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On blowing-up of polarized surfaces
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Abstract. Let ðS;LÞ be a polarized surface and let p : ~SS ! S be the blow-up at r

points p1; . . . ; pr on S. Set ~LL ¼ p
�Lÿ

P
aiEi , where ai ’s are positive integers and Ei’s

are the ðÿ1Þ-curves over pi . We consider whether ~LL is ample or not if pi ’s are in a

general position. The cases of sectional genus two are studied especially precisely.

Introduction.

A polarized surface ðS;LÞ is a pair consisting of a compact complex surface S and

an ample line bundle L on S. We consider the following problem: for a polarized

surface ðS;LÞ, let p1; . . . ; pr be r points on S, let p : ~SS ! S be the blowing-up at these r

points, let a1; . . . ; ar be r positive integers, and let ~LL :¼ p
�Lÿ

Pr
i¼1 aiEi a line bundle on

~SS, where Ei is the ðÿ1Þ-curve over pi for i ¼ 1; . . . ; r. Then is ~LL ample if p1; . . . ; pr are

in general position?

If the answer is YES, we get a new polarized surface ð ~SS; ~LLÞ, but this is not always

the case. First obviously ð~LLÞ2 > 0, so we must assume L2 >
Pr

i¼1 a
2
i . In order to

apply Nakai’s criterion, we should show ~LL � ~ZZ > 0 for any curve Z on S, where ~ZZ is the

strict transform of Z on ~SS. So, if ~LL � ~ZZU 0, let us call Zðor ~ZZÞ a bad curve.

In § 1 of this paper we give the following results. See [K ] and [Xu] for related

results.

(1) There is a constant c such that L � ZU c for any bad curve Z. c is com-

putable in terms of ðS;L; a1; . . . ; arÞ. Thus there are at most finitely many numerical

equivalence classes containing a bad curve (c.f. Proposition (1.6)).

(2) In case a1 ¼ a2 ¼ � � � ¼ ar ¼ 1; ~LL is ample if there is an irreducible reduced

member C of jLj with gðCÞ > h1ðOSÞ (c.f. Theorem (1.8)).

In the latter sections, we study the classification of polarized surfaces ðS;LÞ with

sectional genus gðS;LÞ ¼ 2, that is defined by the formula 2gðS;LÞ ÿ 2 ¼ LðKS þ LÞ,

where KS is the canonical bundle of S. The classification of such polarized surfaces are

given in [BLP ] and [F1]. But there are some cases which are uncertain to occur, where

ðS;LÞ is obtained by blowing-up another polarized surface. Using the above results (1),

(2), we determine whether such cases actually occur or not.

The author would like to thank Professor T. Fujita for invaluable comments during

the preparation of this paper and Doctor M. Kobayashi for finding suitable ten points in

(5.3.2).
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Notation, convention and terminology.

Basically we use the customary notation in algebraic geometry. Throughout this

paper a surface is a smooth projective algebraic surface defined over the complex

number field C . The pull-back of a line bundle L on Y by a morphism f : X ! Y is

denoted by LX , or sometimes by L if confusion is impossible or harmless. For a vector

bundle F of rank n on a surface S we denote by PSðFÞ or PðFÞ the P
nÿ1-bundle

defined by F and denote the tautological line bundle by HðFÞ or H.

§ 1. General case.

(1.1) For a given polarized surface ðS0;L0Þ :¼ ðS;LÞ, we consider a sequence of

blowing-ups ~SS :¼ Sr ! Srÿ1 ! � � � ! S2 ! S1 ! S0 :¼ S. Let Si ! Siÿ1 be the blowing-

up of Si at pi A Siÿ1 and let Li :¼ Liÿ1 ÿ aiEi be a line bundle on Si for i ¼ 1; . . . ; r,

where ai is a positive integer and Ei is the ðÿ1Þ-curve over pi. Moreover we assume the

following.

(1) For each i, the sum of aj’s at points pj’s on Ei is less than ai.

(2) ð~LLÞ2 ¼ L2 ÿ
Pr

i¼1 a
2
i > 0, where we denote ~LL :¼ Lr.

(1.2) Using Nakai’s criterion, we can easily see that ~LL is ample if and only if
~LL � ~ZZ > 0 for any irreducible reduced curve Z on S, where ~ZZ denotes the strict transform

of Z on ~SS.

