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Abstract. Based on the free product construction we show that a certain full factor

of type IIIq2 admits a minimal coaction of the compact quantum group SUqðnÞ. Minimal

coactions of compact Kac algebras are also investigated by the same technique.

1. Introduction.

The importance of study on quantum groups has been emphasized recently, and Kac

algebras ([ES2]) and the compact quantum group (or quantum matrix pseudo-group)

SUqðnÞ ([Wr1], [Wr2]) are typical examples. In the operator algebra setting, their

coactions (i.e., ‘‘quantized symmetries’’) on ambient algebras (i.e., ‘‘quantized spaces’’)

are of central importance. Among them minimal coactions (if they exist) are desirable,

fixed-point subalgebras and/or crossed products naturally giving rise to infinite-index

([J], [Ks], [L1]) irreducible inclusions of factors of depth 2 (in the sense of A. Ocneanu).

In fact, such inclusions have been recently discussed by several authors ([EN], [ILP],

[Ymg1] and so on).

However, to the best of author’s knowledge no example of a minimal coaction of a

compact quantum group on a factor is known so far. In fact, some attempt was made

by S. Yamagami to prove its non-existence. The main purpose of the paper is to show

that a certain full factor (in the sense of [C2]) of type IIIq2 indeed admits a minimal

coaction of the compact quantum group SUqðnÞ ð0 < q < 1Þ. Minimal coactions of

compact Kac algebras are also investigated, and our technical tool here is the free

product construction. When dealing with minimal coactions, the main di‰culties are

the computation of the fixed-point subalgebra and to see its irreducibility. The ad-

vantage of the free product construction is its high non-commutativity. We choose a

much smaller subalgebra than the fixed-point subalgebra, and we can sometimes easily

observe its irreducibility against the original factor. In this way, the current approach

enables us to obtain the minimality without determining the fixed-point subalgebra.

Note that a similar idea was used in [P] for di¤erent purposes.

To explain the idea in our construction, we here deal with the compact group

case. Let R be the AFD II1 factor with the unique normalized trace t, and G be a

compact group with the (probability) Haar measure m. Note that the tensor product

RnLyðGÞ is equipped with the natural tensor product trace tn ð
Ð
G
� dmÞ, and we then
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perform the free product

ðRnLyðGÞÞ �R relative to tn

ð

G

� dm

� �

and t

� �

:

Using [D2, Theorem 4.6.], we can see that this algebra is the free group factor

LðF2Þ. Note that the translation lg on the group induces the natural free product

action

ag ¼ ðidnAdðlgÞÞ � id

on the free product. The computation of the fixed-point algebra might be di‰cult, but

the obvious subalgebraðRnC1Þ �R sits in the fixed-point subalgebra, and it is quite

standard to see ððRnLyðGÞÞ �RÞV ððRnC1Þ �RÞ0 ¼ C1 based on free product

machine, i.e., due to its high non-commutativity. Thus, we have obtained a minimal

action of a compact group (on the free group factor LðF2Þ). In general an action of

course has to be replaced by a coaction so that the notion of free products of coactions

is required.

In §2 we will summarize basic definitions and properties on free products of von

Neumann algebras. The result (which appeared in L. Barnett’s article [B]) guaranteeing

the high non-commutativity of the free product construction is important to us.

Standard facts on compact Kac algebras, the compact quantum group SUqðnÞ, and

Woronowicz algebras as well as their coactions will be also collected here. From the

discussions in the preceding paragraph, it is clear that what is relevant for our purpose is

how to justify the notion of free products of two coactions. This will be done in §3

under a natural invariance condition, and in the next §4 we will prove the above-

mentioned main result by our free product machine. Minimal coactions of arbitrary

compact Kac algebras will also be investigated by the same idea, and we see that the

free group factor with n generators admits a minimal coaction of any hyperfinite

compact Kac algebra. In §5, based on the justification in §3, we will investigate the free

product of two compact Kac algebras, and we would like to point out that the dis-

cussions here are closely related to the recent article [Wn].
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2. Preliminaries.

In this section, we will summarize basic definitions and properties needed in this

paper.

