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Abstract. The purpose of this paper is to derive that the square of Fourier coefficients
a(n) at a square free positive integer n of modular forms f of half integral weight belonging
to Kohnen’s spaces of arbitrary odd level and of arbitrary primitive character is essentially
equal to the critical value of the zeta function attached to the modular form F of integral
weight which is the image of f under the Shimura correspondence. Previously, Kohnen-
Zagier had obtained an analogous result in the case of Kohnen’s spaces of square free
level and of trivial character. Our results give some generalizations of them of Kohnen-
Zagier. Our method of the proof is similar to that of Shimura’s paper concerning
Fourier coefficients of Hilbert modular forms of half integral weight over totally real fields.

Introduction.

In [7], Shimura established a correspondence ¥ = Yf?zj;iflo) oy between the space
S(ak+1)/2(4N,y) of modular forms of half integral weight (2k+1)/2 and the space
S (2N, npg) of those of even weight 2k. Using methods and languages of repre-
sentation theory of adeles of metaplectic groups, Waldspurger [11] proved that the
square of Fourier coefficients a(n) at a square free integer n of modular forms f(z) =
>2a(n)elnz] of half integral weight is essentially proportional to the central value of
the zeta function at a certain integer attached to the modular form F if f corresponds to
F by ¥ and f is an eigen-function of Hecke operators.

On the other hand, Kohnen-Zagier determined explicitly the constant of the
proportionality in the case of modular forms of half integral weight belonging to
Kohnen’s spaces Siyi1)/2(NV,x) of square free level N and character y which is a
subspace of S(o11),2(4N, x1). Kohnen [T] (resp. [3]) treated the case where N = 1 (resp.
N is an odd square free integer and y is the trivial character of level N) (cf. Kojima [4]
and [5]).

In [10] , Shimura intended to generalize such formulas to the case of Hilbert
modular forms f of half integral weight and succeeded in obtaining many general
interesting formulas. Among these, some explicit and useful formulas about the
proportionality constant were formulated under assumption that f satisfies the multi-
plicity one theorem, but there he did not treat the problem determining whether such
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f satisfies this condition. Therefore it is a question to explore results of Shimura’s
type in the case of modular forms of half integral weight which do not satisfy the
multiplicity one theorem. There are interesting subspaces Soiy1)2(N,x), called
Kohnen’s subspaces, of Si+1)/2(4N, ), whose elements do not satisfy the multiplicity
one theorem general. More precisely, this means that if f € Spri1)2(N,x) satis-
fies T8 10, (PP)f = o(p)f and TEY. ), (p*)f" = w(p)f’ for every p ((p,M)=1)
with an f" € Sp41)2(4N, x1), then f is not equal to c¢f’ for any constant ¢, where
T8 1)/2.,,(P?) is the Hecke operator of Sioyi1)/2(4N, 1) given in [7] (cf. [2] and Lemma
1.3). For modular forms belonging to Kohnen’s spaces S(s;1)/2(N,x), Shimura
did not obtain the same explicit formula as that of Kohnen and Zagier [1], [3].

The purpose of this paper is to try to derive such explicit formulas concerning the
proportionality constant in some cases of modular forms f of half integral weight with
multiplicity two by following Shimura’s method and to generalize results of Kohnen and
Zagier in [1], to the modular forms of half integral weight belonging to Kohnen’s
spaces of an arbitrary odd level N and of an arbitrary primitive character y modulo M.
We shall verify an explicit relation between the square of Fourier coefficients a(4n) at
a fundamental discriminant 4n of modular forms f(z) :Zg(_l)kn507l(4)7n>o a(n)e[nz|
belonging to the Kohnen’s space of half integral weight (2k + 1)/2 and of arbitrary odd
level N with primitive character y and the critical value of the zeta function of the
modular form F which is the image of f under the Shimura correspondence ¥. The
assumptions on y and fundamental discriminant 4n are technical conditions for
modifications of methods in [I0]. Our methods of the proof are the same as those of
Shimura [10]. To obtain our results we need to modify slightly his methods.

