS) D it
l
ccDHD for each t A R.

Standard weights 915



For quasi-standard generalized vectors we have the following

Theorem 2.2. Supposed l is a quasi-standard generalized vector for M and then put

DðlÞ ¼ fX A M
00
wc;

bxX A D s:t: XlcðKÞ ¼ KxX ;
EK A DðlcÞg

lðXÞ ¼ xX ; X A DðlÞ:

(

Then l is a standard generalized vector for the generalizd von Neumann algebra M
00
wc such

that lH l; lc ¼ l
c
and

DðlÞ ¼ fX A M
00
wc;

bfAagHDðlccÞ and bxX A D s:t: Aax ! Xx; Ex A D

and lccðAaÞ ! xXg

lðX Þ ¼ xX ; X A DðlÞ:

8

>

>

<

>

>

:

Proof. It is shown similarly to the proof of ([11] Theorem 5.11) that l is a

generalized vector for M
00
wc such that lH l; lc ¼ l

c
and

DðlÞ ¼ fX A M
00
wc;

bfAagHDðlccÞ and bxX A D s:t: Aax ! Xx; Ex A D

and lccðAaÞ ! xXg

lðX Þ ¼ xX ; X A DðlÞ:

8

>

>

<

>

>

:

Hence l is a cyclic and separating generalized vector for M
00
wc. Further, since D it

l ccDH

D and sl cc

t ðM 0
wÞHM

0
w for each t A R where sl cc

t ðAÞ ¼ D it
l ccADÿit

l cc , it follows that

D it
l ccXDÿit

l ccCx ¼ D it
l ccXsl cc

ÿt ðCÞDÿit
l ccx ¼ CD it

l ccXDÿit
l ccx

for each X A M
00
wc;C A M

0
w; x A D and t A R. This implies D it

l ccXDÿit
l cc A M

00
wc for each

X A M
00
wc and t A R. Hence we have sl cc

t ðM 00
wcÞ ¼ M

00
wc for each t A R. It follows from

the definition of l that sl cc

t ðDðlÞy VDðlÞÞ ¼ DðlÞy VDðlÞ for all t A R. Thus l is a

standard generalized vector for M 00
wc. This completes the proof.

3. Standard weights.

In this section we define and study the notions of standard (quasi-)weights and

quasi-standard (quasi-)weights on O�-algebras. Let M be a closed O�-algebra on D in

H. For a subspace N of M we put

PðNÞ ¼
X

n

k¼1

X
y
kXk; Xk A N ðk ¼ 1; 2; . . . ; nÞ; n A N

( )

and call it the positive cone generated by N. A map j of PðMÞ into Rþ U fþyg is

said to be a weight on PðMÞ if

(W)1 jðAþ BÞ ¼ jðAÞ þ jðBÞ, A;B A PðMÞ;

(W)2 jðaAÞ ¼ ajðAÞ, A A PðMÞ, aV 0,

where 0 � ðþyÞ ¼ 0. A map j of the positive cone PðNÞ generated by a left ideal N of

M into Rþ is said to be a quasi-weight on PðMÞ if it satisfies the above conditions (W)1
and (W)2 for PðNÞ, and then N is denoted by Nj. Let j be a quasi-weight on
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PðMÞ. We denote by DðjÞ the subspace of M generated by fX yX ;X A Njg. Since

Nj is a left ideal of M, we have

DðjÞ ¼ the linear span of fY yX ; X ;Y A Njg;

and so each
P

k akY
y
kXk ðak A C ;Xk;Yk A NjÞ is represented as

P

j bjZ
y
jZj for some

bj A C and Zj A Nj. Then we can define a linear functional _jj on DðjÞ by

_jj
X

k

akY
y
kXk

 !

¼
X

j

bjjðZ
y
jZjÞ:

It is easily shown that

j _jjðY yXÞj2U jðY yYÞjðX yXÞ; X ;Y A Nj: ð3:1Þ

We put

Nj ¼ fX A Nj; jðX
yX Þ ¼ 0g; ljðX Þ ¼ X þNj A Nj=Nj; X A Nj:

Then it follows from (3.1) that Nj is a left ideal of Nj and ljðNjÞ1Nj=Nj is a pre-

Hilbert space with the inner product

ðljðX ÞjljðYÞÞ ¼ _jjðY yX Þ; X ;Y A Nj:

We denote by Hj the Hilbert space obtained by the completion of the pre-Hilbert space

ljðNjÞ. We define a �-representation p0
j of M by

p0
jðAÞljðXÞ ¼ ljðAX Þ; A A M; X A Nj;

and denote by pj the closure of p0
j. We call the triple ðpj; lj;HjÞ the GNS-construction

for j. Let j be a weight on PðMÞ and put

Nj ¼ fX A M; jððAX ÞyðAX ÞÞ < y for all A A Mg:

Then Nj is a left ideal of M and the restriction jdPðNjÞ of j to the positive cone

PðNjÞ is a quasi-weight on PðMÞ and it is called the quasi-weight on PðMÞ generated

by j and is denoted by jq. We denote by ðpj; lj;HjÞ the GNS-construction for the

quasi-weight jq generated by j. We need the notions of faithfulness and semifiniteness

of (quasi-)weights:

Definition 3.1. Let j be a (quasi-)weight on PðMÞ. If jðAyAÞ ¼ 0;A A M

implies A ¼ 0, then j is said to be faithful. If there exists a net fUag in N
y
j VNj such

that kUakU 1 for each a and fUag converges strongly to I, then j is said to be

semifinite.

We have defined in [12] the notion of semifiniteness of (quasi-)weights which is

stronger than that of semifiniteness defined above. Let j be a faithful semifinite (quasi-)

weight on PðMÞ. Then it is easily shown that pj is a �-isomorphism and the gen-

eralized vector Lj for the O�-algebra pjðMÞ is defined by

LjðpjðXÞÞ ¼ ljðXÞ; X A Nj:
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Suppose

(S)1 pjðMÞ 0wDðpjÞHDðpjÞ,

(S)2 ljððN
y
j VNjÞ

2Þ is total in Hj.

Then we can define a generalized vector Lc
j for the von Neumann algebra pjðMÞ 0w by

DðLc
jÞ ¼ fK A pjðMÞ 0w;

bxK A DðpjÞ

s:t: KLjðpjðXÞÞ ¼ pjðXÞxK ;
EX A Njg

Lc
jðKÞ ¼ xK ; K A DðLc

jÞ:

8

>

>

<

>

>

:

Further, suppose

(S)3 Lc
jððDðLc

jÞ
�
VDðLc

jÞÞ
2Þ is total in Hj.