Y. Ueda450



2.1. Free product.

Throughout this subsection, we assume that Ni is a s-finite von Neumann algebra

with a faithful normal state ji ði ¼ 1; 2Þ, and denote by N
�
i the kernel of ji ði ¼ 1; 2Þ.

We first describe the notion of (reduced) free products of von Neumann algebras with

respect to faithful normal states introduced by D. V. Voiculescu [V1].

Definition 2.1.1. ([V1], [VDN]) Let ðM; jÞ be a von Neumann algebra equipped

with a faithful normal state. ðM; jÞ ¼ ðN1; j1Þ � ðN2; j2Þ is called the free product of

ðN1; j1Þ and ðN2; j2Þ if it satisfies the following three conditions:

(1) There exist two injective normal unital �homomorphisms lN1
and lN2

into M

from N1 and N2 respectively whose ranges generate M.

(2) j � lN1
¼ j1 and j � lN2

¼ j2.

(3) j satisfies the freeness in the sense of D. V. Voiculescu ([V1]), i.e. for x j A N
�
i j

with i10 � � � 0 in and i j A f1; 2g, then

jðlNi1
ðx1Þ � � � lNin

ðxnÞÞ ¼ 0:

The free product was constructed in [V1] and [VDN], and known to be characterized

by the above three conditions. Therefore, we will employ the above as our working

definition. We will often identify lNi
ðxÞ with x itself. When no confusion is possible,

we will denote by N1 �N2 the free product von Neumann algebra M and j1 � j2 will be

referred to as a free state.

The following theorem was proved by L. Barnett in [B] based on well-known L.

Pukanszky’s 14e-argument.

Theorem 2.1.2. ([B, Theorem 11.]) Let ðM; jÞ ¼ ðN1; j1Þ � ðN2; j2Þ. Suppose that

ðNiÞji contains a discrete group Gi of orthogonal unitaries with respect to ji ði ¼ 1; 2Þ with

jG1jV 2; jG2jV 3.

Fix a in G1nf1g and b; c in G2nf1g, and we have

kxÿ jðxÞ1kjU 14 maxfk½x; a�kj k½x; b�kj k½x; c�kjg:ð1Þ

for every x in M, where k kj is the norm induced by j.

Hence, M is a full factor. Furthermore, by (1) the following holds:

fa; b; cg 0
VM ¼ C1:ð2Þ

The equation (2) indicating the high non-commutativity of free products is our

essential tool.

2.2. Compact Kac algebras, the compact quantum group SUqðnÞ and their coactions

on von Neumann algebras.

We first describe the notion of Woronowicz algebras defined by T. Masuda and Y.

Nakagami ([MN]). This notion is fitting to our purpose.

Definition 2.2.1. ([MN]) Let A be a von Neumann algebra, d : A ! AnA be

an injective normal unital �homomorphism (comultiplication), k : A ! A be an anti-

�automorphism (unitary antipode), fttgt AR be a 1-parameter s.o.-continuous auto-

morphism group on A (deformation automorphism), and h : Aþ ! Rþ be a faithful
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normal semifinite weight (Haar weight). W ¼ ðA; d; k; fttg; hÞ is called a Woronowicz

algebra if it satisfies the following four conditions:

(1) d satisfies the co-associative law.

(2) k2 ¼ id and ðkn kÞ � d ¼ S � d � k, where S is the flip.

(3) ðtt n ttÞ � d ¼ d � tt and k � tt ¼ tt � k.

(4) h has the left invariance: ðidn hÞðdðaÞÞ ¼ hðaÞ1 for a in Aþ, strong left

invariance:

ðidn dÞðð1n y�ÞdðxÞÞ ¼ ðtÿi=2 � kn hÞðdðyÞ�ð1n xÞÞ

for entire analytic elements x, y in fa A A : hða�aÞ < yg with respect to fttg, and the

commutativity of sh and sh�k.

When tt ¼ id, we call K ¼ ðA; d; k; hÞ a Kac algebra. Also we call ðA; dÞ with the

condition (1) a Hopf–von Neumann algebra.

