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Abstract. We call a formal morphism between completions of complex spaces con-

vergent if it comes from a holomorphic mapping between the complex spaces. We

assume always that the source space is compact. Then a formal morphism is either

convergent everywhere or nowhere, under very general conditions.

0. Introduction.

We are concerned with the claim that a formal morphism defined on the com-

pletion of a complex space along a compact subspace converges either everywhere or

nowhere. As to the formal function case, such a claim for convergence domains first

emerged in Gabrièlov’s paper in an analytic form ([G2], (1.6)). This property of formal

functions is extracted from those of formal functions along the exceptional set of a

blowing up obtained as pullbacks. Further this property has turned out to be shared by

all the formal functions on the completion of a complex space along more general space

as follows.

ð�Þ Let X̂XjS denote the completion of a complex space X along a Moishezon subspace

S. If X̂XjS is globally integral (i.e. X is globally integral along S). Then a global formal

function on X̂XjS converges either everywhere or nowhere ([I3], (C)).

By the medium of this, two important theorems, Gabrièlov’s on convergence of

pullback of formal function ([G2], (5.6), cf. [T2]) and Sadullaev’s criterion for alge-

braicity of analytic subsets of C
n ([S ], (2.2)), turned out to be equivalent ([I3]).

Ohsawa posed the author the problem whether ð�Þ can be generalized to morphisms

or not. In the case of the famous example of Arnold [Arn], the formal isomorphism is

known to be divergent everywhere. In this paper we show two a‰rmative answers to

Ohsawa’s problem, which cover a very general class of formal morphisms.

First we clarify the notion of convergence of formal morphisms in §1, which are

concerned with formal morphisms between the special formal complex spaces obtained

as the completions of complex spaces along analytic subsets. In this connection, we

remember Whitney-Shiota function in Appendix. This function assures the existence
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of a formal complex space which is topologically 0-dimensional and not obtained as a

completion of a complex space.

Now let X̂XjS be the same as in ð�Þ and Y a reduced complex space. Our first

answer to Ohsawa’s problem is Theorem I in §2, which asserts the following.

If F : X̂XjS ! Y is a formal morphism into a complex space Y such that none of the

images of local irreducible components are locally thin (see §2) and if jFjðSÞ can be

contracted to one point by a generically finite morphism of Y, then F converges either

everywhere or nowhere.

The second is Theorem II in §7, which asserts the following.

Suppose that ŶYjT is the completion of a reduced complex space Y along T such that Y

is smooth outside T. Then, for the same X̂XjS as in ð�Þ, an adic formal morphism (cf. §1)

F : X̂XjS ! ŶYjT with the full generic rank (see §3) is convergent either everywhere or

nowhere.

Both theorems are generalizations of ð�Þ above. Since our proofs of the

main theorems are based upon ð�Þ, they inherit the condition that S is a Moishezon

subspace. It is left open whether these theorems hold or not for more general compact

subspaces S.

The proof of Theorem I is a combination of Gabrièlov’s theorem on convergence of

pullback and other famous results in local analytic geometry.

The proof of Theorem II requires patience to develop the general theory of formal

complex spaces (§3, 4, 5, 6). Formal complex spaces are introduced by Krasnov [Kr]

and studied by Bingener [B3] systematically. Let us remember the definition. Let X :¼

ðS;OXÞ ðS ¼ jX jÞ be a C-local ringed space and mx the maximal ideal of the local ring

OX;x. Let IT HOX ðT HSÞ denote the ideal sheaf associated to the presheaf of

sections f A OXðUÞ over open sets U HS such that fx A mx for all x A T VU . Then, X :¼

ðS;OXÞ is by definition a formal complex space if ðS;OX=I
n
SÞ (n A N) are complex

spaces and if the canonical homomorphism OX ! lim
 ÿ
n

OX=I
n
S is bijective. Since the

structure sheaves of formal complex spaces are coherent ([B3], (1.1)), many notions and

constructions for complex spaces can be transferred to them. We sometimes neglect

to write them up. In particular formal blowings up are important for the proof

of Theorem II. There we need universal property of formal blowings up with not

necessarily analytic center (in contrast to usual modification theory). Although these

are covered by [B3] in principle, we need a few detailed properties. The di‰culty lies in

the fact that topology works little in formal geometry. Fortunately the spaces of

Pfa‰an forms often substitute for topology. It enables us to generalize Gabrièlov’s

generic rank for holomorphic maps to formal morphisms (cf. (3.4)). This generalized

rank is used to measure the local dimensions of images of formal morphisms. Indeed, it

is needed to deduce Theorem II from Theorem I in §7.

The category of complex spaces (resp. formal complex spaces) is expressed as cs

(resp. fcs). Thus F A cs : X ! Y (resp. F A fcs : X ! YÞ implies a morphism between

complex spaces (resp. formal complex spaces). Let Fx : Xx ! Yh (h ¼ jFjðxÞ) denote

the germ of morphism F A cs (resp. fcs) at x. Then the induced homomorphism
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between local rings is expressed by the corresponding small letter as jx : OY ;h ! OX ;x

(see §1). A subspace means a closed subspace defined by a coherent ideal sheaf unless

stated otherwise. When we mention Modifications or finite morphisms between complex

spaces, the underlying topological mappings are always assumed to be proper. Let P be

a property of a complex space. We say that a complex space X satisfies P along a

closed subset S if the germ of X along S has an arbitrarily small representative which

satisfies P. A (formal) complex space X is called (locally) integral at x A jX j if the local

ring OX ;x is an integral domain. A complex space is called (globally) integral if it is

reduced and its smooth points form a connected subset. A formal complex space

is (globally) integral if it is reduced and if its normalization is connected. These

definitions are consistent (cf. (6.5)).

The author has made many mistakes in the preliminary stage of this paper. Many

facts in formal geometry are seemingly apparent by the analogy to analytic geometry but

they require careful algebraic verification. Finally, he wishes to express thanks to

Professors A. Fujiki and M. Shiota for helpful discussions and to Professor T. Ohsawa

for this not quite light task.

1. Convergence of formal morphisms.

Let F : X ! Y be a morphism between locally C-ringed spaces. By definition, F

consists of a continuous map jFj : jX j ! jY j between underlying topological spaces and

a homomorphism F]
: OY ! F�OX of sheaves of rings, where F�OX denotes the direct

image sheaf. The homomorphism F] canonically induces a local homomorphism

jx : OY ;h ! OX ;x (h ¼ jFjðxÞ). For an OY -module F on Y, let Fÿ1F1 jX j �jY jF

denote the topological inverse image sheaf. F] also induces canonically the adjoint

homomorphism F]
: Fÿ1OY ! OX (the same notation F] is used). Let IHOY be an

ideal sheaf and let ðFÿ1IÞOX HOX denote the ideal sheaf generated by its image by

F]. This is just the ideal sheaf that defines the inverse image of the subspace of Y

defined by I and called the inverse image ideal sheaf.

Let X be a complex space with the structure sheaf OX and S its analytic subset

defined by a coherent ideal sheaf IHOX i.e. S ¼ sptOX=I. Then ðS; ÔOX jSÞ with

ÔOX jS 1 ðlim ÿ
k

OX=I
kÞjS is a formal complex space. We call this the ( formal ) completion

of X along S and express it as X̂X ¼ X̂XjS and thus OX̂X ¼ ÔOX jS (cf. [BS ], VI). The

completion is determined by the core S and independent of the choice of I. In this

paper, the long vertical lines indicate

(i) the underlying topological spaces (mappings) of ringed spaces or

(ii) the restrictions of morphisms.

The short vertical lines indicate

(iii) the subscript case of (i) or

(iv) the cores of completions.

If S ¼ jX j, then ÔOX jS ¼ OX and X̂XjS ¼ X . Hence cs is a full subcategory of fcs. If S ¼

fxg, then O
�
X ;x 1 ÔOX jx;x is the mx-adic completion of the local ring OX ;x, where mx

denotes the maximal ideal of OX ;x. Let SH jX j and T H jY j be analytic subsets of

complex spaces and F A cs : X ! Y a morphism such that jFjðSÞHT . Then F in-
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duces a morphism F̂FS;T A fcs : X̂XjS ! ŶYjT , which we call the completion of F along S

and T (cf. [BS ], VI, §2). Completion of a complex space is functorial: i.e. ðC �FÞ^S;U ¼
ĈCT ;U � F̂FS;T for F A cs : X ! Y with jFjðSÞHT and C A cs : Y ! Z with jFjðTÞHU .

