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Abstract. Let Z3 be the ring of 3-adic integers. For each number field F, let F,, 3
denote the basic Z3-extension over F; let A3(F) and p;(F) denote respectively the Iwasawa
/- and g-invariants of F,, 3/F. Here a number field means a finite extension over the
rational field Q contained in the complex field C; F = C, [F: Q] < «o. Now let k be a
number field. Let 2_ denote the infinite set of totally imaginary quadratic extensions in
C over k (so that 2_ coincides with the set 2~ in the text when k is totally real); let 2,
denote the infinite set of quadratic extensions in C over k in which every infinite place of
k splits (so that 2, coincides with the set 2% in the text when k is totally real). After
studying the distribution of certain quadratic extensions over k, that of certain cubic
extensions over k, and the relation between the two distributions, this paper proves
that, if k is totally real, then a subset of {K € 2_|/3(K) = A3(k), u3(K) = u5(k)} has an
explicit positive density in 2_. The paper also proves that a subset of {L e 2. |A3(L)=
U3 (L)=0} has an explicit positive density in 2, if 3 does not divide the class number of k
but is divided by only one prime ideal of k. Some consequences of the above results are
added in the last part of the paper.

Let k be a number field, namely, a finite extension over the rational field Q
contained in the complex field C. Let & denote the class number of k, R the regulator
of k, D the absolute value of the discriminant of k, w the number of roots of unity in k,
M, the set of infinite places of k, r; the number of real places in M., and r, the
number of imaginary places in M.,. Let {;, denote as usual the Dedekind zeta function
of k. For each finite place v of k, let p, denote the prime ideal of k corresponding to v,
and let g, denote the norm of p, in k. Given any number field F containing k, we
denote by v/, or simply by vy the norm in k of the discriminant of F/k, by hg. the
order of the kernel of the norm map from the ideal class group of F to that of k, by &z 3
the order of the maximal elementary abelian 3-group in this kernel, and by F, the
completion of F at each place v of F. Take any map o from M, to the set consisting
of C and the real field R such that «(v) contains k, for every ve M,,. We then define
9, to be the set of quadratic extensions K over k in C such that, for each real place v in
M., v is ramified or splits in K according as «(v) = C or R. A place v of k is said to
be inert in a finte extension K over k if v is finite and if p, remains prime in K. Let Sp,
S1, 8> be mutually disjoint finite sets of finite places of k, and let 2, denote the set of
number fields in 2, in which every place of Sy is ramified, every place of S; is inert, and
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every place of S, splits. Let us use the letter X as a real variable, assuming X > 0
throughout the following. Now, for any set # of finite extensions over k in C with
degrees bounded, let 7 (X) denote the set of number fields F in .# for which vz, do not
exceed X:

F(X)={FeZ|v <X}

Note that Z#(X) is always a finite set: |#(X)| < co. In this paper, basing our
arguments on some fundamental results and proofs in Datskovsky-Wright and
Davenport-Heilbronn [3], we shall prove, along with

- [2,(X)| _ ="hR ! @
lim —=% =
i=e o X G(2wyD UQO%H vﬂ&z«mw

(cf. CLemma 2), the following two results.
THEOREM 1. Let r(a) denote the number of real places v in M., with a(v) = R. Then

1
Z hF3 3r+1()'

FeJ

Xﬂoc |,,@
THEOREM 2. With r(a) the same as in Theorem 1,

. HFe2,(X)|3fhp )]
lim inf
Yo [2:(X)]

1 ) 1 v
>l —— — .
< 7. 3ratr() (Ulelo qv + l> <vels_1£52 2(q, + 1))

Let p be any prime number and let Z, denote (the additive group of) the ring of p-
adic integers. For each number field F, let F,, , denote the basic Z,-extension over F,
ie., the Z,-extension over F defined as the composite of F and the unique Z),-extension
over Q in C; let /,(F) deonte the Iwasawa A-invariant of F, , and u,(F) the Iwasawa
w-invariant of F, ,/F. We mean by a CM-field a totally imaginary quadratic extension
in C over a totally real number field. For each CM-field K, let

2y (K) = 2p(K) = 2,(K*Y), 1, (K) = 1, (K) — p,(K),

where K denotes the maximal real subfield of K; KT = KNR. Let 2= denote the set
of CM-fields K with Kt = k, so that 2~ is infinite or empty according as k is totally real
or not. Let T(p) denote the set of places of k lying above p. Then a well known
argument in Iwasawa theory leads us to the inequality