Then, the generalized vector Lcc
j for the von Neumann algebra ðpjðMÞ 0wÞ

0 is defined by

DðLcc
j Þ ¼ fA A ðpjðMÞ 0wÞ

0
;

bxA A Hj

s:t: ALc
jðKÞ ¼ KxA;

EK A DðLc
jÞg

Lcc
j ðAÞ ¼ xA; A A DðLcc

j Þ

8

>

>

>

<

>

>

>

:

and Lcc
j ððDðLcc

j Þ� VDðLcc
j ÞÞ2Þ is total in Hj. Hence, the maps ljðX Þ 7! ljðX

yÞ;

X A N
y
j VNj and Lcc

j ðAÞ 7! Lcc
j ðA�Þ, A A DðLcc

j Þ� VDðLcc
j Þ are closable in Hj and their

closures are denoted by Sj and SL cc
j
, respectively. Let Sj ¼ JjD

1=2
j and SL cc

j
¼ JL cc

j
D

1=2
L cc

j

be the polar decompositions of Sj and SL cc
j
, respectively. Then we see that Sj HSL cc

j
,

and by the Tomita fundamental theorem JL cc
j
ðpjðMÞ 0wÞ

0
JL cc

j
¼ pjðMÞ 0w and

D it
L cc

j
ðpjðMÞ 0wÞ

0
Dÿit
L cc

j
¼ ðpjðMÞ 0wÞ

0 for all t A R. But, we don’t know how the unitary

group fD it
L cc

j
gt AR acts on the O�-algebra pjðMÞ, and so we define a system which has the

best properties:

Definition 3.2. A faithful semifinite (quasi-)weight j on PðMÞ is said to be quasi-

standard if the above conditions (S)1, (S)2, (S)3 and the following condition (S)4 hold:

(S)4 D it
L cc

j
DðpjÞHDðpjÞ for all t A R.

Further, if

(S)5 D it
L cc

j
pjðMÞDÿit

L cc
j
¼ pjðMÞ for all t A R,

then j is said to be essentially standard, and in addition if

(S)6 D it
L cc

j
pjðN

y
j VNjÞD

ÿit
L cc

j
¼ pjðN

y
j VNjÞ for all t A R,

then j is said to be standard.

We remark that a faithful semifinite (quasi-)weight j is standard (resp. essentially

standard, quasi-standard) if and only if the generalized vector Lj for pjðMÞ induced by

j is standard (resp. essentially standard, quasi-standard). Hence by Theorem 2.1 we

have the following results for standard (quasi-)weights:
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Theorem 3.3. Suppose j is a faithful semifinite standard (quasi-)weight on

PðMÞ. Then the following statements hold:

(1) Sj ¼ SL cc
j
, and so Jj ¼ JL cc

j
and Dj ¼ DL cc

j
.

(2) There exists a one-parameter group fsj
t gt AR of �-automorphisms of M such that

pjðs
j
t ðX ÞÞ ¼ D it

jpjðXÞDÿit
j for all X A M and t A R.

(3) j is a fsj
t g-KMS (quasi-)weight, that is, for any X ;Y A N

y
j VNj there exists an

element fX ;Y of Að0; 1Þ such that fX ;Y ðtÞ ¼ _jjðYs
j
t ðXÞÞ and fX ;Y ðtþ iÞ ¼ _jjðsj

t ðX ÞYÞ for

all t A R, where Að0; 1Þ is the set of all complex-valued functions, bounded and continuous

on 0U Im zU 1 and analytic in the interior.

We next consider quasi-standard (quasi-)weights. Let j be a faithful semifinite

quasi-standard (quasi-)weight on PðMÞ. We put

DðLjÞ ¼ fA A pjðMÞ 00wc;
bxA A DðpjÞ

s:t: ALc
jðKÞ ¼ KxA;

EK A DðLc
jÞg;

LjðAÞ ¼ xA; A A DðLjÞ:

8

>

>

>

<

>

>

>

:

Then it is easily shown that Lj is a generalized vector for the generalized von Neumann

algebra pjðMÞ 00wc such that

Lj HLj and Lc
j ¼ Lj

c
: ð3:2Þ

We now put

j
X

k

A
y
kAk

 !

¼
X

k

kLjðAkÞk
2; fAkgHDðLjÞ:

Then j is a faithful semifinite quasi-weight on PðpjðMÞ 00wcÞ such that

ðpjðpjðMÞ 00wcÞ; ljÞ is unitarily equivalent to ðpjðMÞ 00wc;LjÞ; ð3:3Þ

that is, there exists a unitary operator U of Hj onto Hj such that ULjðAÞ ¼ ljðAÞ for

each A A DðLjÞ and pjðBÞ ¼ UBU � for each B A pjðMÞ 00wc. The above j is said to be

the quasi-weight on PðpjðMÞ 00wcÞ induced by j. By (3.2), (3.3) and Theorem 2.2 we have

the following

Theorem 3.4. Suppose j is a faithful semifinite quasi-standard (quasi-)weight on

PðMÞ. Then the quasi-weight j on PðpjðMÞ 00wcÞ induced by j is standard, and so it is a

fsjt gt AR-KMS quasi-weight, where s
j
t ðAÞ ¼ D it

L cc
j
ADÿit

L cc
j
, A A pjðMÞ 00wc; t A R.

Conversely we consider when a KMS (quasi-)weight is standard.

Theorem 3.5. Let fatgt AR be a one-parameter group of �-automorphisms of

M. Suppose j is a fatg-KMS (quasi-)weight on PðMÞ such that ljððN
y
j VNjÞ

2Þ is total

in Hj. Then the following statements hold:

(1) The map ljðX Þ 7! ljðX
yÞ;X A N

y
j VNj is a closable conjugate-linear operator in

Hj. Let Sj be the closure of the above operator ljðXÞ 7! ljðX
yÞ and Sj ¼ JjD

1=2
j the

polar decomposition of Sj.
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(2) D it
j ljðX Þ ¼ ljðatðXÞÞ, EX A Nj,

Et A R.

(3) j is standard if and only if the following statements hold:

(i) Lj is well-defined.

(ii) Lc
jððDðLc

jÞ
�
VDðLc

jÞÞ
2Þ is total in Hj.

(iii) JjL
c
jðDðLc

jÞ
�
VDðLc

jÞÞHLcc
j ðDðLcc

j Þ� VDðLcc
j ÞÞ.

(iv) ðJjL
cc
j ðAÞjLcc

j ðA�ÞÞV 0, EA A DðLcc
j Þ� VDðLcc

j Þ.

