# A combinatorial approach to the conjugacy classes of the Mathieu simple groups, $M_{24}, M_{23}, M_{22}$ 

By Masato Sawabe

(Received Jun. 17, 1996)
(Revised Sept. 24, 1997)


#### Abstract

We determine the conjugacy classes of the Mathieu simple groups by using the combinatorial properties of the Steiner system and the binary Golay code.


## 0. Introduction.

Around 1860, Mathieu discovered the first five sporadic simple groups as multiply transitive permutation groups. In the 1970's, Conway [2], Curtis [3] et al. defined the Mathieu group $M_{24}$ of degree 24 using the Binary Golay Code and the Steiner system $S(5,8,24)$. The methods in Conway [2] and Curtis [3] are very useful to study the structure of $M_{24}$. In 1904, Frobenius [4] determined the conjugacy classes of $M_{24}$ and its character table. However he did not mention the way to classify the conjugacy classes of $M_{24}$. No such work has been published elsewhere. The purpose of this paper is to classify all the conjugacy classes of $M_{24}, M_{23}, M_{22}$ using the combinatorial methods by Kondo [5] who determined the conjugacy classes of elements of orders 2 and 3 using its combinatorial properties. Aschbacher [1] also determined the conjugacy classes of elements of orders 2 and 3.

In section 1 we describe a number of basic results of $M_{24}$ and Kondo's results which will be applied in our computations. In section 2 we determine the types of the elements in $M_{24}$, and in section 3 we investigate elements of order 4. In the last two sections 4 and 5, we determine the conjugacy classes of $M_{24}, M_{23}$ and $M_{22}$.

## 1. Preliminaries.

For a finite set $X$, let $S_{X}$ be the group of all permutations on $X$, and $A_{X}$ be the group of all even permutations on $X$. Throughout this paper, permutations are multiplied from the left to the right, and $\boldsymbol{\Omega}$ denotes the set of 24 points.

Let $\mathscr{P}(\boldsymbol{\Omega})$ be the power set of $\boldsymbol{\Omega} . \mathscr{P}(\boldsymbol{\Omega})$ is a 24 -dimensional vector space over $\mathrm{GF}(2)$ with $X+Y:=X \cup Y-X \cap Y$ for $X, Y \in \mathscr{P}(\boldsymbol{\Omega})$. The Binary Golay Code $\boldsymbol{\Gamma}$ is a subspace of $\mathscr{P}(\boldsymbol{\Omega})$ which satisfies the following conditions:

$$
\begin{gathered}
\Gamma \ni X \neq \varnothing \Longrightarrow \quad|X| \geq 8 \\
\operatorname{dim} \boldsymbol{\Gamma}=12 .
\end{gathered}
$$

[^0]The code $\Gamma$ exists and is uniquely determined up to isomorphism. Let $\mathcal{O}:=$ $\{X \in \boldsymbol{\Gamma}||X|=8\}$. Then $(\boldsymbol{\Omega}, \mathcal{O})$ forms a Steiner system $S(5,8,24)$ on $\boldsymbol{\Omega}$, that is, each 5point subset of $\boldsymbol{\Omega}$ is contained in a unique element of $\mathcal{O}$. Elements of $\mathcal{O}$ are called octads.

Definition. Let $\operatorname{Aut}(\boldsymbol{\Omega}, \mathcal{O}):=\left\{\sigma \in S_{\boldsymbol{\Omega}} \mid \mathcal{O}^{\sigma}=\mathcal{O}\right\} . \operatorname{Aut}(\boldsymbol{\Omega}, \mathcal{O})$ is called the Mathieu group of degree 24 , which will be denoted by $M_{24}$. Let $M_{24-i}$ be the stabilizer of $i$ points in $M_{24}$ for $i=1,2$. Since $M_{24}$ is 5 -fold transitive on $\boldsymbol{\Omega}$, the structure of $M_{24-i}$ does not depend on a choice of $i$ points. $\quad M_{24-i}$ is called the Mathieu group of degree $24-i$.

Lemma $1.1([\mathbf{2}])$. For $C_{1} \neq C_{2} \in \mathcal{O},\left|C_{1} \cap C_{2}\right|=0,2$ or 4.
Definition. A partition $\boldsymbol{\Omega}=T_{1} \cup T_{2} \cup \cdots \cup T_{6}$ of $\boldsymbol{\Omega}$ into a 6-tuple of 4-point subsets is a sextet if and only if $T_{i} \cup T_{j} \in \mathcal{O}$ for any $i, j(i \neq j)$. Each $T_{i}$ is called a sextet component.

Definition ([2]). Let $X$ be a subset of $\boldsymbol{\Omega}$.
(1) $X$ is special if and only if there is an octad containing $X$.
(2) $X$ is non-special if and only if there is no octad containing $X$.

Definition ([5]). An ordered sequence $\left(x_{1} x_{2} \cdots x_{7}\right)$ of 7 mutually distinct points of $\boldsymbol{\Omega}$ is an $M$-sequence if and only if $\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$ is non-special and $\left\{x_{2}, x_{3}, \ldots, x_{7}\right\}$ is special.

Definition ([5]). A $4 \times 6$ matrix $\mathscr{X}$ whose entries are distinct points of $\boldsymbol{\Omega}$ is an M-matrix if and only if $\mathscr{X}$ satisfies the following conditions:
(1) The partition of $\boldsymbol{\Omega}$ into 6 columns of $\mathscr{X}$ is a sextet.
(2) In the following 6 pictures, each 8 -point subset of $\boldsymbol{\Omega}$ forms an octad.

$$
\begin{aligned}
& \left(\begin{array}{llllll} 
& * & * & * & * & * \\
* & & & & \\
* & & & & \\
* & & & &
\end{array}\right),\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
& & & \\
& & &
\end{array}\right),\left(\begin{array}{llll}
* & * & * & * \\
& & & \\
* & * & * & *
\end{array}\right), \\
& \left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
& * & * & * \\
* & * & * & * \\
& & &
\end{array}\right),\left(\begin{array}{llllll}
* & * & * & & & \\
& & & * & & \\
* & & & & * & \\
* & & & & & *
\end{array}\right) .
\end{aligned}
$$

The following theorem is the essential part of the combinatorial method of $M_{24}$.
Theorem 1.2 ([5]). (1) For an $M$-sequence $\left(x_{1} x_{2} \cdots x_{7}\right)$, there exists a unique M-matrix $\mathscr{X}$ such that

$$
\mathscr{X}=\left(\begin{array}{llllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
x_{7} & & & & & \\
& & & & &
\end{array}\right)
$$

(2) Let $\mathscr{X}(i, j)$ and $\mathscr{Y}(i, j)(1 \leq i \leq 4,1 \leq j \leq 6)$ be the $(i, j)$-entries of $M$-matrices $\mathscr{X}$ and $\mathscr{Y}$ respectively. Then a map $\mathscr{X}(i, j) \mapsto \mathscr{Y}(i, j)$ is an isomorphism of a Steiner system $S(5,8,24)$, that is, a position of each octad is uniquely determined, and does not depend on an M-matrix.

Corollary $1.3([\mathbf{5}])$. The Steiner system $S(5,8,24)$ is unique up to relabelling the points.

Corollary $1.4([\mathbf{5}]) . \quad M_{24}$ acts regularly on the set of all $M$-sequences. In particular,

$$
\left|M_{24}\right|=\sharp\{\text { all M-sequences }\}=\binom{24}{5} \cdot 5!\cdot 3 \cdot 16=2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23 \text {. }
$$

This theorem shows that the cardinality of the set $\left\{\left(a x_{1} \cdots x_{6}\right): M\right.$-sequence $\left.\mid x_{i} \in \boldsymbol{\Omega}\right\}$ is $\left|M_{23}\right|$ and the cardinality of the set $\left\{\left(a b x_{1} \cdots x_{5}\right): M\right.$-sequence $\left.\mid x_{i} \in \boldsymbol{\Omega}\right\}$ is $\left|M_{22}\right|$ for $a, b \in \boldsymbol{\Omega}$. These do not depend on the positions of $a$ and $b$.

Theorems 1.5-1.11 are well-known.
Theorem 1.5 ([2]). (1) $M_{24}$ acts transitively on the set $\mathcal{O}$ of 759 octads.
(2) $M_{24}$ acts transitively on the set of all sextets.

Theorem 1.6 ([2]). Let $C \in \mathcal{O}$ and

$$
\begin{aligned}
& H=H(C):=\left\{\sigma \in M_{24} \mid C^{\sigma}=C\right\} \\
& N=N(C):=\left\{\sigma \in M_{24} \mid x^{\sigma}=x(\forall x \in C)\right\}
\end{aligned}
$$

Then the following holds:
(1) $N \simeq Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}$ and $N$ acts regularly on $\boldsymbol{\Omega}-C$.
(2) $H / N \simeq A_{8} \simeq G L(4,2)$ and $H$ splits over $N$.

