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Abstract. We call a formal morphism between completions of complex spaces con-
vergent if it comes from a holomorphic mapping between the complex spaces. We
assume always that the source space is compact. Then a formal morphism is either
convergent everywhere or nowhere, under very general conditions.

0. Introduction.

We are concerned with the claim that a formal morphism defined on the com-
pletion of a complex space along a compact subspace converges either everywhere or
nowhere. As to the formal function case, such a claim for convergence domains first
emerged in Gabrielov’s paper in an analytic form ([G2], (1.6)). This property of formal
functions is extracted from those of formal functions along the exceptional set of a
blowing up obtained as pullbacks. Further this property has turned out to be shared by
all the formal functions on the completion of a complex space along more general space
as follows.

%) Let X|g denote the completion of a complex space X along a Moishezon subspace
\
S. If X|s is globally integral (i.e. X is globally integral along S). Then a global formal
function on )2| s converges either everywhere or nowhere ([13], (C)).

By the medium of this, two important theorems, Gabri¢lov’s on convergence of
pullback of formal function ([G2], (5.6), cf. [T2]) and Sadullaev’s criterion for alge-
braicity of analytic subsets of C" ([S], (2.2)), turned out to be equivalent ([I3]).

Ohsawa posed the author the problem whether (x) can be generalized to morphisms
or not. In the case of the famous example of Arnold [Arn], the formal isomorphism is
known to be divergent everywhere. In this paper we show two affirmative answers to
Ohsawa’s problem, which cover a very general class of formal morphisms.

First we clarify the notion of convergence of formal morphisms in §1, which are
concerned with formal morphisms between the special formal complex spaces obtained
as the completions of complex spaces along analytic subsets. In this connection, we
remember Whitney-Shiota function in Appendix. This function assures the existence

1991 Mathematics Subject Classification. Primary 32KO07.

Key words and phrases. completion, formal morphisms, convergence, Gabrielov’s theorem.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 06640093), Ministry of
Education, Science and Culture, Japan.



732 S. Izumi

of a formal complex space which is topologically 0-dimensional and not obtained as a
completion of a complex space.

Now let Y‘S be the same as in () and Y a reduced complex space. Our first
answer to Ohsawa’s problem is I in §2, which asserts the following.

If &: )A(‘ s — Y is a formal morphism into a complex space Y such that none of the
images of local irreducible components are locally thin (see §2) and if |®@|(S) can be
contracted to one point by a generically finite morphism of Y, then @ converges either
everywhere or nowhere.

The second is [Theoreml 1T in §7, which asserts the following.

Suppose that Y‘T is the completion of a reduced complex space Y along T such that Y
is smooth outside T. Then, for the same X as in (x), an adic formal morphism (cf. §1)
D : Xis — Y with the full generic rank (see §3) is convergent either everywhere or
nowhere.

Both theorems are generalizations of (x) above. Since our proofs of the
main theorems are based upon (x), they inherit the condition that S is a Moishezon
subspace. It is left open whether these theorems hold or not for more general compact
subspaces S.

The proof of I is a combination of Gabrielov’s theorem on convergence of
pullback and other famous results in local analytic geometry.

The proof of [Theoreml| IT requires patience to develop the general theory of formal
complex spaces (§3, 4, 5, 6). Formal complex spaces are introduced by Krasnov
and studied by Bingener systematically. Let us remember the definition. Let X :=
(S,0x) (S =1|X]|) be a C-local ringed space and m; the maximal ideal of the local ring
Ox ¢ Let S < Ox (T < S) denote the ideal sheaf associated to the presheaf of
sections f € Ox(U) over open sets U = S such that f: e m¢ forall{ e TNU. Then, X :=
(S,0x) is by definition a formal complex space if (S,0x/J%) (ne N) are complex
spaces and if the canonical homomorphism Ox — limUx/7¢ is bijective. Since the

n

structure sheaves of formal complex spaces are coherent ([B3], (1.1)), many notions and
constructions for complex spaces can be transferred to them. We sometimes neglect
to write them up. In particular formal blowings up are important for the proof
of [Theoreml II. There we need universal property of formal blowings up with not
necessarily analytic center (in contrast to usual modification theory). Although these
are covered by in principle, we need a few detailed properties. The difficulty lies in
the fact that topology works little in formal geometry. Fortunately the spaces of
Pfaffian forms often substitute for topology. It enables us to generalize Gabriclov’s
generic rank for holomorphic maps to formal morphisms (cf. (3.4)). This generalized
rank is used to measure the local dimensions of images of formal morphisms. Indeed, it
is needed to deduce II from I in §7.

The category of complex spaces (resp. formal complex spaces) is expressed as cs
(resp. fcs). Thus @ ecs: X — Y (resp. @ efes: X — Y) implies a morphism between
complex spaces (resp. formal complex spaces). Let @:: X: — Y, (n =|®|({)) denote
the germ of morphism @ ecs (resp. fes) at & Then the induced homomorphism
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between local rings is expressed by the corresponding small letter as ¢: : Oy, — Ox ¢
(see §1). A subspace means a closed subspace defined by a coherent ideal sheaf unless
stated otherwise. When we mention Modifications or finite morphisms between complex
spaces, the underlying topological mappings are always assumed to be proper. Let P be
a property of a complex space. We say that a complex space X satisfies P along a
closed subset S if the germ of X along S has an arbitrarily small representative which
satisfies P. A (formal) complex space X is called (locally) integral at & € | X| if the local
ring Oy ¢ is an integral domain. A complex space is called (globally) integral if it is
reduced and its smooth points form a connected subset. A formal complex space
is (globally) integral if it is reduced and if its normalization is connected. These
definitions are consistent (cf. (6.5)).

The author has made many mistakes in the preliminary stage of this paper. Many
facts in formal geometry are seemingly apparent by the analogy to analytic geometry but
they require careful algebraic verification. Finally, he wishes to express thanks to
Professors A. Fujiki and M. Shiota for helpful discussions and to Professor T. Ohsawa
for this not quite light task.

1. Convergence of formal morphisms.

Let @: X — Y be a morphism between locally C-ringed spaces. By definition, @
consists of a continuous map |@| : |X| — | Y| between underlying topological spaces and
a homomorphism &* : 0y — @,0y of sheaves of rings, where ®,0y denotes the direct
image sheaf. The homomorphism & canonically induces a local homomorphism
p:: Oy, — Ox: (n=1|P|(¢)). For an Oy-module F on Y, let @'F = |X| x|y F
denote the topological inverse image sheaf. @* also induces canonically the adjoint
homomorphism & : @ !0y — Oy (the same notation @ is used). Let .# = Oy be an
ideal sheaf and let (@~ '.#)0y = Oy denote the ideal sheaf generated by its image by
@*. This is just the ideal sheaf that defines the inverse image of the subspace of Y
defined by .# and called the inverse image ideal sheaf.