Section 0 is a preliminary section. In Section 1, we shall summarize some results
about Kohnen’s spaces, the Shimura correspondence, theta functions and Hecke op-
erators of Kohnen’s spaces. There, using these, we shall determine explicitly the image
of modular forms of half integral weight belonging to Kohnen’s spaces under the

Shimura correspondence. We show that ?’?ﬁf{) /271( f)(w) coincides with a(4t)g(2w) for

every f(z)= zs(_l)kn50’1(4)7n>0 a(n)elnz] € Spii1)2(N, %), where 7 is a positive square
free integer satisfying 7 =2,3(mod4) and ¢g(w) is an element of Sy (N,y?). To
overcome difficulties about multiplicity one property for elements of Kohnen’s space, we
adapt the operator U(4) and we impose the condition (1-13) which is essential for our
arguments. In Section 2, we shall verify an integral formula which indicates that a
modular form f of half integral weight is expressed as the inner product of a theta
function and the image ¥(f) of f by the Shimura correspondence ¥. By the
above assumption and a method similar to that of Shimura [I0], we shall show
that <(O(z,w;(%),g(2w)> = cL.(f)(z) + ¢'L.(f)|U(4)(z) for a modular form fe
Sk+1)/2(N, x) with some constants ¢ and ¢’, where O(z,w; ¢z ) is a theta function and

L.(f)(z) = f(zz)7*. Moreover, applying the above formula in Section 1, we obtain

c=a(47)c" and ¢’ = a(4r)c” with explicit constants ¢” and ¢”. These formulas are
keys for our later arguments. In Section 3, using the results of Section 1, Section 2 , the
computation of the image of a product of theta series and Eisenstein series by Shimura
correspondence and the method of the Rankin’s convolution, under some assumptions,
we shall derive an explicit connection between the square of Fourier coefficients of a
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modular form f of half integral weight and the central value of zeta functions associated
with the image ¥(f) of f by the Shimura correspondence ¥.

We mention that our results give a generalization of some results in Kohnen-Zagier
and and Kojima [4] and [5].

Finally, the author is indebted to the referee for suggesting some revisions of this
paper.

§0. Notation and preliminaries.

We denote by Z, Q, R and C the ring of rational integers, the rational number field,
the real number field and the complex number field, respectively. For ze C, we put
ez] = exp(2miz) and we define \/z = z'/? so that —n/2 < argz!/> < n/2. Further, we
set zF/2 = (\/2)* for every k € Z. Let SL(2,R) denote the group of all real matrices of
degree 2 with determinant one and $ the complex upper half plane, i.e.,

SL(2,R) = {(Z’ Z)

9={z=x+iy|x,yeRand y > 0}.

a,b,cand d € R and ad — bc = 1}

and

Define an action of SL(2,R) on by

b
z—>y(z):az+b forally:<ccl d)eSL(2,R)andforallze$§.

cz+d

For positive integers M and M’, put

c

Io(M) = {(a Z) e SL(2,R)

a,b,candd e Z and ¢ = O(modM)}

and

M, M) = {(i Z) e I'o(M')

b= O(modM)}.

We introduce an automorphic factor jy(y,z) of I'¢(4) determined by

Jo(.2) = B0(3(2))//d0(2) for every = (‘C’ Z) € Io(4) and

for every z € § with Jy(z) = i e[n’z] and 9(z) = 9(z/2).

n=—0o0

§1. Shimura correspondences of modular forms of half integral weight and theta
functions.

This section is devoted to summarizing several fundamental facts which we need
later. Let k& be a positive integer. Let N denote a positive integer and ), a Dirichlet
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character modulo 4N. We denote by S(si+1)/2(4N, ) the set of all cusp forms fon $
such that

(1) 70O) = (i) oreveryy= (7)€ rota)

Throughout the rest of the paper we assume that N is an odd integer. Let y be a
Dirichlet character modulo N such that y(—1) =¢. Put y; = (4¢/%)x. We introduce a
subspace S(ox41)/2(N, %) of Saxs1)/2(4N,x;) defined by

(1-2)  Sars1y2(N,x) = f(2) € Srr1y 24N, x1) | f(2) =

(]

a(n)elnz]
e(—1)*n=0,1(4),n>0

We call Siyi1)2(N,x) the Kohnen’s space of weight (2k +1)/2 and of level N with
character y. We denote by Sy (M, ) the space of all cusp forms [’ of weight 2k and
of level M with character w satisfying