Corollary 1.7. For $\tau \in A_{C}$, there are sixteen elements in $M_{24}$ which contain $\tau$ in cycle notation.

Theorem 1.8 ([2]). Let $Y$ be a non-special 6-point subset of $\boldsymbol{\Omega}$. Set

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\boldsymbol{\Sigma}(Y):=\left\{\sigma \in M_{24} \mid Y^{\sigma}=Y\right\} \\
\boldsymbol{\Sigma}_{0} & =\boldsymbol{\Sigma}_{0}(Y):=\left\{\sigma \in M_{24} \mid y^{\sigma}=y(\forall y \in Y)\right\} .
\end{aligned}
$$

Then the following holds:
(1) $\left|\boldsymbol{\Sigma}_{0}\right|=3$.
(2) $\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{0} \simeq S_{6}$ and $\boldsymbol{\Sigma}$ does not split over $\boldsymbol{\Sigma}_{0}$.

Corollary 1.9. For $\tau \in S_{Y}$, there are three elements in $M_{24}$ which contain $\tau$ in cycle notation.

Let $Y=\left\{y_{1}, y_{2}, \ldots, y_{6}\right\}$ be a non-special 6-point subset of $\boldsymbol{\Omega}$. Then there exists an $M$-matrix $\mathscr{Y}$ with the first row $y_{1}, y_{2}, \ldots, y_{6}$. We give names $1,2, \ldots, 24$ for the 24 points of $\boldsymbol{\Omega}$.

$$
\mathscr{Y}=\left(\begin{array}{llllll}
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} \\
& & & & & \\
& & & & &
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 & 17 & 18 \\
19 & 20 & 21 & 22 & 23 & 24
\end{array}\right) .
$$

The following 5 permutations generate $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}(Y)$.

Furthermore the following permutation generates $\boldsymbol{\Sigma}_{0}=\boldsymbol{\Sigma}_{0}(Y)$.

$$
\alpha:=\left(a_{4} a_{5}\right)^{-1}\left(a_{1} a_{2}\right)^{-1}\left(a_{4} a_{5}\right)\left(a_{1} a_{2}\right)=(\downarrow \dot{\downarrow} \mid \dot{\downarrow} \downarrow \dot{\downarrow})
$$

Theorem $1.10([\mathbf{2}])$. Let $\mathscr{T}=\left\{T_{1}, T_{2}, \ldots, T_{6}\right\}$ be a sextet. Set

$$
\begin{aligned}
K & :=\left\{\sigma \in M_{24} \mid \mathscr{T}^{\sigma}=\mathscr{T}\right\} \\
K_{0} & :=\left\{\sigma \in M_{24} \mid\left(T_{i}\right)^{\sigma}=T_{i}(1 \leq \forall i \leq 6)\right\} .
\end{aligned}
$$

Then the following holds:
(1) $K / K_{0} \simeq S_{6}$ and $K$ does not split over $K_{0}$.
(2) $\left|K_{0}\right|=2^{6} \cdot 3$, and $K_{0}$ has a unique elementary abelian Sylow 2-subgroup $K_{2}$.
(3) $K / K_{2} \simeq \boldsymbol{\Sigma}(Y)$ (See Theorem 1.8) and $K$ splits over $K_{2}$.

By Theorem 1.5 (2), $K$ does not depend on the sextet $\mathscr{T}$. Hence we may assume that $\mathscr{T}$ is the partition of $\boldsymbol{\Omega}$ into 6 columns of the $M$-matrix $\mathscr{Y}$.

The following 6 permutations generate $K_{2}$.

Theorem $1.11([\mathbf{3}],[\mathbf{5}])$. For an element $\sigma \in M_{24}$ of type $\left(2^{12}\right)$, there exists a unique sextet all of whose components are fixed by $\sigma$.

Theorem $1.12([\mathbf{5}])$. For an element $1 \neq \sigma \in M_{24}$ fixing 6 points $x_{1}, x_{2}, \ldots, x_{6}$ of $\boldsymbol{\Omega}$, one of the following holds:
(1) If $\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$ is special, then $\sigma$ is of type $\left(2^{8} \cdot 1^{8}\right)$ such that the set of fixed points of $\sigma$ forms an octad.
(2) If $\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$ is non-special, then $\sigma$ is of type $\left(3^{6} \cdot 1^{6}\right)$.

## 2. The types of the elements in $M_{24}$.

$M_{24}$ is of order $2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$ by Corollary 1.4 and is a subgroup of $S_{24}$. In this section, we will study the types of the elements in $M_{24}$. Aschbacher [1] and Kondo [5] determined the conjugacy classes of elements of orders 2 and 3 using its combinatorial properties.

Theorem 2.1 ([1], [4], [5]). (1) Each involution of $M_{24}$ is a permutation on $\boldsymbol{\Omega}$ of type $\left(2^{8} \cdot 1^{8}\right)$ or $\left(2^{12}\right)$, and the orders of the centralizers are, respectively, $2^{10} \cdot 3 \cdot 7$ and $2^{9} \cdot 3 \cdot 5$.
(2) Each element of $M_{24}$ of order 3 is a permutation on $\boldsymbol{\Omega}$ of type $\left(3^{6} \cdot 1^{6}\right)$ or $\left(3^{8}\right)$, and the orders of the centralizers are, respectively, $2^{3} \cdot 3^{3} \cdot 5$ and $2^{3} \cdot 3^{2} \cdot 7$.

Table 1. $M_{24}$

| type | number of the conjugacy classes | order of the centralizer |
| :---: | :---: | :---: |
| $\left(2^{8} \cdot 1^{8}\right)$ | 1 | 21504 |
| $\left(2^{12}\right)$ | 1 | 7680 |
| $\left(3^{6} \cdot 1^{6}\right)$ | 1 | 1080 |
| $\left(3^{8}\right)$ | 1 | 504 |

Let $\sigma$ be an element of order 5. By Theorem 1.12, $\sigma$ fixes at most 5 points. It follows that $\sigma$ is of type $\left(5^{4} \cdot 1^{4}\right)$. Similarly elements of orders 7, 11, and 23 are, respectively, of types $\left(7^{3} \cdot 1^{3}\right),\left(11^{2} \cdot 1^{2}\right)$ and $(23 \cdot 1)$. By Theorem 2.1 (1), there is an element $\sigma$ of order 14. If $\sigma$ contains a 14-cycle, then $\sigma$ is of type $(14 \cdot 7 \cdot 2 \cdot 1)$. If $\sigma$ is of type $\left(7^{e_{1}} \cdot 2^{e_{2}} \cdot 1^{e_{3}}\right)\left(e_{1} \geq 1, e_{2} \geq 1, e_{3} \geq 0\right)$, then $\sigma^{7}$ is of type $\left(2^{e_{2}} \cdot 1^{7 e_{1}+e_{3}}\right)$. By Theorem 1.12, we have $e_{2}=8$ and $7 e_{1}+e_{3}=8$. It follows that $\sigma$ is of type $\left(7 \cdot 2^{8} \cdot 1\right)$ i.e. $\sigma^{2}$ is of type $\left(7 \cdot 1^{17}\right)$. This contradicts the type of an element of order 7. This yields that an element of order 14 is of type $(14 \cdot 7 \cdot 2 \cdot 1)$. Similarly there are elements of orders 10,15 and 21 , and these elements are, respectively, of types $\left(10^{2} \cdot 2^{2}\right)$, $(15 \cdot 5 \cdot 3 \cdot 1)$ and $(21 \cdot 3)$. Next we will consider the elements in the sextet stabilizer $K$ (See Theorem 1.10).

```
\(a_{3} a_{2} a_{1} b_{1}\)
    \(=(1,2,9,4)(3,10,7,8)(5,11,23,17)(6,12,18,24)(13,20,21,22)(14,15,16,19)\)
\(a_{5} a_{3} a_{2} a_{1}\)
    \(=(1,2,3,4)(7,8,9,10)(13,14,15,16)(19,20,21,22)(5,6)(11,24)(12,17)(18,23)\)
\(a_{3} a_{2} a_{1}\)
    \(=(1,2,3,4)(7,8,9,10)(13,20,15,22)(14,21,16,19)(11,17)(12,24)(5)(6)(18)(23)\)
\(a_{5} a_{4} a_{3} a_{2} a_{1}\)
    \(=(1,2,3,4,5,6)(7,8,15,16,23,24)(9,22,17,12,19,14)(10,11,18,13,20,21)\)
\(a_{2} a_{1} a_{4}\)
        \(=(7,20,21,13,14,9)(10,17,22,23,16,11)(1,2,3)(8,15,19)(4,5)(12,24)(6)(18)\)
\(a_{3} a_{2} a_{1} b_{1} \alpha\)
        \(=(1,2,15,22,19,20,9,4)(3,16,7,14,21,10,13,8)(6,18,12,24)(5,17)(11)(23)\)
\(a_{5} a_{4} a_{3} a_{2} a_{1} b_{1} b_{2}\)
    \(=(1,8,21,4,5,6,7,2,9,16,23,24)(3,10,11,18,19,20,15,22,17,12,13,14)\)
\(a_{5} a_{3} a_{2} a_{1} \alpha\)
    \(=(7,14,21,10,13,20,9,16,19,8,15,22)(11,12,23,24,17,18)(1,2,3,4)(6,5)\)
```