(1.3) Let mi be the multiplicity of Z on pi for i ¼ 1; . . . ; r. Then ~LL � ~ZZ ¼

L � Z ÿ
Pr

i¼1 aimi ¼ L � Z ÿ ð1=2Þ
Pr

i¼1 ai ÿ
Pr

i¼1 aiðmi ÿ ð1=2ÞÞ. Schwarz’ inequality

gives ~LL � ~ZZVL � Z ÿ ð1=2Þ
Pr

i¼1 ai ÿ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pr
i¼1 a

2
i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pr
i¼1ðmi ÿ ð1=2ÞÞ2

q

. On the other

hand gð ~ZZÞ ¼ gðZÞ ÿ ð1=2Þ
Pr

i¼1 miðmi ÿ 1ÞV 0. So 2gðZÞ þ ðr=4ÞV
Pr

i¼1ðmi ÿ ð1=2ÞÞ2.

Combining them, we get ~LL � ~ZZVL � Z ÿ ð1=2Þ
P

ai ÿ
ffiffiffiffiffiffiffiffiffiffiffi

P

a2i

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gðZÞ þ ðr=4Þ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL � Z ÿ ð1=2Þ
P

aiÞ
2

q

ÿ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2gðZÞ þ ðr=4ÞÞ
P

a2i

q

. Therefore if Z is a bad curve, then

ðL � Z ÿ ð1=2Þ
P

aiÞ
2 ÿ ð2gðZÞ þ ðr=4ÞÞ

P

a2i U 0. Consequently we obtain

(1.4) Lemma. ðL � ZÞ2 ÿ
P

aiðL � ZÞ ÿ 2gðZÞ
P

a2i þ ð1=4Þðð
P

aiÞ
2 ÿ r

P

a2i ÞU 0 if

Z is a bad curve.

(1.5) Next we consider the numerical equivalence classes that contain bad curves,

which are determined independently of the position of p1; . . . ; pr.

(1.6) Proposition. For fixed a1; a2; . . . ; ar, the number of numerical equivalence

classes that contain a bad curve is finite.

Proof. We denote
Pr

i¼1 ai by a1 and
Pr

i¼1 a
2
i by a2. For any curve Z, we have

the following inequality by using the genus formula together with the Hodge index

theorem:

ðL � ZÞ2ÿ a1ðL � ZÞÿ 2a2gðZÞþ
1

4
ða21 ÿ ra2ÞV 1ÿ

a2

L2

� �

ðL � ZÞ2þðÿa1Lÿ a2KSÞ � Zþ c1
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for some constant c1 independent of Z. On the other hand, mLÿ a1Lÿ a2KS is ample

for su‰ciently large mg 0 because L is ample. So ðmLÿ a1Lÿ a2KSÞ � ZV 0 for any

Z. Hence

ðL � ZÞ2 ÿ a1ðL � ZÞ ÿ 2a2gðZÞ þ
1

4
ða21 ÿ ra2ÞV 1ÿ

a2

L2

� �

ðL � ZÞ2 ÿmðL � ZÞ þ c2

for some constant c2 independent of Z. 1ÿ a2=L
2, the coe‰cient of ðL � ZÞ2, is positive

since ð~LLÞ2 ¼ L2 ÿ a2 > 0. So ðL � ZÞ2 ÿ a1ðL � ZÞ ÿ 2a2gðZÞ þ ð1=4Þða21 ÿ ra2Þ > 0 for

su‰ciently large ðL � ZÞ. By (1.4) these Z cannot be a bad curve, hence fL � ZjZ is a

bad curveg is bounded, and it follows that the number of numerical equivalence classes

containing a bad curve is finite, since L is ample. Therefore the genera of bad curves

are bounded, so the multiplicities of them on each pi is bounded. Hence the number of

numerical equivalence classes that contain the strict transform of some bad curve is also

finite.

(1.7) Next we give a su‰cient condition for ~LL to be ample for r points p1; . . . ; pr in

a general position, which means that ~LL is ample for p1; . . . ; pr outside a Zariski closed

proper subset of S r
:¼ S � � � � � S

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

r times

.

(1.8) Theorem. We further assume a1 ¼ � � � ¼ ar ¼ 1 and there is an irreducible

reduced member C of jLj such that gðCÞ > h1ðOSÞ. Then ~LL is ample for r generic points

p1; . . . ; pr on S.

Proof: Ampleness is an open condition, so it is su‰cient to show the existence of

an r-tuple p1; . . . ; pr such that ~LL is ample. Let p1; . . . ; pr be r generic points on C, and

blow-up S at these points. (If C is singular, we replace C with C n SingðCÞ from

here). Let Z be a bad curve, and mi be the multiplicity of Z at pi. By (1.6) there are

only finitely many possibilities for m :¼ ðm1; . . . ;mrÞ. We fix one such m. By the

assumption h1ðOCÞ > h1ðOSÞ, we can show that the linear equivalence class of
Pr

i¼1 mi pi
is not contained in the image of PicðSÞ ! PicðCÞ for a general choice of p1; . . . ; pr.