1100 = old)ez+ P e) forevery y= (40 ) e ron

Here we recall the notation and results in Shimura [10]. Let b and b’ denote
integral ideals of Q and  a Hecke character of Q whose conductor divides 4bb’. Let
M (2151)2 (0,0 50)  (resp. S (ax11)/2(b,b5)) be the space of modular forms (resp.
modular cusp forms) of half integral weight (2k + 1)/2 given in [10, p. 507]. Let ,
be a Dirichlet character modulo 4N such that y,(—1) =1. We choose the Hecke
character ¥ of Q such that

k
(1-3) I v, = (_71) Yola)™' forevery ae (Z/ANZ)*y,(Z};) =1

p|AN

for every p 44N and y, (x) = (sgnx)* (xe R).

For '€ % ou1y2(Z,NZ; ), put L(f')(z) = f'(22). Then the following mapping is
bijective (cf. [10, p. 523]).
(1-4) L: S ok 2(Z,NZ; ) — Saps1)2(4N, ).

Let ¢ denote a positive square free integer. Define a mapping ¥
S(ar+1)2(4N ) into Sy (2N, ¥5) by

o0 k
(1-5) Yol a(NE = (Z bo(d) (‘71) <c—tl>dkla(t(m/d)2)) efm]

m=1 \ d\m

4N,
k1) Of

for every f(z) =, a(n)elnz] € Siaxr1y/2(4N, ). This mapping was first shown by
Shimura and it was reformulated by Niwa [6].
Next we recall the definition of theta functions given in [10]. Put

V= {é: (f Z) e M(0)

S (V)={n:V — C|nisalocally constant function in the sence of [10]}.

trézo} and
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Let # be an element of (V). Define a theta function @(z,w;n) on $ x H by

(1-6) Oz, w;n) = y'2(3w) Y ()] 27" RE, 2, w]]
teV

for every (z,w) e $H x 9, where

(&, w] = [Ew,w], [E,w,w]=(cww +dw—aw' —b) and

RIE 2 w] = (det &)z + 2 3w 6wl («::(j fl)ev,yzm).

Throughout the rest of the paper, we take a Dirichlet character , with y,(—1) = 1 and
a positive square free integer 7 such that
(1-7) The conductor of ), is N, (7, N) =1 and 7 = 2,3(mod 4).

Put ¢ = e, with the Hecke character ¢, associated with the quadratic field Q(v/7).
Observe that the conductor of ¢ is 4N7. We put e =2N and

ol e] = {x: (“X Z) e M>(0)

Cx

ayeZ,byee ' Z, ¢, € eZ and der}.

We consider an element 7 € (V) determined by

0 if x¢ole ! e,
18 )= { * !
2 ie(1/20z)2nz Pa(D)9" ((217))e[=byt] - otherwise,

where ¢* is the ideal character associated with ¢ (cf. [10, p. 505]). Introduce a mapping
L; of Loknyp(Z,NZ;yy) into S 2411)2(Z, NtZ;pe;) defined by
(1-9) L(f)(2) = f(zz)e* for every f(z) € % i1 Z, NZ;).

We put h(z) = L.(f)(z). The following lemma is proved by Shimura [10, Prop. 1.4 and
1.5].

LemMA 1.1. The notation being as above, the mapping L. gives a bijection of
KL oks1)2(Z,NZ; ) onto the set

{ Z '(n)e[nz/2] € & (i1 2(Z, NTZ pe;)|a’ (n) = 0 if r)(n}.

n=1

Moreover,

o fy =T by,

where for given two cusp forms f,g of weight | with respect to I', their inner product

{f,9)> means
-1 TN ool . dxdy ~
{frg) =vol(I'\9) J f(2)9(2)3z'dgz with dgz = —~  (x = Rz, y = Jz).
I\$ Y

The following proposition is confirmed by Shimura [8] and (cf. Niwa [6]).
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n=1

L.(f)(z). Suppose that \yy,t and \y satisfy the condition (1-7) and n is the function on V
determined by (1-8). Then there exists the element