Hence we have the following:

Theorem 2.2. (1) The elements of orders 5, 7, 10, 11, 14, 15, 21 and 23 are, respectively, of types $\left(5^{4} \cdot 1^{4}\right),\left(7^{3} \cdot 1^{3}\right),\left(10^{2} \cdot 2^{2}\right),\left(11^{2} \cdot 1^{2}\right),(14 \cdot 7 \cdot 2 \cdot 1),(15 \cdot 5 \cdot 3 \cdot 1)$, (21-3) and (23•1).
(2) There are elements of types $\left(4^{6}\right),\left(4^{4} \cdot 2^{4}\right),\left(4^{4} \cdot 2^{2} \cdot 1^{4}\right),\left(6^{4}\right),\left(6^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1^{2}\right)$, $\left(8^{2} \cdot 4 \cdot 2 \cdot 1^{2}\right),\left(12^{2}\right)$ and $(12 \cdot 6 \cdot 4 \cdot 2)$.

## 3. The relation between elements of order 4 and sextet components.

In this section, we will investigate the relation between elements of order 4 and sextet components. Let $X$ be a subset of $\boldsymbol{\Omega}$ with $|X|=4$. Then there exists a unique sextet containing $X$ as a sextet component.

Lemma 3.1. (1) Let $\sigma=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \cdots$ be an element of type $\left(4^{6}\right)$ in $M_{24}$. Then there exists a unique 4-cycle $\left(x_{5}, x_{6}, x_{7}, x_{8}\right)$ of $\sigma$ such that $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\} \in \mathcal{O}$.
(2) Let $\mathscr{S}$ be the sextet containing $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $\left\{x_{5}, x_{6}, x_{7}, x_{8}\right\}$. Then $\sigma$ induces a permutation of type $\left(1^{2} \cdot 4^{1}\right)$ on the sextet components.

Proof. Let $\mathscr{S}$ be the sextet containing $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and let $\left\{X, S_{1}, S_{2}\right.$, $\left.S_{3}, S_{4}, S_{5}\right\}$ be the components of $\mathscr{S}$. Since $\sigma$ acts on $X$ and $\sigma^{4}=1$, we may assume that $\sigma$ induces a permutation on the components as follows:
(a)

$$
(X)\left(S_{1}\right)\left(S_{2}\right)\left(S_{3}\right)\left(S_{4}\right)\left(S_{5}\right)
$$

(b)

$$
(X)\left(S_{1}\right)\left(S_{2}\right)\left(S_{3}\right)\left(S_{4}, S_{5}\right)
$$

(c)

$$
(X)\left(S_{1}\right)\left(S_{2}, S_{3}\right)\left(S_{4}, S_{5}\right)
$$

(d)

$$
(X)\left(S_{1}\right)\left(S_{2}, S_{3}, S_{4}, S_{5}\right)
$$

If $\sigma$ induces (a), then $\sigma \in K_{0}$ (See Theorem 1.10). This contradicts that $\sigma$ is of order 4. Next suppose that $\sigma$ induces (b) or (c). Let $U_{1}$ be a $\sigma$-orbit on $S_{4} \cup S_{5}$, and $\mathscr{U}=$ $\left\{U_{1}, U_{2}, \ldots, U_{6}\right\}$ be the sextet containing $U_{1}$. We may assume that $S_{4} \cup S_{5}=U_{1} \cup U_{2}$. Then $\sigma$ fixes two components $U_{1}$ and $U_{2}$. Assume that $\sigma$ induces a permutation on $\mathscr{U}$ as follows:

$$
\sigma=\left(U_{1}\right)\left(U_{2}\right)\left(U_{3}, U_{4}, U_{5}, U_{6}\right)
$$

Since $\left|S_{i} \cap U_{j}\right|=2(i=4,5, j=1,2)$ and $\left|U_{j} \cap X\right|=1(j=3,4,5,6)$, we have $\mid\left(S_{4} \cup X\right) \cap$ $\left(U_{1} \cup U_{3}\right) \mid=3$. This is a contradiction by Lemma 1.1. It follows that $\sigma$ induces a permutation on $\mathscr{U}$ of type $\left(1^{4} \cdot 2^{1}\right)$ or $\left(1^{2} \cdot 2^{2}\right)$. Then $\sigma^{2}$ is of type $\left(2^{12}\right)$ and fixes every component of the two sextets $\mathscr{S}$ and $\mathscr{U}(\mathscr{S} \neq \mathscr{U})$. This is a contradiction by Theorem 1.11. Hence $\sigma$ induces the permutation (d) on $\mathscr{S}$. This completes the proof.

Lemma 3.2. Let $\sigma=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \cdots$ be an element of type $\left(4^{4} \cdot 2^{4}\right)$ in $M_{24}$. Then there exists a 4-cycle $\left(x_{5}, x_{6}, x_{7}, x_{8}\right)$ of $\sigma$ such that $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\} \in \mathcal{O}$.

Proof. By the same way as in the proof of Lemma 3.1, $\sigma$ fixes at least two components $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $Y$ of the sextet containing $X$. Since $\sigma$ acts on the octad $X \cup Y$ as $A_{8}, \sigma$ acts on $Y$ as 4 -cycle. This completes the proof.

Lemma 3.3. Let $\sigma=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \cdots$ be an element of type $\left(4^{4} \cdot 2^{2} \cdot 1^{4}\right)$ in $M_{24}$. Then there exists a 4 -cycle $\left(x_{5}, x_{6}, x_{7}, x_{8}\right)$ of $\sigma$ such that $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\} \in \mathcal{O}$.

Proof. The fixed points of $\sigma^{2}$ form an octad, and which is a union of two components of the sextet containing $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Since $\sigma$ is of order 4 , the proof is complete.

## 4. The conjugacy classes of $M_{24}$.

In this section, we will classify all the conjugacy classes of $M_{24}$ which are given in Table 2.

Table 2. $M_{24}$

| type | number of the conjugacy classes | order of the centralizer |
| :---: | :---: | :---: |
| $\left(4^{4} \cdot 2^{4}\right)$ | 1 | 384 |
| $\left(4^{4} \cdot 2^{2} \cdot 1^{4}\right)$ | 1 | 128 |
| $\left(4^{6}\right)$ | 1 | 96 |
| $\left(5^{4} \cdot 1^{4}\right)$ | 1 | 60 |
| $\left(6^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1^{2}\right)$ | 1 | 24 |
| $\left(6^{4}\right)$ | 1 | 24 |
| $\left(7^{3} \cdot 1^{3}\right)$ | 2 | 42,42 |
| $\left(8^{2} \cdot 4 \cdot 2 \cdot 1^{2}\right)$ | 1 | 16 |
| $\left(10^{2} \cdot 2^{2}\right)$ | 1 | 20 |
| $\left(11^{2} \cdot 1^{2}\right)$ | 1 | 11 |
| $(12 \cdot 6 \cdot 4 \cdot 2)$ | 1 | 12 |
| $\left(12^{2}\right)$ | 1 | 12 |
| $(14 \cdot 7 \cdot 2 \cdot 1)$ | 2 | 14,14 |
| $(15 \cdot 5 \cdot 3 \cdot 1)$ | 2 | 15,15 |
| $(21 \cdot 3)$ | 2 | 21,21 |
| $(23 \cdot 1)$ | 2 | 23,23 |

Types $\left(5^{4} \cdot 1^{4}\right),\left(4^{4} \cdot 2^{2} \cdot 1^{4}\right)$ and $\left(6^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1^{2}\right)$.
Theorem 4.1. All elements of type $\left(5^{4} \cdot 1^{4}\right)$ form one conjugacy class in $M_{24}$, and the order of the centralizer of the element in $M_{24}$ is 60.