Assume that there is a bad curve Z, then 0V ~LL � ~ZZ ¼ ~CC � ~ZZ, where ~CC; ~ZZ are strict

transforms of C; Z. So ~CC V ~ZZ ¼ q, and 0 ¼ ðp�Z ÿ
Pr

j¼1 mjEjÞ ~CC . Therefore ZjC ¼
Pr

j¼1 mj pj in PicðCÞ. This contradicts the above choice of p1; . . . ; pr. So there is no

bad curve for a general choice of p1; . . . ; pr.

§ 2. Classification of polarized surfaces with sectional genus two.

In the following sections, we will treat polarized surfaces with sectional genus two.

(2.1) Definition. The sectional genus gðS;LÞ of a polarized surface ðS;LÞ is

defined to be ð1=2ÞL � ðKS þ LÞ þ 1, where KS is the canonical bundle of S.

(2.2) Definition. A polarized surface ðS 0;L 0Þ is called the simple blowing-up of

a polarized surface ðS;LÞ at p1; . . . ; pr, if S 0 is the blowing-up of S at p1; . . . ; pr and

L 0 ¼ LS 0 ÿ E1 ÿ � � � ÿ Er, where Ei is the ðÿ1Þ-curve over pi.

(2.3) Remark.

(1) For a simple blowing-up of a polarized surface ðS;LÞ, there are at most L2 ÿ 1

points to blow-up because ðL 0Þ2 > 0.
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(2) If there is a curve Z such that L � Z ¼ 1, then there exists no simple blowing-up

of ðS;LÞ at a point on Z.

(2.4) Definition. A polarized surface ðS;LÞ is a scroll over a curve C if S is a P
1-

bundle over C and L � F ¼ 1 for any fiber F of S ! C.

For gðS;LÞU 1, we have a complete classification of ðS;LÞ (c.f. [F1]). As for the

case gðS;LÞ ¼ 2, we know the following fact (c.f. [BLP ], [F2]).

(2.5) Theorem. Any polarized surface ðS;LÞ with gðS;LÞ ¼ 2 satisfies one of the

following conditions.

(0) There is another polarized surface ðS0;L0Þ with sectional genus two such that

ðS;LÞ is a simple blowing-up of ðS0;L0Þ at a point.

(1) The canonical bundle K of S is numerically equivalent to L and L2 ¼ 1.

ð1 0Þ S is a minimal elliptic surface and KL ¼ L2 ¼ 1.

ð21Þ S is the Jacobian of a curve C of genus two, and L is the class of a translation

of the Y-divisor.

ð21 0Þ SFC1 � C2 for some elliptic curves C1;C2 and L ¼ ½F1 þ F2�, where Fj is a

fiber of S ! Cj .

ð22Þ S is a hyperelliptic surface and L ¼ ½Z þ F �, where F is a fiber of the Albanese

fibration a : S ! AlbðSÞ and Z is a section of a.

ð23Þ There is a finite double covering f : S ! P
2 branched along a smooth curve of

degree six and L ¼ f �
O
P

2ð1Þ.

ð24Þ S is an Enriques surface and its K3-cover ~SS is a finite double covering of

P
1
s � P

1
t branched along a smooth member of j4Hs þ 4Htj. L ~SS is the pull-back of

Hs þHt.

(3) There is a rank two ample vector bundle F on an elliptic curve C such that

c1ðFÞ ¼ 1; ðS;LÞF ðPðFÞ; 3HðFÞ ÿ ASÞ for some A A PicðCÞ with degðAÞ ¼ 1. L2 ¼ 3.

(4) There is a rank two vector bundle F on an elliptic curve C such that SFPðFÞ

and L ¼ 2HðFÞ þ BS for some B A PicðCÞ with ðc1ðFÞ; degBÞ ¼ ð1; 0Þ or ð0; 1Þ. L2 ¼ 4.

(5) There is a rank two vector bundle F on an elliptic curve C together a point p on

P :¼ PðFÞ such that c1ðFÞ ¼ 1;S is the blowing-up of P at p and L ¼ 5HðFÞS ÿ

2AS ÿ 2Ep, where A is a line bundle on C with degðAÞ ¼ 1 and Ep is the ðÿ1Þ-curve over

p. L2 ¼ 1.

ð60Þ SFP
1
a � P

1
b and L ¼ 2Ha þ 3Hb. L2 ¼ 12.