In this paper, we will only deal with compact Woronowicz algebras (i.e. the Haar

weight is bounded: hð1Þ < þy). For simplicity, we assume hð1Þ ¼ 1 and call h the

Haar state. In this case, we can prove the uniqueness of the Haar state, the right

invariance of the Haar state ([MN, Remark 1.3]), and the Haar state of a compact Kac

algebra is tracial ([ES2, 6.2.1. Theorem]).

Let ðA; uÞ (A is a unital C �-algebra and u is a unitary in AnMnðCÞ) be the

compact quantum group SUqðnÞ ([Wr1], [Wr2]). S. L. Woronowicz proved the exis-

tence of the unique Haar state f, and the Peter-Weyl type theory. If we denote by

ðHf; pf; xfÞ the G.N.S. triple associated with ðA; fÞ, we can equip A ¼ pfðAÞ
00 with a

Woronowicz algebra structure ([MN, Theorem 5.6.]) and this compact Woronowicz

algebra will be denoted by LyðSUqðnÞÞ. In fact, the Haar state is given by the vector

state oxf and the comultiplication is induced by the fundamental unitary or Kac-

Takesaki operator (the unitarity can be proved):

WðpfðaÞxf n pfðbÞxfÞ ¼ ðpf n pfÞðFðbÞÞðpfðaÞxf n xfÞ

for every a; b in A, where F is the canonical comultiplication of SUqðnÞ. The adjoint

V ¼ W � is a multiplicative unitary in the sense of [BS].

Remark 2.2.2. In [EV], M. Enock and L. Vaı̆nerman claimed that from every

compact quantum group in the sense of S. L. Woronowicz one can construct a

Woronowicz algebra as above.

Here, with the above notation, we describe the notion of a coaction of a Hopf–von

Neumann algebra on a von Neumann algebra.

Definition 2.2.3. Let ðA; dÞ be a Hopf–von Neumann algebra and M be a von

Neumann algebra. An injective normal unital �homomorphism a : A ! MnA is

called a coaction if it satisfies

ðan idÞ � a ¼ ðidn dÞ � a:

To deal with the crossed product of a von Neumann algebra by a compact

Woronowicz algebra, we consider the dual Woronowicz algebra ([MN]) of a given

Woronowicz algebra. Let W ¼ ðA; d; k; fttg; hÞ be a compact Woronowicz algebra.

We assume that A acts on the standard Hilbert space L2ðAÞ. Let W be the fun-

Y. Ueda452



damental unitary on L2ðAÞnL2ðAÞ defined by

Wðxxh n yxhÞ ¼ dðyÞðxxh n xhÞ

for every x; y in A, where xh is the implementing vector of h in the natural cone.

We define p̂pðfÞ in BðL2ðAÞÞ for every f in A� by

p̂pðfÞ ¼ ðfn idÞðW �Þ

and the dual Woronowicz algebra ŴW ¼ ðÂA; d̂d; k̂k; ft̂ttg; ĥhÞ by

ÂA ¼ fp̂pðfÞ : f A A�g
00
;

d̂dðxÞ ¼ ŴWð1n xÞŴW

for every x in ÂA with ŴW ¼ SðW �Þ, and

k̂kðp̂pðfÞÞ ¼ p̂pðf � kÞ; t̂ttðp̂pðfÞÞ ¼ p̂pðf � tÿtÞ

for every f in A�.

Remark 2.2.4. Construction of the dual Haar weight requires the left Hilbert

algebra technique (see [MN]).

Here we recall the notion of crossed products ([N]) and minimal coactions.

Definition 2.2.5. Assume that W ¼ ðA; d; k; fttg; hÞ is a compact Woronowicz

algebra with the corresponding dual Woronowicz algebra ŴW ¼ ðÂA; d̂d; k̂k; ft̂ttg; ĥhÞ. Let M

be a von Neumann algebra and a : M ! MnA be a coaction.

(1) The crossed product McaW of M by W with respect to a is the von

Neumann algebra generated by aðMÞ and C1n ÂA
0, where ÂA

0 ¼ ĴJÂAĴJ and ĴJ is the

modular conjugation of ÂA.

(2) The coaction a is called a minimal coaction if the relative commutant of the

fixed-point algebra M
a ¼ fx A M : aðxÞ ¼ xn 1g in M is trivial and the crossed product

algebra McaW is a factor.