Let X be a complex space with the structure sheaf ¢’y and S its analytic subset
defined by a coherent ideal sheaf ¥ = Oy ie. S =sptly/#. Then (S, @X|S) with

0 yis = (im Oy /7 %)|S is a formal complex space. We call this the ( formal) completion

of X aloflg S and express it as )A(:)A(|S and thus Oy = @X|5 (cf. [BS], VI). The
completion is determined by the core S and independent of the choice of .#. In this
paper, the long vertical lines indicate

(i) the underlying topological spaces (mappings) of ringed spaces or

(ii) the restrictions of morphisms.
The short vertical lines indicate

(iii) the subscript case of (i) or

(iv) the cores of completions.
If § = |X]|, then @X‘S = Oy and X"S = X. Hence cs is a full subcategory of fes. If S =
{¢}, then Oy . = Oy¢¢ is the mg-adic completion of the local ring Oy ¢, where me
denotes the maximal ideal of Uy . Let S < |X| and T — |Y| be analytic subsets of
complex spaces and @ ecs: X — Y a morphism such that |@|(S) =« T. Then @ in-
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duces a morphism @S 7 € fes : )q 5 — Y|T, which we call the completion of @ along S
and T (cf. [BS], VI, §2). Completion of a complex space is functorial: i.e. (¥ o @) SU =
Wy ods.p for dees: X — Y with |®|(S) = T and ¥ ees: ¥ — Z with |®|(T) < U.
This implies that completion transforms a commutative diagram into a commutative
diagram. The completions of the identity yield canonical homomorphisms Oy ¢ —
0 x|s,e = Oy : for £ € S. These are faithfully flat mO{phisms (cf. [M], §7, §8). We may
consider these homomorphisms inclusions: Oy ¢ = Oy ¢ = (9;‘(7 s A section of Oys
over U < S is called a formal function on U and it is identified with a morphism of
X’|S|U into C = C“C. We say that @& e fes : X’|S — f’|T 1s convergent at ¢ e S if there
exists a neighborhood U < |X| of £ such that @|SN U is the completion, along SN U
and T, of an analytic morphism X|U — Y. A coherent ideal sheaf .# < Oy is called an
ideal sheaf of definition of X efes if (|X|,0x/F)ecs (ie. Sy =+ F by Ruckert’s
Nullstellensatz, cf. [GR], [Moo]). (See Introduction for the definition of .#|y;. The
radicals of coherent ideal sheaves are coherent because so are the nilradicals of the
structure sheaves (cf. (4.3)).) Thus .|y is the maximal among ideals of definition of
|X|. A morphism @ € fes: X — Y is called adic if and only if every (or some) ideal of
definition of Y generates that of X. Take @ e fes: X — Y, neighborhood U of & € |X|
and Stein neighborhood V of 5 = |®|(¢) € |Y| such that |@|(U) = V. By the em-
bedding theorem of Bingener [B3], §1, there exist an open subset W < C”, closed
analytic subset S < W and an embedding @ e fes: Y|V — W‘S (i.e. @ is adic on V,
@] : V — § is an homeomorphism and the associated homomorphism @, : Og|s.; — Oy,
(( =10|(n)) are surjective for all n € VV.) We call the pullbacks 6(z;),...,0(z,) € Oy(V)
of affine coordinates zj,...,z, of C" the ambient coordinates around # and their
pullbacks o 8(z)),...,900(z,) € Ox(U) components of @ around &. If W, @ and S
are fixed, the components determine morphism @|U ([Kr], §0). It is obvious that
D )Q 5 — Y|T is convergent if and only if its components are all so. Convergence of
@ cfcs: X‘ s — Y‘T between completions of complex spaces is not affected by the ex-
tension of Y| as follows.

LemMmA 1.1. Take @ € fcs : AA’| s — f"T between completions of complex spaces X and
Y. Suppose that Y is a locally closed subspace of Y' ecs and T < T' < |Y'| and that

fT;T« : f’|T — IA"’T, be the completion of the inclusion. Then ® is convergent if and only if
Ir.r 0@ is so.

The proof is easy. If a formal complex space X is isomorphic to the completion
17| s of a complex space Y, we call (Y,S) a complex structure of X. A formal complex
space may not have a complex structure even if its underlying topological space is 0-
dimensional (see Appendix). If X and S are given, the germ of Y at a point of S is
unique up to isomorphism ((Art], (1.6)). It is a difficult problem to discuss existence
and uniqueness of the germ of Y up to isomorphism along entire S (cf. [Arn], [K]).
any rate, we can refer to convergence of a morphism between formal complex spaces
when their complex structures are specified.

ExampLE 1.2. The substitution =) . n!s" defines a formal isomorphism @ of
Cy = ({0}, C[[s]]) into C)p = ({0}, C[[7]]). If the complex structures are defined by s
and ¢ respectively, @ is not convergent.
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An algebra isomorphic to a local ring of a formal complex space is called a formal
analytic algebra (cf. (5.4)). Formal analytic algebras and C-algebra homomorphisms
form the category of formal analytic algebras, which is dual to the category of germs at
points of formal complex spaces (cf. the analytic case [Moo], I).

LemmA 1.3. Let @ efcs: )A(| s — IA"T be a formal morphism between completions of
complex spaces.

(i) For €S, the composition @ OIAé;S : AA’K — }A’|T is convergent if and only if @ is
convergent at ¢.

(i) If @ is convergent at all £ € S, there exist a neighborhood U of S and an analytic
morphism ¥ : X|\U — Y such that @ = ¥g.r.

PrOOF. (i) Suppose that @ol:.g is convergent for &€ S. Then there exist a
neighborhood U of ¢ and an analytic morphism ¥ = %Y ecs: X|U — Y whose
completion ¥¢. 7 coincides with @ o I..g. Hence the left lower rectangle in the diagram
is commutative. Since completion is functorial, the outer rectangle and upper triangle
are also commutative. Hence we have ¥gn U.T © Ié sny=®oIgn Uss © Ig snu. Since
the homomorphism of local rings induced by Ig snu 1s injective, Ig snu 1S an epi-
morphism (a right cancelable morphism) in the category of germs of formal complex
spaces. Hence the germ (‘i’gm U;T)f coincides with (diofsm U;S)é =@;:. Thus & and
¥Ysnu;r coincides in a neighborhood of ¢ and @ is convergent there. The converse is
trivial.

I snu

(X|U)e (X|U)isnu
¥snur
~ Isnuss
?IT \
@
X Xjs

ii:S

(ii) Suppose that there exist analytic morphisms ¥V : X|U — Y and ¥" : X|V —
Y defined on neighborhoods U and V of ¢ such that ®|SNU = (¥Y)sny.r and
DISNV =(P")sy y.7. We have only to prove that each component of P U coincides
with corresponding one of ¥" in a neighborhood of & This is trivial because they
coincide in Oys:(> Oy ¢). O

LemMA 1.4, Let X = X1 U --- UXy be the decomposition into irreducible components
of reduced X ecs and S;c ]X| analyllc subsets such that S=SU---US;. If
@ cfcs : X‘S — Y‘T is convergent on all X|S (ie. ifdo IS .s are all convergent) then so is

on entire X‘ -
Proor. By (1.3) we have only to consider a formal function germ. Then the

assertion follows from Artin’s theorem on analytic equations (see Proof of [I2],
(9.7) for details). ]
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2. The first main theorem.

We call an element a of a local ring 4 active if a mod N, is a nonzerodivisor in
Ared = A/N4, where N4 = /0 denotes the nilradical of 4. We call a subspace S of a
locally ringed space X thin at ¢ if the ideal S5 < Oy of S contains an active
element. Note that the underlying topological space of a thin subspace of a formal
complex space is not always topologically thin. We call a homomorphism n: 4 — B
between local rings a crush if the image of some active element by 7z is not active. If
neither 7 nor 6 is a crush, then neither is 7o 6. A morphism 17 : Y — Z between
locally ringed spaces is a crush at ne Y if the corresponding homomorphism
Oz.c— Oy ,(E=|M|(n)) is so. Let IT: Y — Z be a morphism between complex or
formal complex spaces. It is easy to see that /7 is a crush at # € Y if and only if some
irreducible component of (Yred),7 is mapped into a thin subspace by the canonically
induced morphism 74 : (Ymd),7 — (Zed) I A morphism ITecs: Y — Z is called
generically finite if |I1| is proper and there exists a thin analytic subset £ — |Y| such that
117)7" (|11|(n)) is a finite set for any # € | Y|\E. The dimension of X € cs (or fes) at & (or
the dimension of the germ X:) is defined by the Krull dimension of the local ring:
dimX: =dim Oy .. We say that X ecs (or fes) is equidimensional at & (or X: is
equidimensional) if all the local irreducible components of the germ (Xyq): of the
reduction have a same dimension and that X is equidimensional if X is equidirriensional
everywhere and its local dimensions are constant.

The following is our first main theorem.

