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Abstract. We consider the asymptotic behavior of the solution of the Cauchy
problem for the nonlinear nonlocal Shrodinger equation (NNS) with a source. The
source in the NNS equation makes essential alterations to the asymptotic behavior. We
study the cases of both small and large initial data.

1. Introduction

In this paper we study the asymptotic behavior for large time of solutions of the
Cauchy problem for the nonlinear nonlocal Schrodinger (NNS) equation, proposed in
[1], with a source:

. 2 .
i + |ul"u+iKu = f(x,t t>0, xeR,
{, i £ )

u(x,0) = a(x).
Here the linear pseudo differential operator Ku is defined by

1

Ku=s| P K(p)i(p.0)dp
R

T 2n
where K(p) is the symbol of the operator Ku and #(p,t) is the Fourier transform of the
function u(x, ?)

u(p,t) = J e Pu(x, t) dx.
R

The (NNS) equation describes wave propagation in plasma physics, nonlinear
optics, chemical kinetics, hydrodynamics [2-5]. The (NNS) equation is a very general
nonlinear equation and due to the choice of the operator K it includes a number of well-
known equations. For example, when K(p) = (i + a?)p?, (a € R), the (NNS) equation
is the generalized Landau-Ginzburg equation [6]. If K(p) = —ig(p) + ip> where q(-) is
a suitable real valued function, the (NNS) equation is the generalized nonlocal nonlinear
Schrodinger equation and describes different processes, connected with the dissipation or
pumping of energy [7]

Without a source (i.e. f(x,#) = 0) the Cauchy problem (NNS) was studied in papers
[7], [8] The local and global existence of solutions and the smoothing property of
solutions were proved. In the case of the dissipative operator K and small initial data
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the asymptotics for large time of solutions of (NNS) without a source were studied in
[12].

The aim of the present paper is to study a symptotics as ¢ — +oo of the solutions of
the Cauchy problem (NNS) with a source. We use estimates in Sobolev spaces as in
paper [13].  The source in (NNS) makes essential alterations to the asymptotic behavior.

Before stating our results, we give notation and function spaces. We denote

. 0
mp=min(1,1pl), My =max(L|pl),  Gu=ru
D
and
2 2k 2 2 n 2
||-||k=j X[ 2 dx, ||-||n,k=j m2 M| 2 dp.
R; R,

We introduce some function spaces: X = {¢(x) e L*(R)NH"'/>*7(R)} with ||y =
I oy + 11 lljagys  here  H™ ={fesS"|(1 +x2)2f]|2 <0} And  Z={pe
L= (R) NLAR)Y with -1l = I e ry + - oy

Different positive constants might be denoted by the same letter C and sufficiently
small positive constants by the letters y, y’.

We now state our results in this paper. There are three main cases of large time
asymptotic behavior of solutions.

In the first case the asymptotics of solutions is determined by the source. The
following statement is valid.

THEOREM 1. Assume that the symbol K(p) is dissipative, that is
Re K(p) Z@ml‘f, (1.1)

for all pe R, where >0, 0 <d < 1. Suppose that the source f(x,t) satisfies the
following condition for pe R, t >0

/= (19J(rpl))a+¢(p, 0, lally <& IWly < ﬁ (12)

where ¢ > 0 is sufficiently small, n >0, o€ (max(0,1—1/26),1/9).
Suppose that the initial data are small enough, that is the following estimate is valid

iy <& (1.3)

Then the solution u(x,t) of the Cauchy problem (NNS) has the asymptotics as t — o0
uniformly with respect to x € R

u(x, 1) = 2;; JR g %’();; dp + O(r "), (1.4)

where p > 0 is some constant.

In the second case the source decays in time more rapidly and interacts with the
operator K. Therefore the asymptotic behavior of the solution is of intermediate
character. The solution decays slower than the source and the response from the initial
data.
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The following theorem is proved.
THEOREM 2. Let the operator K satisfy the condition (1.1) with € (1,2) and

K(p) = o|p’ + O(|p|”*), for |p| <1, (1.5)

where @ >0, g > 0.
Suppose that the source f(x,t) satisfies estimates for all t > 0

171 < e F0.0 =5+ 0((1+077), (1.6

where ¢, @ >0 are sufficiently small, n >0 and o€ (3/2—-1/6,1), and

; ; Clpl”
|f(p7 t) _f(07 t)‘ < (1 _I_l)oc

Jor pl <1, (1.7)

where 0 <v <o —1.