This implies that completion transforms a commutative diagram into a commutative

diagram. The completions of the identity yield canonical homomorphisms OX ;x !
ÔOX jS;x ! O

�
X ;x for x A S. These are faithfully flat morphisms (cf. [M ], §7, §8). We may

consider these homomorphisms inclusions: OX ;x H ÔOX jS;x HO
�
X ;x. A section of ÔOX jS

over U HS is called a formal function on U and it is identified with a morphism of

X̂XjSjU into C 1 ĈC jC . We say that F A fcs : X̂XjS ! ŶYjT is convergent at x A S if there

exists a neighborhood U H jX j of x such that FjS VU is the completion, along S VU

and T, of an analytic morphism X jU ! Y . A coherent ideal sheaf IHOX is called an

ideal sheaf of definition of X A fcs if ðjX j;OX=IÞ A cs (i.e. IjX j ¼
ffiffiffiffi

I
p

by Ruckert’s

Nullstellensatz, cf. [GR], [Moo]). (See Introduction for the definition of IjX j. The

radicals of coherent ideal sheaves are coherent because so are the nilradicals of the

structure sheaves (cf. (4.3)).) Thus IjXj is the maximal among ideals of definition of

jX j. A morphism F A fcs : X ! Y is called adic if and only if every (or some) ideal of

definition of Y generates that of X . Take F A fcs : X ! Y , neighborhood U of x A jX j
and Stein neighborhood V of h ¼ jFjðxÞ A jY j such that jFjðUÞHV . By the em-

bedding theorem of Bingener [B3], §1, there exist an open subset W HC
n, closed

analytic subset SHW and an embedding Y A fcs : Y jV ! ŴWjS (i.e. Y is adic on V,

jYj : V ! S is an homeomorphism and the associated homomorphism yh : ÔOWjS; z ! OY ;h

(z ¼ jYjðhÞÞ are surjective for all h A V .) We call the pullbacks yðz1Þ; . . . ; yðznÞ A OYðVÞ
of a‰ne coordinates z1; . . . ; zn of C

n the ambient coordinates around h and their

pullbacks j � yðz1Þ; . . . ; j � yðznÞ A OXðUÞ components of F around x. If W, Y and S

are fixed, the components determine morphism FjU ([Kr], §0). It is obvious that

F : X̂XjS ! ŶYjT is convergent if and only if its components are all so. Convergence of

F A fcs : X̂XjS ! ŶYjT between completions of complex spaces is not a¤ected by the ex-

tension of ŶYjT as follows.

Lemma 1.1. Take F A fcs : X̂XjS ! ŶYjT between completions of complex spaces X and

Y. Suppose that Y is a locally closed subspace of Y 0
A cs and T HT 0

H jY 0j and that

ÎIT ;T 0 : ŶYjT ! ŶY 0
jT 0 be the completion of the inclusion. Then F is convergent if and only if

ÎIT ;T 0 �F is so.

The proof is easy. If a formal complex space X is isomorphic to the completion

ŶYjS of a complex space Y, we call ðY ;SÞ a complex structure of X . A formal complex

space may not have a complex structure even if its underlying topological space is 0-

dimensional (see Appendix). If X and S are given, the germ of Y at a point of S is

unique up to isomorphism ([Art ], (1.6)). It is a di‰cult problem to discuss existence

and uniqueness of the germ of Y up to isomorphism along entire S (cf. [Arn], [K ]). At

any rate, we can refer to convergence of a morphism between formal complex spaces

when their complex structures are specified.

Example 1.2. The substitution t ¼ P

nV1n!s
n defines a formal isomorphism F of

ĈC j0 1 ðf0g;C ½½s��Þ into ĈC j0 1 ðf0g;C ½½t��Þ. If the complex structures are defined by s

and t respectively, F is not convergent.
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�����������������������������!

An algebra isomorphic to a local ring of a formal complex space is called a formal

analytic algebra (cf. (5.4)). Formal analytic algebras and C-algebra homomorphisms

form the category of formal analytic algebras, which is dual to the category of germs at

points of formal complex spaces (cf. the analytic case [Moo], I).

Lemma 1.3. Let F A fcs : X̂XjS ! ŶYjT be a formal morphism between completions of

complex spaces.

(i) For x A S, the composition F � ÎIx;S : X̂Xjx ! ŶYjT is convergent if and only if F is

convergent at x.

(ii) If F is convergent at all x A S, there exist a neighborhood U of S and an analytic

morphism C : X jU ! Y such that F ¼ ĈCS;T .

Proof. (i) Suppose that F � ÎIx;S is convergent for x A S. Then there exist a

neighborhood U of x and an analytic morphism C1CU A cs : X jU ! Y whose

completion ĈCx;T coincides with F � ÎIx;S. Hence the left lower rectangle in the diagram

is commutative. Since completion is functorial, the outer rectangle and upper triangle

are also commutative. Hence we have ĈCS VU ;T � ÎIx;S VU ¼ F � ÎIS VU ;S � ÎIx;S VU . Since

the homomorphism of local rings induced by ÎIx;S VU is injective, ÎIx;S VU is an epi-

morphism (a right cancelable morphism) in the category of germs of formal complex

spaces. Hence the germ ðĈCS VU ;T Þx coincides with ðF � ÎIS VU ;SÞx ¼ Fx. Thus F and

ĈCS VU ;T coincides in a neighborhood of x and F is convergent there. The converse is

trivial.

ðX jU Þ̂jx ������������������������!
ÎIx; S VU

ðX jU Þ̂jS VU

G

?
?
?
?
?
?
?
?
?
?
?
y

ŶYjT

?
?
?
?
?
?
?
?
?
?
?
y

ÎIS VU ; S

X̂Xjx
ÎIx; S

X̂XjS

ĈCx;T ĈCS VU ;T

F

(ii) Suppose that there exist analytic morphisms CU : X jU ! Y and C V : X jV !

Y defined on neighborhoods U and V of x such that FjS VU ¼ ðCU Þ̂S VU ;T and

FjS VV ¼ ðC V Þ̂S UV ;T . We have only to prove that each component of CU coincides

with corresponding one of C V in a neighborhood of x. This is trivial because they

coincide in ÔOX jS;xðIOX ;xÞ. r

Lemma 1.4. Let X ¼ X1 U � � � UXk be the decomposition into irreducible components

of reduced X A cs and Si H jXij analytic subsets such that S ¼ S1 U � � � USk. If

F A fcs : X̂XjS ! ŶYjT is convergent on all X̂iXi jSi
(i.e. if F � ÎISi ;S are all convergent), then so is

on entire X̂XjS.

Proof. By (1.3) we have only to consider a formal function germ. Then the

assertion follows from Artin’s theorem on analytic equations [Art ] (see Proof of [I2],

(9.7) for details). r
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2. The first main theorem.

We call an element a of a local ring A active if a mod NA is a nonzerodivisor in

Ared 1A=NA, where NA 1

ffiffiffi

0
p

denotes the nilradical of A. We call a subspace S of a

locally ringed space X thin at x if the ideal IS;x HOX ;x of Sx contains an active

element. Note that the underlying topological space of a thin subspace of a formal

complex space is not always topologically thin. We call a homomorphism p : A ! B

between local rings a crush if the image of some active element by p is not active. If

neither p nor y is a crush, then neither is p � y. A morphism P : Y ! Z between

locally ringed spaces is a crush at h A Y if the corresponding homomorphism

OZ; z ! OY ;hðx ¼ jPjðhÞÞ is so. Let P : Y ! Z be a morphism between complex or

formal complex spaces. It is easy to see that P is a crush at h A Y if and only if some

irreducible component of ðYredÞh is mapped into a thin subspace by the canonically

induced morphism Pred : ðYredÞh ! ðZredÞz. A morphism P A cs : Y ! Z is called

generically finite if jPj is proper and there exists a thin analytic subset EH jY j such that

jPjÿ1ðjPjðhÞÞ is a finite set for any h A jY jnE. The dimension of X A cs (or fcs) at x (or

the dimension of the germ Xx) is defined by the Krull dimension of the local ring:

dimXx 1 dimOX ;x. We say that X A cs (or fcs) is equidimensional at x (or Xx is

equidimensional ) if all the local irreducible components of the germ ðXredÞx of the

reduction have a same dimension and that X is equidimensional if X is equidimensional

everywhere and its local dimensions are constant.

The following is our first main theorem.

Theorem I. Suppose that X and Y are reduced equidimensional complex spaces,

SH jX j an analytic subset and F : X̂XjS ! Y a formal morphism satisfying the following:

(i) S is a thin Moishezon subspace (with respect to the reduced (or any) complex

structure);

(ii) X is globally integral along S;

(iii) F is nowhere a crush on S;

(iv) There exists a generically finite morphism P : Y ! Z such that jP �FjðSÞ ¼
(one point).

If F is convergent at some x A S along some irreducible component of X̂XjS;x, then it is

convergent everywhere on S.

Note that the condition (ii) implies that S is connected. The author has announced

a claim similar to above in [I1], Theorem 3. In this occasion he would like to note that

the assertion is incorrect. In fact his proof needs the condition of non-crush as stated

above. If F is a crush, its ‘‘image’’ may be contracted by P and hence P may bear no

information on F.

Remark 2.1. Let T H jY j be an analytic subset in the theorem. Then, in view of

(1.1), we may replace F : X̂XjS ! Y by F : X̂XjS ! ŶYjT and (iii) by the following:

(iii 0) ÎIT ; jY j �F : X̂XjS ! Y is nowhere a crush, where I denotes the identity of Y.