(1) 1imsup|{K€Q_(X)|/11;(K>:0}| | g +2

X—o0 |°@_(X)| N 2‘T(p)‘veT(p)qv+ 1

if k is a totally real number field (cf. [Proposition I). On the other hand, it is con-
jectured that u,(F)=0 for every number field F (cf. Iwasawa [13], [15], Ferrero-
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Washington [4], etc.). We shall further see in the case p = 3 that together
with well known results in Iwasawa theory, yields the following results which generalize

of (cf. also [11, §3)).

THEOREM 3. Assume that k is totally real. Then

.. H{Ke2(X)| A (K) =5 (K) =0} 1 qv+2
11Ar/n_>10r01f 2 = ST+ Uel;[@) g

THEOREM 4. Assume that 3fh and |T(3)| = 1. Let u be the place of k lying above
3:T(3)=A{u}. Then

fiminf F €20 Aa(F) = ps(F) =0} _ () 1\ qu+2
Yoo 12,(X)] 31+ ) 4(q, + 1)

When furthermore k is totally real,

\{F€3+(X)|/13(F)=ﬂ3(F)=0}|><2_ I > Gu+2
=" g+ 1)

g 27 ()]

Y

2% denoting the infinite set of all totally real quadratic extensions over k in C.

One easily finds that the right hand side of the second inequality in is
greater than 1/2, while it is conjectured in general that 4,(F) = u,(F) =0 for every
totally real number field F (cf. Greenberg [6], [16, §11.7], etc.).

Some consequences of Theorems 2, 3 and 4 will be given in the last part of the

paper.
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1. Let v be any place of k. If v is finite, let o, denote the ring of p,-adic integers
in k,, the completion of k at v. Let Q, be a fixed algebraic closure of k,, understanding
that Q, = C if ve M,,. We then define B, to be the set of cyclic extensions I” over k,
in Q, with [I": k] <3. Note that B, is a finite set. In case v is finite, we put for each
I'eB,,

bI)=3, )= % if ' = ky,

b(I) =1, (r):%, i k] =2,
b(I') =0, c(f):“;‘v, i k] = 3.

Here 4 is an element of k, by which the discriminant of I"/k, is generated as a module
over o,, and |x|, for each x e £, denotes the absolute value of x on @, such that
|x|, = ¢;! whenever x is a prime element of k,. Obviously, ¢(I") does not depend on
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the choice of 4. In case v is infinite, we put for each I € B,

é, if I = k,,
1

b)) =1, )= if [I: k) =

2 )

Now, let V" be any finite set of places of k. By a FV-signature, we mean an element
of the direct product of B, for all v e V, which is identified in the usual manner with
a map from V' to the union of B, for all ve V. Let y be any V-signature so that

y=(7(v))yey- We then put

b, = [160@), ¢ =1]c0w)

veV veV

A number field F is said to belong to y or to be of signature y if F is an extension over k
of degree not greater than 3 and if, for each v e V', there exists a place v of F which lies
above v and satisfies the following two conditions:

(i) F, is isomorphic to y(v) over k,,

[F, : k,) > [F, : k,] for any place w of F lying above v.

Let %, denote the set of number fields F of signature y such that the ramification
index of every place of F for F/k equals 1 or 2, %, the set of non-cyclic cubic extensions
over k which are number fields in %, (6; the set of unramified cyclic cubic extensions
over k in C of signature y, and 2, the set of quadratic extensions over k in C of
signature . Then %, is clearly the disjoint union of %,, (6; and 2,. It should be noted
here that the definition of 2, above is consistent with that of 2, in the introduction.
Next, let

¢V (s) = Gls) H (1-g,*) forsecC.

veV\M,

By fundamental properties of {x, (" is a meromorphic function on C, which is analytic
in C\{1}, and 1 is a simple pole of (. Let p(V) denote the residue of ¢ at I:

2Nt g h R
pV)=—F1— ( )
W\/l_) UEQM Qb

Let n;(V) and ny(V) denote respectively the numbers of real and imaginary infinite
places of k not contained in V.