Proof. Let

$$
\begin{aligned}
\sigma & =\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right)\left(x_{4}\right)\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right) \cdots \\
\tau & =\left(s_{1}\right)\left(s_{2}\right)\left(s_{3}\right)\left(s_{4}\right)\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right) \cdots
\end{aligned}
$$

be elements of type $\left(5^{4} \cdot 1^{4}\right)$. Let $C \in \mathcal{O}$ such that $C \supseteq Y:=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$. Since $C^{\sigma}=C$, we may assume $C=Y \cup\left\{x_{2}, x_{3}, x_{4}\right\}$. It follows that $\left(x_{1} x_{2} y_{1} y_{2} y_{3} y_{4} y_{5}\right)$ is an $M$-sequence. Similarly we may assume that $\left(s_{1} s_{2} t_{1} t_{2} t_{3} t_{4} t_{5}\right)$ is an $M$-sequence. There exists a unique element $\rho \in M_{24}$ such that $\rho: s_{i} \mapsto x_{i}(i=1,2), \rho: t_{i} \mapsto y_{i}(1 \leq i \leq 5)$ by Corollary 1.4. Since $\left(\rho^{-1} \tau \rho\right) \sigma^{-1}=\left(x_{1}\right)\left(x_{2}\right)\left(y_{1}\right)\left(y_{2}\right)\left(y_{3}\right)\left(y_{4}\right)\left(y_{5}\right) \cdots, \rho^{-1} \tau \rho=\sigma$ by Corollary 1.4. It follows that all elements of type $\left(5^{4} \cdot 1^{4}\right)$ are conjugate in $M_{24}$. Let

$$
\mathfrak{M}=\left\{\begin{array}{l|l}
\left(\sigma,\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}\right)\right) & \begin{array}{l}
M_{24} \ni \sigma=\left(5^{4} \cdot 1^{4}\right) \text {-type } \\
\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}\right): M \text {-sequence } \\
\sigma=\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \cdots
\end{array}
\end{array}\right\} .
$$

For an element of type $\left(5^{4} \cdot 1^{4}\right)$, there are $4 \cdot 5 \cdot 3 \cdot 1 M$-sequences which satisfy the conditions of $\mathfrak{M}$ (There are $4 \cdot 5$ choices for $x_{3} x_{4} x_{5} x_{6} x_{7}, 3$ choices for $x_{2}$, then $x_{1}$ is uniquely determined). Conversely, for an $M$-sequence $\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}\right)$, if there are two elements $\sigma=\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \cdots$ and $\tau=\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \cdots$ of type $\left(5^{4} \cdot 1^{4}\right)$, then $\sigma=\tau$ by Corollary 1.4. Hence for an $M$-sequence, there is a unique element which satisfies the conditions of $\mathfrak{M}$. Set $m:=\sharp\left\{\sigma \in M_{24} \mid \sigma=\left(5^{4} \cdot 1^{4}\right)\right.$-type $\}$. Then

$$
\begin{aligned}
|\mathfrak{M}| & =m \cdot 4 \cdot 5 \cdot 3 \cdot 1 \\
& =\sharp\{\text { all } M \text {-sequences }\} \cdot 1 \\
& =\left|M_{24}\right| \cdot 1 .
\end{aligned}
$$

Since $\left|M_{24}\right| / m=60$, the order of the centralizer of an element of type $\left(5^{4} \cdot 1^{4}\right)$ in $M_{24}$ is 60.

We can determine the conjugacy classes of the elements of types $\left(4^{4} \cdot 2^{2} \cdot 1^{4}\right)$ and $\left(6^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1^{2}\right)$ by the same way as in the proof of Theorem 4.1.

Types $\left(4^{4} \cdot 2^{4}\right),\left(6^{4}\right)$ and $(12 \cdot 6 \cdot 4 \cdot 2)$.
Theorem 4.2. All elements of type $\left(4^{4} \cdot 2^{4}\right)$ form one conjugacy class in $M_{24}$, and the order of the centralizer of the element in $M_{24}$ is 384.

Proof. Let

$$
\begin{aligned}
\sigma & =\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\left(y_{5}, y_{6}\right)\left(y_{7}, y_{8}\right) \cdots \\
\tau & =\left(s_{1}, s_{2}, s_{3}, s_{4}\right)\left(s_{5}, s_{6}\right) \ldots
\end{aligned}
$$

be elements of type $\left(4^{4} \cdot 2^{4}\right)$. Assume that there exists $C \in \mathcal{O}$ such that $C \supseteq$ $Y:=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right\}$. Since $C^{\sigma}=C$, we may assume $C=Y \cup\left\{y_{7}, y_{8}\right\}$. This contradicts that $\sigma$ acts on $C$ as an even permutation. Hence $Y$ is non-special. By Corollary 1.9, there are three elements which contain $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\left(y_{5}, y_{6}\right)$ in cycle notation. Using the generators of $\boldsymbol{\Sigma}(Y)$ (See Theorem 1.8), we find that these three elements are as follows:

$$
\begin{aligned}
\beta_{1}:= & a_{5} a_{3} a_{2} a_{1} \\
= & \left(y_{1}, y_{2}, y_{3}, y_{4}\right)\left(y_{5}, y_{6}\right)(7,8,9,10)(13,14,15,16)(19,20,21,22) \\
& \times(11,24)(12,17)(18,23) \\
\beta_{2}:= & \alpha \beta_{1} \\
= & \left(y_{1}, y_{2}, y_{3}, y_{4}\right)\left(y_{5}, y_{6}\right)(7,14,21,10,13,20,9,16,19,8,15,22)(11,12,23,24,17,18) \\
\beta_{3}:= & \alpha^{2} \beta_{1} \\
= & \left(y_{1}, y_{2}, y_{3}, y_{4}\right)\left(y_{5}, y_{6}\right)(7,20,15,10,19,14,9,22,13,8,21,16)(11,18,17,24,23,12) .
\end{aligned}
$$

Therefore $\sigma\left(=\beta_{1}\right)$ is a unique element of type $\left(4^{4} \cdot 2^{4}\right)$ containing $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$. $\left(y_{5}, y_{6}\right)$ in cycle notation. Similarly we have that $\left\{s_{1}, s_{2}, \ldots, s_{6}\right\}$ is non-special. By Corollary 1.4, there is an element $\rho \in M_{24}$ such that $\rho: s_{i} \mapsto y_{i}(1 \leq i \leq 6)$. Since $\rho^{-1} \tau \rho=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\left(y_{5}, y_{6}\right) \cdots, \rho^{-1} \tau \rho=\sigma$. It follows that all elements of type $\left(4^{4} \cdot 2^{4}\right)$ are conjugate in $M_{24}$. Let

$$
\mathfrak{M}=\left\{\begin{array}{l|l}
\left(\sigma,\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)\right) & \begin{array}{l}
M_{24} \ni \sigma=\left(4^{4} \cdot 2^{4}\right) \text {-type } \\
\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right): \text { ordered sequence } \\
\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}: \text { non-special 6-point subset } \\
\sigma=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(x_{5}, x_{6}\right) \cdots
\end{array}
\end{array}\right\} .
$$

For an element of type $\left(4^{4} \cdot 2^{4}\right)$, there are $4 \cdot 4 \cdot 4 \cdot 2$ ordered sequences which satisfy the conditions of $\mathfrak{M}$ (There are $4 \cdot 4$ choices for $x_{1} x_{2} x_{3} x_{4}, 4 \cdot 2$ choices for $x_{5} x_{6}$ ). Conversely, for the ordered sequence, there is a unique element which satisfies the conditions of $\mathfrak{M}$. Set $m:=\sharp\left\{\sigma \in M_{24} \mid \sigma=\left(4^{4} \cdot 2^{4}\right)\right.$-type $\}$. Then

$$
\begin{aligned}
|\mathfrak{M}| & =m \cdot 4 \cdot 4 \cdot 4 \cdot 2 \\
& =\sharp\left\{\begin{array}{l}
\left.\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right) \left\lvert\, \begin{array}{l}
\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right): \text { ordered sequence } \\
\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}: \text { non-special 6-point subset }
\end{array}\right.\right\} \cdot 1 \\
\end{array}\right\}\left(\left|M_{24}\right| / 3\right) \cdot 1 .
\end{aligned}
$$

Since $\left|M_{24}\right| / m=384$, the order of the centralizer of an element of type $\left(4^{4} \cdot 2^{4}\right)$ in $M_{24}$ is 384 .

We can determine the conjugacy classes of the elements of types ( $6^{4}$ ) and $(12 \cdot 6 \cdot 4 \cdot 2)$ by the same way as in the proof of Theorem 4.2.

Type $(15 \cdot 5 \cdot 3 \cdot 1)$.
Theorem 4.3. All elements of type $(15 \cdot 5 \cdot 3 \cdot 1)$ form two conjugacy classes in $M_{24}$, and the order of the centralizer of the element in $M_{24}$ is 15 .