This is really weaker than (iii) by the following reasons. Since ÎIT ; jY j is flat, it is

nowhere a crush. Then, if F is nowhere a crush, neither is ÎIT ; jY j �F. On the other
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hand, Gabrièlov [G1] has shown existence of F A cs : X ! Y such that F̂Fx;h : X̂Xjx ! ŶYjh

is a crush and ÎIh; jY j � F̂Fx;h : X̂Xjx ! Y is not a crush.

If Y is Stein in the theorem, then jFjðSÞ is one point and the condition (iv) is

unnecessary. In particular, putting Y ¼ C , we see that this theorem is a generalization

of the function case [I3], (C), the explicit form of which is found in (2.5), (C)] below in

an improved form.

To prove the theorem above, we prepare a few lemmas. A formal curve K on

X A fcs (expressed as K HX) is simply a morphism K A fcs : ĈC j0 ! X . We do not

assume that K is adic, so that the image of K does not bear a canonical structure of a

closed subspace. We call jK jð0Þ A jX j the initial point of K .

Lemma 2.2. Let P : Y ! Z denote a modification between reduced complex

spaces. Then there exists a thin subspace EHZ defined by an ideal sheaf IE such

that the following holds: if K HZ is a formal curve with initial point z such that

ðKÿ1
IE; zÞC ½½t��0 0 (i.e. K NE), then there exists a unique lifting LHY of K .

Proof. (i) The case of a blowing up. Suppose that P is the blowing up with centre

E. By the condition on K ; ðKÿ1
IE; zÞC ½½t�� is invertible. Since P is a blowing up in

the category fcs also by the construction of projective spectra, there exists a unique

lifting LHY of K by the universality of a formal blowing up.

(ii) The general case. By Hironaka’s version of Chow’s lemma [Hi ], Cor.2,

there exist a locally finite succession P 0 : Y 0 ! Z of blowings up and a morphism

F : Y 0 ! Y such that P 0 ¼ P �F. Since the problem is local on Z and since a

composition of a finite number of blowings up is a blowing up locally (cf. [HR]), we

may assume that P 0 is a blowing up with centre E. Then a lifting of K to Y 0 exists by

(i). Its image in Y is the lifting of K we seek for. Suppose that there exist two liftings

L and L
0 to Y. By the universality of blowing up, F is also the blowing up of Y with

centre Pÿ1ðEÞ and liftings of L and L
0 to Y 0 exist by (i). By uniqueness (i) of lifting

for the blowing up P 0, they coincide. Hence L ¼ L
0. r

Lemma 2.3. Let P : Y ! Z denote a finite morphism between reduced complex

spaces. Then, for any formal curve K : ĈC j0 ! Z, there exist only a finite number of

liftings L : ĈC j0 ! Y of K .

Proof. Let z be the initial point of K . Since P is proper, we have only to prove

that there exist only a finite number of liftings through each point of jPjÿ1ðzÞ. Hence

we may assume that jPjÿ1ðzÞ ¼ h (one point) and Y is integral at h. If K is not

included in the image of Y, there exists no lifting. Otherwise we may assume that Z is

the image of Y and hence Z is integral. These imply that OY ;h and OZ; z are integral

domains and OY ;h is integral over OZ; z.

Let x1; . . . ; xn be the ambient coordinates around h (cf. §1). There exist monic

polynomials ApðsÞ A OZ; z½s� (p ¼ 1; . . . ; n) such that ApðxpÞ ¼ 0. Let L be a lifting of

K . If we apply k : OZ; z ! C ½½t�� to the coe‰cients of ApðsÞ, we obtain a monic

polynomial BpðsÞ A C ½½t��½s�. Then the components lp ¼ lðxpÞ A C ½½t�� of L satisfy

BpðlpÞ ¼ lðApðxpÞÞ ¼ 0. The coe‰cients of BpðsÞ depend upon K but not upon L.

Since C ½½t�� is an integral domain, only a finite number of choices are permitted for the
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Y

A

h

W

H

E

A

t

root lp A C ½½t�� of the equation BpðsÞ ¼ 0. Since L is determined by l1; . . . ; ln, the

number of liftings L is also finite. r

The key lemma to Theorem I is the following.

Lemma 2.4. Let X, Y be reduced complex spaces, SH jX j an analytic subset and

F : X̂XjS ! Y a formal morphism which is nowhere a crush on S. Suppose that there

exists a generically finite morphism P A cs : Y ! Z such that P �F A fcs : X̂XjS ! ẐZj jZj ¼

Z is convergent at x A S, then F is convergent at x.

Proof. By (1.4), we may assume that X is integral at x. Then by the Hironaka

desingularization, we have only to treat the case X is smooth. Indeed, since the

desingularization morphism has a full generic rank, convergence of the pullbacks of the

components of F implies convergence of the components themselves by Gabrièlov’s

theorem [G2], (5.6). Thus we may assume that X is a neighborhood of x A C
n. We

may replace Z by the ambient space of its local model. Hence we have only to treat

the case Z is an open subset of C
m.

By Stein factorization theorem (cf. [GR], (10.6.1), (8.1.1)), there exist a reduced

complex space W, a modification Y : Y !W and a finite morphism S : W ! Z such

that P ¼ S �Y. Let EH jW j be the bad thin subspace for Y described in (2.2). Let e

be an active element in IjEj; t (h ¼ jFjðxÞ, t ¼ jYjðhÞ). The composition Y �F is not

a crush at x by the assumption on F. Hence jx � yhðeÞ determine the germ of a

hypersurface at x and its tangent cone H is also a hypersurface. Let L be a complex

line through x A C
n which is not contained in H. Parameterizing L by t A C and

composing it with F and P �F, we have a formal curve K on Y and an analytic curve

K 0 on Z such that K is a lifting of K̂ 0K 01 K̂ 0K 00; jZj : ĈC j0 ! Z ¼ ẐZj jZj.

x A HH X̂XjS  �������������
L

ĈC j0

F

?
?
?
?
y

K

K̂K 0

�������������!
Y

�������������!
S

Z

Let us take an embedding Y HU where U is an open subset of C p. Let LHU be a

formal curve with initial point h. The condition for L to be a lifting to Y of K̂K 0 is

expressed by a system of simultaneous analytic equations for components of L around h

(the constraint to Y and the lifting condition). Then the system has only a finite

number of solutions in C ½½t�� by (2.2) and (2.3). Since these solutions are arbitrarily

approximated by analytic solutions with respect to the maximal-ideal-adic topology by

Artin’s theorem [Art], all solutions are analytic. Thus components of K are ana-

lytic. Since our choice of L is generic, the components of F are convergent by a

theorem of Tougeron [T1], (1.3). This proves the convergence of F itself. r

Finally, to complete the proof of Theorem I, we need the following supplement to a

former paper.
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Remark 2.5. In view of the proofs of [I3], (C), ðC�Þ, we can improve them as

follows:

Let S be a positive dimensional Moishezon subspace of a complex space X such that

X is integral along S. Suppose that Y is an irreducible component of X jU for an open

set U H jX j. Then we have the following.

(C)] If f A ÔOX jSðSÞ is convergent along Y at x A S V jY j (i.e. ð f jY Þx A OY ;x), f is

convergent everywhere (i.e. f A OX ðSÞ).

(C�Þ] For any x A jY j there exists a A R such that

a � nSX ;Ið f ÞV nY ;xð f Þ ðV nSX ;Ið f ÞÞ

for any f A OX ðSÞ, where IHOX ðSÞ denotes the ideal sheaf of S. Such an a

must satisfy a > 1. (cf. [I3] for notation.)

In a similar way, we can improve [I3], (A), (A*), (B), (B*), obtaining assertions that the

behaviors of polynomials (or sections) on a local irreducible component of S regulate the

corresponding global properties. The improvement of (A*) is used in [I4].

Proof of Theorem I. If we apply (2.5), (C)] to the components of P �F, they are

convergent everywhere or nowhere. Hence P �F itself has the same property. The

assertion follows from (2.4). r

3. Dimension of formal complex space.

This section, along with next three sections, is devoted to general theory of formal

complex spaces as preliminary to the proof of the second main theorem in the last

section. First we list ring theoretic properties of formal analytic algebras which are

well-known for analytic algebras and then we generalize the definition of Gabrièlov’s

generic rank for analytic morphisms to one for formal morphisms.

Lemma 3.1 ([B3], (1.10)). If K is a Stein semianalytic compact subset of a formal

complex space X , then OXðKÞ is an excellent ring.

Let us call a ring normal if its localizations at prime ideals are integrally closed in

their respective total rings of fractions.

Lemma 3.2. Let A be a formal analytic algebra.

(i) ([AT1]) A is a Henselian local ring.

(ii) A has the approximation property for algebraic equations.

(iii) A is regular (or integral, normal, reduced, CM, Gorenstein) if and only if the

maximal-ideal-adic completion A� is so.

Proof. (i) This is proved by Ancona and Tomassini [AT1], (I.1.2).

(ii) It is known that a Henselian excellent local ring has the approximation

property (Popescu [P ], cf. [Ro], [A], [O], [Sp]).