ð61Þ SFS1 ¼ PðFÞ with FF ½Hx �lO on P
1
x and L ¼ 2HðFÞ þ 2Hx. L2 ¼ 12.

ð62Þ SFS2 ¼ PðFÞ with FF ½2Hx �lO on P
1
x and L ¼ 2HðFÞ þHx. L2 ¼ 12.

(7) ÿK is ample, K 2 ¼ 1 and L ¼ ÿ2K . L2 ¼ 4.

(8) There is a del Pezzo surface ðS 00
;L 00Þ with ðL 00Þ2 ¼ 1 and two points p1; p2 on S 00

such that S is the blowing-up of S 00 at these points and L ¼ 3L 00 ÿ 2E1 ÿ 2E2, where each

Ei is the ðÿ1Þ-curve on pi for i ¼ 1; 2. L2 ¼ 1.

(9) ðS;LÞ is a scroll over a curve of genus two.

A polarized surface of type (0) is obtained as a simple blowing-up of a polarized

surface of another type, in fact, one of the types ð21Þ; ð23Þ; ð24Þ; ð3Þ; ð4Þ; ð60Þ; ð61Þ; ð62Þ;

ð7Þ in (2.5) by (2.3). But the existence of a simple blowing-up of each of these types
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was unknown, for the ampleness may be destroyed by the blowing-up. Similarly, the

existence of the types (5) and (8) was unknown too.

We will consider this existence problem for the types ð21Þ; ð23Þ; ð24Þ in § 3, (3), (4),

(5) in § 4, and ð60Þ; ð61Þ; ð62Þ; ð7Þ; ð8Þ in § 5.

§ 3. The case K1 0 and L2 ¼ 2.

In this section we consider the existence of simple blowing-ups obtained from the

types ð21Þ, ð23Þ, ð24Þ. Since L2 ¼ 2, a polarized surface obtained from these types must

be a simple blowing-up at one point. We prove the existence of these polarized

surfaces:

(3.1) Theorem. There is a simple blowing-up of polarized surfaces of the types

ð21Þ; ð23Þ; ð24Þ in (2.5) at one point. More precisely, for any polarized surface ðS;LÞ of

these types and for any general point p on S, ~LL ¼ p
�Lÿ Ep is ample on ~SS.

The proof is given in (3.2) and (3.3).

(3.2) Let ðS;LÞ be of the type ð23Þ or ð24Þ. Then gðS;LÞ > h1ðOSÞ ¼ 0, so we can

apply (1.8) if there is an irreducible reduced member of jLj. This is obvious in case ð23Þ

by Bertini Theorem.

In case ð24Þ, we have dimjLj ¼ 1 by Riemann-Roch Theorem and Vanishing

Theorem. Hence a general member D of jLj is irreducible or of the form D ¼

D1 þD2;L �D1 ¼ L �D2 ¼ 1 and D2
1 V 0, since L �D ¼ 2 and L is ample. But D1 �

D2 > 0 since D is connected, so L �D1 ¼ 1 implies D1 �D2 ¼ 1 and D2
1 ¼ 0, hence

D2
2 ¼ 0. We may assume that D1 is not a fixed component, and then D2

1 ¼ 0 implies

that jD1j has no base point, therefore D2 FP
1 since D1 �D2 ¼ 1. This contradicts

D2
2 ¼ 0. Thus any general member D must be irreducible, as desired.

(3.3) When ðS;LÞ is of the type ð21Þ, we cannot apply (1.8) since gðS;LÞ ¼

h1ðOSÞ ¼ 2. So we will show directly that there is no bad curve. Since there is

no rational curve on S, we have 1U gð ~ZZÞ for any bad curve, where we employ

the same notation as in § 1. Hence we obtain 0V ðL � ZÞ2 ÿ ðL � ZÞ ÿ 2ðgðZÞ ÿ 1ÞV

ð1=2ÞðL � ZÞððL � ZÞ ÿ 2Þ as in (1.3) and (1.6). Thus we should consider the following

two cases:

(a) Z is an elliptic curve and L � Z ¼ 1,

(b) Z is a singular curve of genus two and L � Z ¼ 2.

We will show that neither of the types really exists.

(3.3.1) In case (a), the inclusion Z ,!S is a group homomorphism, so by taking

the quotient Z 0 ¼ S=Z we obtain a fibration S ! Z 0 whose fiber is isomorphic to

Z. On the other hand C A jLj is a section of this map since L � Z ¼ 1. This con-

tradicts gðCÞ ¼ 2.