Proof. We put

UtljðXÞ ¼ ljðatðXÞÞ; X A Nj:

Since j is fatg-KMS (quasi-)weight on PðMÞ, for any X ;Y A N
y
j VNj there exists an

element fX ;Y of Að0; 1Þ such that

fX ;Y ðtÞ ¼ _jjðatðX ÞYÞ and fX ;Y ðtþ iÞ ¼ _jjðYatðX ÞÞ; Et A R:

We now have

lim
t!0

kUtljðX Þ ÿ ljðXÞk2 ¼ lim
t!0

fjðatðXÞyatðXÞÞ ÿ _jjðatðXÞyXÞ

ÿ _jjðX yatðXÞÞ þ jðX yXÞg

¼ lim
t!0

f2jðX yX Þ ÿ fX y;X ðtÞ ÿ fX ;X yðtþ iÞg

¼ 0

for each X A N
y
j VNj, which implies that fUtgt AR is a strongly continuous one-

parameter group of unitary operators on Hj. Let fXng be any sequence in N
y
j VNj

such that limn!y ljðXnÞ ¼ 0 and limn!y ljðX
y
n Þ ¼ x. For any Y A N

y
j VNj we have

lim
n!y

sup
t AR

j fXn;Y ðtÞ ÿ ðljðY ÞjUtxÞj ¼ lim
n!y

sup
t AR

jðljðY ÞjUtðljðX
y
n Þ ÿ xÞÞj

U lim
n!y

kljðY Þk kljðX
y
n Þ ÿ xk

¼ 0;

lim
n!y

sup
t AR

j fXn;Y
ðtþ iÞj ¼ 0;

and hence there exists an element f of Að0; 1Þ such that f ðtÞ ¼ ðljðYÞjUtxÞ and

f ðtþ iÞ ¼ 0 for all t A R. Hence we have f ¼ 0, and so x ¼ 0. Thus the statement (1)

holds. The statement (2) is shown similarly to the proof of ([7] Lemma 3.8). We show

the statement (3). It is clear that if j is standard, then the statements (i)@ (iv)

hold. Conversely suppose the statements (i)@ (iv) hold. We put

TLcc
j ðAÞ ¼ JjL

cc
j ðA�Þ; A A DðLcc

j Þ� VDðLcc
j Þ:

Then T is a well-defined from (iii) that T is positive and T ¼ JjSL cc
j
¼ JjJL cc

j
D

1=2
L cc

j
. We

put U ¼ JjJL cc
j
. Then U is a unitary operator on Hj. Since T � ¼ S �

L cc
j
Jj and

JjL
c
jðDðLc

jÞ
�
VDðLc

jÞÞ is a core for S �
L cc

j
, it follows from (iv) that T is a positive self-
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adjoint operator in Hj, and so U ¼ I and Jj ¼ JL cc
j
. Hence we have Dj ¼ DL cc

j
, which

implies by (2) that j is standard. This completes the proof.

4. Generalized Connes cocycle theorem for weights.

In this section we generalize the Connes cocycle theorem for weights on O�-

algebras. In [10] we studied to generalize the Connes cocycle theorem and the

Pedersen-Takesaki Radon-Nikodym theorem to generalized von Neumann algebras in

case of standard generalized vectors. As the notion of generalized vectors is spatial,

such a generalization is possible to a certain extent, but the notion of (quasi-)weights is

purely algebraic and not spatial and the algebraic properties don’t reflect to the to-

pological properties in general (for example, pjðMÞ is not necessarily a generalized von

Neumann algebra when M is a generalized von Neumann algebra), and so such gen-

eralizations for (quasi-)weights have some di‰cult problems. We first need the notion

of s-weak continuity of (quasi-)weights. Let M be a closed O�-algebra on D in H.

Definition 4.1. For any X A Nj we put

jX ðAÞ ¼ _jjðX yAX Þ; A A M:

Then jX is a positive linear functional on M. If jX is s-weakly continuous for each

X A Nj, then j is said to be s-weakly continuous.

Lemma 4.2. Let j be a (quasi-)weight on PðMÞ. Then the following statements

hold:

(1) j is s-weakly continuous if and only if jX ;Y is a s-weakly continuous linear

functional on M for each X ;Y A Nj, where

jX ;Y ðAÞ ¼ _jjðY yAX Þ; A A M:

(2) Suppose _jj is s-weakly continuous on DðjÞ, then j is s-weakly continuous.

(3) Suppose j is faithful, s-weakly continuous and semifinite. Then Lj is a

semifinite generalized vector for pjðMÞ such that LjððDðLjÞ
y
VDðLjÞÞ

2Þ is total in Hj.

Proof. (1) This follows since any jX ;Y is a linear combination of fjXk
;Xk A Njg.

(2) This is almost trivial.

(3) Since j is semifinite, there exists a net fUag in N
y
j VNj such that kUakU 1 for

all a and fUag converges strongly to I. Take an arbitrary X A Nj. Since jX is a s-

weakly continuous positive linear functional on the bounded part Mb of M, it follows

that jX can be extended to a s-weakly continuous positive linear functional j 00
X on the

von Neumann algebra Mb
00
. Hence we have

pjðUaÞ A DðLjÞ
y
VDðLjÞ;

Ea;

kpjðUaÞljðXÞk2 ¼ jX ðU
y
aUaÞ

¼ j 00
X ðUa

�
UaÞ

U kUjk
2
j 00
X ðIÞ

U kljðXÞk2
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for all a and

kpjðUaÞljðX Þ ÿ ljðXÞk2 ¼ jX ððUa ÿ IÞyðUa ÿ IÞÞ �!
a

0;

which implies that Lj is semifinite. Further, it follows that pjðUbUaXÞ A ðDðLjÞ
y
V

DðLjÞÞ
2 and

lim
a;b

LjðpjðUbUaXÞÞ ¼ lim
a;b

pjðUbÞpjðUaÞljðX Þ

¼ ljðX Þ;

¼ LjðpjðXÞÞ;

which implies that LjððDðLjÞ
y
VDðLjÞÞ

2Þ is total in Hj.

Let j and c be faithful, s-weakly continuous semifinite (quasi-)weights on PðMÞ

such that pj and pc are self-adjoint. Let M2ðCÞ be the 2� 2-matrix algebra on C and

put

E11 ¼
1 0

0 0

� �

; E12 ¼
0 1

0 0

� �

; E21 ¼
0 0

1 0

� �

; E22 ¼
0 0

0 1

� �

:

Every element X of MnM2ðCÞ is represented as

X ¼
X11 X12

X21 X22

� �

¼ X11 nE11 þ X12 nE12 þ X21 nE21 þ X22 nE22:

We put

yðX yX Þ ¼ jðX y
11X11 þ X

y
21X21Þ þ cðX y

12X12 þ X
y
22X22Þ;

X ¼ ðXijÞ A MnM2ðCÞ:

Then we have the following

Lemma 4.3. (1) y is a faithful, s-weakly continuous, semifinite (quasi-)weight on

PðMnM2ðCÞÞ such that py is self-adjoint and

Ny ¼ fX ¼ ðXÞij A MnM2ðCÞ; X11;X21 A Nj and X12;X22 A Ncg:

(2) ljðNj VN
y
cÞ is dense in Hj and lcðNc VN

y
jÞ is dense in Hc.