LemMA 1. As above, let V be a finite set of places of k and y a V-signature. Then:

I’ll(V)—l
) liml 12 p(V)e, p(V)b,c,

X_’OC}FE;AX) [F . k] _ 3nl(V)6n2(V)CV(2) 2nz(V)+lcV(2) >

X—o X 2nz(V)gV(2)
Y=o X  3m 16”2(V) (2)

)
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ProoOr. The proof of [2, Theorem 5.1|, in which an ‘“‘adelic” generalization by
Datskovsky-Wright of Shintani’s work actually plays an important part, has
essentially shown the assertion (i) as we see in the following. For simplicity, we put

(), p(Vbye,
C3amemY (2)  2mNHEY ()
Since (3.10) and Lemma 4.2 of |2] imply

. 1 1
lim sup— Z — <0,
X—o 2 pea,(x)

it suffices to prove

o] 1
(2) ll)(rrilgfy Z —= >0.
Let Y be a real variable >0 (independent of X). Let My denote the union of M., and
the finite set of all finite places v of k with ¢, < Y, and let %, y denote the set of finite
extensions K over k in C with [K : k] < 3 such that there exists an My-signature to which
K and some number field in %, belong. Then %, y\%, is a set of cubic extensions over
k in C in which some place outside My is totally ramified. Hence, in virtue of Lemma

5.1 of [2], there exists a positive number C independent of X and Y satisfying

1 1 1
Y2 [F:k]gcz_z’

Fe (U, \1,)(X) veny o

where v ranges over the finite places outside My. Since

1
Uy Uy, Z - <M -1,
U$MY v

it follows that

1 1 1 1
~ — > Y =M (2)-1).
X G lF k=X :

exists and that this limit tends to 0 as ¥ — oo. Therefore, by limy_..(""(2) =1, the
inequality (2) is proved.

The assertion follows immediately from (3.9) and Theorem 4.2 of |2] (for the
proof of this Theorem 4.2, see also Wright [24, §5]). In view of

[, (X)] = 12,(X)] +1%,(X)| + [€5(1)],

we obtain from (i) and [ii). O
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2. As in the introduction, let « be any M -signature and let Sy, S}, S> be mutually
disjoint finite sets of finite places of k. For simplicity, we put S* = SyU S U S;.

LeMMA 2. Let 2, denote as before the set of all quadratic extensions over k in C of
signature o in which every place of Sy is ramified, every place of S is inert, and every
place of S, splits. Then

. |22(X)] n”hR 1 9o
lim —2 = — .
X—o X Ck(Z)W\/B L];()QU‘f‘ 1 Uel;!;szz(%"’_ 1)

Proor. Let H be the set of M, US*-signatures y such that y(v) = a(v) for every
ve M, y(v) is a ramified quadratic extension over k, for every v € Sy, y(v) is the unique
unramified quadratic extension over k, in Q, for every ve Sj, and y(v) =k, for every
veS,. Obviously,

H| < 0, n(MxUS") =m(MyUS*) =0.

It also follows immediately that 2; is the disjoint union of 2, for all y e H. Therefore,
by of and by the definitions of b, and ¢,, y € H,

Yoo X Lpa—m X 4 5 (2)

ZLS*)])O‘C“ b(y(v))e(y(v
50 Z(S (7(v))e(y( )))

yeH

p(S*)bscs

) : H( > br )
veS* \I'eH(v)

Here
H(v) ={y(v)|ye H} forveS~”.

Let us take any ve S*. For each I'e H(v), let d(I') = |4]|, with an element 4 of k,
generating over o, the discriminant of I'/k,, so that b(I")c(I") =d(I")/2 by the defi-
nitions of b(I") and ¢(I"). In the case ve S| US,, since d(I') =1 = |H(v)|, we obtain

> b(I)e(I) = 5

I'eH(v)

at once. In the case ve Sy, since H(v) coincides with the set of ramified quadratic
extensions over k, in Q,, it follows from Theorem 1 of Serre or (1.1) of [2] that

Zb Zd

T'eH(v FeH qv
Hence
9% b o
L1201 (S bae H—
X—wo X C 2\51|+\52| cs, v
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On the other hand, we know from the definitions of b,, ¢,, (%, and p(S*) that

1 . 1
ber =g @=L (1- ),

veS* v

(s = 21 %RH< )

veS*

is therefore proved. L]

REMARK (cf. Nakagawa [18, Corollary 5]). In the case S* = ¢, 2; is nothing but
9, and of course implies that

120 nehR
X0 X Ck(2)w\/5

For any number field F containing k, we denote by Dy the discriminant of F/k.