3. Free product of coactions.

Throughout this section, we assume that ðA; dÞ is a s-finite Hopf–von Neumann

algebra (i.e. A is a s-finite von Neumann algebra with a comultiplication d : A !

AnA), Ni is a s-finite von Neumann algebra with a faithful normal state ji ði ¼ 1; 2Þ

and ai : Ni ! Ni nA is a coaction ði ¼ 1; 2Þ.

Assume the following conditions:

(1) There exists a subset fugg of linearly independent elements in A whose finite

linear combinations form a unital dense �subalgebra in A.

(2) ji is an invariant state of ai ði ¼ 1; 2Þ,

i.e.

ðji n idÞ � aiðxÞ ¼ jiðxÞ1

for every x in Ni ði ¼ 1; 2Þ.
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When a is an ordinary action of a compact group G on a von Neumann algebra M

acting on a Hilbert space H, we have an invariant state j on M ðj � ag ¼ j), and the

corresponding coaction pa : M ! MnLyðGÞ is

ðpaðxÞxÞðgÞ ¼ agðxÞxðgÞ; g A G; x A M; x A L2ðG;HÞ:

It is straight-forward to check ðjn idÞðpaðxÞÞ ¼ jðxÞ1 so that the invariance condition

(2) is quite natural in this case.

Let

ðM; jÞ ¼ ðN1; j1Þ � ðN2; j2Þ:

Lemma 3.1. lN1
ðN1ÞnA and lN2

ðN2ÞnA are free in MnA relative to A with

respect to the conditional expectation jn id onto C1nA ¼ A in the sense of D. V.

Voiculescu (see [VDN, §3.8]).

Proof. Let Li be the set of finite linear combinations of lNi
ðxÞn ug for x in Ni

and g ði ¼ 1; 2Þ. Then it is clear that Li is a unital dense �subalgebra in lNi
ðNiÞnA

by the assumption ði ¼ 1; 2Þ. Note that ðji n idÞðLiÞJLi ði ¼ 1; 2Þ. Hence, by the

same argument as in [VDN, Proposition 2.5.7.], it is sufficient to show that L1 and L2

are free over A with respect to jn id.

For each X ¼
P

lNi
ðxgÞn ug in Li ði ¼ 1; 2Þ, we have

ðjn idÞðXÞ ¼
X

j � lNi
ðxgÞug ¼

X
jiðxgÞug:

Since fugg is linearly independent, we get

ðjn idÞðXÞ ¼ 0 ) jiðxgÞ ¼ 0 for every g:ð�Þ

Take an arbitrary X ð jÞ in Li j ð j ¼ 1; . . . ; nÞ with ðjn idÞðX ð jÞÞ ¼ 0 for all j,

i10 � � � 0 in and i j A f1; 2g. By ð�Þ, each X ð jÞ is of the form

X ð jÞ ¼
X

lNi j
ðxð jÞg Þn ug; ji j ðx

ð jÞ
g Þ ¼ 0:

Hence we have

ðjn idÞðX ð1Þ � � �X ðnÞÞ ¼
X

g1

� � �
X

gn

jðlNi1
ðxð1Þg1

Þ � � � lMin
ðxðnÞgn

ÞÞug1 � � � ugn ;

and each coe‰cient is zero since j is a free state. Therefore L1 and L2 are

free. r

Lemma 3.2. There exists a unique �isomorphism

G : M ! fðlN1
n idÞ � a1ðN1Þ; ðlN2

n idÞ � a2ðN2Þg
00
in MnA

satisfying G � lNi
¼ ðlNi

n idÞ � ai ði ¼ 1; 2Þ.

Proof. We consider the subalgebras

ðlN1
n idÞ � a1ðN1Þ and ðlN2

n idÞ � a2ðN2Þ

isomorphic to N1, N2 respectively. For a faithful normal state c on A, by the
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invariance condition we compute

ðji ncÞ � ðlNi
n idÞ � aiðxÞ ¼ jiðxÞcð1Þ ¼ jiðxÞ ði ¼ 1; 2Þ:

Thus, Lemma 3.1 guarantees the freeness of the two subalgebras relative to jnc, and

we can construct the desired isomorphism. r

Lemma 3.3. The above G is a coaction on M by ðA; dÞ.