PROPOSITION 1.1. For f(z) =37 a(n)e[nz/2] € & oks1)2(Z,NZ; ), put h(z) =

s =3 (Z wa () (;)d“au(m/d)z)) el

belonging to Sy(2N, W) such that

C'g.(w) = J h(2)O(z, wy )y V2dg 2 with C' = 2>T*i* 4N
I'2,2tN]\$
Next we describe basic results of Hecke operators of the Kohnen’s space. Let y
denote a Dirichlet character modulo N. We denote by T (42],\6' S (p?) the Hecke

operator on S41y/2(4N, x;) given in [7]. For a positive integer m, we define a function

J1U(m) on $ by

flU(m Za

n=0

for every function f(z) =>," a(n)elnz] on . We denote by Tiks1)2.n,,(p) (P4 N)
the Hecke operator on S(y1)/2(N, x) defined in [2, p. 42] (see also Remark in [2, p. 46]).
The following lemma was verified by Kohnen [2].

LemMA 1.2, The notation being as above, for f(z)

S(k+1)/2(N, x), Fourier expansions of f|Tky1y/2,5,,(P)(2) (P
are given as follows:

) (n)elnz] €

Z 14 4
¥ (p*)(2) (pIN)

>1,e n=0,
N) ]U

k
fToenpr P = 3 <a<p2n> +1(p) (8(‘” ”>pk-1a<n>

n=1,e(-1)*n=0,1(4)

and

fUp*)(z) = > a(p*n)elnz] (pIN),
n=1,6(-1)*n=0,1(4)

where a(n/p?) means 0 if p* ¥ n.

Observe that T(yy1)/2,n,,(p) coincides with the restriction of T4y (k+1)/2.7, (p?) to
S@k+1)2(N,x) for every odd prime p (pfN). Now we impose the following
assumption.

(1-10) &= y(—1) satisfies (—1)*& > 0,  is a primitive Dirichlet character modulo N,
f € Soks1)2(N, x) is an eigenfunction of all Hecke operators
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Torsny2n,,(p) (P N) and  U(p®) (p|N), i

FIToken2n4(p)(2) = (p)f(z) (p ¥ N) and  f|U(p*)(z) = w(p)f(z) (p|N)

and a(479) # 0 for some square free positive integer 7o such that 7y = 2,3(mod4).
Since S(yt1)/2(N,x) is contained in Siyi1)/2(4N, (4e/*)y), we have the following
diagram.

-1

L . 4e
(I-11)  Serrn)2(N, 1) < Srr1)2(4N Wo) — S akr1)2(Z, NZ; ) with g = (;)X-
By this relation, we may identify elements f(z) of Soxi1)2(N,y) with those of

S ok+1)2(Z,NZ;y). Now we may derive the following lemma.

Lemma 1.3, Let f(2) =35, S 1) n=0,1(4) a(n)elnz] be an element of Spyi1)2(N, x)
satisfying the condition (1-10) and let © be an integer satisfying (1-7). Then

W) () o) = Z(Z (5)e@aats (m/d)z))e[mw]
m=1 \ djm

coincides with an element a(4t)g(2w) of Sw(2N,y?), where g(w) =" c(n)e[nw]
belongs to Sy (N,y?) and

ic(n)n‘s = H(l —w(p)p* +X2<p)p2k_1_25v)71

PrOOF. Putting F(w) = ¥ 5 41\ f)(w) = "% b(n)e[nw], by (1.4) and (1.5), we
see that F(w) is an element of Sy (2N, x?). Put /(w) = F(w/2). Since b(m) = 0 if m is
[

1 1o\
odd, /(w+ 1) = I(w). Using the fact that (0 >F 2, ](0 2) = Ty(2N) and F(w)

n)e

belongs to S» (2N, x?), we can easily check that

*

I(y(w)) = 22(d)(ew + d)*1(w)  for every y = (i d) e I'[2, N].

Observing that I'g(N) is generated by elements of two groups I'[2,N] and
1
{i (0 Y) neZ}, I(w) is contained in Sy (N,y?). Now

0

b(2n)elnw| and b(2n) = Z(LZ) (d)d* 'a(4z(n/d)?)

n=1 d|2n
47

dk1 47(n/d)?).

;(d) (4e(n/d)?)