LemMA 3. Let K be a non-cyclic cubic extension over k in C in which no place of k
is totally ramified. Let L be the Galois closure of K /k in C, and K' the unique quadratic
extension over k in L. Then L is an unramified cyclic cubic extension over K' and

D = Vg whence vk = vg.

Furthermore, for any place v of k, the following assertions hold:
(i) v is ramified in K' if and only if some place of K above v is ramified for K /k,
(i) v is inert in K' if and only if the residue degree for K/k of some place of K is
equal to 2,
(iii) v splits in K' if and only if v is inert in K or splits completely in K.

Proor. By the assumption, each place of K ramified for K/k must be unramified in
L, so that the ramification index of each place of L for L/k equals 1 or 2. Since L/K’
is a cyclic cubic extension, it follows that L is unramified over K’. Hence, v is ramified
in K’ if some place of K lying above v is ramified for K/k. As the extension L/k is not
cyclic, the residue degree for L/k of each finite place of L does not exceed 3. Therefore,
v is inert in K’ if the residue degree for K/k of some place of K above v is equal to 2.
It also follows that, if v is inert in K, then v is unramified in L and hence splits in K.
In the case where v splits completely in K, we easily see that v splits completely in L,
which implies that v splits in K’. Thus the assertions (i), [ii), are proved.

Next, let 9t be the norm for K/k of the discriminant of L/K, i.e., the finite part of
the conductor of L/K. We then obtain D;, = RD2 from the fact that L is unramified
over K'. To prove Dg: = Dk (cf. [2, §5]), let us consider the case where v is finite and
ramified in K’ so that p, = p> with a prime ideal p of K’. 1In such a case, it follows
from (i) that there exist distinct prlme ideals 3, B, of K satisfying p, = 51315135. There-
fore P, = B> with a prime ideal P of L, whence p = BP,. This decomposition shows
that p splits completely in L. Let w be an algebraic integer of K’ contained in p\p?,
and let ¢ be the non-trivial element of Gal(L/K). Noting that w” € p\{w}, let g be the
maximal positive integer such that w? —w e p?. Then pY equals the p-part of the
conductor of K'/k, namely, the highest power of p dividing the conductor of K'/k.



394 K. HoriE and I. KiMURA

As ‘B itself is the i‘s-part of p, we also have

weP\P:, 0 —we PRI
Therefore PB{ equals the P;-part of the conductor of L/K. It further follows that p¢
equals the norm of Y for K/k. Since a prime ideal of k, which is divided by a prime
ideal of K ramified in L, is ramified in K’, we consequently have 9 = Dy, i.e.,
Dk = Dk (for the classical discussion of the present paragraph, cf. Hasse [7], [8] as well
as Takagi [23]).
is now completely proved. ]

Let %, denote the set of number fields K in %, such that every place of Sy lies below
a place of K ramified for K /k, every place of S; lies below a place of K whose residue
degree for K/k equals 2, and every place of S, is inert or splits completely in K. We
then define 0 to be the map from %, to the set of number fields such that for each
K e %, 0(K) is the Galois closure of K/k in C. Let .o/ denote for each F € 2, the set
of Galois extensions L over k in C, which are unramified cyclic cubic extensions over F,
with Gal(L/k) isomorphic to the symmetric group of degree 3. It is obvious that
A N g, =& for every pair of distinct number fields F; and F, in 2.

LemMA 4. The image of 0 coincides with the disjoint union of </ for all F e 2;:

Im(0) = [ +r.

Fe2;

Proor. Let H* be the finite set of M, US*-signatures y such that y(v) = a(v) for
every v € M, y(v) is a ramified quadratic extension over k, for every v e Sy, y(v) is the
unique unramified quadratic extension over k, in Q, for every v € Sj, and y(v) is either
k, or the unique unramified cubic extension over k, in Q, for every v e S,. It follows
that

(3) ;=119 2=1]2

yeH* yeH*
For any ye H*, let ' be the element of H* such that
Y (v) = p(v) forve M,USyUSi,
=k, for v e S,.
Then, given any K € %, and the quadratic extension F over k in 0(K ), we obtain from
and (3) that
FGQ;,/EQJ, Q(K)E&fp
On the other hand, take any L € ./, with F € 2;. Then there exists a non-cyclic
cubic extension K over k in L, so that L = KF. Since L is an unramified cubic

extension over F, no place of k is totally ramified in K. Hence Lemma 3| together with
(3), shows