Proof. Since G and d are (injective) normal unital �homomorphisms, it is sufficient

to check ðG n idÞ � G ¼ ðidn dÞ � G against generators.

For each x in Ni, we have

ðG n idÞ � GðlNi
ðxÞÞ ¼ ðG n idÞ � ðlNi

n idÞ � aiðxÞ

¼ ðG � lNi
n idÞ � aiðxÞ

¼ ððlNi
n idÞ � ai n idÞ � aiðxÞ

¼ ðlNi
n idn idÞ � ðai n idÞ � aiðxÞ

¼ ðlNi
n idn idÞ � ðidn dÞ � aiðxÞ

¼ ðidn dÞ � ðlNi
n idÞ � aiðxÞ

¼ ðidn dÞ � GðlNi
ðxÞÞ:

Here, the first, third and seventh equalities come from the definition of G while the fifth

comes from the fact that ai is a coaction. Hence we are done. r

Definition 3.4. The above coaction is called the free product of coactions a1 and

a2 and denoted by a1 � a2.

Remark 3.5. LyðSUqðnÞÞ and every compact Kac algebra satisfy the condition (1)

thanks to the Peter-Weyl type theorem (for example see [Wr2]). Indeed every Hopf–

von Neumann algebra satisfies the condition (1) by the use of a Hamel basis. This was

pointed out by Y. Sekine. Hence the condition (1) is not essential. Also the condition

(2) is necessary even in the case of group actions.

Remark 3.6. Lemma 3.1 shows

ðMnA; jn idÞG ðN1 nA; j1 n idÞ �A ðN2 nA; j2 n idÞ;

where the right-hand side means the ‘‘amalgamated free product’’ of von Neumann

algebras. Indeed, many fundamental operations such as tensor product are compatible

with the free products (or amalgamated free products) in a certain sense.

4. Main results.

Let LyðSUqðnÞÞ ¼ ðA; d; k; fttg; hÞ be the compact Woronowicz algebra associated

with the compact quantum group SUqðnÞ ð0 < q < 1Þ as in the previous section.

Let R be the AFD type II1 factor with the unique normalized trace t and

b : R ! RnA be the ‘‘trivial’’ coaction defined by bðxÞ ¼ xn 1 for every x in R.
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We set

ðM; jÞ ¼ ðRnA; tn hÞ � ðR; tÞ

and define the free product coaction G : M ! MnA by

G ¼ ðidn dÞ � b

in the sense of §3.

Lemma 4.1. The relative commutant ðMGÞ0 VM is trivial.

Proof. The AFD type II1 factor has a sufficiently large group of orthogonal

unitaries with respect to the unique normalized trace. Hence we can easily find

unitaries a in RnC1 ðJRnAÞ and b, c in R satisfying the conditions in Theorem

2.1.2. Since M
G contains RnC1 and R, we have

ðMGÞ 0 VMJ ððRnC1Þ �RÞ0 VMJ fa; b; cg0 VM ¼ C1

by (2) in Theorem 2.1.2. r

Lemma 4.2. The crossed product algebra McGL
yðSUqðnÞÞ is a factor.

Proof. Let W be the fundamental unitary associated with LyðSUqðnÞÞ. We

define the unitary u in MnBðL2ðAÞÞ by u ¼ 1R nW � (in ðRnAÞn ÂAJMn

BðL2ðAÞÞ). By the pentagon equation W12W23 ¼ W23W13W12, G ¼ ðidnSÞ �

ðG n idÞ satisfies

GðuÞ ¼ ðidnSÞ � ðG n idÞðuÞ

¼ ðidnSÞ � ðidn dn idÞð1R nW �Þ

¼ 1R n ðidnSÞ � ðdn idÞðW �Þ

¼ 1R n ðidnSÞðW12W
�
23W

�
12Þ

¼ 1R n ðidnSÞðW �
13W

�
23Þ

¼ 1R n ðidnSÞðW13Þ
�ðidnSÞðW23Þ

�

¼ 1R n ðW � n 1BðL2ðAÞÞÞð1A nSðW �ÞÞ

¼ ðun 1BðL2ðAÞÞÞð1N nSðW �ÞÞ:

Hence we get

McGL
yðSUqðnÞÞG ðMnBðL2ðAÞÞÞ

~GG
G ðMnBðL2ðAÞÞÞG ¼ M

G nBðL2ðAÞÞ

by the Takesaki duality theorem for SUqðnÞ ([N]), where ~GG ¼ Adð1nSðW �ÞÞ � G .