Proof. Let

$$
\begin{aligned}
\sigma & =\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\left(y_{6}\right) \cdots \\
\tau & =\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)\left(s_{6}\right) \cdots
\end{aligned}
$$

be elements of type $(15 \cdot 5 \cdot 3 \cdot 1)$. By Theorem 1.12, $Y:=\left\{y_{1}, y_{2}, \ldots, y_{6}\right\}$ and $\left\{s_{1}, s_{2}, \ldots, s_{6}\right\}$ are non-special. By Corollary 1.9, there are three elements which contain $\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\left(y_{6}\right)$ in cycle notation. Using the generators of $\boldsymbol{\Sigma}(Y)$ (See Theorem 1.8), we find that these three elements are as follows:

$$
\begin{aligned}
\beta_{1}:= & a_{4} a_{3} a_{2} a_{1} \\
= & \left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\left(y_{6}\right)(7,8,15,10,11,19,20,9,22,23,13,14,21,16,17)(12,18,24) \\
\beta_{2}:= & \alpha \beta_{1} \\
= & \left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\left(y_{6}\right)(7,14,9,10,17,13,20,15,16,23,19,8,21,22,11)(12,24,18) \\
\beta_{3}:= & \alpha^{2} \beta_{1} \\
= & \left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\left(y_{6}\right)(6)(12)(18)(24)(7,20,21,10,23)(8,9,16,11,13) \\
& \times(14,15,22,17,19) .
\end{aligned}
$$

The elements $\beta_{1}$ and $\beta_{2}$ are of type $(15 \cdot 5 \cdot 3 \cdot 1)$ which contain $\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\left(y_{6}\right)$ in cycle notation. Assume that $\beta_{1}$ and $\beta_{2}$ are conjugate in $M_{24}$. Let $\rho$ be an element such that $\rho^{-1} \beta_{1} \rho=\beta_{2}$. Then we may assume that $\rho=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)^{j}\left(y_{6}\right) \ldots$ $(j=1,2,3,4$ or 5$)$. If $j=1,2,3$ or 4 , then $\rho$ is of type $(15 \cdot 5 \cdot 3 \cdot 1)$ or $\left(5^{4} \cdot 1^{4}\right)$. If $j=5$, then $\rho$ is of type $\left(3^{6} \cdot 1^{6}\right)$ by Theorem 1.12. On the other hand, the element $\rho$ induces a permutation on $\{12,18,24\}$. We may assume that $\rho=(12)(18,24) \cdots$, $(18)(12,24) \cdots$ or $(24)(12,18) \cdots$. This contradicts the type of $\rho$. Therefore $\beta_{1}$ and $\beta_{2}$ are not conjugate in $M_{24}$.

By Corollary 1.4, there is an element $\delta \in M_{24}$ such that $\delta: s_{i} \mapsto y_{i}$ $(1 \leq i \leq 6)$. Since $\delta^{-1} \tau \delta=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\left(y_{6}\right) \cdots, \delta^{-1} \tau \delta=\beta_{1}$ or $\beta_{2}$. It follows that all elements of type $(15 \cdot 5 \cdot 3 \cdot 1)$ form two conjugacy classes. Let $\mathscr{C}$ be one of them. Let

$$
\mathfrak{M}=\left\{\begin{array}{l|l}
\left(\sigma,\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)\right) & \begin{array}{l}
\mathscr{C} \ni \sigma \\
\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right): \text { ordered sequence } \\
\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}: \text { non-special 6-point subset } \\
\sigma=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)\left(x_{6}\right) \cdots
\end{array}
\end{array}\right\} .
$$

For an element in $\mathscr{C}$, there are 5 ordered sequences which satisfy the conditions of $\mathfrak{M}$. Conversely, for the ordered sequence, there is a unique element in $\mathscr{C}$ which satisfies the conditions in $\mathfrak{M}$. Then

$$
\begin{aligned}
|\mathfrak{M}| & =|\mathscr{C}| \cdot 5 \\
& =\sharp\left\{\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right) \left\lvert\, \begin{array}{l}
\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right): \text { ordered sequence } \\
\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}: \text { non-special 6-point subset }
\end{array}\right.\right\} \cdot 1 \\
& =\left(\left|M_{24}\right| / 3\right) \cdot 1 .
\end{aligned}
$$

Since $\left|M_{24}\right| /|\mathscr{C}|=15$, the order of the centralizer of $\gamma \in \mathscr{C}$ in $M_{24}$ is 15 . This completes the proof.

Types $\left(4^{6}\right)$ and $\left(8^{2} \cdot 4 \cdot 2 \cdot 1^{2}\right)$.
Lemma 4.4. Let $C=\left\{x_{1}, x_{2}, \ldots, x_{8}\right\} \in \mathcal{O}$. For an element $\tau=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ $\left(x_{5}, x_{6}, x_{7}, x_{8}\right) \in A_{C}$, there are eight elements in $M_{24}$ of type $\left(4^{6}\right)$ which contain $\tau$ in cycle notation and these elements are conjugate in $H:=\left\{\sigma \in M_{24} \mid C^{\sigma}=C\right\}$.

Proof. By Corollary 1.7, there are sixteen elements in $M_{24}$ which contain $\tau$ in cycle notation. Let

$$
\begin{aligned}
H & :=\left\{\sigma \in M_{24} \mid C^{\sigma}=C\right\} \\
N & :=\left\{\sigma \in M_{24} \mid x^{\sigma}=x \quad(\forall x \in C)\right\} \quad \text { (See Theorem 1.6). }
\end{aligned}
$$

Each element of $H$ can be written as $(n, \tau)(n \in N, \tau \in G L(4,2))$, and the product in $H$ is given by $\left(n_{1}, \tau_{1}\right)\left(n_{2}, \tau_{2}\right):=\left(n_{1}^{\tau_{2}}+n_{2}, \tau_{1} \tau_{2}\right)$. Let

$$
\delta=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \in G L(4,2)
$$

Then $\delta$ is of type $\left(4^{2}\right)$ as an element of $A_{8}$, and $(n, \delta)(n \in N)$ are the sixteen elements in $M_{24}$ which contain $\delta$ in cycle natation.

Next we will investigate the types of the sixteen elements. Let

$$
\sigma=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)\left(s_{5}, s_{6}, s_{7}, s_{8}\right) \cdots
$$

be an element of type $\left(4^{6}\right),\left(4^{4} \cdot 2^{4}\right)$ or $\left(4^{4} \cdot 2^{2} \cdot 1^{4}\right)$. We may assume that $\left\{s_{1}, s_{2}, \ldots, s_{8}\right\}$ is an octad by Lemmas 3.1, 3.2 and 3.3. Since $M_{24}$ acts transitively on $\mathcal{O}$, and all elements of type $\left(4^{2}\right)$ in $A_{8}$ form one conjugacy class in $A_{8}$, elements of types $\left(4^{6}\right),\left(4^{4} \cdot 2^{4}\right)$ and $\left(4^{4} \cdot 2^{2} \cdot 1^{4}\right)$ are contained in the sixteen elements. Let

$$
\begin{array}{llll}
n_{1}=(0,0,0,0) & n_{2}=(1,0,0,0) & n_{3}=(1,1,0,0) & n_{4}=(1,0,1,0) \\
n_{5}=(1,0,0,1) & n_{6}=(1,1,1,0) & n_{7}=(1,1,0,1) & n_{8}=(1,0,1,1) \\
n_{9}=(1,1,1,1) & n_{10}=(0,1,0,0) & n_{11}=(0,1,1,0) & n_{12}=(0,1,0,1) \\
n_{13}=(0,1,1,1) & n_{14}=(0,0,1,0) & n_{15}=(0,0,1,1) & n_{16}=(0,0,0,1)
\end{array}
$$

be all elements in $N$. By the following calculation, $\left(n_{i}, \delta\right)(i=1,5,8,14)$ are conjugate in $N$.

$$
\left(n_{i}, 1\right)^{-1}\left(n_{1}, \delta\right)\left(n_{i}, 1\right)=\left(n_{i}^{\delta}+n_{1}+n_{i}, \delta\right) .
$$

Similarly the following holds:

$$
\begin{gathered}
\left(n_{2}, \delta\right) \underset{N}{\sim}\left(n_{i}, \delta\right) \quad(i=4,15,16), \quad\left(n_{3}, \delta\right) \underset{N}{\sim}\left(n_{i}, \delta\right) \quad(i=6,12,13), \\
\left(n_{7}, \delta\right) \underset{N}{\sim}\left(n_{i}, \delta\right) \quad(i=9,10,11) .
\end{gathered}
$$

Furthermore, for

$$
\rho=\left(\begin{array}{cccc}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \in C_{G L(4,2)}(\delta),
$$

$\left(n_{3}, \rho\right)^{-1}\left(n_{3}, \delta\right)\left(n_{3}, \rho\right)=\left(n_{2}, \delta\right)$. It follows that the sixteen elements consist of three orbits, and the types of the representatives are $\left(4^{6}\right),\left(4^{4} \cdot 2^{4}\right)$ and $\left(4^{4} \cdot 2^{2} \cdot 1^{4}\right)$. Moreover $\left(n_{2}, 1\right)^{-1}\left(n_{1}, \delta\right)^{2}\left(n_{2}, 1\right)=\left(n_{7}, \delta\right)^{2}$ shows that $\left(n_{i}, \delta\right)(i=2,3,4,6,12,13,15,16)$ are elements of type $\left(4^{6}\right)$. Since there is an element $\gamma \in A_{8}$ such that $\gamma^{-1} \delta \gamma=\tau$,

$$
\left(n_{i}^{\gamma}, \tau\right)=\left(n_{1}, \gamma\right)^{-1}\left(n_{i}, \delta\right)\left(n_{1}, \gamma\right) \quad(i=2,3,4,6,12,13,15,16)
$$

are elements of type $\left(4^{6}\right)$ which contain $\tau$ in cycle notation, and the proof is complete.
Theorem 4.5. All elements of type $\left(4^{6}\right)$ form one conjugacy class in $M_{24}$, and the order of the centralizer of the element in $M_{24}$ is 96.