Ke%:, L=0K).
These complete the proof of Lemma 4! O]
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LEmMMA 5. Let r(a) denote (as in the statement of Theorem 1) the number of real
infinite places v of k with a(v) = R. Then

NGl hR

: " 1 qv
X—o X = 2.3n+r() Ge(2 )W\/7 <b1e10qb 1) <Ue££s22(%+l)>'

Proor. By [Cemma 1 and (3)

|6, (X)] 6] 3p(S7)e,
J}IEOT:Z;}LH; X Z gS*()

yeH* yeH*

~ 3p(87)ey (o)) | = 3p(S*)cy .
") > (H (( ))) T H( > (r)>,

yeH* \veS* veS* \I'eH*(v)
where H* is of course the same as in the proof of and
H*(v) ={y(v)|ye H*} forveS~.

Let us take any ve S*. It follows that H*(v) consists of the ramified quadratic
extensions over k, in ,, only of the unramified quadratic extension over k, in Q,, or of
k, and the unramified cubic extension over k, in Q,, according as v belongs to Sy, S| or

S,. Hence, by of and the definitions of ¢(I"), I' € H*(v),

1 .
Z ol =— if ve Sy,
TeH*(v) v
1
:E ifUGS],
I 1 1
:6+§:§ ifUESz.

We therefore have

|6, (0] _
Am Y 52 2|81\+|Sz\+1H_'

This, together with the definitions of ¢,, (° and p(S*), proves the lemma. OJ

3. We shall prove the theorems stated in the introduction. For each number field
K, let CI(K) denote the ideal class group of K, /g the class number of K, and CI(K), the
maximal elementary abelian 3-group in CI(K);

hg = |CI(K)|, CI(K)s = {ceCl(K)|c* = 1}.

Note that CI(K)/CI(K)® is isomorphic as a group to CI(K)s;.

Proor oF THEOREM 1. Take any F € 2, and let o be the non-trivial element of
Gal(F/k). Then the group ring of Gal(F/k)={l,0} over the ring of (rational)
integers acts on CI(F), CI(F)/CI(F)?, etc. in the obvious manner. We easily see from
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[F : k| =2 that the homomorphisms
CI(F)/CI(F)’ — Cl(k)/Cl(k)?, CI(F); — Cl(k),

induced by the norm map CI(F) — Cl(k) are surjective, the kernel of the former
homomorphism is (CI(F)/CI(F)*)' %, and h 3 is nothing but the order of the kernel of
the latter homomorphism. Therefore,

(4) |(CI(F)/CUF))' 7| = h .

Now, let S denote the set of subgroups W of CI(F) with index 3 satisfying CI(F)' ™ <
W. By class field theory, there exists a bijection .&/p — Sp. We further obtain a
bijection from Sy to the set of subgroups of (CI(F)/CI(F)*)'™" with index 3, letting
W1=eCI(F)*/CI(F)® correspond to each W e &p. Hence, by (4),

(5) | r| =5 (hp3—1)

| =

as explained in [2, §5] (cf. [3]).
On the other hand, Lemmas 3 and 4 imply that

0%;X) =[]

Fe2:(X)

It also follows for each L € Im(#) that the three distinct cubic extensions over k in L
form the inverse image of L under 6. Therefore, by (5),

. 3
GI=3 Y (ra-1)
Fe2}(X)
or, equivalently,

* 2 *
> ey =20 +516,(X)].
Fel2;(X)

We can now obtain Theorem 1 from Lemmas 2 and 5. ]
Proor OF THEOREM 2. For simplicity, let
G ={Fe2;|3fhpy} ={Fe2|hr3=1}.