Therefore, McGL
yðSUqðnÞÞ is a factor. r

From now on, we investigate the type of the above M. Note that ðRnC1Þ �R

sits in the centralizer Mj (see [VDN, Theorem 1.6.5.] also [B] and [V1]). Hence, by the

same reason as in Lemma 4.1, we get
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ðMjÞ
0
VM ¼ C1

by (2) in Theorem 2.1.2 and hence the centralizer Mj is a factor. Therefore, M is not

of type III0 as is well-known. Hence, we can see the type by Connes’ T-set

TðMÞ ¼ ft A R : s
j

t ¼ idg:

Since

s
j

t ¼ ðst

t n s
h
t Þ � s

t

t ¼ ðidn s
h
t Þ � id

(see [VDN, Theorem 1.6.5.] also [B] and [V1]), we have

TðMÞ ¼ ft A R : s
h
t ¼ idg:

Such a type classification result was obtained by L. Barnett in [B]. (K. Dykema

obtained another type classification results in [D4].) Also, by Theorem 2.1.2 M is full.

Here, using the explicit computation of the modular automorphism of the Haar

state we determine the above T-set TðMÞ. For simplicity, we further assume n ¼ 2.

In this case, A is generated by two elements a, g such that

u ¼
a ÿqg�

g a
�

� �

is the fundamental representation of SUqð2Þ ([Wr1], [Wr2]). By [Wr2: equations

(5.20), (A1.3)] we can see that

s
h
t ðaÞ ¼ fit � a � fit ¼ qÿ2it

a; s
h
t ðgÞ ¼ fit � g � fit ¼ g;

where fz ðz A CÞ is the Woronowicz character. Hence,

s
h
t ¼ id , qÿ2it ¼ 1

because s
h is an automorphism and a, g generate A. Therefore, we get

TðMÞ ¼
2p

log q2
Z

so that M is of type IIIq2 . For an arbitrary n, combining [MN: Proposition 5.3.

equation (5.8), Proposition 5.5.] and the above argument, we can see that M is of type

IIIq2 .

Consequently, we get the following theorem:

Theorem 4.3. We can construct a full factor of type IIIq2 admitting a minimal

coaction of the compact quantum group SUqðnÞ.

As was explained in §1, our method to construct a minimal coaction is to take a

suitable ‘‘model’’ coaction and construct a von Neumann algebra admitting a minimal

coaction by using free product construction. (In the above, the model coaction is the

‘‘regular’’ representation.) In the original version of this paper, a di¤erent coaction

was used, but the referee pointed out the resulting crossed product is not a fac-

tor. Furthermore, the referee kindly suggested us the use of the coaction on the Cuntz
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algebra On constructed in [KNW] with a certain invariant state on the UHF-part (see

[Kn] for n ¼ 2, [N] for an arbitrary n).

Remark 4.4. By the standard technique, we can easily see that there exists a

minimal coaction of the compact quantum group SUqðnÞ on a type III1 factor.

The above method to construct a minimal coaction of the compact quantum group

SUqðnÞ remains valid for arbitrary compact Woronowicz algebras. Constructing a

minimal coaction of an arbitrary compact Kac algebra is of independent interest.

Let K ¼ ðA; d; k; hÞ be a given compact Kac algebra and R be the AFD type II1
factor with the unique normalized trace t.

We set

ðN; fÞ ¼ ðRnA; tn hÞ � ðR; tÞ

and define the free product coaction C : N ! NnA by

C ¼ ðidn dÞ � b

in the sense of §3, where b is the trivial coaction.

By the same reason as in Lemma 4.1, we have

ðNCÞ 0 VN ¼ C1

because N
C contains RnC1 ðJRnAÞ and R.