Proof. Let

$$
\begin{aligned}
\sigma & =\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(x_{5}, x_{6}, x_{7}, x_{8}\right) \cdots \\
\tau & =\left(s_{1}, s_{2}, s_{3}, s_{4}\right)\left(s_{5}, s_{6}, s_{7}, s_{8}\right) \cdots
\end{aligned}
$$

be elements of type $\left(4^{6}\right)$. By Lemma 3.1, we may assume that $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ and $\left\{s_{1}, s_{2}, \ldots, s_{8}\right\}$ are octads. Then there exists an element $\rho$ such that

$$
\rho^{-1} \tau \rho=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(x_{5}, x_{6}, x_{7}, x_{8}\right) \cdots
$$

By Lemma 4.4, there is an element $\delta$ such that $\delta^{-1}\left(\rho^{-1} \tau \rho\right) \delta=\sigma$. It follows that all elements of type $\left(4^{6}\right)$ are conjugate in $M_{24}$. Let

$$
\mathfrak{M}=\left\{\begin{array}{l|l}
\left(\sigma,\left(x_{1} x_{2} \cdots x_{8}\right)\right) & \begin{array}{l}
M_{24} \ni \sigma=\left(4^{6}\right) \text {-type } \\
\left(x_{1} x_{2} \cdots x_{8}\right): \text { ordered sequence } \\
\left\{x_{1}, x_{2}, \ldots, x_{8}\right\} \in \mathcal{O} \\
\sigma=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(x_{5}, x_{6}, x_{7}, x_{8}\right) \ldots
\end{array}
\end{array}\right\}
$$

For an element of type $\left(4^{6}\right)$, there are $6 \cdot 4.4$ ordered sequences which satisfy the conditions of $\mathfrak{M}$ by Lemma 3.1. Conversely, for the ordered sequence, there are eight elements which satisfy the conditions of $\mathfrak{M}$ by Lemma 4.4. Set $m:=\sharp\left\{\sigma \in M_{24} \mid \sigma\right.$ $=\left(4^{6}\right)$-type $\}$. Then

$$
\begin{aligned}
|\mathfrak{M}| & =m \cdot 6 \cdot 4 \cdot 4 \\
& =\sharp\left\{\left(x_{1} x_{2} \cdots x_{8}\right) \left\lvert\, \begin{array}{l}
\left(x_{1} x_{2} \cdots x_{8}\right): \text { ordered sequence } \\
\left\{x_{1}, x_{2}, \ldots, x_{8}\right\} \in \mathcal{O}
\end{array}\right.\right\} \cdot 8 \\
& =\left(\left|M_{24}\right| \cdot 8!/ 2^{4} \cdot\left|A_{8}\right|\right) \cdot 8 .
\end{aligned}
$$

Since $\left|M_{24}\right| / m=96$, the order of the centralizer of an element of type $\left(4^{6}\right)$ in $M_{24}$ is 96 .

We can determine the conjugacy class of the element of type $\left(8^{2} \cdot 4 \cdot 2 \cdot 1^{2}\right)$ by the same way as in the proof of Theorem 4.5.

Types $\left(7^{3} \cdot 1^{3}\right),\left(10^{2} \cdot 2^{2}\right),\left(11^{2} \cdot 1^{2}\right),(14 \cdot 7 \cdot 2 \cdot 1),(21 \cdot 3)$ and $(23 \cdot 1)$.
Since $M_{24}$ is simple, conjugacy classes of these types are determined easily using Sylow's theorem or Burnside's theorem.

Type ( $12^{2}$ )
Theorem 4.6. All elements of type $\left(12^{2}\right)$ form one conjugacy class in $M_{24}$, and the order of the centralizer of the element in $M_{24}$ is 12.

Proof. We will consider the elements in the sextet stabilizer $K$ (See Theorem 1.10). For $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{4}, b_{5}$ in $K$, put $\sigma:=a_{5} a_{4} a_{3} a_{2} a_{1} b_{1} b_{2}$ and $\tau:=\sigma^{2}$. Then

$$
\begin{aligned}
& \sigma=(1,8,21,4,5,6,7,2,9,16,23,24)(3,10,11,18,19,20,15,22,17,12,13,14) \\
& \tau=(1,21,5,7,9,23)(8,4,6,2,16,24)(3,11,19,15,17,13)(10,18,20,22,12,14) .
\end{aligned}
$$

Since $\left|C_{M_{24}}(\tau)\right|=24$ (See Theorem 4.2), we have $\left|C_{M_{24}}(\sigma)\right|=12$ or 24. Let $\delta:=b_{2} b_{4} b_{5} \tau$. Then

$$
\delta=(1,3,5,19,9,17)(2,10,24,20,4,12)(6,14,16,18,8,22)(7,15,23,13,21,11) .
$$

Since $\delta$ is in $C_{M_{24}}(\tau)-C_{M_{24}}(\sigma)$, we have that $\left|C_{M_{24}}(\sigma)\right|=12$ and

$$
\left|\sigma^{M_{24}}\right|=\left|M_{24}\right| /\left|C_{M_{24}}(\sigma)\right|=2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23 .
$$

The sum of the cardinalities of the conjugacy classes of $M_{24}$ which we have determined equals $\left|M_{24}\right|$. It follows that all elements of type $\left(12^{2}\right)$ are conjugate in $M_{24}$.

This yields that we have classified all the conjugacy classes of $M_{24}$.

## 5. The conjugacy classes of $M_{23}, M_{22}$.

In this section, we will classify all the conjugacy classes of $M_{23}:=\left\{\sigma \in M_{24} \mid a^{\sigma}=a\right\}$ and $M_{22}:=\left\{\sigma \in M_{24} \mid a^{\sigma}=a, b^{\sigma}=b\right\}(a, b \in \boldsymbol{\Omega})$ which are given in TABLE 3 and Table 4.

Table 3. $M_{23}$

| type | number of the conjugacy classes | order of the centralizer |
| :---: | :---: | :---: |
| $\left(2^{8} \cdot 1^{7}\right)$ | 1 | 2688 |
| $\left(3^{6} \cdot 1^{5}\right)$ | 1 | 180 |
| $\left(4^{4} \cdot 2^{2} \cdot 1^{3}\right)$ | 1 | 32 |
| $\left(5^{4} \cdot 1^{3}\right)$ | 1 | 15 |
| $\left(6^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1\right)$ | 1 | 12 |
| $\left(7^{3} \cdot 1^{2}\right)$ | 2 | 14,14 |
| $\left(8^{2} \cdot 4 \cdot 2 \cdot 1\right)$ | 1 | 8 |
| $\left(11^{2} \cdot 1\right)$ | 2 | 11,11 |
| $(14 \cdot 7 \cdot 2)$ | 2 | 14,14 |
| $(15 \cdot 5 \cdot 3)$ | 2 | 15,15 |
| $(23)$ | 2 | 23,23 |

Table 4. $M_{22}$

| type | number of the conjugacy classes | order of the centralizer |
| :---: | :---: | :---: |
| $\left(2^{8} \cdot 1^{6}\right)$ | 1 | 384 |
| $\left(3^{6} \cdot 1^{4}\right)$ | 1 | 36 |
| $\left(4^{4} \cdot 2^{2} \cdot 1^{2}\right)$ | 2 | 16,32 |
| $\left(5^{4} \cdot 1^{2}\right)$ | 1 | 5 |
| $\left(6^{2} \cdot 3^{2} \cdot 2^{2}\right)$ | 1 | 12 |
| $\left(7^{3} \cdot 1\right)$ | 2 | 7,7 |
| $\left(8^{2} \cdot 4 \cdot 2\right)$ | 1 | 8 |
| $\left(11^{2}\right)$ | 2 | 11,11 |

Since $M_{24}$ acts 5 -fold transitively on the set $\boldsymbol{\Omega}$ of 24 letters, the types of the elements of $M_{23}$ and $M_{22}$ are as above.

Theorem 5.1. All involutions form one conjugacy class in $M_{23}$, and the order of the centralizer of the element in $M_{23}$ is 2688.