(iii) By (ii) we have the implication

b f ; bg A A� s:t: f 0 0; g0 0; f g ¼ 0 ) b f ; bg A A s:t: f 0 0; g0 0; f g ¼ 0:

Hence, if A is integral, A� is also so. Since A is excellent, it is a G-ring and the natural

monomorphism A ! A� is regular and faithfully flat. Then A is regular (normal,

reduced, CM or Gorenstein) if and only if A� is so ([M], (32.2)). r
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Suppose that A is an integral domain. We define the rank of an A-module M as

the maximal number r such that there exists an injective A-homomorphism Ar ! M. If

QðAÞ denote the fields of fractions, the rank is equal to the dimension of the QðAÞ-

vector space QðAÞnA M. This rank is denoted by rankAM.

Let A be a formal analytic algebra and WðAÞ the space of Pfa‰an forms on A

(¼ the universal finite di¤erential module). This can be defined in the same way as the

case of an analytic algebra and has similar properties ([B3], (1.8)).

Theorem 3.3 (cf. [SS ], (4.1)). If A is an integral formal analytic algebra, we have

rankAWðAÞ ¼ dimA.

Proof. It is known that WðA�ÞGA� nA WðAÞ ([SS ], (1.6)). Since A� is A-flat

and integral by (3.2), rankAWðAÞ ¼ rankA �WðA�Þ. Completion preserves Krull di-

mension also (cf. [N ], (17.12)). Therefore we may assume that A1A� i.e. A is a

residue class algebra of C ½½x1; . . . ; xn��. Then it is well-known that, if r ¼ dimA, there

exists an injective finite monomorphism B1C ½½x1; . . . ; xr�� ! A (an application of the

formal Weierstrass preparation theorem). Since x1; . . . ; xr form a system of parameters

of A; dx1; . . . ; dxr are linearly independent over A ([SS ], (8.12)). Any element f A A

satisfies a monic polynomial relation over B. Taking the total derivative of this

relation, we see that d f is linearly dependent on dx1; . . . ; dxr over A. Hence

rankAWðAÞ ¼ r ¼ dimA. r

Next we generalize the notion of Gabrièlov’s generic rank grkFx in analytic

geometry (cf. [G2]). Let j : B ! A be a homomorphism between integral formal analy-

tic algebras. By the universality of WðBÞ, j naturally induces a homomorphism

j1 : WðBÞ ! WðAÞ compatible with j (cf. [SS ], (1.1), (1.2), (1.3)). We define the generic

rank of j by grk j1 rankA Aj1ðWðBÞÞ. Since j splits through B=Ker j; grk jU

minfdimA; dimB=Ker jg. If F : X ! Y is a morphism between formal complex spaces

and if Xx is integral, the generic rank grkFx of F at x is defined to be that of the

induced homomorphism jx : OY ;h ! OX ;x ðh1 jFjðxÞ).

Remark 3.4. Let us confirm that our definitions of generic rank coincides with

Gabrièlov’s in analytic case. Let Xx be an integral germ of a complex subspace of an

open subset of C
m. Then A1OX ;x is an integral domain. Let x1; . . . ; xn be the

ambient coordinates. We may assume that x1; . . . ; xk is a system of parameters of

OX ;x ðk :¼ dimXÞ. Then dxi ði ¼ 1; . . . ; kÞ are linearly independent over A and

WðAÞH
Pk

i¼1 QðAÞ dxi. Let Fx : Xx ! Yh be a morphism between germs of complex

spaces. Let y1; . . . ; yn be the ambient coordinates of Y around h. Then there exist

b A Anf0g and aij A A such that bdjðyjÞ ¼
Pk

i¼1 aijdxi: We may assume that F, aij and

b have respective representatives defined on a neighborhood U of x. The repre-

sentatives are indicated by ~ . Let M be a minor of ðaijÞ. Since Xx is integral, the

theorem of identity holds in a neighborhood of x, i.e. M ¼ 0 if and only if ~MM vanishes

on an open set arbitrarily near to x. Hence grkF ¼ r in our sense if and only if

the maximum of the rank of the jacobian matrix ð~aaij=~bbÞ of FjXx at a smooth point

arbitrarily near to x is r. The latter is nothing but Gabrièlov’s original definition.

By our new definition of generic rank, the troublesome inequality grk jx U

dimB�=Ker ĵjx;h becomes trivial, cf. [I2], (1.5).
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Lemma 3.5. Suppose that X A fcs, Xx is integral, F A fcs : X ! Y and C A fcs : Y !

Z. If we put h ¼ jFjðxÞ and z ¼ jC jðhÞ. Then we have the following.

(i) If there exist f1; . . . ; fn A OY ;h such that jxð f1Þ; . . . ; jxð fnÞ form a part of a

system of parameters of OX;x, then grkFx V n.

(ii) If jx is injective and finite, then Yh is integral and grkCh �Fx ¼ grkCh.

In particular grkFx ¼ dimYh.

Proof. (i) Obvious from the fact that dðjxð f1ÞÞ; . . . ; dðjxð fnÞÞ generate a free

submodule of WðOX;xÞ of rank n ([SS ], (8.12)).

(ii) The first assertion is trivial. If grkCh ¼ r, there exist g1; . . . ; gr A OZ; z such that

dchðgiÞ are linearly independent over OY ;h. Let f1; . . . ; fm A OY ;h be a system of

parameters. Then WðOY;hÞ=
P

OY;hd fj is an OY ;h-torsion module ([SS ], (4.1)). Hence

there exist h A OY ;h and aij A OY ;hnf0g such that

h � dchðgjÞ A
Xm

i¼1

aijd fi; rankðaijÞ ¼ r:

Then

jxðhÞ � dðjx � chðgjÞÞ A
Xm

i¼1

jxðaijÞdjxð fiÞ; rankðjxðaijÞÞ ¼ r:

Since a finite extension of a commutative ring preserves Krull dimension (cf. [N],

(10.10)),

dimOX ;x=ðjxð f1Þ; . . . ; jxð fmÞÞ ¼ dimOY;h=ð f1; . . . ; fmÞ ¼ 0:

Then jxð f1Þ; . . . ; jxð fnÞ form a system of parameters of OX ;x and djxð fiÞ are indepen-

dent. This proves that dðjx � chðgjÞÞ ¼ j1
x � c

1
hðdgjÞ ð j ¼ 1; . . . ; rÞ generate a submodule

of WðOX;xÞ of rank r and that grkCh �Fx V grkCh. The converse inequality is

trivial. If we take C for the identity I : Y ! Y , the last assertion follows. r

Theorem 3.6. Let F be a coherent OX -module on X A fcs. If X is locally and

globally integral, then rankOX ; x
Fx is independent of x A jX j.

Proof. Since F is coherent, there exists a local exact sequence:

ðOX jUÞp !
l
ðOX jUÞq ! ðFjUÞ ! 0:

We may assume that OX jU is generated by global sections. Let GU
n HOX jU denote the

ideal sheaf generated by the ðqÿ nÞ � ðqÿ nÞ minors of the matrix representing l. This

is known to be independent of the choice of the exact sequence. Gluing G
U
n , we obtain

a coherent ideal sheaf Gn HOX (Fitting ideal sheaf ). Let Yn HX denote the subspace

defined by Gn. Then we can easily verify that

Yqÿ1 HYqÿ2 H � � � HY0 HX

and that

rankOX; x
Fx V rþ 1 () rankOX ; x

lx U qÿ rÿ 1 () ðGrÞx ¼ 0 () ðYrÞx ¼ Xx:
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Since X is integral, putting

s1maxfrankOX ; x
Fx : x A jX jg ÿ 1;

we have X ¼ Y r for rU s. Then rankOX; x
Fx ¼ sþ 1 everywhere. r

The disjoint union WðXÞ1
‘

x AX WðOX;xÞ has a natural structure of a coherent

OX -module on jX j and we call it the sheaf of Pfa‰an forms ([B3], §1).

Corollary 3.7.

(i) Suppose that X A fcs is globally integral and let Zx be a local irreducible

component of Xx. Then, for F A fcs : X ! Y ; grkFx jZx is independent of the choice of

point x A jX j and the component Zx. In particular dimZx ¼ rankOZ; x
WðOZ;xÞ is constant

and X is equidimensional.

(ii) For any X A fcs; dimXx is upper semicontinuous with respect to x.

Proof. By (3.5), (ii), we may assume that X is normal (cf. §3 of [B3] and §5 below

for normalization) and Zx ¼ Xx. Then, since OXj
1ðWðYÞÞHWðXÞ is OX -coherent,

grkFx is constant by (3.6). If we take F for the identity of X , the second assertion

follows. To prove (ii), we may assume that X is reduced. Then it admits the nor-

malization. Hence X admits the global Lasker-Noether decomposition by coherence of

direct image sheaf ([B3], (3.1)) and (ii) follows from (i). r

4. Blowing up and dimension.

Using the basic works of Bingener [B3] on formal complex spaces, we can define the

blowing up of a formal complex space X with center IHOX , a coherent ideal sheaf,

in the same way as the complex analytic case. Since (formal) analytic spectra and

projective (formal) analytic spectra are adic, blowings up are also so. Most of the

properties of analytic blowings up hold in formal case too. In particular, the local

dimension is invariant through formal blowings up. But this can not be obtained by an

easy topological argument as in the analytic case (cf. [Moo], III, (1.4.6)). Instead we

certify it algebraically, using the generalized generic rank defined in the previous

section. This invariance is used to reduce the second main theorem to the first in §7 (cf.

the first paragraph of §7).