It is then clear that

Y e =3(12;(0)] - 1%(X))) + [4(X)),

Fe2(X)
namely,
3. 1
[9(X)] = 512, (X)] =5 > e
Fe2;(X)

Hence, by Theorem 1,

.. L 9(X)| 31 .. 1

e )] % 2 20 2 ()] 2 b=l



Quadratic extensions and Iwasawa invariants 397

However, by (and [18, Corollary 5]),

g0 (1 0
) A 12,0001 (H qm)( 1l z(qm))'

UES() UES]USz

We therefore have

%) 1 1 ¢
1 f > —— YA
2,00 < T RETET) bgoqurl Uegszz(qv+1) :

which is to be proved. ]

Now, let p be a prime number. Assume that k is totally real, i.e., r, = 0, and take
as o the M, -signature such that o(v) = C for all ve M., ie., r(a) =0. For each
subset V of T(p), let 2%, denote the set of CM-fields in 2~ in which no place of T'(p)\V
but every place of V' splits. Then 2, coincides with 2~ and

P _ P
2y = HQV. Vi
7

where V' ranges over the subsets of 7'(p)\ V' with 27, ,, denoting the set of CM-fields in
2% in which every place of V' is ramified and every place of T(p)\(V'UV’) is inert.
Hence we see from (6) that

(X 25 (X
lim ‘QK( I_ > lim M
X—o0 |"Q (X)l V/ET(p)\VX_)OO ‘Q (X)’
WgT(p)\V(ve yr v + 1) UeT(p)\V’z(q” + 1)

. 1 v qv
- (%THW(W [ 20q+ 1>>) (Ezwﬁ 1)>

_ 1 H v ) H Go +2
2w (vquU +1 (uer(p)\vq“ +1

Next, for each positive integer m < |T(p)|, let 2" denote the set of CM-fields in 2™ in
which just m places of T(p) split, so that

arm =11 2%,
V

with V ranging over the subsets of 7'(p) such that |V|=m. As the discussion of
Iwasawa [16, §11.7] shows, for any K € 27, 4, (K) is at least equal to the number of all
places of T'(p) which split in K. This fact means that, for any integer n < |T(p)|,
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IT(p)]
{Ke2 |i)(K ]_[

3

Thus the following assertion holds:

ProposITION 1. If k is totally real, then for any prime number p and any positive
integer n < |T(p),

{Ke2 (X)|4, (K) =nj

. . p _
li inf 2-(X)] = 2T Z<H

p v+

gy + 2
1) H +1)

veT(p)\ v 1v
where the sum is taken over the subsets V of T(p) with |V| > n.

It should be added that the inequality (1) in the introduction is an immediate
consequence of |Proposition 1| since the right hand side of the inequality of the
proposition for the case n =1 equals

1 G +2

TN * A

1 —

Furthermore, we immediately obtain from [Proposition 1| the following result:

COROLLARY. Suppose that k is a real Galois extension over Q. Then, for any prime
number p and any positive integer n < |T(p)|,

par SR (1) L (0 G

m=n

where q is the norm in k of a prime ideal of k dividing p.

Proor oF THEOREM 3. Note that r, =0, and take again as o the M, -signature
such that r(a) =0, i.e., 2, = 27. For each subset V of T(3), let #), denote the set of
CM-fields of 2~ in which every place of V is ramified and every place of T(3)\V is
mnert: Ay = ,@3@71/. Then []; . 73 #y is nothing but ,@3@, the set of CM-fields of 2~
in which no place of 7(3) splits. As is well known, a CM-field K in 2~ satisfies
/3 (K) = u5 (K) = 0 if and only if 3 neither divides /g, nor lies below any place of k
splitting in K (see, e.g., Friedman [5]). Namely, we have

{Ke2 |45(K)=p5 (K) =0} = ] {Ke2v|3theu}

V<=T(3)
This gives, in particular,

{K €2 (X) |4 (K) = p5 (K) = 0}

lim inf -
X o0 127 (X))
. K eRv(X)| 3¥hi}|
> lim inf — .
2 X—oo0 127 (X)|

V<=T(3)
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implies however that, for each subset ¥ of T(3),
liminfl{KegZV(X)B*hK/kH > 1 H 1 H qv .
X—o0 |”@_(X)| 2 UquU+ 1 UET(3)\V2(qD+ 1)
Therefore
i K € 2700173 (K) = 4 (K) = 0
e 2 (X))
1 1 qv 1 % + 2
0y () o .
2,50 (uequ + 1) <UGT(3)\V2(% + 1)) 2T ver(zdot1
and consequently is proved. O

PrROOF OF THEOREM 4. Let 2, denote the set of number fields of 2, in which u does
not split, i.e., u is ramified or inert. In view of the assumption of Theorem 4] 34/ is
equivalent to 3thr for every F € 2, while it follows from Iwasawa [12, II] that A3(F) =
s (F) =0 for every F e 2, with 3fhp (cf. Iwasawa [14, §7.5]). Hence