Assume that the initial data are small enough in the sense that the estimate (1.3) is
valid.

Then the solution u(x,t) of the Cauchy problem (NNS) has the asymptotics as t —
+0o0 uniformly with respect to x € R

—ie® 1 (! d= +00 ¥ S
=757 ; ‘ e dy+ 0 ), (1.8
“) nw!/9 th Jo z%(1 — Z)l/() Jo o (y (1)1 - Z)l/(’>e v+ 0 ), (1.8)

where f=o0+1/0—1 and p > 0.

In the third case the source decays sufficiently rapidly and does not play a role in
the character of asymptotic behavior of solution. For this case we prove the following
results.

THEOREM 3. Let the symbol K(p) satisfy conditions (1.1), (1.5) with 6 € (0,2) and
|0,K| < 4m)~", for all peR, (1.9)

where . > 0. Assume that the right-hand-side f(x,t) satisfies conditions with o >
max(1,1/0)
& ~

) —o— r v/o—o
3 JO0 =35+ 07, 10 lyasapry < M (1L10)

1A 1l <

where ¢, @, v > 0 are sufficiently small, n > 0. Assume that initial data satisfy condition
(1.3) and

oyt e HOV/> (1.11)

Then the solution u(x,t) of the Cauchy problem (NNS) has the following asymptotics
as t — +oo uniformly with respect to x € R

+00

1 X _yo —(1/8)—
u(x, 1) :AWJ cos<yW>e Ydy + ot 1p), (1.12)

0

where p >0 and
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A:&—L—Gjﬂawmﬂ)—f@ﬂndr+ﬁ®0,

In the previous theorems we consider the case of sufficiently small initial data. This
smallness condition enables us to prove the global existence of solutions and the
necessary time decay estimates. If the initial data are not small (we will call such initial
data large data), the solution of the Cauchy problem can blow up in finite time. It is
known [7], that the global existence of the solution of the Cauchy problem can be
obtained under the condition that the operator K is strongly dissipative. Also it is
interesting to obtain asymptotics of solutions of the Cauchy problem with large initial
data.

We consider the case of strongly dissipative operator K. As in the paper [14] we
will use the basic estimate of the solution in L?> norm. However, for the case of large
initial data, we can not obtain the estimate of this L> norm decaying in time. Therefore,
decay estimates of the solution in the case of large initial data can be obtained for more
rough condition ¢ < 1 (instead of 6 < 2) on the symbol of the operator K. We can not
say that the condition is essential, or it is caused only by our approach.

We will prove the following theorems. For the first case we have

THEOREM 4. Suppose that the symbol K(p) is strongly dissipative, so that for all
pER

Re K(p) ZHmIfMpﬂ, (1.13)

where 6 > 0,0 <0 < 1, f > 1, and that the source f(x,t) satisfies the condition (1.2) with
l<a<1/0 and

g(p)eZ, sup(14+0)""y(p,0), < C.

>0

Then the solution u(x,t) of the Cauchy problem (NNS) with any large initial data
ite Z has the asymptotics (1.4) as t — oo.

For the third case we obtain (the second case does not appear since we put re-
striction on ¢ 0 <J < 1):

THEOREM 5. Let symbol K(p) satisfy conditions (1.5), (1.13) and
|0,K| < 2m) "MV~ for all p e R, (1.14)

where . > 0. Suppose that the source f(x,t) satisfies the following estimates with o >
1/0

Opf € HOV2, waﬁﬂvk<C, (1.15)
>
A o —a—
f(o,t):m‘f’ 0((1+t> ’7)7 fOV Clll[>0, (116)

where @ >0, n > 0.



Nonlinear nonlocal Shridinger equations 467
The initial data are large and such that
ueZ, oyeH " (1.17)

Then the solution u(x,t) of the Cauchy problem (NNS) has the asymptotics (1.12) as t —
+00.

We organize our paper as follows. In section 2 we give some preliminary results.
First we mention a local existence result in without giving a proof. Further
we prove which establish time decay estimates of the solution for small initial
data and is necessary in section 3 in proving Theorems 1-3. Then, in Lemma 2 we
prove time decay estimates of the solution for large initial data. In section 3 we give
proofs of the theorems.

2. Preliminaries

By using the standard successive approximation method it is easy to prove the
following theorem.

THEOREM 0 (local existence in time). Suppose that the symbol K(p) satisfies
condition

ReK(p) >0 forall peR.