Hence, we have
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By Lemma 1.2, we see that

L(s —k+1, (g);& ia(%nz)n_s = a(47) H(l —w(p)p~ + A (p) pP !
2

n=1

(cf. [7, p. 452 and p. 453] and [2, p. 69]). This completes the proof.
It is well known that f|U(4)(z) belongs to S(yki1)2(4N, x(4e/*)) for every f(z) e
Sak+1)/2(4N, x(4e/*)). Here we impose the further condition on f in (1-10).

4¢
(1-12) If /"€ Sarin <4N,X(?>> and  f'| T 1) 2, 40 (P7) = 0()
for every prime p (p t4tN), then f'(z) equals

cf(z) + < flUA)(2)

for some constants ¢ and ¢/, where w(p) is the eigenvalue given in [Cemma 1.3.
Moreover, we impose the condition that

(1-13) g(w) is a primitive form of Sy (N, x?) and f|U(4)(z)
is not a constant times f(z),

where f(z) and g(w) are the same elements given in Lemma [.3. Furthermore, we
consider the condition that

(1-14) if 2|z, then the conductor of ¢ is 4Nt and
0, (1 4 4x) = ¢, (1 + 4x?) for every x € Z»,

where ¢, is the restriction of ¢ to Q5 and Z, (resp. Q,) means the ring of all 2-adic
integers (numbers).

§2. Some formulas of theta integrals.

This section is devoted to confirming a key proposition concerning theta integrals.
Let (Z and (, denote two elements in (V) determined by

0a(b:)0"((bxe)) if xeole™! e],

0 otherwise

(2-1) (x) = {
and
() = {%(bx)gﬁ*((bxe)) if xeole!,e] and (bye,4N7) = 1,
‘ 0 otherwise.

By the same method as that of Shimura [10, Lemma 5.7], we may derive the following
lemma (cf. [9]).

LemMMmA 2.1. Suppose that N is odd, © is a positive square free integer satisfying
7 =2,3(mod4), the conductor of e, is 4Nt with  in (1-11) and the conditions (1-7),
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(1-10), (1-12), (1-13) and (1-14) are satisfied. Then there are constants M and M’ such
that

(O(z,w; (%), 9(2w)) = Mh(z) + M'h|U(4)(z) with h(z) = L.(f)(2),
where g(w) is the same function given in Lemma 1.3.

By virtue of [Proposition 1.1, [Lemma 1.3 and [Lemma 2.1, we may conclude the
following proposition.

ProproSITION 2.1.  Suppose that the assumption in Lemma 2.1 is satisfied. Then we
have

Ah(z) + Bh|U(4)(z) = <O(z,w;n),9(2w)>
and

Ch(z) + Dh|U(4)(z) = O(z,w;(z),9(2w))
with

=y _1<g(2w), g(2w) ><h' ' — Lg(w), g(2w) ><h, B
A =a(47) C'vol(I'[2,2N7]\9) ST TS = ST S ,

rmeer 1 <g(w), g(2w)><hy by — Lg(2w), g(2w) ><h', by
B =a(4t) C'vol(I'[2,2N7|\9) SIS — S TS ,

A=g9,(-1)y(0)C, B=¢,(-1)y(¢)D,

where n is the same element given in (1-8), h'(z) = h|U(4)(z) and y(p) means the Gauss
sum of ¢.

Proor. By Shimura [10, p. 539], we see that
(2-2) (O(z,w5n),g(2w)> = 9u(=1)7(9)<O(z, w;(*), g(2w)>
and
<@(Z7 w3 CZ);g(2W)> - <@(Za w3 CZ)7g<2W)>
Hence, by [Lemma 2.1, we have

(2'3) <@<Zu w; ’7)7 g(2W)> = ¢a(_1)y(¢)(Mh<Z) + M/h/(z>)7
which deduces that
(2'4) <h(Z), <@(Za w; ’7)7g(2w)>>

= 0, (=1)y(p) (M, ly + M'Ch, 1)

= vol(I'[2t,4N]\$)~'vol(I'[2, 2tN]\$) !