Proof. (1) It is easily shown that y is a faithful, s-weakly continuous (quasi-)

weight on PðMnM2ðCÞÞ such that py is self-adjoint and

Ny ¼ fX ¼ ðXÞij A MnM2ðCÞ; X11;X21 A Nj and X12;X22 A Ncg:

Let fUag and fVbg be nets in N
y
j VNj and N

y
c VNc, respectively such that kUakU 1 for

all a and kVbkU 1 for all b and fUag and fVbg converge strongly to I. Considering

Ua 0

0 Vb

� �

A N
y
y VNy;

Ea; b;

we can show that y is semifinite.

A. Inoue, W. Karwowski and H. Ogi922



(2) Take an arbitrary X A Nj. We have VbX A Nj VN
y
c,

kljðVbX Þ ÿ ljðXÞk2 ¼ jX ððVb ÿ IÞyðVb ÿ IÞÞ

for each b, and hence it follows from the s-weak continuity of jX that ljðNj VN
y
cÞ is

dense in Hj. Similarly, lcðNc VN
y
jÞ is dense in Hc.

By Lemma 4.2, (4) and Lemma 4.3, (1) we have

lyððN
y
y VNyÞ

2Þ is total in Hy: ð4:1Þ

Hence we can define the generalized vector Lc
y for the von Neumann algebra

pyðMnM2ðCÞÞ 0w, and so to decide it we first define the following map Lc
j;c:

DðLc
j;cÞ ¼ fK A IIðpj; pcÞ;

bh A DðpcÞ

s:t: KljðX Þ ¼ pcðX Þh; EX A Njg;

Lc
j;cðKÞ ¼ h; K A DðLc

j;cÞ:

8

>

>

<

>

>

:

Then we have the following

Lemma 4.4. Lc
j;c is a linear map of DðLc

j;cÞ into DðpcÞ satisfying

(i) CK A DðLc
j;cÞ and Lc

j;cðCKÞ ¼ CLc
j;cðKÞ for each C A pcðMÞ 0w and K A

DðLc
j;cÞ;

(ii) CK A DðLc
jÞ and Lc

jðCKÞ ¼ CLc
j;cðKÞ for each C A IIðpc; pjÞ and K A DðLc

j;cÞ.

We here put

H1 ¼ lyðNj nE11Þ; H2 ¼ lyðNj nE21Þ;

H3 ¼ lyðNc nE12Þ; H4 ¼ lyðNc nE22Þ;

and

U1ljðXÞ ¼ lyðX nE11Þ; X A Nj;

U2ljðXÞ ¼ lyðX nE21Þ; X A Nj;

U3lcðXÞ ¼ lyðX nE12Þ; X A Nc;

U4lcðXÞ ¼ lyðX nE22Þ; X A Nc:

Then fHigi¼1;...;4 is a set of mutually orthogonal closed subspaces of Hy such that

Hy ¼ H1 lH2 lH3 lH4, and U1 and U2 (resp. U3 and U4) can be extended to the

isometries from Hj (resp. Hc) to H1 and H2 (resp. H3 and H4), and they are also

denoted by U1 and U2 (resp. U3 and U4). For X ¼
X11 X12

X21 X22

� �

A MnM2ðCÞ, pyðX Þ

is given by the matrix:

U1pjðX11ÞU
�
1 U1pjðX12ÞU

�
2 0 0

U2pjðX21ÞU
�
1 U2pjðX22ÞU

�
2 0 0

0 0 U3pcðX11ÞU
�
3 U3pcðX12ÞU

�
4

0 0 U4pcðX21ÞU
�
3 U4pcðX22ÞU

�
4

0

B

B

B

@

1

C

C

C

A

:
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We now have the following results for the von Neumann algebras pyðMnM2ðCÞÞ 0w and

ðpyðMnM2ðCÞÞ 0wÞ
0 and the generalized vector Lc

y :

Lemma 4.5.

pyðMnM2ðCÞÞ 0w

¼

U1C1U
�
1 0 U1C2U

�
3 0

0 U2C1U
�
2 0 U2C2U

�
4

U3C3U
�
1 0 U3C4U

�
3 0

0 U4C3U
�
2 0 U4C4U

�
4

0

B

B

B

B

@

1

C

C

C

C

A

;

C1 A pjðMÞ 0w;

C2 A IIðpc; pjÞ;

C3 A IIðpj; pcÞ;

C4 A pcðMÞ 0w

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

;

ðpyðMnM2ðCÞÞ 0wÞ
0

¼

U1A11U
�
1 U1A12U

�
2 0 0

U2A21U
�
1 U2A22U

�
2 0 0

0 0 U3B11U
�
3 U3B12U

�
4

0 0 U4B21U
�
3 U4B22U

�
4

0

B

B

B

B

@

1

C

C

C

C

A

; ðAij ;BijÞ A Aj;c; ði; j ¼ 1; 2Þ

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

;

where

Aj;c ¼

A A ðpjðMÞ 0wÞ
0
; B A ðpcðMÞ 0wÞ

0
;

ðA;BÞ; AC ¼ CB and A�C ¼ CB�

for all C A IIðpc; pjÞ

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

and

DðLc
yÞ ¼ C ¼

U1C1U
�
1 0 U1C2U

�
3 0

0 U2C1U
�
2 0 U2C2U

�
4

U3C3U
�
1 0 U3C4U

�
3 0

0 U4C3U
�
2 0 U4C4U

�
4

0

B

B

B

@

1

C

C

C

A

;

C1 A DðLc
jÞ;

C2 A DðLc
c;jÞ;

C3 A DðLc
j;cÞ;

C4 A DðLc
cÞ

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

;

Lc
yðCÞ ¼

U1l
c
jðC1Þ

U2l
c
c;jðC2Þ

U3l
c
j;cðC3Þ

U4l
c
cðC4Þ

0

B

B

B

B

B

@

1

C

C

C

C

C

A

; C A DðLc
yÞ:

In bounded case Lc
yððDðLc

yÞ
�
VDðLc

yÞÞ
2Þ is total in Hy, but in unbounded case this

fact doesn’t necessarily hold even if j and c are standard. We have the following result

for this problem:

Theorem 4.6. Let j and c be faithful, s-weakly continuous, semifinite (quasi-)

weights on PðMÞ such that pj and pc are self-adjoint. Suppose Lc
jððDðLc

jÞ
�
VDðLc

jÞÞ
2Þ

is total in Hj and Lc
cððDðLc

cÞ
�
VDðLc

cÞÞ
2Þ is total in Hc. The following statements are

equivalent:
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(i) pj and pc are unitarily equivalent.