THEOREM 1. Suppose that X and Y are reduced equidimensional complex spaces,
S < |X| an analytic subset and ® : AA" s — Y a formal morphism satisfying the following:

(i) S is a thin Moishezon subspace (with respect to the reduced (or any) complex
structure);

(i) X is globally integral along S,

(iii) @ is nowhere a crush on S;

(iv) There exists a generically finite morphism II : Y — Z such that |II o ®|(S) =
(one point).

If @ is convergent at some & € S along some irreducible component of AA" s.¢, then it is
convergent everywhere on S.

Note that the condition (ii) implies that S is connected. The author has announced
a claim similar to above in [I1], Theorem 3. In this occasion he would like to note that
the assertion is incorrect. In fact his proof needs the condition of non-crush as stated
above. If @ is a crush, its “image” may be contracted by /7 and hence /7 may bear no
information on @.

REMARK 2.1. Let T < |Y] be an analytic subset in the theorem. Then, in view of
(1.1), we may replace @ : X’|S — Y by @: X"S — }A’|T and (iii) by the following:

(iii") Iy, yjo®: X\ — Y is nowhere a crush, where I denotes the identity of Y.

This is really weaker than (iii) by the following reasons. Since Ir,|y| is flat, it is
nowhere a crush. Then, if @ is nowhere a crush, neither is I,y o ®. On the other



Convergence of formal morphisms 737

hand, Gabri¢lov [GI] has shown existence of @ € cs: X — Y such that @, : Xﬂé — flln
is a crush and I,y o @¢, : X|¢ — Y is not a crush.

If Y is Stein in the theorem, then |®|(S) is one point and the condition (iv) is
unnecessary. In particular, putting Y = C, we see that this theorem is a generalization
of the function case [I3], (C), the explicit form of which is found in (2.5), (C)* below in
an improved form.

To prove the theorem above, we prepare a few lemmas. A formal curve K on
X efes (expressed as K — X) is simply a morphism K € fcs : CA"O — X. We do not
assume that K is adic, so that the image of K does not bear a canonical structure of a
closed subspace. We call |[K|(0) € |X| the initial point of K.

LemMmA 2.2. Let Il :Y — Z denote a modification between reduced complex
spaces. Then there exists a thin subspace E — Z defined by an ideal sheaf S such
that the following holds: if K < Z is a formal curve with initial point { such that
(K" 75 )C[[f]] #0 (i.e. K & E), then there exists a unique lifting A < Y of K.

PrROOF. (i) The case of a blowing up. Suppose that IT is the blowing up with centre
E. By the condition on K, (K ' /)C][[f]] is invertible. Since /7 is a blowing up in
the category fcs also by the construction of projective spectra, there exists a unique
lifting 4 < Y of K by the universality of a formal blowing up.

(i) The general case. By Hironaka’s version of Chow’s lemma [Hi], Cor.2,
there exist a locally finite succession I7': Y’ — Z of blowings up and a morphism
@:Y' — Y such that IT' = IT o ®. Since the problem is local on Z and since a
composition of a finite number of blowings up is a blowing up locally (cf. [HR]), we
may assume that /7’ is a blowing up with centre E. Then a lifting of K to Y’ exists by
(1). Its image in Y is the lifting of K we seek for. Suppose that there exist two liftings
A and A’ to Y. By the universality of blowing up, @ is also the blowing up of Y with
centre /17! (E) and liftings of A4 and A’ to Y’ exist by (i). By uniqueness (i) of lifting
for the blowing up II', they coincide. Hence A4 = A'. ]

LemMA 2.3. Let Il : Y — Z denote a finite morphism between reduced complex
spaces. Then, for any formal curve K : C\g — Z, there exist only a finite number of
liftings A: Cp — Y of K.

ProOF. Let { be the initial point of K. Since I7 is proper, we have only to prove
that there exist only a finite number of liftings through each point of |I7|'({). Hence
we may assume that |[I7 |*1(C) =5 (one point) and Y is integral at #. If K is not
included in the image of Y, there exists no lifting. Otherwise we may assume that Z is
the image of Y and hence Z is integral. These imply that Oy, and Oz are integral
domains and Oy, is integral over Oz .

Let xi,...,x, be the ambient coordinates around # (cf. §1). There exist monic
polynomials A,(s) € Oz ¢[s] (p=1,...,n) such that 4,(x,) =0. Let 4 be a lifting of
K. If we apply x:0z:— CJ[[t]] to the coefficients of A,(s), we obtain a monic
polynomial B,(s) € C[[t]][s]. Then the components 4, = A(x,) e C[[tf]] of A satisfy
B,(4y) = A(4,(x,)) =0. The coeflicients of B,(s) depend upon K but not upon A.
Since C][f]] is an integral domain, only a finite number of choices are permitted for the
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root A, € C[[t]] of the equation B,(s) =0. Since A is determined by /i,...,4,, the
number of liftings A is also finite. ]

The key lemma to Theoreml I is the following.

LEmMMA 2.4. Let X, Y be reduced complex spaces, S — |X| an analytic subset and
D: )A(‘S — Y a formal morphism which is nowhere a crush on S. Suppose that there
exists a generically finite morphism Il € cs : Y — Z such that II o @ € fcs : )2|S — ZA‘ | =
Z is convergent at £ € S, then @ is convergent at .

Proor. By (1.4), we may assume that X is integral at £. Then by the Hironaka
desingularization, we have only to treat the case X is smooth. Indeed, since the
desingularization morphism has a full generic rank, convergence of the pullbacks of the
components of @ implies convergence of the components themselves by Gabriclov’s
theorem [G2], (5.6). Thus we may assume that X is a neighborhood of (e C". We
may replace Z by the ambient space of its local model. Hence we have only to treat
the case Z is an open subset of C”.

By Stein factorization theorem (cf. [GR], (10.6.1), (8.1.1)), there exist a reduced
complex space W, a modification @ : Y — W and a finite morphism X : W — Z such
that IT = X0 0. Let E < |W| be the bad thin subspace for @ described in (2.2). Lete
be an active element in %z . (7 = |®[(), 7= |0|(n)). The composition @ o @ is not
a crush at ¢ by the assumption on @. Hence ¢: o 0,(e) determine the germ of a
hypersurface at ¢ and its tangent cone H is also a hypersurface. Let L be a complex
line through ¢ e C" which is not contained in H. Parameterizing L by e C and
composing it with @ and I7 o @, we have a formal curve K on Y and an analytic curve
K' on Z such that K is a lifting of K’ =K',z : Clo = Z = Z) 2.

éEHCXA}S L C‘O
K/
qﬂ _
y o 7
n E
w
T

Let us take an embedding Y < U where U is an open subset of C”. Let A = U be a
formal curve with initial point #. The condition for A to be a lifting to Y of K’ is
expressed by a system of simultaneous analytic equations for components of A around 7
(the constraint to Y and the lifting condition). Then the system has only a finite
number of solutions in C[[f]] by (2.2) and (2.3). Since these solutions are arbitrarily
approximated by analytic solutions with respect to the maximal-ideal-adic topology by
Artin’s theorem [Art], all solutions are analytic. Thus components of K are ana-
lytic. Since our choice of L is generic, the components of & are convergent by a
theorem of Tougeron [TI], (1.3). This proves the convergence of @ itself. O

Finally, to complete the proof of Theorem| I, we need the following supplement to a
former paper.
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REMARK 2.5. In view of the proofs of [I3], (C), (C*), we can improve them as
follows:

Let S be a positive dimensional Moishezon subspace of a complex space X such that
X is integral along S. Suppose that Y is an irreducible component of X |U for an open
set U < |X|. Then we have the following.
(CF If fe(@X‘S(S) is convergent along Y at (e SN|Y| (ie (f|Y):€0Oyy¢), f is

convergent everywhere (i.e. f e Ox(S)).

(C*)*  For any &€ |Y| there exists ae R such that

a- Vi,f(f) >y e(f) (= fo,f(f))
for any f € Ox(S), where I < Ox(S) denotes the ideal sheaf of S. Such an a
must satisfy a> 1. (cf for notation.)