Lemma 4.1. Let A be an integral formal analytic algebra and h1; . . . ; hn ðn ¼ dimAÞ

a system of parameters of A. If g is a nonzero element of A,

1n dðgqh1Þ; . . . ; 1n dðgqhnÞ

form a basis for the QðAÞ-vector space QðAÞnA WðAÞ for any q A Z possibly except one

value.

Proof. Since A is an integral domain, dh1; . . . ; dhn generate a submodule of WðAÞ

with the maximal rank ([SS ], (8.12)). Hence there exists an expression

1n dg ¼ g1 n dh1 þ � � � þ gn n dhn

in QðAÞnA WðAÞ and we have
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1n dðgqhaÞ ¼ qgqÿ1haðg1 n dh1 þ � � � þ gn n dhnÞ þ gq n dha:

By a calculation of the determinant, we see that these are linearly independent unless

gþ qðg1h1 þ � � � þ gnhnÞ ¼ 0: r

Remark 4.2. Let X be a ringed space with the structure sheaf OX , cohðXÞ the

category of sheaves of OX -module locally of finite presentation whose morphisms are

defined to be OX -homomorphisms and cohiðXÞ the category of ideal sheaves of

OX locally of finite presentation whose morphisms are inclusions. cohiðX Þ can be

identified with the category of subobjects of OX A cohðXÞ. Namely an object of cohiðX Þ

is a monomorphism y A cohðX Þ : F ! OX . A morphism of cohiðXÞ comes from a

monomorphism in cohðXÞ.

Bingener [B3] called a formal complex space X Stein if jX j is a Stein space with

respect to the reduced complex structure. Let X be a Stein formal complex space and

put A1OXðjX jÞ (the Stein algebra of X). Bingener has proved the following for an

A-scheme Y which is locally of finite presentation ([B3], (4.5): the existence theorem):

If Y is proper over SpecA and if SH jX j is a semianalytic Stein compact subset, there

exists an equivalence

E : cohðY �SpecA SpecOXðSÞÞ ! lim
ÿ!

cohðYanjUÞ;

of categories, where the limit is taken over the directed system of all Stein neighborhoods

U of S.

Since monomorphisms are characterized by left cancelability, a property defined

only by the terms of the categories, f A HomðF;F
0Þ is a monomorphism if and only if

Eð f Þ is so. By exactness of inductive limit functor, E induces an isomorphism

E
0
: cohiðY �SpecA SpecOXðSÞÞ ! lim

ÿ!
cohiðYanjUÞ:

Let P A fcs : X
0 ! X be a blowing up with centre I and S1 fxg ðx A jX jÞ. Then, E 0

implies the isomorphism between the lattice structures of the following

(i) the family of subspaces of ProjlI
n
x ;

(ii) the family of germs of subspaces of jP jÿ1ðUÞ ¼ Projl ðIjUÞn around

jP jÿ1ðxÞ, where U runs over the system of all Stein neighborhoods of x.

Remark 4.3. We can define reduction of formal complex spaces via those of Stein

algebras using the correspondence theorem [B2] and [B1], (2.7). In other words, the

nilradical of the structure sheaf of a formal complex space is coherent. Further, re-

duction is a covariant functor of fcs into itself. The reduction of X is denoted by X red.

Theorem 4.4. Let P A fcs : X
0 ! X be a blowing up of a formal complex space and

Yh an irreducible component of ðX 0
redÞh. Then we have the following:

(i) If jP jðhÞ ¼ x, then dimYh ¼ grkP jYh U dimXx.

(ii) If Xx is equidimensional, then

dimYh ¼ grkP jYh ¼ dimXx

and hence X
0
h is equidimensional as well as Xx.
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Proof. (i) The inequality grkP jYh U dimXx is obvious. Let IHOX be the

centre of P . There exist a small neighborhood U of x and a degree-preserving ðOX jUÞ-
epimorphism

iU : ðOX jUÞ½T0; . . . ;Tp� ! 0
nV0

ðIjUÞn;

whose kernel KU is generated by a finite number of sections k1; . . . ; kq A KUðUÞ (cf.

[Moo], III, (1.4.1)). Then X
0jV ðV 1 jP jÿ1ðUÞÞ is the projectivization of the formal

complex subspace of ðX jUÞ � C
pþ1 defined by k1; . . . ; kq. The images fa A IðUÞ and

Fa 1 pð faÞ A OX 0ðVÞ of Ta are global sections over U and V respectively. Note that KU

is the ideal sheaf generated by the homogeneous polynomial relations among germs of fa
over OX jU . We may assume that T0 0 0 at h. Then we can find linear combinations

H1 1
Xp

a¼0
a1aTa=T0; . . . ;Hd 1

Xp

a¼0
ad
aTa=T0 ða1a ; . . . ; ad

a A CÞ

(d ¼ dimYh) which induce a system of parameters of the local ring OY;h. For

any qV 1, the restrictions of T
q
0 H1; . . . ;T

q
0 Hd to Yh belong to the canonical image

of OX ;x in OY;h. By (4.1), 1n dðT q
0 H1Þ; . . . ; 1n dðT q

0 HdÞ form a basis of

QðOY ;hÞnOY; h
WðOY ;hÞ for general qV 1. Let p

0
: OX;x ! OY;h denote the canonical

homomorphism induced by P jYh. Since

dðT q
0 HiÞjYh A dðp 0ðOX ;xÞÞ ¼ p

01ðdOX ;xÞ;

we have dimYh ¼ grkP jYh.

(ii) As in analytic case, blowing up commutes with reduction and the irreducible

components included in some multiple of the centre are lost. Then we may assume that

X is reduced and Ix is not included in a minimal prime ideal of OX;x. The completion

of a local ring preserves the dimension (cf. [N ], (17.12)) and the decomposition into the

irreducible components by (3.2), (iii). Hence, by the assumption that Xx (or OX ;x) is

equidimensional, it is formally so (¼ quasi-unmixed i.e. the maximal-ideal-adic com-

pletion is equidimensional). Further, since Ix is included in no minimal prime ideal,

A10
nV0

I
n
x is also formally, and hence plainly, equidimensional of dimension

rþ 1 ðr1 dimXxÞ ([HIO], (18.23), (9.7)). Then there exists a homogeneous prime

chain of length rþ 1 in A which begins with the prime ideal corresponding to Yh and

ends with one corresponding to h (cf. [M ], (13.7) and its proof ). This proves that X 0h is

equidimensional of dimension r by (4.2). r

5. Completion.

In this section we show that the completion of a formal complex space is again a

formal complex space.

Suppose that X A fcs, F A cohðXÞ and I A cohiðXÞ. Let F̂FjI denote the I-adic

completion: F̂FjI 1 lim �
p

ðF=Ip
FÞ defined by the canonical presheaf which consists

of inverse limits of sections of F over open sets of jXj. Obviously F̂FjI G F̂Fj
ffiffiffi
I
p .
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Lemma 5.1. Suppose that X A fcs, and I;J A cohiðXÞ. If we put J 01JÔOXjI H

ÔOXjI, then there exists a canonical isomorphism between ðÔOjIÞ̂jJ 0 and ÔOX jIþJ as OX -

algebras.

Proof. The canonical commutative diagram among O-algebras (O1OX )

lim
 �
p

ðO=Ip Þ=JðO=IpÞ  ÿ lim
 �
p

ðO=IpÞ=J2ðO=IpÞ  ÿ lim
 �
p

ðO=IpÞ=J3ðO=IpÞ  ÿ � � �

?
?
?
?
y

?
?
?
?
y

?
?
?
?
y

ðO=IÞ=JðO=IÞ  ÿ ðO=I2Þ=J2ðO=I2Þ  ÿ ðO=I3Þ=J3ðO=I3Þ  ÿ � � �

yields a homomorphism

lim
 �
q

lim
 �
p

ðO=IpÞ=JqðO=IpÞÿ! lim
 �
p

ðO=IpÞ=JpðO=IpÞ:

Since all the positive dimensional cohomology groups with coe‰cients in coherent

sheaves vanish on Stein open sets ([B3], (1.3)), they vanish on Stein compact sets also.