(ii) IIðpj; pcÞ
�IIðpj; pcÞ and IIðpc; pjÞ

�IIðpc; pjÞ are nondegenerate �-subalgebras of

the von Neumann algebra pjðMÞ 0w and pcðMÞ 0w, respectively.

(iii) Lc
c;jðDðLc

c;jÞÞ is dense in Hj and Lc
j;cðDðLc

j;cÞÞ is dense in Hc.

(iv) Lc
yððDðLc

yÞ
�
VDðLc

yÞÞ
2Þ is total in Hy.

Proof. (i) , (ii) This follows from ([6] Theorem 3.2).

(i) ) (iii) There exists a unitary transform W of Hj onto Hc such that WDðpjÞ ¼

DðpcÞ and pjðXÞ ¼ W �pcðXÞW for all X A M. Then we have

DðLc
j;cÞ ¼ fWC; C A DðLc

jÞg;

Lc
j;cðWCÞ ¼ WLc

jðCÞ; C A DðLc
jÞ:

(

Hence, Lc
j;cðDðLc

j;cÞÞ is dense in Hc. Similarly, Lc
c;jðDðLc

c;jÞÞ is dense in Hj.

(iii) ) (iv) By Lemma 4.5 we have

Lc
yððDðLc

yÞ
�
VDðLc

yÞÞ
2Þ

¼

U1C1L
c
jðD1Þ þU1C2L

c
j;cðD3Þ

U2C1L
c
c;jðD2Þ þU2C2L

c
cðD4Þ

U3C3L
c
jðD1Þ þU3C4L

c
j;cðD3Þ

U4C3L
c
c;jðD2Þ þU4C4L

c
cðD4Þ

0

B

B

B

B

@

1

C

C

C

C

A

;

C1;D1 A DðLc
jÞ

�
VDðLc

jÞ;

C2;D2;C
�
3 ;D

�
3 A DðLc

c;jÞ;

C3;D3;C
�
2 ;D

�
2 A DðLc

j;cÞ;

C4;D4 A DðLc
cÞ

�
VDðLc

cÞ

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

; ð4:2Þ

which implies since DðLc
jÞ

�
VDðLc

jÞ and DðLc
cÞ

�
VDðLc

cÞ are nondegenerate

that lc
yððDðLc

yÞ
�
VDðLc

yÞÞ
2Þ is total in Hy.

(iv) ) (i) Since lc
yððDðLc

yÞ
�
VDðLc

yÞÞ
2Þ is total in Hy, it follows that Lcc

y is well-

defined and

DðLcc
y Þ

¼ A ¼

U1A11U
�
1 U1A12U

�
2 0 0

U2A21U
�
1 U2A22U

�
2 0 0

0 0 U3B11U
�
3 U3B12U

�
4

0 0 U4B21U
�
3 U4B22U

�
4

0

B

B

B

B

@

1

C

C

C

C

A

;

Aij A DðLcc
j Þ;

Bij A DðLcc
c Þ ði; j ¼ 1; 2Þ s:t:

B11L
c
j;cðC3Þ ¼ C3L

cc
j ðA11Þ;

B21L
c
j;cðC3Þ ¼ C3L

cc
j ðA21Þ;

A12L
c
c;jðC2Þ ¼ C2L

cc
c ðB12Þ;

A12L
c
c;jðC2Þ ¼ C2L

cc
c ðB22Þ

for EC2 A DðLc
c; jÞ

and EC3 A DðLc
j;cÞ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

;

Lcc
y ðAÞ ¼

U1L
cc
j ðA11Þ

U2L
cc
j ðA21Þ

U3L
cc
c ðB12Þ

U4L
cc
c ðB22Þ

0

B

B

B

@

1

C

C

C

A

; A A DðLcc
y Þ:
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Then we have

SL cc
y
¼

U1S11U
�
1 0 0 0

0 0 U2S12U
�
3 0

0 U3S21U
�
2 0 0

0 0 0 U4S22U
�
4

0

B

B

B

@

1

C

C

C

A

;

where Sij ði; j ¼ 1; 2Þ is a closed operator defined by

S11 : L
cc
j ðA11Þ 7! Lcc

j ðA�
11Þ;

S22 : L
cc
c ðB22Þ 7! Lcc

c ðB�
22Þ;

S12 : L
cc
c ðB12Þ 7! Lcc

j ðA�
12Þ;

S21 : L
cc
j ðA21Þ 7! Lcc

c ðB�
21Þ:

Let Sij ¼ JijD
1=2
ij be the polar decomposition of Sij ði; j ¼ 1; 2Þ. Then we have

DL cc
y
¼

U1D11U
�
1 0 0 0

0 U2D21U
�
2 0 0

0 0 U3D12U
�
3 0

0 0 0 U4D22U
�
4

0

B

B

B

@

1

C

C

C

A

; ð4:3Þ

JL cc
y
¼

U1J11U
�
1 0 0 0

0 0 U2J12U
�
3 0

0 U3J21U
�
2 0 0

0 0 0 U4J22U
�
4

0

B

B

B

@

1

C

C

C

A

:

Then it follows from Lemma 4.5 that

C1 JL cc
y

0 U1U
�
2 0 0

U2U
�
1 0 0 0

0 0 0 U3U
�
4

0 0 U4U
�
3 0

0

B

B

B

B

@

1

C

C

C

C

A

JL cc
y

¼

0 0 U1J11J12U
�
3 0

0 0 0 U1J12J22U
�
4

U3J21J11U
�
1 0 0 0

0 U4J22J21U
�
2 0 0

0

B

B

B

B

@

1

C

C

C

C

A

A pyðMnM2ðCÞÞ 0w:

Hence we have

CpyðX ÞC ¼ pyðXÞ; EX A MnM2ðCÞ;
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which implies that W 1 J22J21 is a unitary tranform of Hj onto Hc such that

pjðX Þ ¼ W �pcðXÞW ;

EX A M:

This completes the proof.

Proposition 4.7. Let j and c be faithful, s-weakly continuous, semifinite (quasi-)

weights on PðMÞ such that pj and pc are self-adjoint. The following statements are

equivalent:

(i) j and c are quasi-standard (quasi-)weights which satisfy one of (i)�(iv) in

Theorem 4.6.

(ii) y is quasi-standard.