Then there exists the unique solution of the Cauchy problem (NNS) for any i,
feH* k>1/2 on some interval [0, T] such that

u(x,t) € C°([0, T], H*(R)),

where T > 0 depends on the sizes of the data # and f.

We denote

1 . - .
#(p.0) = g3 || 0 - 0.0 (= 000 0) g

LEMMA 1. Let the operator K be dissipative, that is
ReK(p) > Hmﬁ, for all peR, (2.1)

where 6 € (0,2), 0 > 0.
Suppose that the source f(x,t) satisfies the estimate for all t >0

€
(1+Z)a7

IF @y < (2:2)

where & > 0 is sufficiently small and
if 6€(0,1), then o€ (max(0,1—1/20),1/0)U(1/d,+00)
if 0e(1,2), then we(3/2—1/0,1)U(1,+00)
if 0 =1, then o€ (1,+0).
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Assume that the initial data are small in the sense

lally <. (2.3)

Then for the solution u(x,t) of the Cauchy problem (NNS) and w(p,t) the following
estimates are valid for all t >0

(0 < o 24)
W)l < o (24

where

(L2 12k
Vi = 2% , O 25 L — U,
up = 2vo + i)y,

ke|-1/24y,1/2+y] and small u> 0.

Proor. We prove by the contradiction. By virtue of the estimate
1s valid at r =0. Suppose that at some 7" > 0 the estimate is violated. Then by
continuity we have

Ve
(140"

@@l < (2:5)

for te0,T].
We consider the (NNS) equation on [0, 7']. Taking the Fourier transform, we have
t

i(p,1) = e KPii(p) + j e KD (u(p, 7) — f(p, 7)) d. (2.6)

Denote h(p,1) =w —f.
Multiplying (2.6) by | p\k and taking the L?> norm, we obtain

t
[all < C(IILYBK(”)‘IIk + Jo lhe= K=, df)- (2.7)

Making a change of the variable y° = | p\ét and using (2.1), [2.3), we obtain the estimate
of the first term in the right-hand side of (2.7)

iz K, < fl] . \/ J e 2000 p|* dp + Cllif " < C (2.8)
lpl<1

&
(1 _I_ l)(1+2k)/2(5’

where / = min(0,k). To estimate the second term in the right-hand side of (2.7) we
need a number of preliminary estimates.
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Using the following estimates

) ) ) I
pl" < C(lp—ql" +lg—rl +|r|'),

1-2y
il = |ty
RV [Pl +pl

J ¢(p — q)¥(q) dq
R

< ¢l Wl

L2

142y

dp J S22 1-2 142
< — al~(Ip|" 7 4 |pl""7) dp
ﬂR\p\l s \pl”zy\/ R

< C(llally o, + llally 24,
we have

~ 2 A A 2 A A
W)l =y < Cllallgllall < Cllallg(lally o, + lally 24,
and
A2 . . . 2
wll, < Cllall,[lallz: < Cllall,(lall, -, + ll4ally )"

Since vi/y—, < Vi24,, substituting (2.5) in (2.9) and (2.10), we get

32

[w(@)][- < CW
and

32

WO, < Cma

where o = 2vo +vip—, and oy = v, +2vyp_,. It is easy to see that o < op.

Denote o3 = min(o,a). Then we obtain from (2.2), [(2.11), [(2.12)

32
1)l < CUS N + il =) < CW’
32
[, < CAl + [boll,) < CW'

469

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

Using (2.1) (2.13) (2.14), we estimate the second term in the right-hand-side of (2.7)

t t/2
| e 0 np, o) e < c(j 4@ \/J o200 p| dx
0 0 Ip|<l

t

Ji/

t
+ [ MAG@)lle " df)
JO

+ Hh(r)HLx\/j e 2019l
2 Ipl<1
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! 1
+ Jz/2 (1— T)min((1+2k)/215,lf,u)(1 +o)m dr)
1
(1+1)"

where v, = min((1 + 2k) /20,03 + (1 +2k)/20 — 1,03 — p), x> 0 is sufficiently small.
Easily see that

< Ce

(2.15)

\A)k = V. (2.15/)

Indeed, if o € (max(0,1 —1/20),1/5) and 6 € (0,1), then oy = 2min(1/26,1/20 + o — 1,
oo —u)+o—pu>o and therefore oz = o and so we have (2.15"). If o e (3/2—-1/0,1)
and d¢€(1,2), then oy =30¢+2/0—3—y>a and so we get (2.15'). When o>
max(1,1/0) and 0€(0,2), o =2/0—y>max(l,1/20) and therefore v, =V =
(14 2k)/20. Substitution of estimates (2.8), (2.15), (2.15’) in (2.7) yields for t € [0, T']

1 1 ) NG

(1+t)(1+2k)/2’5+(1+t)ﬁ" NIETE

This contradiction proves estimate for all 7> 0. From |2.11), (2.12) and we
have (2.4'). This completes the proof. O

ally, < C8<

REMARK. gives us the solution of the Cauchy problem (NNS) on some
interval [0,7']. By the standard prolongation argument we obtain easily the global
solution from the estimates of the [Cemma 1.