Then by the argument [BS ], VI, (2.2), (2.3) or [H ], I, §4, §5, we see that

lim
 �
p

ðO=IpÞ=JqðO=IpÞG lim
 �
p

ðO=IpÞ= lim
 �
p

JqðO=IpÞ:

Thus we have

lim
 �
q

lim
 �
p

ðO=IpÞ=JqðO=IpÞG lim
 �
q

ÔOjI=J
qÔOjI G ðÔOjIÞ̂jJ 0 :

On the other hand, since ðO=IpÞ=JpðO=IpÞ is canonically isomorphic to O=ðIp þJpÞ

and since

ðIþJÞ2p HIp þJp
H ðIþJÞp;

we have an isomorphism

lim
 �
p

ðO=IpÞ=JpðO=IpÞG ÔOjIþJ:

Thus we have a canonical homomorphism

ðÔOjIÞ̂jJ 0 ! ÔOjIþJ:ð�Þ

Similarly the commutative diagram among O-algebras

ðO=IpÞ=JpðO=IpÞ  ðO=Ipþ1Þ=Jpþ1ðO=Ipþ1Þ  ðO=Ipþ2Þ=Jpþ2ðO=Ipþ2Þ  � � �
?
?
?
?
y

?
?
?
?
y

?
?
?
?
y

ðÔO=IpÔOÞ=JpðÔO=IpÔOÞ  ðÔO=Ipþ1ÔOÞ=JpðÔO=Ipþ1ÔOÞ  ðÔO=Ipþ2ÔOÞ=JpðÔO=Ipþ2ÔOÞ  � � �

yields a canonical homomorphism

ÔOjIþJ ! ðÔOjIÞ̂jJ 0 :ð��Þ
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The homomorphisms ð�Þ and ð��Þ are mutual inverses on the subalgebra O, so on entire

ðÔOjIÞ̂jJ 0 and ÔOjIþJ. r

Let I be an ideal of definition of X A fcs. Then OX G ÔOX jI and ðjX j;OX=I
pÞ are

complex spaces. Take another J A cohiðXÞ. If we put K1IþJ, K 0
1KÔOXjJ

and J 01JÔOX jI then the analytic sets S1 sptOX=K
p
H jX j are independent of p A N

and ðS;OX=K
pÞG ðS; ÔOX jJ=K

0pÞ A cs. Since

ðÔOX jJÞ̂jK 0 G ÔOX jJþK ¼ ÔOX jK G ðÔOX jIÞ̂jJ 0 G ÔOX jJ

by (5.1), we see that ðS; ÔOX jJÞ A fcs (cf. [B3]). Since ÔOXjJ is determined by the analytic

set S, we may express it as ÔOX jS. We call ðS; ÔOX jSÞ the completion of X along S and

express it as X̂X jS or as X̂X jK.

Lemma 5.2. Let X A fcs be a formal complex space and SH jX j an analytic

subset. Then OX;x is regular (or integral, normal, reduced, CM, Gorenstein) if and only if

the completion ÔOXjS;x is so.

Proof. Since the maximal-ideal-adic completions of the two algebras coincide, this

follows from (3.2). r

Let K be an ideal which includes an ideal of definition of X . If F A cohðXÞ;

F̂F1 F̂FjS denote the sheaf lim
 �

p

FðOX=K
pÞ or its restriction to S1 sptOX=K. It has

the canonical structure of an ÔOX jS-modules. For F A fcs : X ! Y and an OY -module

F, the analytic inverse image sheaf F�F is defined by F
�F1F

ÿ1Fn
F
ÿ1OY

OX . We

can prove the following in the same way as analytic case (cf. [BS ], VI, (2.3), [H ], §5)

Lemma 5.3.

(i) The correspondence F! F̂F defines an exact functor from cohðXÞ to cohðX̂X jSÞ.

(ii) (lifting to completion) Let F A fcs : X ! Y be a morphism and SH jX j;T H jY j

subsets such that jFjðSÞHT . Then there is a unique lifting

F̂FS;T A fcs : X̂X jS ! ŶY jT

of F.

(iii) Let

ÎI 1 ÎIS; jX j A fcs : X̂X jS ! X

be the lifting of the identity. Then there exists a canonical isomorphism

ÎI
�
F1 ÎI

ÿ1
Fn

ÎI
ÿ1
OX

ÔOX jS ! F̂F:

Remark 5.4. We must be careful to the following fact. Let F be an OX -module

on X A fcs and SH jX j an analytic subset defined by K. Then the OXðTÞ-module

F̂FjSðTÞ of sections over T HS does not necessarily coincide with lim
 �

p

fðF=KpÞðTÞg,

unless T is open. In particular, ÔOXjK;x is a proper subalgebra of the Kx-adic

completion of OX ;x in general.
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6. Normalization and completion.

Here we consider the notion of integrality of a completion of a complex space using

normalization of formal complex spaces. This integrality assures constancy of the

generalized generic rank in the proof of the second main theorem. On the way, we

need the formal version of Forster’s duality between Stein algebras and Stein spaces.

Let X be a reduced formal complex space and ~OOX the sheaf of integral closures of

the structure sheaf OX in the sheaf of the total rings of fractions of OX . Bingener has

proven that ~OOX is an OX -coherent algebra ([B2], §1, Bemerkung, [B3], §3). The formal

complex space ~XX1 Specan ~OOX with the canonical epimorphism N A fcs : ~XX ! X is called

the normalization of X . By coherence of ~OOX , we have N�O ~XX
G ~OOX .

Theorem 6.1 (lifting to normalization). Let F A fcs : X ! Y be a morphism

between reduced formal complex spaces. If F is nowhere a crush, then there exists a

unique lifting ~FF A fcs : ~XX ! ~YY .

Proof. By the assumption on F, the canonical homomorphism F]
: Fÿ1

OY ! OX

can be extended to Fÿ1
MY ! MX , where MX and MY denote the sheaves of mer-

omorphic function germs on X and Y respectively. Writing up the relation of integral

dependence, we see that this extension maps Fÿ1 ~OOY H ðFÿ1
MYÞ into ~OOX H ðMXÞ.

Then the composition y of

F� ~OOY 1Fÿ1 ~OOY nFÿ1
OY

OX ! ~OOX nFÿ1
OY

OX ! ~OOX nOX
OX 1 ~OOX

of canonical homomorphisms of OX -algebras yields an extension ~XX1 Specan
X
~OOX !

Specan
X
F� ~OOY . By the base change theorem for formal analytic spectra (cf. [B3], p. 33,

[B1]):

SpecanX F� ~OOY 1 SpecanY
~YY �Y X ;

we have the projection

Specan
X
F� ~OOY ! Specan

Y
~OOY 1 ~YY

over F. Composing these morphisms we obtain a lifting of F. By the universality of

the fiber product, any lifting splits through

Specan
X
F� ~OOY G ðSpecan

Y
~OOYÞ �Y X :

An element of ðF� ~OOYÞx is expressed as ð f =gÞn h ð f ; g; h A OX ;xÞ such that g is not

a zerodivisor. Since the image yxðgn 1Þ ¼ jxðgÞ is not a zerodivisor, the image of

ð f =gÞn h is uniquely determined by jxð f hÞ and jxðgÞ and the extension F� ~OOY ! ~OOX is

unique. This proves the uniqueness. r

Lemma 6.2. Let SH jX j be an analytic subset of X A fcs. Then ðX redÞ̂jS and

ðX̂X jSÞred are canonically isomorphic.

Proof. Let us put A1OX ;x and ÂA1 ÔOX jS;x. Since ððAredÞ̂ Þred G ðAredÞ̂ by (5.2),

we have a homomorphism

ÂA=NÂA G ðÂAÞred ! ðAredÞ^G ðA=NAÞ^G ÂA=NAÂA
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by (5.3). Then we have NÂA HNAÂA. Since NAÂAHNÂA is obvious, the equality

holds and the local rings ðAredÞ
^ and ÂAred are canonically isomorphic. This proves the

assertion. r

We call a C-algebra a Stein formal algebra if it is isomorphic to the algebra of

global sections OXðjX jÞ for some Stein formal complex space X .

The following is the formal version of Forster’s theorem ([F ], Satz 1).

Theorem 6.3. The category of Stein formal complex spaces is isomorphic to the dual

of the category of Stein formal algebras.

Proof. Let jðjX jÞ : OYðjY jÞ ! OXðjX jÞ be a homomorphism between Stein formal

algebras. Since jðIjY jðjYjÞÞHIjXjðjX jÞ, this induces a homomorphism

jnðjX jÞ : OYðjYjÞ=In
jY jðjY jÞ ! OXðjX jÞ=In

jX jðjX jÞ

between Stein algebras. Let us put

Xn 1 ðjX j;OX=I
n
jXjÞ; Yn 1 ðjY j;OY=I

n
jYjÞ:

By the classical Forster’s theorem, there exists a morphism Fn A cs : Xn ! Yn which

induces jnðjX jÞ. Taking the inverse limit of Fn, we have a morphism F A fcs : X ! Y

which induces jðjX jÞ. The rest are easy to see. r

Theorem 6.4. A complex space X A cs is reduced along SHX if and only if

X̂X 1 X̂XjS is reduced. If X is reduced along S, then ð ~XX Þ̂jS 0 , ðX̂XjSÞ~ and X̂X �X
~XX are

canonically isomorphic, where S 0 H j ~XX j is the inverse image of S.