J h(z) J Oz, w;n)g(2w)IwHdgw » 3z2K+V2 g 2
I'2,2tN]\9 I'25,4N)\$
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— vol(I'[27, 4N\ &) Vol (I'[2, 2tN]\§) "

J {J h(z)O(z,w; 77)32(2"“)/%’552}g(2w)5w2kd55w.
I'2t, 4N\ UJT[2,2:N)\$

On the other hand, by [Lemma 1.2l and [Lemma 1.3, we can easily check

2 i(z i(d) (‘Zg)d“mdm/d)z))e[mw]

m=1 \ djm

-y (Z bi(d) (‘j‘g)d“a<4r<m/d>2>) efom)

(2-6) > (Z bole) (47 d’“a<4r<m/d>2>) elm] = aldz)g(w)

Combining [Proposition 1.1 with (2-4), [2-5) and [(2-6), we have
(2-7) (MCh, Iy + M) g, (~1)7(p)

= vol(I'[2z,4N]\$) 'vol(I'[2, 2tN]\$H)

: J a(4t)g(2w)C'g(2w) I dgw
I'27,4N]\9

= vol(I'[2,2tN]\$) 'a(47)C'<g(2w), g(2w)>.

Also we may deduce

(2-8)  h'(2),O(z,w;m), g(2w) > = @ (= 1)p(@) (M H' s hy + M'Ch' S h')
= a(47)Cvol(T'[2,2eN1\H) ™ <g(w), g(2w)).
The assumption (1-13) shows that
Chy Wy 1"y = Kb CH ey = (B PIANP = [<ha ') > 0.
Consequently, by and (2-8), we conclude that

o Vol(TR2NTNS) ! Cg(2w), gw) > — {g(w), g(w)><h, I
M=at) O ) iy — Sy WSS b ’

L vol(I2,2NT\S) ™ <o), g2w)>Ch, b — <g(2w), g(2w) <R, b
M =) @) QBT — G yCh by

By [2-2], we can prove the remainders of the assertions, which completes our proof.
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§3. Rankin’s convolution of theta series, FEisenstein series and final calculation.

Put

0
Hz) = Z e[n’z/2] and Ly(s, @) Za) (nZ)n
n=—oo
for each Hecke character w of Q and for each positive integer M, where n runs over all
positive integers such that (n, M) = 1 and w* is the ideal character associated with @ (cf.
[10, p. 505]). Let g(w) and h(z) be the same functions in [Cemma 2.1.
We consider an integral

(3-1) Jr\g h(z)3(z)C(z,5+ 1/2 : k, ¢, T) y**V2dgz (2 =x+1y),

where I'=T[2,2tN]|, C(z,s:k,p,I") = Lan.:(25,0)E(z,s: k,p,I"), C(z,s:k,p,I") and
E(z,s: k,p,I') means functions given in [10, (4-6) and (4-11)]. By the same method as
that of Shimura [10, p. 542], we may reduced to the form

(3-2) Lin<(25 +1,9) J h(2)(2)E(z,5+1/2 : k, ¢, T) y D24 2
r\$

= Lan: (25 +1,9) Jq/ h(z)mysﬂ%/zdsbz

with sv:{(“ b)eF[Z,ZrN]
c d

c= O} \$, which implies that

2 poo @©
33 Lo Lot | | almexpuimt(x+in) 2
0J0 ;=1
: Z exp(2min?(x + iy)/2) y* 12 dg 2
I'(s+k/2) -
. k 2\ 7—(2s+k)
=41 —(2m2)s+k/2L4NT((2s+k —k+1,¢ ;a (z17) .
Therefore, the integral is equal to
I'(s+k/2)
3-4 4a(47)cF L2 =Bt L (0s + kg
(34) et Y LG kg
with
L(s,g) = Zc(n)n’s and g(w) = Z c(n)e[nw].
n=1 n=1
As we did for [3-2), (3-3) and {3-4), we obtain
(3-5) J W ()9G)CE S+ 172 K p, Ty 202 -
r2,2eN)\$
= 4a(47)t Lo+ k/2) L(2s+k,g).