LemMmA 2. Suppose that the operator K is strongly dissipative, that is

ReK(p) > 0m°MP  for all p eR, (2.16)

pp?

where 6 € (0,1), 0 >0, p > 1, and the right-hand-side f(x,t) of the equation satisfies the
estimate with o > 1

sup(1 + 0)*||f|l, < C. (2.17)

>0
Then for the solution u(x,t) of the Cauchy problem (NNS) with any initial data it € Z

we have

supm, "> [la(r)]y < € (2.17)

>0
and for any sufficiently small ¢ > 0 there exists T, > 0 such that,

&
(1 _I_ l _ Tg)lnin(ogl/d)fy’ ’

[a(O]1 /2=y, 1/245 < t>T, (2.18)

where y,y" >0 are sufficiently small.
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PrROOF. Arguing in the same way as in the paper it is easy to prove that the
Cauchy problem (NNS) has the unique solution u(x,?) and

u(x,1) € C*((0,4+00); H*(R)) N C°([0 4 o0); L*(R)).
Since

4y MNu(llzs
27Ol @l 2 < <||f( Iz (1 +1) (1 +Z)1+y>,

multiplying the (NNS) equation by u* and taking real part we have

Gl < (= [ ReKadp+Rei | Fp.0itr.0ap)

. Cllu(®)|lz:
. SarBlnl2 2 1+y L
< CJRmpMp [a|“dp + C||f(1)]|72(1 + 1) +(1—|—t)1+y' (2.19)

By virtue of (2.16), (2.17) the integration of (2.19) yields
t
ol +C | ax | minaflarap

+o0
< (el + | 1R+ n T ar) < € (220)

and since C is independent of ¢, for any & > 0 there is an sufficiently large 7, > 0 such
that

JR mﬁMf|ﬁ|2dp <el(e), att=T, (2.21)
where ¢ (e) = e2H*1=7/k > 0. As in (2.9), (2.10) we have

@l < CllaON a1 /24, < Cla@)lly | mydy |l dp (2.22)
R

using (2.16), (2.17), (2.20) and Gronwall’s inequality, we have from (2.6)

t t
a0 < (e 1+ [ Itellde + [ 17 0 )

C ‘o )
< e+ C [ W [ mpmttico” pae

< Lexpgm dfj méMﬁ|ﬁ|2dp> ¢ (2.23)
- mtl/2—y 0 R pD - mll/Z—y' '

We prove now (2.18). By virtue of (2.21) the estimate (2.18) is valid at ¢t=T,.
Suppose that at some 77 > T, the estimate (2.18) is violated. Then by continuity we
have for ¢ e [T, Ti]

&
(1 +t— Tg)min(oc,l/é)fy

a1 /2y 1/245 < (2.24)
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We consider (NNS) on [T,, T}]. In the same way as in the proof of (2.7) in
we get

t
@)y -y 124y < C(Hf‘leK(p)t”uz—y,l/zﬂ + JT \|€7K(p)(t71)f||1/z_«,,1/2+y dt

t
+ J le™ Pl 1y dr) =1L +5L+1, (2.25)

T;

where i@ = u(p,T,). By virtue of the dr ||, < C.
Using (2.21) and (2.16) we have

5 < c( i, e [ 20181 p| =2 g j e 2%t MPJin | dp
p|<ée |p|=e

Ce? C &2 &2
< : SMPlay 1P dp < —— < 2.26
(/6= + 8;_3) oy \/JR mp D |U1| IS Aoy = (1 P TP) 1/o—y " ( )

where & = &*# small x> 0. Applying (2.16) and (2.17) and changing variables
' = |p|°t we obtain for I,

t
L<C f ||, dt p 1=27 5201 p|° (1) dp
T, L lpl<1
€ VAR
J J | |l+2/€720|p‘ﬁt ‘L’ [f| dp
T, lp|=1
~+00 ) R
= J yire dy + ||f||o\/ sup [p|' )
—1) ’ 0 Ipl=1
t de J lp[” “dp |dp 14222
= s 1 fllp, [ sup [p|! 2P
Jz/z(l+f)“(t—r) (\/II Lpl° 1519227 0 ‘p|>1‘ |