Proof. If we apply [BS ], VI, (2.8) to the sheaves of nilradicals, we obtain the first

assertion. In a) and b) below, we consider the sheaves on X.

a) First we claim that ÔOX ! OX
~^ is nowhere a crush. To see this, suppose the

contrary: the injective homomorphism

ÂAGAnA ÂA ! ~AAnA ÂAGA~^ ðA1OX ;x; ÂA1 ÔOX jS;xÞ

is a crush for some x A S. Then there exist a non-zerodivisor 1n f A A1
A
ÂA and a

nonzero gn h A ~AAn ÂA such that gn f h ¼ 0 in ~AAnA ÂA. We can express g as g ¼ g 0=k

for some g 0 A A and some non-zerodivisor k A A. Therefore g 0 n f h ¼ 0 in AnA ÂA.

This contradicts the assumption on 1n f .

b) By a) there exists a lifting OX
^~! OX

~^~ (cf. Proof of (6.1)). Fibers of the

sheaf OX
~^ are normal i.e. OX

~^~GOX
~^ by (5.2). Therefore we have a canonical

homomorphism s : OX
^~! OX

~ .̂ Since OX
^~ is ÔOX -coherent, OX

^~^GOX
^~. By the

flatness of OX ;x ! ÔOX ;x and by (5.3), (6.1), we have a canonical homomorphism

OX
~^! OX

^~ .̂ Thus we have a homomorphism t : OX
~^! OX

^~. The homomorphism

s is the inverse of t on their subsheaf OX and hence on OX
^~and OX

~ .̂ Therefore they

are canonically isomorphic.

c) Let U H jX j be a Stein open set. Since the normalization morphism N : ~XX !

X is surjective and finite, ~UU 1 jNjÿ1ðUÞH j ~XX j is also Stein (cf. [KK ], (73.1)). Let us

put X̂XjS, X~^1 ð ~XX Þ̂ jS 0 and let N A fcs : X ^~! X̂X denote the formal normalization
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������������������!

?
?
?
?
?
?
?
?
?
?
?
?
?
y

N

?

morphism and

K 1 ÎIS; jX j A fcs : X̂X ! X

the completion morphism. Thus we have the following diagram.

ð ~SSU HÞX~^ ��������! ~XX ðI ~UU I ~SSUÞ

ðTU �ÞX^~

N

?
?
?
?
?
y

ðS VU �ÞX̂X
K

XðIU IS VUÞ

Let JU HOX ðUÞ denote the ideal of sections vanishing on S VU . This generates the

ideals of Sx at each x A U (Theorem A). Let ~JJU HO ~XX ð
~UUÞ and ĴJU HOX̂X ðS VUÞ

denote the ideals generated by the images of JU . Their images generate ideals of

definition of X~ ĵ ~SSU and X^~jTU respectively ð ~SSU 1S 0 V ~UU , TU 1 jX^~jV jK �N jÿ1ðUÞÞ.

Then we have

OX ~^ð ~SSUÞG lim
 �
k

ðO ~XX=
~JJk
UO ~XX Þð

~UUÞ ðcf : ½BS�; VI; x2Þ

G lim
 �
k

O ~XX ð
~UUÞ=ð ~JJk

UO ~XX Þð
~UUÞ ðsince ~UU is SteinÞ

G lim
 �
k

~OOX ðUÞ=J
k
UðUÞ

~OOX ðUÞ ðby a property of normalizationÞ

G lim
 �
k

ð ~OOX=J
k
U
~OOX ÞðUÞ ðsince U is SteinÞ

GOX~ ð̂S VUÞ ðcf : ½BS�; VI; x2Þ:

On the other hand, we have

OX ^~ðTUÞG ðN�OX ^~ÞðS VUÞG ðOX̂X Þ
~ðS VUÞGOX^~ðS VUÞ:

d) We have an isomorphism

jUð ~SSUÞ : OX ^~ðTUÞ ! OX ~^ð ~SSUÞ

by b) and c). Since ~SSU and TU are Stein, we have an isomorphism

FU A fcs : X~ ĵ ~SSU ! X^~jTU

which induces jUð
~SSUÞ by (6.3).

e) Suppose that U and V are Stein open sets of jX j. We claim that FU and FV

coincide on TU VV . Since the intersection of two Stein open sets is Stein, we may assume
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fi

fi

that V HU . Then jUð
~SSUÞ and jV ð

~SVSV Þ commute with the restriction homomorphisms

OX ^~ðTUÞ ! OX ^~ðTV Þ; OX ~^ð ~SSUÞ ! OX ~^ð ~SSV Þ;

because they are defined through the sheaf homomorphism OX^~! OX~^ on jX j. This

verifies the claim by (6.3). Thus FU are glued to a canonical isomorphism F : X~^!

X^~.

f ) The OX̂X -modules ~OOX̂X and K
� ~OOX are canonically isomorphic as OX -modules

by (b). Then they are canonically isomorphic as OX̂X -modules also by continuity of

multiplications by elements of OX̂X in each stalk module with the maximal-ideal-adic

topology. Then the claim X^~G X̂X �X
~XX is proved as follows.

X~^1 SpecanX̂X
~OOX̂X ðby de nition of the normalizationÞ

G SpecanX̂X K
� ~OOX

G X̂X �X SpecanX ~OOX ðby the base change theorem ½B3�; x4 and ½B1�Þ

1 X̂X �X
~XX ðby de nition of normalizationÞ: r

We call a formal complex space (globally) integral if it is reduced and its nor-

malization is connected (cf. [GR], (9.1.2)).

Theorem 6.5. A complex space X is globally integral along an analytic set SH jX j

if and only if X̂XjS is globally integral.

Proof. Since the equivalence of reducedness is stated in (6.4), we may assume that

X and X̂X are reduced. Let N : ~XX ! X denote the normalization morphism and put

S 0 1 jNjÿ1ðSÞ. Suppose that X is integral along S. There exists an arbitrarily small

neighborhood U of S such that X jU is integral i.e. UnSingX is connected. Then

U 0 1 jNjÿ1ðUÞ is connected. Since N is proper, we can choose an arbitrarily small U 0

by the choice of U. This, together with (6.4), proves that jX^~jG jX~ ĵ1S 0 is

connected i.e. X̂X is integral. Now the proof of the converse is easy. r

7. The second main theorem.

The purpose here is to take o¤ the condition of contraction (iv) in the first main

theorem. We can not get rid of the condition (iii) of non-crush. This condition is not

preserved by the canonical lifting to blowings up. Indeed, the example of Osgood (cf.

[KK ], p. 188) is a non-crush morphism, whose canonical lifting induced by the point

blowing up of the target space is a crush. So we adopt a more stable condition, the

formal version of Gabrièlov’s rank condition, which is stronger than the condition of

non-crush. Furthermore, we are obliged to assume adicity of the morphism and

smoothness of the target space outside the core of the completion to assure the existence

of a lifting to desingularization.

Theorem II. Suppose that SH jX j and T H jY j be analytic subsets of reduced

complex spaces and F : X̂XjS ! ŶYjT a formal morphism between the completions satisfying

the following:
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(i) S is a thin Moishezon subspace (with respect to the reduced complex structure);

(ii) X is globally integral along S;

(iii) There exist x A S and a local irreducible component Zx of X̂XjS;x such that

grkFjZx ¼ dimYh ðh ¼ jFjðxÞÞ;
(iv) Y is equidimensional and Y is smooth outside T;

(v) F : X̂XjS ! ŶYjT is adic all over S;

(vi) F is convergent at some x0 A S along some irreducible component of X̂XjS;xo .
Then F is convergent everywhere on S.

By (3.7) and (6.5), the condition (ii) and (iii) imply that grkFjZx ¼ dimYh ðh ¼
jFjðxÞÞ for any x A S and any local irreducible component Zx of X̂XjS;x.

Proof. We equip analytic subsets with the reduced complex structures if neces-

sary. In view of (1.1), convergence of F and the condition (v) are not a¤ected even if

we replace T by the image of S: T ¼ jFjðSÞ. Then T is known to be also Moishezon

(Theorem of Ueno-Iitaka, [Ii ], §8, Remark 4).