In a similar way, we can improve [I3], (A), (A*), (B), (B*), obtaining assertions that the
behaviors of polynomials (or sections) on a local irreducible component of S regulate the
corresponding global properties. The improvement of (A*) is used in [I4].

PrOOF OF THEOREM 1. If we apply (2.5), (C)* to the components of /7 o @, they are
convergent everywhere or nowhere. Hence I7 o @ itself has the same property. The
assertion follows from (2.4). O

3. Dimension of formal complex space.

This section, along with next three sections, is devoted to general theory of formal
complex spaces as preliminary to the proof of the second main theorem in the last
section. First we list ring theoretic properties of formal analytic algebras which are
well-known for analytic algebras and then we generalize the definition of Gabriclov’s
generic rank for analytic morphisms to one for formal morphisms.

Lemma 3.1 ([B3], (1.10)). If K is a Stein semianalytic compact subset of a formal
complex space X, then Ox(K) is an excellent ring.

Let us call a ring normal if its localizations at prime ideals are integrally closed in
their respective total rings of fractions.

LemMA 3.2. Let A be a formal analytic algebra.

(i) ([AT1]) A is a Henselian local ring.

(i) A has the approximation property for algebraic equations.

(i) A is regular (or integral, normal, reduced, CM, Gorenstein) if and only if the
maximal-ideal-adic completion A* is so.

Proor. (i) This is proved by Ancona and Tomassini [ATI], (1.1.2).

(i) It is known that a Henselian excellent local ring has the approximation
property (Popescu [P], cf. [Ro], [A], [O], [Sp)).

(i) By (ii) we have the implication

f, dge A" st. f#0, g#0, fg=0=3f, dge dst. f #0, g#0, fg=0.
Hence, if A is integral, 4* is also so. Since 4 is excellent, it is a G-ring and the natural

monomorphism A — A* is regular and faithfully flat. Then A is regular (normal,
reduced, CM or Gorenstein) if and only if 4* is so (M], (32.2)). O
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Suppose that 4 is an integral domain. We define the rank of an A-module M as
the maximal number r such that there exists an injective A-homomorphism 4" — M. If
Q(A4) denote the fields of fractions, the rank is equal to the dimension of the Q(4)-
vector space Q(A) ® 4 M. This rank is denoted by rank, M.

Let A be a formal analytic algebra and Q(A4) the space of Pfaffian forms on A4
(= the universal finite differential module). This can be defined in the same way as the
case of an analytic algebra and has similar properties ([B3], (1.8)).

THEOREM 3.3 (cf. [SS], (4.1)). If A is an integral formal analytic algebra, we have
rank4Q(A4) = dim 4.

Proor. It is known that Q(A4*) = 4" ®,Q2(A4) ([SS], (1.6)). Since A* is A-flat
and integral by (3.2), rank,Q(A) = rank,-2(4*). Completion preserves Krull di-
mension also (cf. [N], (17.12)). Therefore we may assume that 4 = A4* ie. 4 is a

residue class algebra of C[[xi,...,x,|]. Then it is well-known that, if » = dim 4, there
exists an injective finite monomorphism B = C[[x},...,x;]] — A (an application of the
formal Weierstrass preparation theorem). Since xi,...,x, form a system of parameters

of A,dx,...,dx, are linearly independent over A ([SS], (8.12)). Any element f € A4
satisfies a monic polynomial relation over B. Taking the total derivative of this
relation, we see that df is linearly dependent on dx;,...,dx, over A. Hence
rank4Q(A4) = r = dim A4. O

Next we generalize the notion of Gabriclov’s generic rank grk@: in analytic
geometry (cf. [G2]). Let ¢ : B— A4 be a homomorphism between integral formal analy-
tic algebras. By the universality of Q(B), ¢ naturally induces a homomorphism
¢! : Q(B) — Q(A4) compatible with ¢ (cf. [SS], (1.1), (1.2), (1.3)). We define the generic
rank of ¢ by grke =rank, Ap'(Q(B)). Since ¢ splits through B/Kerg,grkg <
min{dim 4,dim B/Kergp}. If @:X — Y is a morphism between formal complex spaces
and if X is integral, the generic rank grk @: of & at ¢ is defined to be that of the
induced homomorphism ¢; : Oy , — Ox ¢ (1 = |P|(E)).

REMARK 3.4. Let us confirm that our definitions of generic rank coincides with
Gabriclov’s in analytic case. Let X: be an integral germ of a complex subspace of an
open subset of C". Then A4 = Oy, is an integral domain. Let xj,...,x, be the
ambient coordinates. We may assume that xj,...,x; is a system of parameters of
Ox ¢ (k:=dimX). Then dx; (i=1,...,k) are linearly independent over A and
Q(A4) c sz: , O(A4) dx;. Let @:: X: — Y, be a morphism between germs of complex
spaces. Let y;,...,», be the ambient coordinates of Y around #. Then there exist
p e A\{0} and o;; € A such that Bdp(y;) = Zle aydx;.  We may assume that @, o; and
f have respective representatives defined on a neighborhood U of ¢, The repre-
sentatives are indicated by ~. Let M be a minor of (o;). Since X is integral, the
theorem of identity holds in a neighborhood of &, i.e. M =0 if and only if M vanishes
on an open set arbitrarily near to £. Hence grk @ =r in our sense if and only if
the maximum of the rank of the jacobian matrix (&;/B) of ®|X: at a smooth point
arbitrarily near to & is r. The latter is nothing but Gabri¢lov’s original definition.

By our new definition of generic rank, the troublesome inequality grke. <
dim B*/Ker .., becomes trivial, cf. [I2], (1.5).
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LeMMA 3.5.  Suppose that X € fcs, X is integral, d efes : X — Y and ¥ efes: Y —
Z. If we put n=|@|(&) and { =|¥Y|(n). Then we have the following.

(i) If there exist f,...,f, €Oy, such that ¢:(f,),...,0:(f,) form a part of a
system of parameters of Ox ¢, then grk ®: > n.

(i) If ¢ is injective and finite, then Y, is integral and grk W, o ®: = grk ¥,,.
In particular grk ®; = dim Y.

ProOF. (i) Obvious from the fact that d(p:(f})),...,d(p:(f,)) generate a free
submodule of Q(0x ) of rank n ([SS], (8.12)).

(ii) The first assertion is trivial. If grk ¥, = r, there exist g1,...,g, € Oz such that
dy,(gi) are linearly independent over COy,. Let f,..., [, €Uy, be a system of
parameters. Then Q(Cy )/ Oy ,df; is an Uy ,-torsion module ([SS], (4.1)). Hence
there exist h e Oy, and a; € Oy ,\{0} such that

h-dy,(g) € Y _oydfi, rank(ay) =r.
i=1

Then

m

(Pg(h) 'd(‘Pg o V/n(gj)) € Z%(O‘ij)d%(ﬁ)a rank(gaé(ocg,-)) =T
i=1

Since a finite extension of a commutative ring preserves Krull dimension (cf. [N],
(10.10)),

dim @X,é/((pf(fl>7 ce 7¢§(fm)> = dim(gY,’?/(fl? ce 7fm) =0.

Then ¢:(f}),...,0:(f,) form a system of parameters of Ox ¢ and dg;:(f;) are indepen-
dent. This proves that d(p; o w,(g)) = ¢; o w,(dg;) (j=1,...,r) generate a submodule
of Q(0x,) of rank r and that grk ¥, o ®: > grk ¥,. The converse inequality is
trivial. If we take ¥ for the identity 7: Y — Y, the last assertion follows. ]

THEOREM 3.6. Let # be a coherent Ox-module on X efcs. If X is locally and
globally integral, then ranke, .Z¢ is independent of ¢ € |X|.

ProoF. Since # is coherent, there exists a local exact sequence:

(Ox|U)" 5 (0x]U)T — (F|U) — 0.