C - Cé?
)min(l/é,u)fy - (1 +r— T)mm(l/ﬁ o)—y’

_|_

_I_

< 0T , (2.27)

since 7, > 0 is large enough. By virtue of (2.24) analogously to I, we have

Z N
I < CJ <||w(r)]|m \/J p|' P e=2010"(=0) dp
T pl<1

Ce?
142y =20/ p|F (12 2
+ p w(t)|"dp | dt < e - 2.28
\/J|p|21 |p| | ( )| p) (1 f_ Tg)mln(l/(>7a)_y ( )
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Substitution of (2.26)—(2.28) in (2.25) yields for 7€ [T, T\]

Ce? P

1 ’ < - 7.
(1+1¢— Tg)mm(l/é,fx)—y (1+1— Tg)mln(l/é,oc)—y

HﬁHI/ny,l/Zer <

This contradiction proves for t > T..
This completes the proof. ]

3. Proofs of the theorems
Proor of THeoREM 1. From Remark to it follows that the Cauchy
problem has the unique solution u(x,?) such that
u(x,t) € C°([0, +o0), H'/**7(R)).
Integrating the (NNS) equation, we have

t

1 : - .
u(x,t) = 5 (J e”’xe‘K(”)tﬁ(p) dp + iJ ePx dpJ e‘K(”)(’—f)w(p,r) dt
T\ JR R 0

t
- iJ e~ dpJ e KW= f(p 1) dr) =L +5L+5. (3.1)
R, 0

We estimate each integral in the formula (3.1). The first integral /; decays faster than
t~* as t — oo and forms the remainder term. Indeed, using conditions (1.1} and |1.3),
we have

A _0lpl® _0tn 2 1
L < it J| | K NIt dp + e itl| yyo.10s < Cis- (3.2)
pl<

The second integral I; in (3.1) also forms the remainder term. To prove this we use the
results of [Lemma 1. We have

(3.3)

C
12 . _—
Wiy < Cllallz, (el o n + il 2e,) < K

where o) =2min(a— 1+ 1/20,00 — ) + o — u > o, since max(0,1 —1/20) < a < 1/6,

here x> 0 being sufficiently small.
Then we obtain the following estimate

0

r1/2 Jt . 5 »
< C(go (1+T)11<Z_T)1/6+J[/2(1—l—T)al(t—T)]'“) =0(t*7), (3.4)

N t . t
b < c( p | I, e [ NI, dr)
Jipl<1 0

where 0 < p <oy — o — L
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We now prove that the third integral in (3.1) gives the main term of the asymptotics

(1.4), that is,

—1 g(p)eipx —o—p
= . 3.5
Using we have
IF:'JI dTJ oo K0 _IWP) ey o R (3.6)
2n 12 R (1+7)” 7
where
—i [ ? , . ! .
R =52 ([ ae| eme nipndps [ de| ety 0,
2n 0 R t/2 R

Integrating by parts we get for the first term in (3.6)

jo—! Jelpxg<P>e—K(p><r—r> I
2n \ Jr K(p) (141)”

t

t/2

ipx ( oK(p)i=)
-I-((x-l—l)J ¢ g(p)dpJ eidf)

R K(p) o2 (1+7)*"!
_ —i eipxg(p) —o—p
_2n(1+z)°‘L Kl O (3.7)

Indeed, since e X2 < C/m?1*, from [1.1] and [T.3] we have for p < (1—-6)/0

IJ 9(P) _k(p))2 ' c J 9| 1)
—| ——*=e dp g— —dp—l—e / g(p)|dp
t* )r, K(p) |\<1\p| (1+p) |p|21| (P)

< gl = 06 )

and

‘ 1 ipx ,—K (p)(1—7)
J Je J ee g(p) dp
R

g2 (1417)*"! K(p)

9] Jl 1
<C J 76[ dt
< P P T ey P

<ol = 0. (3.8)

= i
Now we show that R(7) in (3.6) decays faster than 7 * and forms the remainder term:
R(t) = O(t 7). (3.9)

From [T.1}-{1.2), changing the variable y° = 6|p|°( — 1), we obtain
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/2 ' R
J er 5 KD 1)

0 R
12 1 +o0 s t/2 o)
<C J f 70’1’} e’ dy—i—J e VYIS dt
0 H HLOC (t—‘[)l/é 0 0 ” ||1/2+y
c (7 1
<—| ——=dt=0("*"
_tl/‘sjo TR

where p < 1/0 — 1, and by the analogy of (3.6) for 0 < p < min(1,7/2)

t
J It J %KD=y () 1
t/2 R

t

t .
c j merdrj e”P”Fﬂ@r+j el s, de
12 ” lpl<1 12

! 1
CJ dr =0 *7").