(3.3.2) In case (b), the resolution Z0 of Z is an elliptic curve and we have the

following commutative diagram induced by Z0 ! Z ,!S.
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Z0 ���!
f

S

h0

?
?
?
y

?
?
?
y

h

AlbðZ0Þ ���!
f0

AlbðSÞ

Then h � f ðZ0ÞFZ is a singular curve, but f0 � h0ðZ0ÞFZ0 is a non-singular curve.

This is absurd.

Thus both cases (a) and (b) cannot occur, and the proof of (3.1) is completed.

§ 4. The case of scrolls over an elliptic curve.

In this section we will show the following theorem.

(4.1) Theorem.

(i) Let ðS;LÞ be of the types (3), (4) in (2.5), and assume that FF= OC lOC . Let

p1; p2; . . . ; pr be points on S in a general position, where r < L2. Then the simple

blowing-up of ðS;LÞ at these points is actually a polarized surface, i.e., ~LL ¼ p
�Lÿ

Pr
i¼1 Ei

is ample on ~SS.

(ii) There is no polarized surface of the type (5) in (2.5).

The rest of this section is devoted to the proof of this theorem. We denote a fiber

of S ! C by F.

(4.2) Let ðS;LÞ be of the type (3). Since h1ðOSÞ ¼ 1; ~LL is ample if there is an

irreducible reduced member of jLj by (1.8). Since L1 3HðFÞ ÿ F , any irreducible

component Z of a member of jLj is numerically equivalent to one of HðFÞ; 2HðFÞ ÿ F

or 3HðFÞ ÿ F . To show the existence of an irreducible reduced member of jLj we

will compute the dimension of the complete linear systems that contain such curves.

Since HðFÞ ÿ KS; 3HðFÞ ÿ F ÿ KS are ample, we obtain h1ðHðFÞÞ ¼ h2ðHðFÞÞ ¼

h1ð3HðFÞ ÿ F Þ ¼ h2ð3HðFÞ ÿ F Þ ¼ 0 by using the Kodaira vanishing theorem. So we

have h0ðHðFÞÞ ¼ 1 and h0ð3HðFÞ ÿ F Þ ¼ 2 by the Riemann-Roch theorem. Hence a

generic member of jLj is irreducible and reduced if there are at most finitely many Z

with Z1 2HðFÞ ÿ F . We will show this by constructing explicitly the surface of the

type (3) in (2.5).

(4.2.1) We can get the exact sequence 0 ! OC ! F ! OCðpÞ ! 0, if necessary, by

replacing F with Fn ½G � for a suitable line bundle G and a point p on C. Since

Ext1ðOCðpÞ;OCÞFC , S is essentially unique. Next we fix the origin o of C and

identify C with the Jacobian of it. Then we have the two-fold symmetric product

S2ðCÞ of C defined by the involution iðx; yÞ :¼ ðy; xÞ, and we obtain the following

commutative diagram:

C � C ���!
g

S2ðCÞ

h0

?
?
?
y

?
?
?
y

h

C C;
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where h and h0 are defined by ðx; yÞ 7! xþ y. S2ðCÞ ! C is a P
1-bundle over C

because j½x� þ ½y�jFP
1 for every ðx; yÞ A C � C. We set H :¼ gðfog � CÞ, which is a

section of h. Then H is ample since g�ðHÞ ¼ ðfog � CÞ þ ðC � fogÞ is. Moreover

H 2 ¼ ð1=2Þððfog � CÞ þ ðC � fogÞÞ2 ¼ 1, so the above ðS;HÞ is isomorphic to

ðS;HðFÞÞ of the type (3) in (2.5). More precisely, HðFÞ is numerically equivalent to

H and there is a translation of C which induces a bijection t : S ! S with t
�H ¼ HðFÞ.

(4.2.2) For any point q on C, we denote by Fq the fiber of S ! C over q. For

any member Z 0
q of jg�ð2H ÿ FqÞj and any point x on C; Z 0

q � ðfxg � CÞ ¼ g�ð2H ÿ FqÞ �

ðfxg � CÞ ¼ 1. Since Z 0
q does not contain ðfxg � CÞ; Z 0

q meets ðfxg � CÞ at one point.

Let us denote the point by y. Then ½y� ¼ ½g�ð2H ÿ FqÞ�fxg�C ¼ 2½o� ÿ ½qÿ x�, so y ¼

xÿ q by Abel’s theorem. Hence Z 0
q ¼ fðx; xÿ qÞ A C � Cgx AC . Now Z 0

q is i-invariant

if and only if 2q ¼ o. In case q ¼ o; g�ðgðZ 0
oÞÞ ¼ 2Z 0

o. Hence j2H ÿ Fqj0q if and

only if 2q ¼ o and q0 o. So there are exactly three points q1; q2; q3 such that

j2H ÿ Fqi j0q. Consequently there are only three curves that are numerically

equivalent to 2H ÿ F . Hence a general member of jLj is irreducible and reduced, and

our assertion is true for the type (3) by (1.8).