Proof. Let

$$
\begin{aligned}
\sigma & =(a)\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right)\left(x_{4}\right)\left(y_{1}, y_{2}\right)\left(y_{3}, y_{4}\right) \cdots \\
\tau & =(a)\left(s_{1}\right)\left(s_{2}\right)\left(s_{3}\right)\left(s_{4}\right)\left(t_{1}, t_{2}\right)\left(t_{3}, t_{4}\right) \cdots
\end{aligned}
$$

be involutions in $M_{23}$. Let $C \in \mathcal{O}$ such that $C \supseteq X:=\left\{a, x_{1}, x_{2}, y_{1}, y_{2}\right\}$. By Theorem 1.6, we may assume that $C=X \cup\left\{x_{3}, y_{3}, y_{4}\right\}$. It follows that $\left(x_{4} a x_{1} x_{2} x_{3} y_{1} y_{2}\right)$ is an $M$-sequence. Similarly we may assume that $\left(s_{4} a s_{1} s_{2} s_{3} t_{1} t_{2}\right)$ is an $M$-sequence. By Corollary 1.4, there exists an element $\rho \in M_{24}$ such that $\rho: s_{i} \mapsto x_{i}(1 \leq i \leq 4), \rho: a \mapsto a$, $\rho: t_{i} \mapsto y_{i}(i=1,2)$. Since $\left(\rho^{-1} \tau \rho\right) \sigma^{-1}=\left(x_{4}\right)(a)\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right)\left(y_{1}\right)\left(y_{1}\right) \cdots, \rho^{-1} \tau \rho=\sigma$ by Corollary 1.4. Moreover $\rho$ is in $M_{23}$. It follows that all involutions are conjugate in $M_{23}$. Furthermore, counting the cardinality of the set

$$
\left\{\begin{array}{l|l}
\left(\sigma,\left(x_{1} a x_{2} x_{3} x_{4} x_{5} x_{6}\right)\right) & \begin{array}{l}
M_{23} \ni \sigma=\left(2^{8} \cdot 1^{7}\right) \text {-type } \\
\left(x_{1} a x_{2} x_{3} x_{4} x_{5} x_{6}\right): M \text {-sequence } \\
\sigma=\left(x_{1}\right)(a)\left(x_{2}\right)\left(x_{3}\right)\left(x_{4}\right)\left(x_{5}, x_{6}\right) \ldots
\end{array}
\end{array}\right\}
$$

we have $\mid C_{M_{23}}\left(\left(2^{8} \cdot 1^{7}\right)\right.$-type $) \mid=2688$.
We can determine the conjugacy classes of the elements in $M_{23}, M_{22}$ of orders 2, 5 and 6 , and the conjugacy class of the element in $M_{23}$ of order 4 by the same way as in the proof of Theorem 5.1.

Theorem 5.2. All elements of type $\left(3^{6} \cdot 1^{5}\right)$ form one conjugacy class in $M_{23}$, and the order of the centralizer of the element in $M_{23}$ is 180.

Proof. Let

$$
\begin{aligned}
\sigma & =(a)\left(y_{1}\right)\left(y_{2}\right)\left(y_{3}\right)\left(y_{4}\right)\left(y_{5}\right) \cdots \\
\tau & =(a)\left(t_{1}\right)\left(t_{2}\right)\left(t_{3}\right)\left(t_{4}\right)\left(t_{5}\right) \cdots
\end{aligned}
$$

be elements of type $\left(3^{6} \cdot 1^{5}\right)$. By Theorem 1.12, $Y:=\left\{a, y_{1}, \ldots, y_{5}\right\}$ and $\left\{a, t_{1}, \ldots, t_{5}\right\}$ are non-special. There exists an element $\rho \in M_{24}$ such that $\rho: t_{i} \mapsto y_{i}(1 \leq i \leq 5)$, $\rho: a \mapsto a$. Then $\rho$ is in $M_{23}$ and $\rho^{-1} \tau \rho=(a)\left(y_{1}\right)\left(y_{2}\right)\left(y_{3}\right)\left(y_{4}\right)\left(y_{5}\right) \cdots$. There is an $M$-matrix $\mathscr{Y}$ such that

$$
\mathscr{Y}=\left(\begin{array}{llllll}
a & y_{1} & y_{2} & y_{3} & y_{4} & y_{5} \\
& & & & & \\
& & & & &
\end{array}\right)
$$

Using the elements in $\boldsymbol{\Sigma}(Y)$ (See Theorem 1.8), we find that the nonidentity elements in $M_{24}$ fixing $a, y_{1}, \ldots, y_{5}$ are $\alpha$ and $\alpha^{2}$. Since $a_{3}^{-1} \alpha a_{3}=\alpha^{2}\left(a_{3} \in M_{23}\right)$ and $\sigma, \rho^{-1} \tau \rho \in$ $\left\{\alpha, \alpha^{2}\right\}$, we have that $\sigma$ and $\tau$ are conjugate in $M_{23}$. Furthermore, counting the cardinality of the set

$$
\left\{\begin{array}{l|l}
\left(\sigma,\left(a x_{1} x_{2} x_{3} x_{4} x_{5}\right)\right) & \begin{array}{l}
M_{23} \ni \sigma=\left(3^{6} \cdot 1^{5}\right) \text {-type } \\
\left(a x_{1} x_{2} x_{3} x_{4} x_{5}\right): \text { ordered sequence } \\
\left\{a, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}: \text { non-special 6-point subset } \\
\sigma=(a)\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right)\left(x_{4}\right)\left(x_{5}\right) \cdots
\end{array}
\end{array}\right\}
$$

we have $\mid C_{M_{23}}\left(\left(3^{6} \cdot 1^{5}\right)\right.$-type $) \mid=180$.
We can determine the conjugacy class of the element in $M_{22}$ of order 3 by the same way as in the proof of Theorem 5.2.

Using the same argument as in the proof of Lemma 4.4, we have the following result:

Lemma 5.3. Let $C=\left\{x_{1}, x_{2}, \ldots, x_{8}\right\} \in \mathcal{O}$. For an element $\tau=\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}, x_{4}\right)$ $\left(x_{5}, x_{6}, x_{7}, x_{8}\right) \in A_{C}$, there are eight elements in $M_{24}$ of type $\left(8^{2} \cdot 4 \cdot 2 \cdot 1^{2}\right)$ which contain $\tau$ in cycle notation and these elements are conjugate in $N:=\left\{\sigma \in M_{24} \mid x^{\sigma}=x(\forall x \in C)\right\}$.

Theorem 5.4. All the elements of type $\left(8^{2} \cdot 4 \cdot 2 \cdot 1\right)$ form one conjugacy class in $M_{23}$, and the order of the centralizer of the element in $M_{23}$ is 8 .

Proof. Let

$$
\begin{aligned}
\sigma & =(a)\left(x_{1}\right)\left(x_{2}, x_{3}\right)\left(x_{4}, x_{5}, x_{6}, x_{7}\right) \cdots \\
\tau & =(a)\left(s_{1}\right)\left(s_{2}, s_{3}\right)\left(s_{4}, s_{5}, s_{6}, s_{7}\right) \cdots
\end{aligned}
$$

be elements of type $\left(8^{2} \cdot 4 \cdot 2 \cdot 1\right)$. By Theorem 1.12, $\left\{a, x_{1}, \ldots, x_{7}\right\}$ and $\left\{a, s_{1}, \ldots, s_{7}\right\}$ are octads. Hence there exists an element $\rho$ in $M_{23}$ such that $\rho^{-1} \tau \rho=$ (a) $\left(x_{1}\right)\left(x_{2}, x_{3}\right)\left(x_{4}, x_{5}, x_{6}, x_{7}\right) \cdots$. By Lemma 5.3, we have that $\sigma$ and $\tau$ are conjugate in $M_{23}$. Moreover, counting the cardinality of the set

$$
\left\{\begin{array}{l|l}
\left(\sigma,\left(a x_{1} x_{2} \cdots x_{7}\right)\right) & \begin{array}{l}
M_{23} \ni \sigma=\left(8^{2} \cdot 4 \cdot 2 \cdot 1\right) \text {-type } \\
\left(a x_{1} x_{2} \cdots x_{7}\right): \text { ordered sequence } \\
\left\{a, x_{1}, x_{2}, \ldots, x_{7}\right\} \in \mathcal{O} \\
\sigma=(a)\left(x_{1}\right)\left(x_{2}, x_{3}\right)\left(x_{4}, x_{5}, x_{6}, x_{7}\right) \cdots
\end{array}
\end{array}\right\}
$$

we have $\mid C_{M_{23}}\left(\left(8^{2} \cdot 4 \cdot 2 \cdot 1\right)\right.$-type $) \mid=8$.

We can determine the conjugacy class of the element in $M_{22}$ of order 8 by the same way as in the proof of Theorem 5.4.