We may assume that Ox|U is generated by global sections. Let éﬁrf] < Ox|U denote the
ideal sheaf generated by the (¢ — n) x (¢ — n) minors of the matrix representing 2. This
is known to be independent of the choice of the exact sequence. Gluing %Y, we obtain
a coherent ideal sheaf ¥, < Oy (Fitting ideal sheaf). Let ¥, = X denote the subspace
defined by %,. Then we can easily verify that

Y, 1cY,rc---cYycX
and that

rankg, . Fe 21+ 1 < rankg, Ae<qg—r—1 <= (%,); =0 <= (¥,); = X¢.
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Since X is integral, putting
s = max{rankg, .7 : { € [ X[} — 1,
we have X =Y, for r <s. Then rankg, .7: =s+ 1 everywhere. O

The disjoint union Q(X) =[]..x 2(Ox ¢) has a natural structure of a coherent
Ox-module on |X| and we call it the sheaf of Pfaffian forms (B3], §1).

COROLLARY 3.7.

(i) Suppose that X efes is globally integral and let Z: be a local irreducible
component of X:. Then, for @ efes: X — Y, grk @ | Z: is independent of the choice of
point ¢ € |X| and the component Z:. In particular dim Z; = ranky, .Q(Oz ;) is constant
and X is equidimensional.

(ii) For any X efes, dim X is upper semicontinuous with respect to ¢.

Proor. By (3.5), (ii), we may assume that X is normal (cf. §3 of and §5 below
for normalization) and Z: = X;. Then, since Oxp'(Q(Y)) = Q(X) is Ox-coherent,
grk @; is constant by (3.6). If we take @ for the identity of X, the second assertion
follows. To prove (i), we may assume that X is reduced. Then it admits the nor-
malization. Hence X admits the global Lasker-Noether decomposition by coherence of
direct image sheaf ((B3], (3.1)) and (ii) follows from (i). O

4. Blowing up and dimension.

Using the basic works of Bingener on formal complex spaces, we can define the
blowing up of a formal complex space X with center .# < Oy, a coherent ideal sheaf,
in the same way as the complex analytic case. Since (formal) analytic spectra and
projective (formal) analytic spectra are adic, blowings up are also so. Most of the
properties of analytic blowings up hold in formal case too. In particular, the local
dimension is invariant through formal blowings up. But this can not be obtained by an
easy topological argument as in the analytic case (cf. [Moo], III, (1.4.6)). Instead we
certify it algebraically, using the generalized generic rank defined in the previous
section. This invariance is used to reduce the second main theorem to the first in §7 (cf.
the first paragraph of §7).

LeEMMA 4.1. Let A be an integral formal analytic algebra and hy, ... h, (n = dim A4)
a system of parameters of A. If g is a nonzero element of A,

L®d(g'h),...,1®d(g"hy)

form a basis for the Q(A)-vector space Q(A) ® 4 Q(A) for any q € Z possibly except one
value.

Proof. Since 4 is an integral domain, dhy,...,dh, generate a submodule of Q(A4)
with the maximal rank ([SS], (8.12)). Hence there exists an expression

1®dg:gl®dhl++gn®dhn

in Q(4) ®,92(A) and we have
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l ® d<gqho€) - ng_lhc{(gl ® dhl + ct ‘I’ gn ® dhn) + gq ® dha

By a calculation of the determinant, we see that these are linearly independent unless
g+ q(gih1 + -+ guhy) = 0. O

REMARK 4.2. Let X be a ringed space with the structure sheaf 'y, coh(X) the
category of sheaves of (y-module locally of finite presentation whose morphisms are
defined to be (y-homomorphisms and cohi(X) the category of ideal sheaves of
Ox locally of finite presentation whose morphisms are inclusions. cohi(X) can be
identified with the category of subobjects of ¢y € coh(X). Namely an object of cohi(.X)
is a monomorphism € coh(X): # — Oy. A morphism of cohi(X) comes from a
monomorphism in coh(.X).

Bingener called a formal complex space X Stein if |X| is a Stein space with
respect to the reduced complex structure. Let X be a Stein formal complex space and
put 4 = Ox(|X]|) (the Stein algebra of X). Bingener has proved the following for an
A-scheme Y which is locally of finite presentation ([B3], (4.5): the existence theorem):

If'Y is proper over Spec A and if S < |X| is a semianalytic Stein compact subset, there
exists an equivalence

E : coh(Y xgpec 4 Spec Ox(S)) — limcoh(Y*"|U),

of categories, where the limit is taken over the directed system of all Stein neighborhoods
U of S.

Since monomorphisms are characterized by left cancelability, a property defined
only by the terms of the categories, /' € Hom(#,# ') is a monomorphism if and only if
E(f) is so. By exactness of inductive limit functor, E induces an isomorphism

E' : cohi(Y Xgpec4 Spec Ox(S)) — lim cohi(Y*"|U).

Let IT e fes : X' — X be a blowing up with centre .# and S = {¢} (¢ € |X]|). Then, E’
implies the isomorphism between the lattice structures of the following

(i) the family of subspaces of Proj @ .#¢;

(i) the family of germs of subspaces of || '(U)=Proj® (#|U)" around
[I7) ' (£), where U runs over the system of all Stein neighborhoods of ¢&.

RemARkK 4.3. We can define reduction of formal complex spaces via those of Stein
algebras using the correspondence theorem and [BI], (2.7). In other words, the
nilradical of the structure sheaf of a formal complex space is coherent. Further, re-
duction is a covariant functor of fcs into itself. The reduction of X is denoted by Xeq.

TaeorReM 4.4.  Let IT e fes : X' — X be a blowing up of a formal complex space and
Y, an irreducible component of (X;ed)n. Then we have the following:
1) If |l|(n) =&, then dim Y, = grk 1Y, < dim X¢.
(ii) If X: is equidimensional, then
dimY, = grkI1|Y, = dim X

and hence X, is equidimensional as well as X:.
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Proor. (i) The inequality grk/7|Y, < dimX: is obvious. Let # < Ox be the
centre of I1. There exist a small neighborhood U of ¢ and a degree-preserving (Ox|U)-
epimorphism

ly (@XlU)[To, ey Tp] — E}—)()(f“])n,
n>
whose kernel 7y is generated by a finite number of sections ki,...,k, € #y(U) (cf.
[Moo], 111, (1.4.1)). Then X'|V (V = |[II| '(U)) is the projectivization of the formal
complex subspace of (X|U) x C’™! defined by ki,...,k,. The images f, € .#(U) and
F, ==n(f,) € Ox/(V) of T, are global sections over U and V respectively. Note that #
is the ideal sheaf generated by the homogeneous polynomial relations among germs of f,
over Ox|U. We may assume that 7y # 0 at #. Then we can find linear combinations

P )4
H =Y a,T,/Ty,....,Hi= Y alT,/Ty (a},...,aleC)
=0 a=0

(d =dimY,) which induce a system of parameters of the local ring (Oy,. For
any ¢ > 1, the restrictions of TjH,,...,T{H; to Y, belong to the canonical image
of Ox¢ in 0Oy, By 41), 1®d(TJH)),...,1®d(TjH;) form a basis of
O(Oy,y) ®qy, 2(Oy,,) for general ¢ >1. Let n':Ux ¢ — Oy, denote the canonical
homomorphism induced by I1|Y,. Since

d(TyH)|Y, e d(n'(Ox.¢)) = " (d0x.c),

we have dimY, = grkI1|Y,,.