(4.3) Let ðS;LÞ be of the type (4) with ðc1ðFÞ; degBÞ ¼ ð1; 0Þ. The surface S and

ample line bundle HðFÞ is the same as those in (4.2.1). So we employ the same

notation as there. To prove the ampleness of ~LL, it is enough to show that there is an

irreducible reduced member of jLj as in (4.2). Since L1 2H, any irreducible com-

ponent Z of a member of jLj is one of the following: Z1H; 2H ÿ F ; 2H, or

F. Obviously we have h0ðF Þ ¼ 1. On the other hand H ÿ KS and 2H ÿ KS are

ample. So we have h0ðHÞ ¼ 1 and h0ð2HÞ ¼ 3 by the Kodaira vanishing theorem and

the Riemann-Roch theorem. For only three points q ¼ q1; q2; q3, there is a member of

j2H ÿ Fqj as we have seen in (4.2.2). Since h0ðLÞ ¼ 3, a generic member of jLj is

irreducible and reduced. So (1.8) applies.

(4.4) Let ðS;LÞ be of the type (4) with ðc1ðFÞ; degBÞ ¼ ð0; 1Þ. If FFOC lOC ,

then SFC � P
1 and C � L ¼ 1 for any fiber C of the second projection. Hence there is

no simple blowing-up of ðS;LÞ. So we assume FF= OC lOC . We will show that

there is an irreducible reduced member of jLj. This is enough as in (4.2) and (4.3). As

L1 2H þ F , any numerical equivalence class of an irreducible component Z of a

member of jLj is one of 2H þ F ; 2H;H þ F ;H, or F. For 2H þ F and H þ F , we can

apply the Kodaira vanishing theorem together with the Riemann-Roch theorem, and

obtain h0ð2H þ FÞ ¼ 3 and h0ðH þ F Þ ¼ 2. And obviously h0ðF Þ ¼ 1. In order to

study divisors which are numerically equivalent to 2H and H, we consider the extension

type of F. If necessary, we replace F by Fl ½G � for a suitable line bundle G on C so

that we have an exact sequence 0 ! OC ! F ! OCðAÞ ! 0, where A is a line bundle

on C with degðAÞ ¼ 0. Then we have

Ext1ðOCðAÞ;OCÞ ¼
C ðA ¼ 0Þ,

0 ðA0 0Þ.

�

(4.4.1) When A ¼ 0;F is indecomposable since FF= OC lOC . In this case we

have the following:
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Lemma. For any G A Pic0ðCÞ, we have

(a) h0ðH þ GSÞ ¼
1 ðG ¼ 0Þ,

0 ðG0 0Þ;

�

(b) h0ð2H þ GSÞ ¼
1 ðG ¼ 0Þ,

0 ðG0 0Þ:

�

Proof. (a) Since h iðS;H þ GSÞ ¼ h iðC;Fn ½G �Þ, we calculate h iðC;Fn ½G �Þ.

We have the following exact sequence:

0 ! H 0ðC;GÞ ! H 0ðC;Fn ½G �Þ ! H 0ðC;GÞ

! H 1ðC;GÞ ! H 1ðC;Fn ½G �Þ ! H 1ðC;GÞ ! 0

If G ¼ 0, we have h0ðC;GÞ ¼ h1ðC;GÞ ¼ 1. So by the above exact sequence

h0ðC;FÞ ¼ h1ðC;FÞ ¼ 1 or 2. Suppose that h0ðC;FÞ ¼ 2. This yields BsjHj ¼ q,

and jHj defines a morphism S ! P
1. Hence we obtain the following commutative

diagram:

S ���! P
1 � C

?
?
?
y

?
?
?
y

C ���! C;

where P
1 � C ! C is the second projection. This contradicts that F is indecom-

posable. Hence h0ðS;HÞ ¼ h1ðS;HÞ ¼ 1.

If G0 0, we have h0ðC;GÞ ¼ h1ðC;GÞ ¼ 0. Hence h0ðS;H þ GSÞ ¼

h1ðS;H þ GSÞ ¼ 0.