Let us consider the set A of all the triples fSa;Xa;Vag, where Sa is an irreducible

component of S, Va an open neighborhood of Sa and Xa an irreducible component of

X jVa with Sa H jXaj such that Xa is integral along Sa. The join of all Xa is a

neighborhood of S in jX j.
By our assumption (vi), there exists fS0;X0;V0g A A such that F is convergent at

a point of S0 along a local irreducible component of X0. Let I : X0 ! X be the

inclusion. The composition F0 1F � ÎIS V jX0j;S is adic by (v). Now we apply the

argument in [I3], §3. First by the theory of Moishezon spaces and Hironaka de-

singularization, shrinking Y if necessary, we have a blowing up Y A cs : Y 0 ! Y with

centre DHY such that Y 0 is smooth and all irreducible components of T 0 1 jYjÿ1ðTÞ
are smooth and projective. By the assumption (iv) and by the nature of Hironaka

desingularization ([AHV ], cf. [BM ]), D is a complex subspace of ŶYjT (i.e. IT H
ffiffiffiffiffiffiffi

ID

p
H ÔOY jT ). Since F0 is adic, C1F

ÿ1
0 ðDÞ is a complex subspace of X̂XjS. Let

S A cs : X 0 ! X0 be the blowing up with centre C VX0. It is known that the com-

pletion of an analytic blowing up along an analytic subspace whose reduction is included

in the core is a formal blowing up ([AT2], III, Prop.6). If we put S 0
1 jSjÿ1ðS V jX0jÞ,

F0 has the canonical lifting F
0
A fcs : X̂X 0

jS 0 ! ŶY 0
jT 0 by the universality of formal blowing

up. Since F0 and ŜSS 0;S V jX0j are adic, F
0 is also so. There exists an irreducible

component S 0
0 of jSjÿ1ðS0Þ such that jSjðS 0

0Þ ¼ S0. We put T0 1 jFjðS0Þ and T 0
0 1

jF 0jðS 0
0Þ. Then jYjðT 0

0ÞHT 0 is an irreducible projective variety.

Next, applying Grauert’s theorem on weakly negative line bundle neighborhoods

[Gr], we get a further blowing up Y 0
: Y 00 ! Y 0 whose centre D 0 is a thin complex

subspace of T 0
0 such that the strict transform T 00

0 of T 0
0 is exceptional in Y 00 (cf. [I3],

(3.2)). Since F
0 is adic, C 0

1F
0ÿ1ðD 0Þ is an complex subspace of X̂X 0

jS 0 . Let S 0
A

cs : X 00 ! X 0 be the blowing up with centre C 0 and

F
00
A fcs : X̂X 00

jS 00 ! ŶY 00
jT 00 ðS 00

1 jS 0jÿ1ðS 0Þ;T 00
1 jY 0jÿ1ðT 0ÞÞ

the canonical lifting of F
0. We have the following commutative diagram.
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X̂X 00
jS 00 ��������!

ŜS 0
S 00 ; S 0

X̂X 0
jS 0 ��������!

ŜSS0 ; S V jX0 j

X̂X0jS V jX0j

F
00

?
?
?
?
y

F
0

?
?
?
?
y

F0

?
?
?
?
y

ŶY 00
jT 00

ŶY 0
T 00 ; T 0

��������! ŶY 0
jT 0

ŶYT 0 ;T

��������! ŶY0jT

Let S 00
0 HS 00 be the strict transformation of S 0

0. It is easy to see that jF 00jðS 00
0 ÞHT 00

0 .

By (4.4) the generic rank of a formal blowing up on each local irreducible component

is equal to the dimension of the target space so long as the target space is equi-

dimensional. Since X̂0X0jS V jX0j is equidimensional by (ii) and (3.7), ŜSS 0;S V jX0j and ŜS 0
S 00;S 0

satisfy this condition. Similarly ŶY 0
T 00;T 0 � ŶYT 0;T preserves local dimension by the

assumption (iv). F has the full generic rank on all the local irreducible components by

(iii) and (3.7). These prove that F 00 has the full generic rank on all the local irreducible

components as well as F and hence F
00 can not split through a thin subspace of ŶY 00

jT 00 on

any local irreducible component of X̂X 00
jS 00 . Then F

00 is nowhere a crush. Since

Y �Y 0 � ÎIT 00; jY 00j �F
00 ¼ ÎIT ; jY j � ŶYT 0;T � ŶY 0

T 00;T 0 �F 00 ¼ ÎIT ; jY j �F0 � ŜSS 0;S V jX0j � ŜS
0
S 00;S 0

is convergent at a point x 00
A jS � S 0jÿ1ðx0Þ along a local irreducible component,

ÎIT 00; jY 00j �F
00 is also so by (2.4). Then ÎIT 00

0
; jY 00j �F

00 is globally convergent on S 00
0 by

Remark (2.1). The composition F0 � ŜSS 0;S V jX0j � ŜS
0
S 00;S 0 is also so. By Gabrièlov’s

theorem, F0 is convergent on S0 as in the first part of the proof of (2.4), i.e. F is

convergent along X0 at points of S0 by (1.3) and (1.4).

We say that fSa;Xa;Vag and fSb;Xb;Vbg of A are linked if there exists a point

z A Sa VSb such that the germs ðXaÞz and ðXbÞz share at least one local irreducible

component. If this is the case, convergence of F along Xa on Sa implies that on Xb on

Sb by the same argument as above. Since X is integral along S, any two elements of A

are joined by successively linked elements and the convergence on X̂X0jS0
influences all

other X̂XajSa
of fSa;Xa;Vag A A. Then Theorem II follows from (1.3) and (1.4). r

Appendix. Whitney-Shiota function.

Here we show an example of topologically 0-dimensional formal complex space

which has no complex structure (cf. §1 for complex structure). Whitney [W ] has

constructed a convergent power series which cannot be transformed into a polynomial

through analytic change of variables. Modifying this, Shiota has obtained the follow-

ing. (There are a little improvement in the assertion and a little alteration of the form

of the function.)

Example 8.1 ([Sh]). Let us put O1 kfx; y; zg and O� 1 k½½x; y; z�� (k ¼ R or

C). If lðzÞ is a divergent power series in z with lð0Þ ¼ 3, then

f 1 xyðyÿ xÞfyÿ ð2þ zÞxgfyÿ lðzÞxg A O�

can never be transformed into a convergent power series by multiplication by an in-

vertible element of O� and by a formal change of variables.

This fact implies that ðf0g;AÞ A fcs with A1O�= f O� has no complex structure
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when k ¼ C . For, otherwise A would be the maximal-ideal-adic completion of an

analytic algebra B : A1B�. The completion does not alter the dimension and the

embedding dimension and the completion of a complete intersection ring is also

so. Then B is expressed as B1 kfx 0; y 0; z 0g= f 0kfx 0; y 0; z 0g with f 0
A kfx 0; y 0; z 0g with

respect to new formal coordinate system ðx 0; y 0; z 0Þ. Then there exist an automorphism

j of O� and an invertible g A A such that f � j ¼ g f 0, a contradiction.

Since Shiota is concerned with real problems in [Sh], his geometric proof does not

works in the complex case. Hence we note a proof which covers both cases.

Suppose that there exist an automorphism j of O� and an invertible element g A O�

such that f � j A gO. Since O is normal, the formal decomposition of ð f � jÞgÿ1
A O

reduces to an analytic one by [I3], (E), that is to say, there exist X ;Y ;U ;V ;W A O such

that

ð f � jÞgÿ1 ¼ XYUVW ;

x � j ¼ g1X ; y � j ¼ g2Y ; ðyÿ xÞ � j ¼ g3U ;

fyÿ ð2þ zÞxg � j ¼ g4V ; fyÿ lðzÞxg � j ¼ g5W :

(We may as well use the approximation theorem of Artin.)

We may assume that gi A 1þm�ðm�: the maximal ideal of O�). If c denote the

linear part of j, then the linear part of j � cÿ1 is the identity. Hence we may assume

that the linear part of j is the identity from the first. Then by the inverse mapping

theorem, we see that X, Y and Z1 z form a regular system of parameters of O and

O�. Then every elements of O (resp. O�) can be expressed as a convergent (resp.

formal) power series in them. Eliminating x; y; z, we have

WðX ;Y ;ZÞ ¼
g2ðX ;Y ;ZÞ

g5ðX ;Y ;ZÞ
Y ÿ

g1ðX ;Y ;ZÞ

g5ðX ;Y ;ZÞ
lðZ ÿ mðX ;Y ;ZÞÞX

ðZ ÿ mðX ;Y ;ZÞ ¼ z � j; mðX ;Y ;ZÞ A m�2Þ:

Then we see that

g2ð0; 0;ZÞ

g5ð0; 0;ZÞ
; ÿ

g1ð0; 0;ZÞ

g5ð0; 0;ZÞ
lðZ ÿ mð0; 0;ZÞÞ;

are convergent because they are respectively the coe‰cients of Y and X in W as an

element of kfZg½½X ;Y ��. Similarly, from the convergence of U and V,

g2ð0; 0;ZÞ

g3ð0; 0;ZÞ
;

g1ð0; 0;ZÞ

g3ð0; 0;ZÞ
;

g2ð0; 0;ZÞ

g4ð0; 0;ZÞ
;

g4ð0; 0;ZÞ

g1ð0; 0;ZÞ
f2þ Z ÿ mð0; 0;ZÞg

are convergent. Observing these six expressions, we see that 2þ Z ÿ mð0; 0;ZÞ and

lðZ ÿ mð0; 0;ZÞÞ are convergent. This contradicts divergence of lðzÞ and Example is

confirmed.

If we want to have an integral example, we have only to take the formal complex

subspace of ðf0g; k½½x; y; z; u��Þ defined by u2 ÿ f ðx; y; zÞ A k½½x; y; z; u�� with f used

above.
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