(i) As in analytic case, blowing up commutes with reduction and the irreducible
components included in some multiple of the centre are lost. Then we may assume that
X is reduced and .#¢ is not included in a minimal prime ideal of ¢y .. The completion
of a local ring preserves the dimension (cf. [N], (17.12)) and the decomposition into the
irreducible components by (3.2), (iii). Hence, by the assumption that X: (or Ox ) is
equidimensional, it is formally so (= quasi-unmixed i.e. the maximal-ideal-adic com-
pletion is equidimensional). Further, since .#; is included in no minimal prime ideal,
A= (—ano J¢ is also formally, and hence plainly, equidimensional of dimension
r+1 (r=dimX:) ((HIO], (18.23), (9.7)). Then there exists a homogeneous prime
chain of length r+ 1 in 4 which begins with the prime ideal corresponding to Y, and
ends with one corresponding to # (cf. [M], (13.7) and its proof). This proves that X ,’7 is
equidimensional of dimension r by (4.2). (]

5. Completion.

In this section we show that the completion of a formal complex space is again a
formal complex space.
Suppose that X € fes, .7 € coh(X) and .# € cohi(X). Let &, denote the .#-adic

completion: % 1y = hﬁ(ﬁ /IPF) defined by the canonical presheaf which consists
P
of inverse limits of sections of # over open sets of |X|. Obviously #, ~ 7 Vet
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LEMMA 5.1.  Suppose that X €fes, and ¥, ¢ € cohi(X). If we put ¢' = f(bxu c
@X| s, then there exists a canonical isomorphism between (0 f)Ijr and Ox 14 as Ox-
algebras.

ProOF. The canonical commutative diagram among (V-algebras (¢ = (Oy)

im(0/97)/4(0/97) — Lm (0/57)/F20/57) — L (0/97)] 53/ 97) — -

| | |

O/ 2(01F)  —  (0)F)] 0] %) —  (0)9%)]7N0)I%) —--
yields a homomorphism
lim lim (0/47)/ (0] 57) — lim (/57)/57(C/57).
a p p

Since all the positive dimensional cohomology groups with coefficients in coherent
sheaves vanish on Stein open sets (B3|, (1.3)), they vanish on Stein compact sets also.
Then by the argument [BS], VI, (2.2), (2.3) or [H], I, §4, §5, we see that

lim (0/.97)/.£9(0/.#7) = lim (€/7)] lim #4(C /7).

Thus we have

; ; P q P\ ~ lim (0 a0~ (0, \ .,

lim lim (0/.97)/ 790/ 9") = lim O,/ 790, = (O), 4.

g p q
On the other hand, since (0/#7)/ #7(0/#7) is canonically isomorphic to O/(#7 + #7)
and since

SN eI+ g eI+ ),

we have an isomorphism

lim (0/-97)/ 570/ 57) = 7. .

Thus we have a canonical homomorphism

A

(%) (O15) 157 = Opysy.
Similarly the commutative diagram among (V-algebras

(O)97)]52(0)I7) = (O]IP) g0/ I = (0] IT2)) IR0/ IT)

| | |

(0/770))47(0/570) — (0/97710)/ 77(0)5710) — (0/97720)/47(0)5720) -

yields a canonical homomorphism

A

(%) @|f+j — ((O\J)Tf"
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The homomorphisms () and (x*) are mutual inverses on the subalgebra ¢/, so on entire
((O‘ﬁ)\fl and (9|]+/¢. Ll

Let .# be an ideal of definition of X € fes. Then Oy =~ @le and (|X|,Ox/F7") are
complex spaces. Take another ¢ ecohi(X). If we put X' =S+ ¢, X' =A4 (@X‘ s
and #' = #0x, then the analytic sets S = sptOx/A#” — |X| are independent of p e N
and (S,0x/H7) = (S,0x,/#") ecs. Since

(@X\j)i%f’ = @X|j+f = @X\yf = <@X|J)L¢’ = @X\f
by (5.1), we see that (S, Ox|,) € fes (cf. [B3]). Since Oy, is determined by the analytic

set S, we may express it as Oxs. We call (S,0xs) the completion of X along S and
express it as X|g or as X|,.

LEmMmA 5.2. Let X efes be a formal complex space and S < |X| an analytic
subset. Then Ox ¢ is reqular (or integral, normal, reduced, CM, Gorenstein) if and only if
the completion Oxs ¢ is so.

ProOOF. Since the maximal-ideal-adic completions of the two algebras coincide, this
follows from (3.2). [

Let »# be an ideal which includes an ideal of definition of X. If % € coh(X),
F = 9}‘5 denote the sheaf lim F(Ox/AP) or its restriction to S =sptOx/#". It has

»
the canonical structure of an Oxs-modules. For @ efes: X — Y and an Oy-module

F , the analytic inverse image sheaf ®*F is defined by ¢*F = ¢~ ' F ®p 10, Ox. We
can prove the following in the same way as analytic case (cf. [BS], VI, (2.3), [H], §5)

LEmMmA 5.3.

(i) The correspondence F — F defines an exact functor from coh(X) to coh(X 1s)-

(ii) (lifting to completion) Let ® € fes : X — Y be a morphism and S < |X|, T < |Y|
subsets such that |®|(S) <« T. Then there is a unique lifting

dAig;T € fes : X'|S — I?|T
of ®.
(iii) Let
IAEIAS;W efcs:X|S — X
be the lifting of the identity. Then there exists a canonical isomorphism

Iwg‘:EIA f@»]\ (@X|S_>g%~
X

REMARK 5.4. We must be careful to the following fact. Let & be an (y-module
on X efes and S < |X| an analytic subset defined by #". Then the Ox(7T)-module

F is(T) of sections over T = § does not necessarily coincide with (hﬁ{(ﬁ JAP)T)},

. p
unless 7" is open. In particular, Oy, s i1s a proper subalgebra of the . :-adic
completion of Uy ¢ in general.
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6. Normalization and completion.

Here we consider the notion of integrality of a completion of a complex space using
normalization of formal complex spaces. This integrality assures constancy of the
generalized generic rank in the proof of the second main theorem. On the way, we
need the formal version of Forster’s duality between Stein algebras and Stein spaces.

Let X be a reduced formal complex space and Oy the sheaf of integral closures of
the structure sheaf (x in the sheaf of the total rings of fractions of Ox. Bingener has
proven that Oy is an Ox-coherent algebra ([(B2], §1, Bemerkung, [B §3) The formal
complex space X = Specan Oy with the canonical epimorphism N e fcs X — X is called
the normalization of X. By coherence of (OX, we have N0y = Oy.

Taeorem 6.1 (lifting to normalization). Let @ efes: X — Y be a morphism
between reduced formal complex spaces. If @ is nowhere a crush, then there exists a
unique lifting @ cfes: X — Y.

PROOF. By the assumption on @, the canonical homomorphism & : @ !0y — Ox
can be extended to @ 'y — M x, Where .#x and .#y denote the sheaves of mer-
omorphic function germs on X and Y respectively. Writing up the relation of integral
dependence, we see that this extension maps @ 'Oy c (®~'.4y) into Ox c (My).
Then the composition 8 of

dj*(by = (p_l(by ®¢71@Y (QX — (DX ®‘IY[C‘Y (QX — (DX ®@X @X = @X

of canonical homomorphisms of (x-algebras yields an extension X = Specany Ox —
Specany @*(y. By the base change theorem for formal analytic spectra (cf. [B3], p. 33,

[B1]):
Specany @* 0y = Specany Y xy X,

we have the projection

Specany @*@Oy — Specany Oy = Y

over @. Composing these morphisms we obtain a lifting of @. By the universality of
the fiber product, any lifting splits through

Specany @* @y =~ (Specany Oy) xy X.
An element of (di*@y)é is expressed as (f/g)®h (f,g,he Ox ¢) such that g is not
a zerodivisor. Since the image 0:(g ® 1) = ¢:(g) is not a zerodivisor, the image of
(f/9) ® h is uniquely determined by ¢:(f) and ¢:(g) and the extension @* Oy — Oy is
unique. This proves the uniqueness. O

LemMA 6.2. Let S < |X| be an analytic subset of X efes. Then (Xiea)s and
(X|5)req @re canonically isomorphic.