2 (14+1)" (1= 7)™

Thus the estimate is proved. Substituting (3.7) and [3.9) in (3.6), we get (3.5).
Using (3.2), (3.4) and from (3.1) we have

IA

IA

- —i g<p)eipx —o—p
) = 5z | LR o+ 0(),
as t — +oo and 0 < p <min((1 —9)/d,00 — o, f,1,5/2). OJ

ProOOF of THEOREM 2. We estimate each of the integrals in (3.1).
For I; we again use the estimate (3.2). The integral I, decays faster than /7 and
also forms the remainder.
L=0@"7) (3.10)
Indeed, since o € (3/2 —1/5,1) and d € (1,2) using estimates of [Lemma 1, we have (3.3)
with oy =2(a+1/20 - 1)+a+1/0—-1—yp=30—-3+2/0—y > a.
Therefore as (3.4) we obtain

o(t77) (3.11)

t
Blsc| —— -
oL+ 0 (1~ )

where p < o) — o
The third integral in (3.1) gives the main term of the asymptotics. Indeed, by virtue

of [1.6), we have

7 . t A
hegi| emap| e (g oy ar
27 Jr 0
—i0 ('dr i s i I
_ at px o=0lp"(=0) gy — " R() =T — — R(¢ 3.12
2n JOT“JIPIQe ¢ P 2n ) 2n v ( )
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where

0 lp|<1
ot _ X 4

+ | dr ePXe KD f(p 1) dp = ZJ[.
Jo o Jpl=1 i=1

Making the change of variables y° = w|p|° (¢ — 7) and ¢z = 7 in the first summand of
(3.12) we obtain

—ie 1 (! dz o X s s
[=——— ——_(1=2)"|e" dy. 3.13
Tol/o P Jo (1 — )1 Jo cos(y (a)t)l/é( z) >e Y (3.13)

Now we prove that

R() = O(t7#r). (3.14)

Using the trivial inequality for b,¢ > 0: [e™” —e™¢| < C(e™¢ +e7?)|b — |, ue (0,1] and
1.1), (1.5), we get

e K(P)=1) _ e—wlp\‘j(t—f)‘ < Ce—()\pl‘s(t—r)’p’(5+0')5p/0<t _ T)é‘p/a, pl <1,

and therefore we obtain the following estimate for the first integral in R(?)

C (' d T oo v -
1| < B oz“(l—z)/’“/é . y e? dy=0("7), (3.15)

where 0 < p < 1—1/6.
In view of [I.I}, (1.7) we have for 0 < p <v/d

ld .
R e e
0T Jipl<1
! d‘L’ T P}
< CJ J ye ™ dy = 0(rFr), 3.16
otr(r — 7))o ( ) (3.16)
and
! dt 5
Tl < CJ _J e~ 0r°6=0) g,
il o (14+1)"™ J <1
! dt
< CJ = O(r P, 3.17
o(t—1)°(1 4+ 7)*™ ) G3.17)

where 0 < p < 7.
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Using and [1.6), we get for p >0

t
s < C| dr J eI\ £ dp
0 lp|>1
dp » 2 t o .
<C —|e VZJ f ,dr+J‘ e~ 0= 7 dt
|p|21|p|1+/< 0 || ||1/2+,) " ” ||1/2+y
z/2d 1 (!
<C eHZ/ZJ —f+—J e gr ) = ot ). (3.18)
0o T )i

From [3.15}-(3.18) follows and from (3.12)-{3.14) we have

-0 1 (' d: oo x 5
Lh=——F—| ———— - e dy 4+ O(cF7). 3.19
S PNICRY, Jo z2(1 = z)'/ Jo COS (y () (1 - Z>1/(>>€ ro B

Substitution of (3.2), (3.10) and (3.19) in (3.1) yields the asymptotics (1.8). This
completes the proof. ]