(b) We denote by C the member of jHj. For any G A Pic0ðCÞ, we have the

following exact sequence:

0 ! H 0ðS;H þ GSÞ ! H 0ðS; 2H þ GSÞ ! H 0ðC;GÞ

! H 1ðS;H þ GSÞ ! H 1ðS; 2H þ GSÞ ! H 1ðC;GÞ ! 0:

If G ¼ 0, then h0ðS; 2HÞ ¼ h1ðS; 2HÞ ¼ 1 or 2. Suppose h0ðS; 2HÞ ¼ 2. Then we

have Bsj2Hj ¼ q and we can define the finite morphism S ! P
1 � C of degree two

similarly as above. Now all of the members in j2Hj are irreducible and reduced except

for 2C, so the branch locus of the morphism is of the form fpg � C for some point p on

P
1. This contradicts ½fpg � C� B 2 � PicðP1 � CÞ. Hence h0ðS; 2HÞ ¼ h1ðS; 2HÞ ¼ 1.

When G0 0, we have h iðH þ GSÞ ¼ h iðC;GÞ ¼0 for i¼1; 2. Hence h0ðHþGSÞ ¼

h0ðC;GÞ ¼ 0.

By this lemma, we easily see that a general member of jLj is irreducible and reduced

since h0ðLÞ ¼ 3. So (1.8) applies.

(4.4.2) When A0 0, we have FFOC lOCðAÞ since Ext1ðOCðAÞ;OCÞ ¼ 0. Since

h0ðH þ GSÞ ¼ h0ðC;OCðGÞlOCðAþ GÞÞ, we have

h0ðH þ GSÞ ¼
1 ðG ¼ 0;ÿAÞ,

0 (otherwise).

�
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And by h0ð2H þ GSÞ ¼ h0ðC;OCðGÞlOCðAþ GÞlOCð2Aþ GÞÞ, we have

(1) if 2A0 0; h0ð2H þ GSÞ ¼
1 ðG ¼ 0;ÿA;ÿ2AÞ,

0 (otherwise),

�

(2) if 2A ¼ 0; h0ð2H þ GSÞ ¼

2 ðG ¼ 0Þ,

1 ðG ¼ 0;ÿAÞ,

0 ( otherwise).

8

<

:

By direct calculation, we see that any general member of jLj is irreducible and reduced.

Hence (1.8) applies.

(4.5) Now we should show that the case (5) in (2.5) does not occur. Let

ðPðFÞ;HðFÞÞ of the type (5). Similarly as in (4.2.1), PðFÞ is isomorphic to the 2-fold

symmetric product of C. In this case, we will show that there is a morphism PðFÞ !

P
1 and L � F 0 ¼ 2 for its fiber F 0.

We employ the same notation as in (4.2.1). Let s : C � C ! C be the map such

that sðx; yÞ ¼ xÿ y and let g 0
: C ! P

1 be the rational map defined by j2oj. Since

g 0ðÿxÞ ¼ g 0ðxÞ, the map g 0 � s : C � C ! P
1 factors through PðFÞ ¼ C � C=i, and we

get the following commutative diagram:

C � C ���!
g

PðFÞ

s

?
?
?
y

?
?
?
y

s 0

C ���!
g 0

P
1

Let F 0 be the fiber of s
0 over s

0ðpÞ. Then ð5Hÿ2F Þ � F 0 ¼ ð1=2Þg�ð5H ÿ 2F Þ � g�F 0

¼ 2. Hence ~LL � ~FF 0 ¼ 0 for any p on PðFÞ, where ~FF 0 is the proper transform of F 0.

So we have no polarized surface of the type (5) in (2.5).

§ 5. Rational case.

In this section we will show the following

(5.1) Theorem.

(a) Let ðS;LÞ be of the types ð60Þ; ð61Þ; ð62Þ; ð7Þ in (2.5). Let p1; p2; . . . ; pr be

points on S in a general position, where r < L2. Then the simple blowing-up of ðS;LÞ at

these points is actually a polarized surface.

(b) There exists a polarized surface of the type (8) in (2.5).

The proof is as follows.

(5.2) It is easy to see that the assertion (a) follows from (1.8).

(5.3) To see the case (8) really occurs, we fix a minimalization S 00 ! P
2 of S 00,

which is an eight-points blowing-up of P2. To follow the same notation as in (1.1), we

denote ðS;LÞ by ð ~SS; ~LLÞ and ðP2; 9HÞ by ðS;LÞ. Let the following sequence of blowing-

ups be as in (1.1).