PROOF. Let us put A = Oy and 4 = (@X|S7¢. Since ((Ared) )oq = (Area) by (5.2),
we have a homomorphism
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by (5.3). Then we have N;< N 4A. Since NyA< N i 1s obvious, the equality
holds and the local rings (A4;.q) and A4 are canonically isomorphic. This proves the
assertion. [

We call a C-algebra a Stein formal algebra if it is isomorphic to the algebra of
global sections (x(|X|) for some Stein formal complex space X.
The following is the formal version of Forster’s theorem ([F], Satz 1).

THEOREM 6.3. The category of Stein formal complex spaces is isomorphic to the dual
of the category of Stein formal algebras.

Proor. Let ¢(|X]|): Oy(]Y]) — Ox(]X|) be a homomorphism between Stein formal
algebras. Since ¢(#y|(|Y|)) = #x(|X]), this induces a homomorphism

2 (1X1) = Ox (1Y) /Ty (1Y]) — Ox(IX]) /5 5, (IX])
between Stein algebras. Let us put
X, = (]X|,@X/f|’}(‘), Y, = (|Y|,(0y/f‘”y|).

By the classical Forster’s theorem, there exists a morphism @, €cs: X, — Y, which
induces ¢,(|X]). Taking the inverse limit of &,, we have a morphism @ efes: X — Y
which induces ¢(|X|). The rest are easy to see. O

THEOREM 6.4. A complex space X €cs is reduced along S < X if and only if

XEAA"S is reduced. If X is reduced along S, then (X)s, ()A(|S)~ and X xy X are
canonically isomorphic, where S’ < |X| is the inverse image of S.

Proor. If we apply [BS], VI, (2.8) to the sheaves of nilradicals, we obtain the first
assertion. In a) and b) below, we consider the sheaves on X.

a) First we claim that Oy — Oy " is nowhere a crush. To see this, suppose the
contrary: the injective homomorphism

A;A@AAH/I@AA;ANA (AE(QX,@AE@XLS‘,&)

is a crush for some ¢ € S. Then there exist a non-zerodivisor 1 ® f € AX),4 and a
nonzero g ® he A ® A such that g® fh=01in J@AA. We can express g as g = ¢’ /k
for some ¢’ € A and some non-zerodivisor k € A. Therefore ¢’ ® fh=0 in A (A.
This contradicts the assumption on 1® f.

b) By a) there exists a lifting Oy — Oy  (cf. Proof of (6.1)). Fibers of the
sheaf Oy ~ are normal ie. Oy =~y by (5.2). Therefore we have a canonical
homomorphism 6:0y — Oy . Since Oy is @X-coherent, Oy =0y By the
flatness of Uy :— Oy and by (5.3), (6.1), we have a canonical homomorphism
Oy ~— Oy . Thus we have a homomorphism 7: 0y — Oy . The homomorphism
o is the inverse of 7 on their subsheaf ¢y and hence on ¢y and Oy . Therefore they
are canonically isomorphic.

¢) Let U c |X| be a Stein open set. Since the normalization morphism N : X —
X is surjective and finite, U = |[N|"'(U) = |X| is also Stein (cf. [KK], (73.1)). Let us
put X’| s, X =X )|s» and let N efes: X ""— X denote the formal normalization
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morphism and
KEIAS;|X| efes: X - X

the completion morphism. Thus we have the following diagram.

(SU C)XNA _— Xi(:) UDSU)

7o
(TUC)XAN N
N
(SNU )X K X(>U>8N00)

Let #, < Ox(U) denote the ideal of sections vanishing on SN U. This generates the
ideals of S; at each ¢e U (Theoreml A). Let #, < Ox(U) and #, < O4(SNU)
denote the ideals generated by the images of ;. Their images generate ideals of
definition of X |Sy and X | Ty respectively (Sy = S'NU, Ty = |X |N|K o N|”'(U)).
Then we have

Ox-(S0) = im(0/ 750 )(0) (. [BS], VI, §2)

%
k

12

(h_m@i(ﬁ)/(jgﬁi)(ﬁ) (since U is Stein)

12

m@ x(U)/ 75 (U)0x(U) (by a property of normalization)
k

12

(h_m(@;d/{}(bﬂ(U) (since U is Stein)
3

~ Oy " (SNU) (cf. [BS], VI, §2).
On the other hand, we have

Ox~(Ty) = (N.Ox-)(SNU) = (Oy) (SNU)=0x""(SNU).
d) We have an isomorphism
vu(Su) : Ox~(Ty) — Ox(Sv)
by b) and c). Since Sy and Ty are Stein, we have an isomorphism

dyefes: X |Sy— X |Ty

which induces ¢ (Sy) by (6.3).
e) Suppose that U and V" are Stein open sets of |X|. We claim that @y and @y
coincide on Tynyp. Since the intersection of two Stein open sets is Stein, we may assume
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that ¥ < U. Then ¢,(Sy) and ¢, (Sy) commute with the restriction homomorphisms

Ox~(Ty) — Ox~(Ty), Ox-(Sy) — Ox~(Sy),

because they are defined through the sheaf homomorphism Oxy""— Oy~ on |X|. This
verifies the claim by (6.3). Thus @ are glued to a canonical isomorphism @ : X  —
X

f) The Og-modules Oy and K*@y are canonically isomorphic as ¢y-modules
by (b). Then they are canonically isomorphic as (/y-modules also by continuity of
multiplications by elements of (¢ in each stalk module with the maximal-ideal-adic
topology. Then the claim X =~ X xy X is proved as follows.

X "= Specany Oy (by definition of the normalization)
= Specan g KOy
>~ X xy Specany Oy (by the base change theorem [B3], §4 and [BI])

= X xy X (by definition of normalization). O

We call a formal complex space (globally) integral if it is reduced and its nor-
malization is connected (cf. [GR], (9.1.2)).

THEOREM 6.5. A complex space X is globally integral along an analytic set S < |X|
if and only if X|s is globally integral.

ProoFr. Since the equivalence of reducedness is stated in (6.4), we may assume that
X and X are reduced. Let N:X — X denote the normalization morphism and put
S'=|N |_1(S). Suppose that X is integral along S. There exists an arbitrarily small
neighborhood U of § such that X|U is integral i.e. U\SingX is connected. Then
U’ = |N|7'(U) is connected. Since N is proper, we can choose an arbitrarily small U’
by the choice of U. This, together with (6.4), proves that |X |~ |X |=S' is
connected i.e. X is integral. Now the proof of the converse is easy. O

7. The second main theorem.

The purpose here is to take off the condition of contraction (iv) in the first main
theorem. We can not get rid of the condition (iii) of non-crush. This condition is not
preserved by the canonical lifting to blowings up. Indeed, the example of Osgood (cf.
[KK], p. 188) is a non-crush morphism, whose canonical lifting induced by the point
blowing up of the target space is a crush. So we adopt a more stable condition, the
formal version of Gabri¢lov’s rank condition, which is stronger than the condition of
non-crush. Furthermore, we are obliged to assume adicity of the morphism and
smoothness of the target space outside the core of the completion to assure the existence
of a lifting to desingularization.

THEOREM 1I.  Suppose that S < |X| and T < |Y| be analytic subsets of reduced
complex spaces and @ : X|s — Y|r a formal morphism between the completions satisfying
the following:
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(1) S is a thin Moishezon subspace (with respect to the reduced complex structure);

(i) X is globally integral along S;

(iii) There exist (€S and a local irreducible component Z: of X such that
grk@|Z: = dim Y, (n = |D|());

(iv) Y is equidimensional and Y is smooth outside T;

(v) @: AA"S — IA"T is adic all over S;

(vi) @ is convergent at some &y € S along some irreducible component of X" S, -
Then @ is convergent everywhere on S.

By (3.7) and (6.5), the condition (ii) and (iii) imply that grk®|Z: =dim Y, (y =
|®|(&)) for any ¢ e S and any local irreducible component Z;: of AA’| S

PrOOF. We equip analytic subsets with the reduced complex structures if neces-
sary. In view of (1.1), convergence of @ and the condition (v) are not affected even if
we replace 7' by the image of S: 7' = |®|(S). Then T is known to be also Moishezon
(Theoreml of Ueno-litaka, [Ti], §8, Remark 4).