PRrOOF of THEOREM 3. In this case each of the integrals in (3.1) forms the main term
of asymptotics. Consider the first integral 7;. Making the change of variables o| p|‘st =

y° and using and we have

1 : 5, A
I = —J eP*eIP(0) dp + Ry (1)
2n R,

L_Al(()) e X 0 1
Tl /oo Jo cos y(wt)l/‘j e’ dJ/+ER1(1), (3.20)
where

Ri) = | emio)(e i — e gy
lp|<1

*J P e K a(p)dp = 311 Ji = O(7117). (3.21)
lp|=1

Indeed, by the analogy of [3.15), making the change of variables as in 3.20), we get for
p>0

|Ji| < CJ e—0|1’|§l|p’(5+0')/75/01p5/0 dp <

c [
- J e YT gy (1110,
pI<

ll/é-‘r/) 0

By virtue of we have for small v > 0

A 2 r A |V’1/27v P dr 2 v
ip) ~(0)] < €| ) dr < C | T [0 < Clpl.
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Hence, using [1.1), we get

Bl< [ e yray = o1

| 2| = Y f1fo+p 0 e Yy ay = (t )7

where 0 < p < v/o.
In view of (1.3) and (1.1) we easily obtain

3] < Ce™jal|y = O(r 1),

To estimate the second and the third integrals in (3.1) we obtain a number of

~

preliminary estimates. Denote /i(p,t) = w(p,t) —f(p,1).
By virtue of and (1.10), we have

C : 2
TEDER 03 = min (oc,g - y). (3.22)

1Ol < CUwOlx + 1/ (D)llx) < i

Now we prove for all |p| <1

pl"(1+0"

|h(p,t) —h(0,8)] < C (ETERE v> 0. (3.23)
For this purpose we need the following inequality
. 6
10l 2, 1/24y < C(1+ f)v/ ; (3.25)

for small v > 0. Indeed in view of (1.9)—(1.11), Lemma 1 and Gronwall’s inequality
from (NNS) we get

t

10ptll1 /20124, < C(HapaHl/Z—v,l/H—y + JO(||apr1/2—v,1/2+y + lalls-1/2-0,1/24,) d7

t
~ ~ A~ 2
+ L 10ptall1 jo—y, 1 j2y (N8l oy + [l o) dT)

| Oplly -
v/o PN 2—v,1 /24y v/o
<C(l+1) +JO (1102 dt < C(1+1)"".

Then using (1.10), Lemmal we get for all |p| < 1:

P dr A
|h(p, 1) = h(0,0)] < C . Wﬁ”@f”uzw/zﬂ

P4 gy X o
+ sup — =5 10ty oy 1 2, 41T 2 1 2
qgeR —q |V‘

< Clp|" (1 + )P,

for all |p| < 1. Thus, the estimate (3.23) is proved.
Using (3.22) and (3.23) we can obtain the asymptotics of integrals /; and /5 in (3.1).
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We have
1 ) t
L+ 5L :—J e'’x dpJ e K= p(p 1) dr
2n R 0
-5 J ", J[/Z 0l th(0, 7) dr + — Ry(¢
=5 |p|£le Ip . e (0,7)drt 7 2(2)
1 o o 3 X
— —y
_nw1/5t1/5J0 h(O,r)er e cos(y(wt)W) dy
1
+ o Ra(1)+ 0(17), (3.26)
where
t/2 _ 5
R(1) :J h(0,7) de X (e~ KP=r) _ gmelrl'ty gy
0 lpl<1
t/2 )
] de| e ) 0,2 dp
0 lp|<1
t
+ er eP*e KW= p(p 1) dp
t/2 Ipl<1
rt
+ er ePe KW=y 1y dp = 34 ;. (3.27)
JO lp|>1
Now we prove
Ry(1) = O(r71/°7). (3.28)

Since o3 > 1,3 > 1/, in view of (3.22), by the analogy of estimate [3.15), we get

00

t/2

1] < CJ

7(0,7) dTJ (jeKP=0) _ golp*a=0)| 4 |g=olp’(=0) _ g-olo’t)) gy
0

p<l

t/2 J ‘
<C | modr| e o O i) g

0 lpl<1

c (* dr
< = O(~ 1/
= t1/o+p Jo (1 —1—‘5)“3 ( )

where 0 < p < (o — 1)6.
Using (1.1), (3.23), we obtain

t/2
|J2|SCJ|| ldpL RO p 7) — 1(0,7)| dir
pI<

t/2 ,L.v/é
< CJ . ——dr = 0(r'"7),
o (1+7)%@—7)
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for 0 < p <min(v/d,a3 — 1 —v/d). By virtue of (3.22) the following estimates for J;
and J, are valid.