Also, since tn h and t are traces, the free state f is a faithful normal normalized

trace on N (see [VDN, Proposition 2.5.3.]). Hence N is of type II1. And fur-

thermore, if A has separable predual, N is full by the same reason as in the previous

discussion. Also, we can show the factoriality of the crossed product algebra NcCK

by repeating the proceeding discussion based on the Takesaki duality theorem for Kac

algebras ([ES1]).

Consequently, we get the following theorem:

Theorem 4.5. For each compact Kac algebra K ¼ ðA; d; k; hÞ, we can construct a

type II1 factor admitting a minimal coaction of K . Furthermore, if A has separable

predual, this type II1 factor is full.

If a given compact Kac algebra K is hyperfinite, we can easily see the above algebra

N is the free group factor LðF2Þ by the result [D2, Theorem 4.6.], and we can construct

a minimal coaction of K on all interpolated free group factors (in the sense of K.

Dykema [D3] and F. Radulescu [R]) of free dimension (in the sense of K. Dykema [D2])

more than 2.

Consequently, we get

Corollary 4.6. The free group factor LðFnÞ with n generators ðnV 2Þ admits a

minimal coaction of an arbitrary hyperfinite compact Kac algebra.

Remark 4.7. In the recent article [ILP], M. Izumi, R. Longo and S. Popa gave

another definition of the minimality of compact Kac algebra coactions. Their definition

consists of irreducibility and faithfulness. They proved that their minimality implies

ours. We can easily check the faithfulness of the minimal coactions in this paper.
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5. A remark on free products of compact Kac algebras.

In this section, based on the technique in §3 we show that the (reduced!) free

product of given compact Kac algebras with respect to their Haar states has a compact

Kac algebra structure.

Let K i ¼ ðAi; di; ki; hiÞ be given compact Kac algebras ði ¼ 1; 2Þ. Here we recall

the following facts (see [ES2]):

(1) The Haar state hi is a faithful normal trace ði ¼ 1; 2Þ.

(2) The Haar state hi is left and right invariant ði ¼ 1; 2Þ.

(3) The Haar state hi is invariant under the unitary antipode ki ði ¼ 1; 2Þ.

Let

ðA; hÞ ¼ ðA1; h1Þ � ðA2; h2Þ:

By (3), we can show the existence of an anti-�automorophism k on A satisfying

kj
Ai

¼ ki ði ¼ 1; 2Þ. Also h is a faithful normal tracial state on A by (1) ([VDN,

Proposition 2.5.3.]). Hence the main di‰culty here is how to define the comultipli-

cation on A. However, using the same argument as in Lemma 3.1, 3.2 and 3.3, we can

prove the following lemma:

Lemma 5.1. There exists an injective normal unital �homomorphism d : A !

AnA satisfying dj
Ai

¼ di ði ¼ 1; 2Þ. In particular, d is a comultiplication on A.

Proof. To show this lemma, Lemma 3.1 has to be replaced by the following

argument: Let fu i
g i
g be the set of linearly independent elements in Ai whose finite

linear combinations form a dense �subalgebra ði ¼ 1; 2Þ, (see Remark 3.5), and Li be

the set in Ai nAi of finite linear combination of xn u i
g i

for x in Ai and

g i ði ¼ 1; 2Þ. Note that Li is a unital dense �subalgebra of Ai nAi ði ¼ 1; 2Þ.

We can easily prove

ðhn idÞðX1 � � �XnÞ ¼ 0

for X j in Li j with ðhn idÞðX jÞ ¼ 0 for all j; i10 � � � 0 in, and i j A f1; 2g by similar

argument as in Lemma 3.1. Hence, by the same reason as in Lemma 3.1, we get

ðhn idÞðY1 � � �YnÞ ¼ 0

for Y j in Ai j nAi j ðJAnAÞ with ðhn idÞðY jÞ ¼ 0 for all j; i10 � � � 0 in, and

i j A f1; 2g.

The rest of the proof is analogous, and details are left to the reader. r

Consequently we get the following theorem:

Theorem 5.2. The free product of two compact Kac algebras with respect to their

Haar states has a natural compact Kac algebra structure.

Remark 5.3. In this section, we only considered compact Kac algebras for

simplicity. However the same argument works for compact Woronowicz algebras

without essential changes.
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