Proof. (i) ) (ii) By Theorem 4.6 there exists a unitary transform W of Hj onto

Hc such that WDðpjÞ ¼ DðpcÞ and pjðX Þ ¼ W �pcðX ÞW for all X A M. Since W � A

IIðpc; pjÞ, it follows that

Aj;c ¼ fðA;WAW �Þ; A A ðpjðMÞ 0wÞ
0g;

which implies by Lemma 4.5 and (4.3) that for each Aij A ðpjðMÞ 0wÞ
0 ði; j ¼ 1; 2Þ

D it
L cc

y

U1A11U
�
1 U1A12U

�
2 0 0

U2A21U
�
1 U2A22U

�
2 0 0

0 0 U3WA11W
�U �

3 U3WA12W
�U �

4

0 0 U4WA21W
�U �

3 U4WA22W
�U �

4

0

B

B

B

B

@

1

C

C

C

C

A

Dÿit
L cc
y

¼

U1D
it
11A11D

ÿit
11 U

�
1 U1D

it
11A12D

ÿit
21 U

�
1 0 0

U2D
it
21A21D

ÿit
11 U

�
1 U2D

it
21A22D

ÿit
21 U

�
2 0 0

0 0 U3D
it
12WA11W

�Dÿit
12 U

�
3 U3D

it
12WA12W

�Dÿit
22 U

�
4

0 0 U4D
it
22WA21W

�Dÿit
12 U

�
3 U4D

it
22WA22W

�Dÿit
22 U

�
4

0

B

B

B

B

B

@

1

C

C

C

C

C

A

A ðpyðMnM2ðCÞÞ 0wÞ
0
:

Hence we have by Lemma 4.5

WD it
11A11D

ÿit
11 W

� ¼ D it
12WA11W

�Dÿit
12 ; ð4:4Þ

WD it
21A22D

ÿit
21 W

� ¼ D it
22WA22W

�Dÿit
22 ; ð4:5Þ

WD it
11A12D

ÿit
21 W

� ¼ D it
12WA12W

�Dÿit
22 ; ð4:6Þ

WD it
21A21D

ÿit
11 W

� ¼ D it
22WA21W

�Dÿit
12 : ð4:7Þ

It follows from (4.4) and (4.5) that Dÿit
11 W

�D it
12W , Dÿit

21 W
�D it

22W A pjðMÞ 0w for all t A R,

and hence

D it
12DðpcÞ ¼ WD it

11ðD
ÿit
11 W

�D it
12WÞW �

DðpcÞHDðpcÞ

for all t A R. Similarly,

D it
21DðpjÞHDðpjÞ;

Et A R:
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Hence we have

D it
L cc

y
DðpyÞHDðpyÞ;

Et A R:

Therefore, y is quasi-standard.

(ii) ) (i) Since Lc
yððDðLc

y Þ
�
VDðLc

y ÞÞ
2Þ is total in Hy, it follows from (4.2) that

Lc
jððDðLc

jÞ
�
VDðLc

jÞÞ
2Þ and Lc

cððDðLc
cÞ

�
VDðLc

cÞÞ
2Þ are total in Hj and Hc, respec-

tively. Furthermore, since D it
L cc

y
DðpyÞHDðpyÞ for all t A R, it follows from (4.3)

that D it
L cc

j
DðpjÞHDðpjÞ and D it

L cc
c
DðpcÞHDðpcÞ for all t A R. Therefore, j and c are

quasi-standard. This completes the proof.

Theorem 4.8 (Generalized Connes cocycle theorem). Suppose j and c are faithful,

s-weakly continuous, semifinite, quasi-standard (quasi-)weights on PðMÞ which satisfy

one of (i)�(iv) in Theorem 4.6. Then there exists a strongly continuous map

t A R 7! Ut A pjðMÞ 00wc, uniquely determined, such that

(i) Ut is unitary for each t A R;

(ii) Usþt ¼ Uts
L cc

j

t ðUsÞ for each s; t A R;

(iii) s
L cc

c

t ðWAW yÞ ¼ WUts
L cc

j

t ðAÞU �
t W

� for each A A pjðMÞ 00wc for each t A R, where

W is a unitary transform of Hj onto Hc such that WDðpjÞ ¼ DðpcÞ and pcðXÞ ¼

WpjðX ÞW y for all X A M;

(iv) for any A A ðW yN
c
WÞVN

y
j
and B A Nj V ðW yN

y

c
WÞ there exists an element

FA;B of Að0; 1Þ such that

FA;BðtÞ ¼ _jjðAUts
L cc

j

t ðBÞÞ;

FA;Bðtþ iÞ ¼ _
ccðs

L cc
c

t ðWBW yÞWUtAW
yÞ;

for all t A R, where j and c are the quasi-weights induced by j and c, respectively.

Proof. We put

DðLc
j Þ ¼ fpjðXÞ;X A Ncg;

Lc
j ðpjðXÞÞ ¼ W �lcðXÞ; X A Nc:

8

<

:

Then it is easily shown that Lc
j is a generalized vector for pjðMÞ such that

DððLc
j Þ

cÞ ¼ fW �KW ;K A DðLc
cÞg;

ðLc
j Þ

cðW �KWÞ ¼ W �Lc
cðKÞ; K A DðLc

cÞ;

8

<

:

DððLc
j Þ

ccÞ ¼ fW �AW ;A A DðLcc
c Þg;

ðLc
j Þ

ccðW �AW Þ ¼ W �Lcc
c ðAÞ; A A DðLcc

c Þ;

8

<

:

S
ðLc

j Þ
cc ¼ W �SL cc

c
W :

Hence we have

D it

ðLc
j Þ

ccDðpjÞ ¼ W �D it
L cc

c
WDðpjÞHDðpjÞ
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for all t A R, and so Lc
j is quasi-standard. By Theorem 3.4 Lj and Lc

j are standard

generalized vectors for the generalized von Neumann algebra pjðMÞ 00wc, and so

it follows from ([10] Theorem 3.3) that there exists a strongly continuous map

t A R 7! Ut A pjðMÞ 00wc satisfying the conditions (i)@ (iv) and it is identical with the

Connes cocycle ½DLc
j : DLj�t ð¼ D it

21D
ÿit
11 Þ associated with Lc

j with respect to Lj. This

completes the proof.

The map t A R 7! Ut A pjðMÞ 00wc, uniquely determined by the above theorem, is

called the cocycle associated with the quasi-weight c with respect to the quasi-weight j,

and denoted by ½Dc : Dj�. It follows from (4.6) that the cocycle ½Dj : Dc�t associated

with j with respect to c equals W ½Dc : Dj��t W
�. By (iii) and (iv) in Theorem 4.8 we

have

(iii) 0 s
L cc

c

t ðpcðXÞÞ ¼ W ½Dc : Dj�ts
L cc

j

t ðpjðXÞÞ½Dc : Dj��t W
�, EX A M, Et A R;

(iv) 0 for any X A N
y
j VNc and Y A Nj VN

y
c there exists an element FX ;Y of Að0; 1Þ

such that

FX ;Y ðtÞ ¼ _jjðpjðXÞ½Dc : Dj�ts
L cc

j

t ðpjðYÞÞÞ;

FX ;Y ðtþ iÞ ¼ _
ccðs

L cc
c

t ðpcðY ÞÞ½Dj : Dc��t pcðXÞÞ;

for all t A R.