Let us consider the set .o/ of all the triples {S,, X,, V,}, where S, is an irreducible
component of S, V, an open neighborhood of §, and X, an irreducible component of
X|V, with S, < |X,| such that X, is integral along S,. The join of all X, is a
neighborhood of S in |X].

By our assumption (vi), there exists {Sy, Xo, Vo} € o/ such that @ is convergent at
a point of Sy along a local irreducible component of X;. Let 7: Xy — X be the
inclusion. The composition @ Eq)ofsmm; s 18 adic by (v). Now we apply the
argument in [I3], §3. First by the theory of Moishezon spaces and Hironaka de-
singularization, shrinking Y if necessary, we have a blowing up ® ecs: Y’ — Y with
centre D < Y such that Y’ is smooth and all irreducible components of T’ = |@|'(T)
are smooth and projective. By the assumption (iv) and by the nature of Hironaka
desingularization ([AHV], cf. [BM]), D is a complex subspace of Y| (ie. Jr <
VIp < Oyr). Since @ is adic, C =&, (D) is a complex subspace of Xjs. Let
Xecs: X' — Xy be the blowing up with centre CNX,. It is known that the com-
pletion of an analytic blowing up along an analytic subspace whose reduction is included
in the core is a formal blowing up m I1I, Prop.6). If we put S’ = |X|7' (SN |Xo)),
@, has the canonical llftlng @' efes : X\ o — Y‘T, by the universality of formal blowing
up. Since @, and z s .sn|x,| are adic, &' is also so. There exists an irreducible
component S; of [X]” '(Sy) such that 12](Sg) = So. We put Ty = |®|(Sy) and T =
|@'|(S}). Then |O|(T}) = T’ is an irreducible projective variety.

Next, applying Grauert’s theorem on weakly negative line bundle neighborhoods
[Gr], we get a further blowing up ©': Y” — Y’ whose centre D’ is a thin complex
subspace of Tj such that the strict transform T}/ of T} is exceptional in Y” (cf. [13],
(3.2)). Since @' is adic, C' = @' '(D’) is an complex subspace of X‘g, Let X' €
cs: X’ — X' be the blowing up with centre C’ and

®" e fes : Aﬁgn — A"},, ("= |2'"Ns), 7" = |0'| (1))

the canonical lifting of @'. We have the following commutative diagram.
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/) Z;‘”;S’ 5 ZS/ SN Xl
b (U (H L LN

¢~l (b“ %‘

. )
Y, —§ Y Yor

. 1! Or.r

Let SJ = S” be the strict transformation of Sj. It is easy to see that |@"|(S]) = Ty .
By (4.4) the generic rank of a formal blowing up on each local irreducible component
is equal to the dimension of the target space so long as the target space 1s equi-
dimensional. Since Xo‘ SN |x,| 18 equ1d1mens10nal by (ii) and (3.7), S .sn|x,| and 3 S s
satisfy this condition. Similarly @T,, 71 O @T/ r preserves local dimension by the
assumption (iv). @ has the full generic rank on all the local irreducible components by
(iii) and (3.7). These prove that @” has the full generic rank on all the local irreducible
components as well as @ and hence @” can not split through a thin subspace of Y|T,, on
any local irreducible component of X|S,, Then @” is nowhere a crush. Since

! " " r 3 3
000 ol yio® =lIryoOr.r 007 1 0®" =Ir. v 0 @0 Ls.snx|© L5

is convergent at a point &” e|ZoX’|7'(&) along a local irreducible component,
IATHY/,‘ o@" is also so by (2.4). Then AIATO”;\Y”I odii’ is globally convergent on S by
Remark (2.1). The composition @ o 2. sn x| © 2gng is also so. By Gabriclov’s
theorem, @, is convergent on Sy as in the first part of the proof of (2.4), ie. @ is
convergent along X, at points of Sy by (1.3) and (1.4).

We say that {S,,X,, V,} and {Sg, X3, Vp} of o/ are linked if there exists a point
(€ S,NSp such that the germs (X,), and (Xj), share at least one local irreducible
component. If this is the case, convergence of @ along X, on §, implies that on X; on
Sp by the same argument as above. Since X is integral along S, any two elements of .o/
are joined by successively linked elements and the convergence on AA’O‘ s, Influences all
other X5, of {S,, X, V,} € /. Then IT follows from (1.3) and (1.4). O

Appendix. Whitney-Shiota function.

Here we show an example of topologically 0-dimensional formal complex space
which has no complex structure (cf. §1 for complex structure). Whitney has
constructed a convergent power series which cannot be transformed into a polynomial
through analytic change of variables. Modifying this, Shiota has obtained the follow-
ing. (There are a little improvement in the assertion and a little alteration of the form
of the function.)

ExampLE 8.1 ([Sh]). Let us put O =k{x,y,z} and O* =kl[x,y,z]] (k=R or
C). If J(z) is a divergent power series in z with A(0) =3, then

f=xy(y -0y - @+ 2y - i) e O°

can never be transformed into a convergent power series by multiplication by an in-
vertible element of O* and by a formal change of variables.
This fact implies that ({0}, A) € fes with 4 = O*/fO* has no complex structure
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when k= C. For, otherwise 4 would be the maximal-ideal-adic completion of an
analytic algebra B: 4 = B*. The completion does not alter the dimension and the
embedding dimension and the completion of a complete intersection ring is also
so. Then B is expressed as B = k{x',y',z'}/f'k{x', y',z'} with f' e k{x' ' z'} with
respect to new formal coordinate system (x’, y’,z’). Then there exist an automorphism
¢ of O* and an invertible g € 4 such that fog=gf’, a contradiction.

Since Shiota is concerned with real problems in [Sh], his geometric proof does not
works in the complex case. Hence we note a proof which covers both cases.

Suppose that there exist an automorphism ¢ of O* and an invertible element g € O*
such that fogpe gO. Since O is normal, the formal decomposition of (f ogp)g~' € O
reduces to an analytic one by [I3], (E), that is to say, there exist X, Y, U, V, W € O such
that

(foplg™ = XYUVW,
xop=g1X, yop=qY, (y—x)op=g3U,

{y=Q+z)xtop=gquV, {y—Az)x}op=gsW.

(We may as well use the approximation theorem of Artin.)

We may assume that g; € | + m*(m*: the maximal ideal of O*). If y denote the
linear part of ¢, then the linear part of po w~! is the identity. Hence we may assume
that the linear part of ¢ is the identity from the first. Then by the inverse mapping
theorem, we see that X, Y and Z = z form a regular system of parameters of O and
O*. Then every elements of O (resp. O*) can be expressed as a convergent (resp.
formal) power series in them. Eliminating x, y,z, we have

@ (X, Y, Z) g (X, Y, Z)

W(X,Y,Z) = Y - HZ — (X, Y, Z))X
( ) gS<X> Ya Z) QS(X, Y; Z) ( lu( ))

(Z—w(X,Y,Z)=z0p, wX,Y,Z)em?).
Then we see that

gz(0,0,Z) _gl(0,0,Z)

, = WZ —u(0,0,2)),
95(07072) g5(0,0,2) ( lu( ))

are convergent because they are respectively the coefficients of Y and X in W as an
element of k{Z}[[X,Y]]. Similarly, from the convergence of U and V,

gz(0,0,Z) gl(0,0,Z) gz(0,0,Z) g4(0,0,Z)
g3<0,0,Z)’ g3(07072>, g4(0707z)’ 91(0»072)

{2+ Z - u(0,0,2)}

are convergent. Observing these six expressions, we see that 2+ Z — 1(0,0,Z) and
MZ — p1(0,0,7)) are convergent. This contradicts divergence of A(z) and Example is
confirmed.

If we want to have an integral example, we have only to take the formal complex
subspace of ({0},k[[x, y,z,u]]) defined by u®>— f(x,y,z)€k|[[x,y,z,ul] with f used
above.
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