~SS ¼: S10 ! S9 ! S8 :¼ S 00 ! S7 ! � � � ! S0 :¼ P
2
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Let ~LL ¼ L10 :¼ 9H ÿ 3E1 ÿ � � � ÿ 3E8 ÿ 2E9 ÿ 2E10. For a bad curve Z of degree d, we

have d 2 ÿ 12d ÿ 164U 0 by (1.4), hence 0 < dU 20. We can compute the degree d and

the multiplicity mi at each pi of the bad curve by the aid of a computer. (In fact, we

enumerate all the multiples ðd; ðm1; . . . ;m10ÞÞ such that 2gð ~ZZÞ ¼ ðd ÿ 1Þðd ÿ 2Þÿ
P10

i¼1 miðmi ÿ 1ÞV 0 and ~LL � ~ZZ ¼ 9d ÿ 3
P8

i¼1 mi ÿ 2ðm9 þm10ÞU 0Þ. The result is

listed below:

degree ðm1 � � � � � �m10Þ

ð1Þ 1 ð1 1 1 0 0 0 0 0 0 0Þ

ð2Þ 2 ð1 1 1 1 1 1 0 0 0 0Þ

ð3-1Þ 3 ð2 1 1 1 1 1 1 1 0 0Þ

ð3-2Þ 3 ð1 1 1 1 1 1 1 1 1 1Þ

ð4Þ 4 ð2 2 2 1 1 1 1 1 1 1Þ

ð5Þ 5 ð2 2 2 2 2 2 1 1 1 1Þ

ð6-1Þ 6 ð3 2 2 2 2 2 2 2 1 1Þ

ð6-2Þ 6 ð2 2 2 2 2 2 2 2 2 2Þ

ð6-3Þ 6 ð2 2 2 2 2 2 2 2 2 1Þ

ð7Þ 7 ð3 3 3 2 2 2 2 2 2 1Þ

ð8Þ 8 ð3 3 3 3 3 3 2 2 2 1Þ

ð9-1Þ 9 ð4 3 3 3 3 3 3 3 2 1Þ

ð9-2Þ 9 ð3 3 3 3 3 3 3 3 3 2Þ

ð10Þ 10 ð4 4 3 3 3 3 3 3 3 3Þ

ð11Þ 11 ð4 4 4 4 4 3 3 3 3 3Þ

ð12-1Þ 12 ð5 4 4 4 4 4 4 3 3 3Þ

ð12-2Þ 12 ð4 4 4 4 4 4 4 4 4 2Þ

ð12-3Þ 12 ð4 4 4 4 4 4 4 4 3 3Þ

ð13Þ 13 ð5 5 5 4 4 4 4 4 3 3Þ

ð14Þ 14 ð5 5 5 5 5 5 4 4 3 3Þ

ð15Þ 15 ð6 5 5 5 5 5 5 5 3 3Þ

ð18Þ 18 ð6 6 6 6 6 6 6 6 5 4Þ

To show that there is no such curve for any ten points in a general position, we use

the following result due to Xu:

(5.3.1) Proposition. Let p1; . . . ; pr be r points on P
2 in a general position, and Z be

an irreducible reduced curve of degree d with multpiðZÞ ¼ mi. Then d 2
V

Pr
i¼1 m

2
i ÿmq

for any q A f1; . . . ; rg such that mq > 0.

For the proof, see [Xu].

This proposition rules out the above cases except for the cases (3-2), (6-3) and

(12-3).

In case (3-2), we have h0ð3HÞ ¼ 10, so h0ð3H ÿ
P10

i¼1 EiÞ ¼ 0, hence this case does

not occur.

In case (6.3), we have ~ZZ A j ÿ 2K 00 ÿ 2E9 ÿ E10j, where K 00 is the canonical bundle

of the Del Pezzo surface S 00 ¼ S8. Note that h0ðÿ2K 00Þ ¼ 4 and j ÿ 2K 00j has no base
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point by Reider’s criterion. Let r : S 00 ! P
3 be the induced morphism. A member of

j ÿ 2K 00 ÿ 2E9 ÿ E10j corresponds to a (hyper)plane in P
3 which is tangent to rðS 00Þ at

rðp9Þ and passes rðp10Þ. Clearly there is no such plane, thus this case is ruled out.

(5.3.2) The case (12-3) is ruled out by the following direct computation.

H 0ð12H ÿ 4E1 ÿ � � � ÿ 4E8 ÿ 3E9 ÿ 3E10Þ is a subspace of H 0ð12HÞFC
91, satisfying 92

linear equations. By the aid of computer we can show that there is no solution for the

ten points ð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð1; 1Þ; ð2; 1Þ; ð3; 2Þ; ðÿ2; 3Þ; ðÿ1; 5Þ; ð1;ÿ2Þ; ðÿ3; 2Þ A P
2 ÿ

Hy ¼ C
2, for example. So there is no curve of this type for any ten points in a general

position.

Hence there exists a polarized surface of the type (8) in (2.5).
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