(271'1' )S+k/2
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Next we calculate an integral

(3-6) g2w)Cw, 5+ 1/2: G)E(w, 1+ 1/2: )Iw* dgw,

jf[ZrAN] \$
where C(w,s: @) = C(w,s: k,p,I'[2t,4N]) and E(w,t:p) = E(w,t: k,p,[[27,4N]) are
given in [10, (4-6) and (4-11)]. By a method similar to that of [10, p. 550], the integral
may be reduced to the form:

£ J{(a b

I'27,4N]|c=0
c d)e [ [le=0}\$

g(2w)Cw,5 + 172 : g)Iw HIH30/2) gy

2t poo
:J JO g(2w)C(w, 5+ 1/2: g)Iw T30 gy,

0
We recall the following formula (cf. [10, p. 531]).
(3-8) VT2 C(w, s p)
= Ln:(25.9) + 2@ @N7) ™ Y (4N) TR ((n)

h'eZ,c'eZ(c'>0)
@,(h' JANT)e[(c'h' D u)é(v,h'c" [t;s + Kk /2,5 — k/2),
where w = u + iv and

(v o, B) = P42y (o) ' T(B) " h P ‘le‘WJ (14 1) Py
0

(y>0,h>0,(x,5) € C*, R(B) > 0). Hence, the above integral can be rewritten as
follows:

(3-9) 2TJOOW(4NT)1 > (4N g, (W) (1)) ic

0 WeZ,.c'eZ(c'>0) n=1

-exp(—4nnv)é(v,h'c'[t;5+ (1 + k)/2,5+ (1 —k)/2)
EH((1436)/2)  (5+(1/2)— (k/2)-2 1,
with g(w) =32, c(n)e[nw]. Observe that

0

(3-10) Jo exp(—danv)é(v, h'c’ Jris+ (1 + k) /2,8 + (1 — k) /2) v ™ 1y

I'(t+s+k)(t—s+k)

_ k(s th) (27‘[)S7tik+l(h,cl/f)37tik T(s+ ((k+ D)/ 201+ (k+1)/2)) )

if n=c'h'/2r. We can check that

(3-1 1) i i (C/)_ZSWC(C%//ZT)(h/c//f)s_t_k

'=1 ¢'=1,21|c'h’

=
Il

00

2s2 s—1— kZ Z e // ( //)—s—t—k(h/)—t—i-s—k.

=1c"=1
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Putting s = ¢, the sum |3-11) equals

o0
(3-12) (20) ¥27k @ ((m ym k2K

m=1 n=1

= (20) 22 Lan (25 + 1,9) ' L(2s + k, 9)L(k, g, ),
where

o0 o0
L(s,g,0) Z* cm)n™ and g¢g(w Zc

n=1

Employing (3-9), (3-10) and [3-12), we find that

(3-13) g2w)C(w,5+ 1/2: §)E(w,5+ 1/2,5)Iw*dgw

J I'2t,4N]\$

= A(s)Lan(25+ 1,0) ' L(2s + k, g)L(k, g, 7),

where
A(s) = 2t9(p)(AN7T) " (4N) 2 i k2~ 25k (o) T

) 7'[7(1/2) 25+k—(1/2) —25sn—k F(S+<k/2)) ()
R Y (IR TE))

Exchanging the order of integration, we have

(3-14) (O(z,w;Lz),g2w)>H2)C(z,5+ 1/2 : k, §, T[2,2tN]) y D2 =

J I'[2,2tN]\$

vol(I'27,4N]\$) ™! {L O(z,w; Cz)g(2w)3w2kd55w}

J T[2,2TN]\$ [27,4N]\H

- 9(2)C(z,5+ 1/2 : k, 9, T[2,2eN]) y D24 2

— vol(I'20,4N\§)~" J {J 8()0(z,w:(z)
I'2t, 4N\ UJI[2,2eN)\$

- C(z,5+1/2: k, g?))y(zk“)/zdgz}g(ZW)SWdegw

= <M/(W7 j)a g(2W)>7

where

M (w,5) = J 2Oz, ws L) Clz s+ 1/2 : k,p, T2, 2eN]) y D24 -
I2.2tN\$

. b
For a function p(z) on $ and an o= (a

. d)eSL(2,R), pll;o(z) means
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p(a(z))(cz+d)~'. Observing that