| . ] e
J3 < e ——5 e’ dy
’ 1/2 t (t—r)l/(s 0

t

d
= CJ i o‘T =0('°7)

g2 (t—1)P (1 +1)™

and
t 0i—) t o—t-1) 1o
|J4| < CJO Hh(f)||1/2+y€ < CJOW d‘L’: 0<l ,’7)7

where 0 < p < min(oz — 1/d,03 — 1). Thus, the estimate is proved. Substituting
(3.20), [(3.26) and {3.28) in (3.1), we have the asymptotics [1.12). This completes the
proof. L]

Proor of THEOREM 4. It is sufficient to estimate I, in (3.1). By applying
we have, for T, > 0

C

w()||,. < Cllall,.llal},_. < . 1> T, 3.29
w(®)ll, lall -1l 21245 0T ;s (3.29)
~ ~ ~(12
HMOMwSCWMwmuﬁn#ﬁ,t>0 (3.30)
t

Then by the analogy of (3.4), using (3.29) and (3.30), we get for the second integral in
(3.1)

T; t :
<C J dp <J dt +J d‘L’) [w]| e ("f)>
Ipl<1 0 T,

T, ' ,
J dr + J dT) eI )|, )
T,

+o0 d CT, /2 d
<C J e‘yédy+J lﬁ)/(s 1/5+J 2Z_y 75
0 pl=1]p| (1—T,) r. (I+7=T,)" "(t—1)

+r dr J _E&_+J _dp
(141 =T)" (=) \Jjp<t |p)°0 - Jjpjzr | )04

— o(r ) (331)

where 0 < p < min(1/0 — o, a).
In the same way as the proof of Theorem 1, using the norm L? instead of | - ||,
and condition [1.13) of strong dissipativity, we get estimates (3.2) and [3.5). This

Vi

completes the proof. O
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PrOOF of THEOREM 5. To estimate I, in (3.1) requires a number of preliminary
estimates. From we have

C
W] < ——, t>0 (3.32)
m,”’
and for small enough ¢ > 0
. €
||W||L’L =< 1 l‘)l/é_y’ 1> Ts: (333)
since o > 1/0. From we get
+o0 )
J de myMS|a|* dp < C. (3.34)
0 R
Now we prove that for 0 <y’ <1
. C 1
lal, < ——, >0, kel|0,f—5+7| (3.35)
m,”’ 2

Indeed, since for k >0

N ~12
Iwll, < cnquJR md MYl dp,

by applying Gronwall’s inequality and (1.15), (1.17) and [3.34), we get

t

t
lly < C(He””)’ﬁﬂk + J le P07 dT+ J
0

N ~12
il ij§M£|u| dpdr)

<

C Jl R s . C
Zl Y 0 1—y

For k€ [0,1/2 —y) we can prove
||, < C. (3.36)

Indeed, since as in (2.9) we have
Wil e < Cllall o 117 -1 /24, < Clldll o JR mo M il dp. (3.37)
Using (3.32), (3.33), (3.37) we obtain

t
lall_y. < e Py + Jo Ife KW de

t
+ J lw(o)|| - dt (J +J )e—ﬂ«m(r—f) d—pzk
0 pl<t Jjp=1 ||

' ) t|Gl12
<C+ CJ de mng|a|2dp+J HHW#CJTSC.
0 R 0o (t—1) "7
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Applying (3.35) and [3.36), we can prove the following estimate for small v > 0:

1081 )2y, 124y < CMy, 1> 0. (3.38)
Indeed, as in proof of by virtue of (1.14), (3.35), [(3.36), applying

Gronwall’s inequality, we obtain

t

101 )2y 1 /24y < Ntll1 2y 124, + JO(Hapruz—v,l/ery + alls—1 oy + llallpy o) d7

t
NV ~
4 jo V01251 100l o1

t

< CM,exp (J

er mﬁMﬁdzdp).
N ezl

Then, since

di

T ) "
w(p, 1) —w(0,1)] < Csup J W 10patlly 2y, 125 81T 12—y 1 /2490
-q

qgeR

using and (3.37), we get for >0
Apl’
M

From this estimate and [3.32), (3.33), as in we obtain the asymptotics [1.12}).
This completes the proof. O

lw(p,t) —w(0,0)] < C
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