Corollary 4.9. Suppose j and c are faithful, s-weakly continuous, semifinite,

standard (quasi-)weights which satisfy one of (i)@ (iv) in Theorem 4.6 and pjðMÞ is a

generalized von Neumann algebra. Then there exists a strongly continuous map

t A R 7! ½Dc : Dj�t A M, uniquely determined, such that

(i) ½Dc : Dj�t is unitary for each t A R;

(ii) ½Dc : Dj�sþt ¼ ½Dc : Dj�ts
j
t ð½Dc : Dj�sÞ;

(iii) s
c
t ðXÞ ¼ ½Dc : Dj�ts

j
t ðXÞ½Dc : Dj��t ,

EX A M for each t A R;

(iv) for any X A N
y
j VNc and Y A Nj VN

y
c there exists an element FX ;Y of Að0; 1Þ

such that

FX ;Y ðtÞ ¼ _jjðX ½Dc : Dj�ts
j

t ðYÞÞ;

FX ;Y ðtþ iÞ ¼ _ccðsc
t ðYÞ½Dc : Dj�tXÞ

for all t A R.

This ½Dc : Dj� is called the cocycle associated with the (quasi-)weight c with respect

to the (quasi-)weight j.

5. Standard weights on generalized von Neumann algebras with strongly dense

bounded part.

An seen in Corollary 4.9, if pjðMÞ is a generalized von Neumann algebra, then the

generalized Connes cocycle theorem for weights on O�-algebras becomes the best

form. In this section we show that if M is a generalized von Neumann algebra with
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strongly dense bounded part and j is a strongly faithful, s-weakly continuous (quasi-)

weight on PðMÞ, then pjðMÞ is spatially isomorphic to M, and so it is a generalized

von Neumann algebra.

Lemma 5.1. Let M be a self-adjoint O�-algebra on D in H such that M 00
b ¼ ðM 0

wÞ
0

and j a s-weakly continuous (quasi-)weight on PðMÞ. Then there exists a normal

�-homomorphism pj of ðM 0
wÞ

0
onto ðpjðMÞ 0wÞ

0
such that pjðAÞ ¼ pjðAÞ for all A A Mb.

Proof. Since jX can be extended to a s-weakly continuous positive linear

functional on M
00
b for each X A Nj, it follows that

jX ðA
yAÞU kAk2jX ðIÞ;

EA A Mb;

which implies

pjðMbÞH pjðMÞb;

kpjðAÞkU kAk; EA A Mb: ð5:1Þ

We now have the following:

If fAag is any uniformly bounded net in Mb such that Aa ! A A BðHÞ weakly (resp.

strongly, strongly*), then fpjðAaÞg converges weakly (resp. strongly, strongly*) to an

element of BðHjÞ. (5.2)

In fact, for each X ;Y A Nj we have

lim
a;b

ððpjðAaÞ ÿ pjðAbÞÞljðXÞjljðY ÞÞ ¼ lim
a;b

jX ;Y ðAa ÿ AbÞ

¼ 0;

and so we put

BðljðXÞ; ljðY ÞÞ ¼ lim
a
ðpjðAaÞljðXÞjljðY ÞÞ X ;Y A Nj:

By (5.1) B is a bounded sesquilinear form on ljðNjÞ � ljðNjÞ, and so it can be extended

to a bounded sesquilinear form on Hj �Hj. It hence follows from the Riesz theorem

that fpjðAaÞg converges weakly (resp. strongly, strongly*) to an element of BðHjÞ.

Since M
00
b ¼ ðM 0

wÞ
0, it follows from the Kaplansky density theorem that for each

A A ðM 0
wÞ

0 there exists a net fAag in Mb such that kAakU kAk for all a and Aa ! A

strongly*, and so we put

pjðAÞ ¼ s� ÿ lim
a

pjðAaÞ; A A ðM 0
wÞ

0
:

By (5.2) pjðAÞ is well-defined, i.e., it is independent for taking a net fAag in Mb, and pj
is a normal �-homomorphism of ðM 0

wÞ
0 to BðHjÞ. Hence, it follows that

pjððM
0
wÞ

0Þ is a von Neumann algebra: ð5:3Þ

We finally show that

pjðMbÞ
00 ¼ pjððM

0
wÞ

0Þ ¼ ðpjðMÞ 0wÞ
0
: ð5:4Þ
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In fact, take an arbitrary C A pjðMbÞ
0. Since X is a‰liated with ðM 0

wÞ
0 ¼ M

00
b for each

X A M, there exists a net fAag in Mb which converges s-strongly* to X. Hence we

have

lim
a

kpjðAaÞljðYÞ ÿ pjðXÞljðY Þk2 ¼ lim
a

jY ððAa ÿ X ÞyðAa ÿ XÞÞ

¼ 0

and

lim
a

kpjðA
y
aÞljðYÞ ÿ pjðX

yÞljðY Þk ¼ 0

for each Y A Nj, and so

ðCpjðX ÞljðY ÞjljðZÞÞ ¼ lim
a
ðCpjðAaÞljðYÞ j ljðZÞÞ

¼ lim
a
ðCljðY Þ j pjðA

y
aÞljðZÞÞ

¼ ðCljðYÞ j pjðX
yÞljðZÞÞ

for all Y ;Z A Nj. Hence, C A pjðMÞ 0w. Thus we have pjðMbÞ
0
H pjðMÞ 0w, which

implies by (5.3) that

pjðMbÞ
00
H pjððM

0
wÞ

0ÞH ðpjðMÞ 0wÞ
0
H pjðMbÞ

00
:

Therefore, the statement (5.4) holds. This completes the proof.

As shown in Lemma 4.2, if j is a faithful, semifinite (quasi-)weight on PðMÞ, then

pj is a �-isomorphism, but we don’t know whether pj is a �-isomorphism in gen-

eral. For this we have the following

Lemma 5.2. Suppose j is a faithful, s-weakly continuous (quasi-)weight on

PðMÞ. Then the following statements are equivalent:

(i) pj is a �-isomorphism.

(ii) The map pÿ1
j from pjðMbÞ½tss� to ðM 0

wÞ
0d
D
½tss� is closable.