(3-15) C(z,s:k,p,I'[2,27N])
= Lun(25.9) > Pl )5 () Tz a(2),
ael’[2,2tN]  \I'[2,2tN]
we obtain
(3-16)  M'(w,s) = Lan:(2s+ 1, 9) J 8(2)0(z,w; (z) y* P 2
ael'[2,2tN] ,\9

= B(s)Lan:(25 + 1,9)S"(w, 5),

where

ri2,2tN], = {oc: <j Z) e I'[2,2eN]

c:O},

5+(k/2)+(1/2)

[O( ] 2k-2t'
Srs) = Y Gl | I

(0,0) e X

X:{@merQ

o #0,—deta = bz},

1 ifbeZz,
u(b) =

0 ifbeQ—2Z

and ' =s+ (1 +k)/2.
Combining [Proposition 2.1 with [3-4), [3-5), (3-14) and (3-16), we may derive that

(3-17) J Ch(z)3(z)C(z,5+ 1/2 - k, §, T[2,2tN]) y*+V/ 24 -
rR2,2eN)\§
+ J Dh'(2)8(2)C(z,5 + 1/2 : k, p, T'[2, 2eN]) y' D/ 2 -
rR,2eN)\§
I'(s+k/2) B
— k (25+k)
= 4a(4t)t 22y P (C2 +D)L(2s + k,g)

J Oz, w; ), g(2w)SIC)C G5 + 172 Koy T2, ZeN]) 2D 2 -
r2,2eN)\$

B(S) Lax+(25 + 1,0){S'(w,5), g(2w)>.

For further computation, we need the following formula in [10, (7.9a) and (7.13)]
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(3-18) S'(w,s) = (=D Y T'(w,s)|ly7, and

qe2NZ/ANZ

1 , . 1 0
T’ (W,s — 5) — (zN)zéc(w,S; P)E(w,s;¢) with 7, = < | )
q

Employing and (3-18), we obtain

(3-19)  <M'(,5),9(2w)> = B(5) Lane(2s + 1, p) (= 1)* (2N)*"!

: < Y Cws+1/2%p)E(w,5+1/2; g?))]|2k‘cq,g(2w)>
qe2NZ/ANZ
= (=1)"B(8) Lan:(25 + 1,0)2(2N)>"!
(C(w, 5+ 1/2,0)E(w,5+1/2;¢),9(2w)>
= (=1)*B(5)202N) > A(s)vol(I'[27,4N]\$)
L(2s+k,g)L(k,9,%).
Combining this with (3-17), we have

 T(s+k/2)

(3-20) 4a(4r)T ]

(C2-®HK) 4 D)L(25 + k, g)

= (=) 202N)*"20p(p) (4NT) " (AN) ik~ (s Hh)

2oyt Tl + K/ (K)

C(27) K (2 (/D) 9 25Hk—(1/2) (k
(am) ! (o) 2O ) Bk R

25 H(AD)/2\ -1

L(2s+k,g)L(k,g,9),
which yields that
1

ki
(3-21) a(4t)dr (22 P

(Cz—(25+k) —I—D)

= (=) 22N 2 (p) (4N T (4N) ik

. 27(2S+k) (277:)_k+1 (271:)—(1/2)225‘+k7(1/2) (21') —2527/(1-'(]()

25+ (k+1)/2 0 ~
2\ ey Vol 120, 4N1\S) Lk, g, 9).
Putting 25 + k =0, we may deduce that

(3-22) a(47)(C + D) = i*9(3)2" 2z *(k — 1)Ivol(I'[27,4N]\$) ' L(k, g, 7).
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By |Proposition 2.1, we see that
—vol(I'[2,2 -
(3-23) C + D = a(47) vol(I'(2, Nﬂ@ O (2Kt 1)/2) 41
9a(—1)7(p)

with

<g(2W),g(2W>>(<f/,f/> B <f/7f>) + <g(W)7g<2W>><<f7f> - <faf/>)

b= SIS =TS ’

where f'(z) = f|U(4)(2).

Consequently, by and |3-23), we conclude the following theorem.

THEOREM. Let the notation be as above. Suppose the assumption in Lemma 2.1.

Then

a(40)|E = 27O KKk = 1)1p(p)p(p) (4N7) ' GV (1) g, (< 1) Lk, g, 7).
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