Applying the results about the conjugacy classes of $M_{24}$ (See Table 2), we can determine the conjugacy classes of $M_{23}$ of types $\left(7^{3} \cdot 1^{2}\right),\left(11^{2} \cdot 1\right),(14 \cdot 7 \cdot 2),(15 \cdot 5 \cdot 3)$ and (23), and the conjugacy classes of $M_{22}$ of types $\left(7^{3} \cdot 1\right)$ and $\left(11^{2}\right)$.

We have determined all the conjugacy classes of $M_{23}$, and the number of the elements in $M_{22}$ of type $\left(4^{4} \cdot 2^{2} \cdot 1^{2}\right)$ is 41580.

Theorem 5.5. All elements of type $\left(4^{4} \cdot 2^{2} \cdot 1^{2}\right)$ form two conjugacy classes in $M_{22}$, and the orders of the centralizers in $M_{22}$ are 16 and 32 .

Proof. Let

$$
\begin{aligned}
\sigma & =(a)(b)\left(x_{1}\right)\left(x_{2}\right)\left(y_{1}, y_{2}\right)\left(y_{3}, y_{4}\right)\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \cdots\left(z_{13}, z_{14}, z_{15}, z_{16}\right) \\
\tau & =(a)(b)\left(s_{1}\right)\left(s_{2}\right)\left(t_{1}, t_{2}\right)\left(t_{3}, t_{4}\right)\left(w_{1}, w_{2}, w_{3}, w_{4}\right) \cdots\left(w_{13}, w_{14}, w_{15}, w_{16}\right)
\end{aligned}
$$

be elements of type $\left(4^{4} \cdot 2^{2} \cdot 1^{2}\right)$. Let $C_{1} \in \mathcal{O}$ such that $C_{1} \supseteq Z_{1}:=\left\{a, z_{1}, z_{2}, z_{3}, z_{4}\right\}$. By Theorem 1.6, we may assume that $C_{1}=Z_{1} \cup\left\{b, y_{1}, y_{2}\right\}$ or $C_{1}=Z_{1} \cup\left\{x_{1}, y_{1}, y_{2}\right\}$.

Case 1. $C_{1}=Z_{1} \cup\left\{b, y_{1}, y_{2}\right\}$.
Set $Z_{2}:=\left\{a, z_{5}, z_{6}, z_{7}, z_{8}\right\}, Z_{3}:=\left\{a, z_{9}, z_{10}, z_{11}, z_{12}\right\}$ and $Z_{4}:=\left\{a, z_{13}, z_{14}, z_{15}, z_{16}\right\}$. Let $C_{i} \in \mathcal{O}$ such that $C_{i} \supseteq Z_{i}(2 \leq i \leq 4)$. Since $\left|C_{i} \cap C_{j}\right|=2$ or $4(1 \leq i \neq j \leq 4)$ by Lemma 1.1, each $C_{i}$ is as follows:

$$
\begin{aligned}
& C_{2}=Z_{2} \cup\left\{b, y_{1}, y_{2}\right\} \text { or } Z_{2} \cup\left\{b, y_{3}, y_{4}\right\} \\
& C_{3}=Z_{3} \cup\left\{b, y_{1}, y_{2}\right\} \text { or } Z_{3} \cup\left\{b, y_{3}, y_{4}\right\} \\
& C_{4}=Z_{4} \cup\left\{b, y_{1}, y_{2}\right\} \text { or } Z_{4} \cup\left\{b, y_{3}, y_{4}\right\} .
\end{aligned}
$$

This case implies that $b$ is in the octad containing $a$ and four points $p_{i}(1 \leq i \leq 4)$ with $\left(p_{i}\right)^{\sigma}=p_{i+1}(1 \leq i \leq 3),\left(p_{4}\right)^{\sigma}=p_{1}$.

Case 2. $\quad C_{1}=Z_{1} \cup\left\{x_{1}, y_{1}, y_{2}\right\}$.
Then

$$
\begin{aligned}
& C_{2}=Z_{2} \cup\left\{x_{1}, y_{1}, y_{2}\right\} \text { or } Z_{2} \cup\left\{x_{1}, y_{3}, y_{4}\right\} \\
& C_{3}=Z_{3} \cup\left\{x_{1}, y_{1}, y_{2}\right\} \text { or } Z_{3} \cup\left\{x_{1}, y_{3}, y_{4}\right\} \\
& C_{4}=Z_{4} \cup\left\{x_{1}, y_{1}, y_{2}\right\} \text { or } Z_{4} \cup\left\{x_{1}, y_{3}, y_{4}\right\} .
\end{aligned}
$$

This case implies that $b$ is not in the octad containing $a$ and four points $p_{i}(1 \leq i \leq 4)$ with $\left(p_{i}\right)^{\sigma}=p_{i+1}(1 \leq i \leq 3),\left(p_{4}\right)^{\sigma}=p_{1}$.

Suppose that $\sigma$ and $\tau$ satisfy Case 1 . We may assume that $\left(x_{1} a b z_{1} z_{2} z_{3} z_{4}\right)$ and $\left(s_{1} a b w_{1} w_{2} w_{3} w_{4}\right)$ are $M$-sequences. By Corollary 1.4, there exists an element $\rho \in M_{24}$ such that $\rho: a \mapsto a, \rho: b \mapsto b, \rho: s_{1} \mapsto x_{1}, \rho: w_{i} \mapsto z_{i}(1 \leq i \leq 4)$. By Corollary 1.4, we have that $\rho^{-1} \tau \rho=\sigma\left(\rho \in M_{22}\right)$. Suppose that $\sigma$ and $\tau$ satisfy the Case 2. Since we may assume that $\left(\operatorname{bax}_{1} z_{1} z_{2} z_{3} z_{4}\right)$ and $\left(b a s_{1} w_{1} w_{2} w_{3} w_{4}\right)$ are $M$-sequences, $\sigma$ and $\tau$ are conjugate in $M_{22}$ by the same argument as above. Suppose that $\sigma$ satisfies Case 1 , and $\tau$ satisfies Case 2. We assume that there exists an element $\rho \in M_{22}$ such that $\rho^{-1} \tau \rho=\sigma$. Then $\sigma$
satisfies Case 1 , and $\rho^{-1} \tau \rho$ satisfies Case 2. This is a contradiction. Therefore $\sigma$ and $\tau$ are not conjugate in $M_{22}$.

It follows that all elements of type $\left(4^{4} \cdot 2^{2} \cdot 1^{2}\right)$ form one or two conjugacy classes in $M_{22}$. We assume that $\sigma$ satisfies Case 1 . Let $\mathscr{C}$ be the conjugacy class of $M_{22}$ containing $\sigma$. Counting the cardinality of the set

$$
\left\{\begin{array}{l|l}
\left(\tau,\left(x_{1} a b x_{2} x_{3} x_{4} x_{5}\right)\right) & \begin{array}{l}
\mathscr{C} \ni \tau \\
\left(x_{1} a b x_{2} x_{3} x_{4} x_{5}\right): M \text {-sequence } \\
\tau=\left(x_{1}\right)(a)(b)\left(x_{2}, x_{3}, x_{4}, x_{5}\right) \cdots
\end{array}
\end{array}\right\}
$$

we have that $\left|C_{M_{22}}(\sigma)\right|=32$ and $|\mathscr{C}|=13860$. Then the order of $\mathscr{C}$ is less than 41580. It follows that all elements of type $\left(4^{4} \cdot 2^{2} \cdot 1^{2}\right)$ form two conjugacy classes in $M_{22}$. Moreover we have that the order of the other centralizer is 16 .

This yields that we have classified all the conjugacy classes of $M_{22}$.
Our tables are, of course, the same as those in Frobenius [4] and Todd [6]!
Acknowledgement. This paper contains portions of my Master thesis at Kumamoto University. I thank my supervisor, Professor Hiroyoshi Yamaki, for his helpful suggestions.

## References

[1] M. Aschbacher, Sporadic Groups, Cambridge Tracts in Mathematics 104, (1994), Cambridge University Press.
[2] J. Conway, Three lectures on exceptional groups, in "Finite Simple Groups" (Powell and Higman, eds.), Academic Press, (1971) 215-247.
[3] R. Curtis, A new combinatorial approach to $M_{24}$, Math. Proc. Cambridge Phil. Soc. 79, (1976) 25-42.
[4] G. Frobenius, Über die Charaktere der mehrfach transitiven Gruppen, Berliner Berichte (1904) 558571.
[5] T. Kondo, The Mathieu groups and the Conway groups (in Japanese), Lecture note at University of Tokyo.
[6] J. Todd, A representation of the Mathieu group $M_{24}$ as a collineation group, Ann. Math. Pura Appl. series IV 71, (1966) 199-238.

## Masato SAWabe

Department of Mathematics
Kumamoto University
Kumamoto 860-8555
Japan
E-mail: sawabe@math.sci.kumamoto-u.ac.jp


[^0]:    1991 Mathematics Subject Classification. Primary 20D08; Secondary 20D60.
    Key words and phrases. Mathieu groups, Steiner system, binary Golay code.