Proof. (i) ) (ii) Let fAag be any net in Mb such that tss ÿ limapjðAaÞ ¼ 0 and

tss ÿ limaAa ¼ A A ðM 0
wÞ

0d
D
. By Lemma 5.1 we have

pjðAÞ ¼ ts ÿ lim
b

pjðBbÞ;

where fBbg is a uniformly bounded net in Mb which converges s-strongly* to A. And

we have

lim
a;b

kpjðAaÞljðX Þ ÿ pjðBbÞljðXÞk2 ¼ lim
a;b

jX ððAa ÿ BbÞ
yðAa ÿ BbÞÞ

¼ 0
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for all X A Nj. Hence we have

pjðAÞljðXÞ ¼ lim
a

pjðBbÞljðXÞ

¼ lim
a

pjðAaÞljðX Þ

¼ 0

for all X A Nj, and so pjðAÞ ¼ 0. Since pj is a �-isomorphism, we have A ¼ 0.

(ii) ) (i) Suppose pjðAÞ ¼ 0, A A ðM 0
wÞ

0. Then there exists a net fAag in Mb such

that kAakU r for all a and tss ÿ limaAa ¼ A. By Lemma 5.1 we have

tss ÿ lim
a

pjðAaÞ ¼ pjðAÞ ¼ 0:

Hence, A ¼ 0. This completes the proof.

Definition 5.3. A s-weakly continuous (quasi-)weight j on PðMÞ is said to be

strongly faithful if j is faithful and one of the conditions (i) and (ii) of Lemma 5.2 holds.

Proposition 5.4. Let M be a self-adjoint O�-algebra on D in H such that

M
00
b ¼ ðM 0

wÞ
0, and j a strongly faithful, s-weakly continuous (quasi-)weight on PðMÞ such

that pj is self-adjoint. Suppose ðM 0
wÞ

0
and ðpjðMÞ 0wÞ

0
satisfy one of the following

statements:

(i) they are standard von Neumann algebras.

(ii) M
0
w and pjðMÞ 0w are properly infinite and of countable type.

(iii) H and Hj are separable and ðM 0
wÞ

0
and ðpjðMÞ 0wÞ

0
are von Neumann algebras

of type III.

Then the O�-algebras M and pjðMÞ are spatially isomorphic.

Proof. It follows from Lemma 5.1, 5.2 and ([23] Corollary 8.12, 8.13, 10.15) that

pj is spatial, that is, there exists a unitary transform U of H onto Hj such that

pjðAÞ ¼ UAU � for all A A ðM 0
wÞ

0. This implies that

UD ¼ DðpjÞ and pjðXÞ ¼ UXU � ð5:5Þ

for all X A M. Take an arbitrary X A M. For each x A D and Y A Nj we have

ðpjðX
yÞljðY ÞjUxÞ ¼ lim

a
ðpjðA

y
aÞljðYÞjUxÞ

¼ lim
a
ðUAy

aU
�ljðY ÞjUxÞ

¼ ðljðYÞjUXxÞ;

where fAag is a net in Mb which converges s-strongly* to X. By the self-adjointness of

pj we have

Ux A DðpjÞ and pjðXÞUx ¼ UXx; ð5:6Þ
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and further

ðX yx jU �hÞ ¼ ðUX yxjhÞ

¼ ðpjðX
yÞUxjhÞ

¼ ðxjU �pjðX ÞhÞ

for all x A D and h A DðpjÞ. Hence it follows from the self-adjointness of M that

U �
DðpjÞHD, which implies that the statement (5.5) holds. This completes the proof.

Throughout the rest of this section let M be a self-adjoint generalized von Neumann

algebra on D in H such that M
00
b ¼ ðM 0

wÞ
0 and ðM 0

wÞ
0 is a standard von Neumann

algebra. We denote by WsðMÞ the set of all strongly faithful, s-weakly continuous,

semifinite, quasi-standard quasi-weights j on PðMÞ such that pj are self-adjoint.

Suppose j A WsðMÞ. By Proposition 5.4 pjðMÞ is a generalized von Neumann algebra

on DðpjÞ in Hj, and so j is standard. By Theorem 3.3 we have the following

Corollary 5.5. For every j A WsðMÞ there exists a one-parameter group fsj
t gt AR

of �-automorphisms of M such that

(i) pjðs
j
t ðXÞÞ ¼ D it

jpjðXÞDÿit
j , X A M; t A R;

(ii) j is a fsj
t g-KMS quasi-weight on PðMÞ.

Suppose j;c A WsðMÞ. By Proposition 5.4 pjðMÞ and pcðMÞ are generalized von

Neumann algebras, and j and c are standard. Hence, by Corollary 4.7 we have the

following

Corollary 5.6. Suppose j;c A WsðMÞ. Then, the cocycle ½Dc : Dj� associated

with the quasi-weight c with respect to the quasi-weight j is well-defined in M, that is,

t 7! ½Dc : Dj�t is a strongly continuous map of R into M satisfying the conditions

(i)@ (iv) in Corollary 4.9.

We generalize the Pedersen-Takesaki theorem [24] for standard weights on von

Neumann algebras to those on O�-algebras. Let j A WsðMÞ. Since M is a generalized

von Neumann algebra, the quasi-weight j on PðMÞ in Theorem 3.4 is defined by

Nj ¼ fX A M;
bxX A DðpjÞ s:t: pjðXÞLc

jðKÞ ¼ KxX ;
EK A DðLc

jÞg;

j
X

k

X
y
kXk

 !

¼
X

k

kxXk
k2;

X

k

X
y
kXk A PðNjÞ:

8

>

>

>

<

>

>

>

:

Using ([10] Theorem 4.2, 4.7), we can show the following results:

Corollary 5.7. Suppose j;c A WsðMÞ. The following statements are equivalent:

(i) c � sj
t ¼ c for each t A R.

(ii) j � sc
t ¼ j for each t A R.

(iii) ½Dc : Dj�t A M
sc

for each t A R, where M
sc

1 fX A M; s
c
t ðX Þ ¼ X ;

Et A Rg.

(iv) ½Dc : Dj�t A M
sj

for each t A R, where M
sj

1 fX A M; s
j
t ðXÞ ¼ X ;

Et A Rg.

(v) f½Dc : Dj�tgt AR is strongly continuous group of unitary elements of M.
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Corollary 5.8. Suppose j;c A WsðMÞ. The following statements are equivalent:

(i) c satisfies the KMS-condition with respect to fss
t gt AR.

(ii) s
c
t ¼ s

j
t for all t A R.

(iii) There exists a positive self-adjoint operator A in H a‰liated with

ðpjðMÞ 0wÞ
0
V pjðMÞ 0w such that c ¼ jA, where jA is the quasi-weight on PðpjðMÞ 00wcÞ

induced by the quasi-weight on PðMÞ defined by

NjA
¼ fX A M; LjðXÞ A DðAÞg;

jAðX
yXÞ ¼ kALjðXÞk2; X A NjA

:

8

<

:
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