{Fe2,|23(F) =u(F) =0} 2{F € 2| 3¥hp}.
Therefore, by

LI € 2,00 s(F) = p(F) = 0}
X—w |Qa(X)|

1 1 Gu 1 Gu+2
> 1- =|2- :
= (1 5z Gt ) = (5 2t

The former part of is thus verified. When k is totally real, i.e., r» = 0, we
have

ro:-’@Jra V(O()Z[le],

taking as o the M -signature such that «(v) = R for every ve M,. Hence the latter
part of the theorem follows from the former. ]

4. For each number field F, let A(F) denote the 3-class group of F and let F")
denote, for each positive integer n, the intermediate field between F and the basic Z3-
extension over F such that [F( : F] = 3", Moreover, for any CM-field K, let 4~ (K)
denote the kernel of the norm map from A(K) to A(K™).

Assume now that k 1is totally real. Let K; and K, be distinct CM-fields
such that K;" =K, =k, and let n be any positive integer. It is then clear that
(K" = (K{"Y* = k. For each j e {1,2}, let ;; denote the natural map A(K/.(")) —
AKM KLY, As KK is a quartic bicyclic extension over k"), we easily see not only
that ;; and 1, are injective but also that

A (K K) = 1(A7(K™)) x (A7 (K7)).
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In particular,
A (K"K = |47 (K")] - 147 (K3")].

On the other hand, Iwasawa’s class number formula, i.c., Theorem 11 of implies
that the three numbers

A7 (K3 (s (R0

Y

A~ (K" K 37 (KK (KK
A~ (RS 375 (Ko (Ka)3
are independent of n if n is sufficiently large. Thus we have

I3 (K1Ky) = 75 (K1) + 73 (Ka), w5 (KiKz) = 15 (Ky) + 15 (K2)

(for more general relations, see e.g., [9, §2]). Since shows that there exist
infinitely many CM-fields K with the properties

K" =k, 13(K)=u;(K)=0,
the following result is therefore obtained:

ProrosiTiON 2. If k is totally real, then there exist infinitely many CM-fields L
which are quartic bicyclic extensions over k and satisfy 75 (L) = 5 (L) = 0.

Still assuming k to be totally real, let
di = 2 H lm(l)
I

where / ranges over the prime numbers | 6D, with m(/) denoting the maximal integer >0
such that the /”()-th roots of unity in C belong to some quadratic extension over k. It
is known that @;{,(—1) is an integer #0 (cf. Serre [20, Proposition 29]). Now, let p be
any prime number and let %, denote the set of CM-fields L which are quartic bicyclic
extensions over k and satisfy A, (L) =, (L) =0. Then, as the discussion above
suggests, %, is an infinite set if and only if there exist infinitely many CM-
fields K in 27 satisfying 4, (K) =, (K)=0. On the other hand, the main result of
Naito implies that, unless p divides a;{,(—1), there exist infinitely many CM-fields
K in 27 with 2, (K) =, (K)=0. Thus follows

ProrosiTiON 3 (cf. [17]). If k is totally real, then %, is infinite for every prime
number p not dividing a;(;(—1).

REMARK. [Proposition 2| states that %5 is always infinite whether (i (—1) is

divisible by 3 or not (cf. [11, §3]). for the simplest case where k = Q is
given in [10]. Meanwhile, there exist infinitely many examples of k with |%,| < oo (cf.

11, §2]).
Next, for each number field F, we let ¢r denote the number of places of F lying
above 3, so that # = |T(3)].

ProroOSITION 4.  Assume that k is totally real, 3fh, and t, =1. Then, for any
positive integer n, there exist infinitely many totally real number fields F containing k such
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that
[F:kl=2" X(F)=u(F)=0.
Proor. It follows from the assumption above and the proof of that
there exist infinitely many number fields F of 2% which satisfy 34hp, tr =1, and so
J3(F) = u5(F) = 0. Hence, by induction on n, the proposition is proved. O

Since hg =tg =1, yields

COROLLARY. For any positive integer n, there exist infinitely many totally real
number fields F of degree 2" with 13(F) = u3(F) = 0.

Proposition 4, together with or 3, also yields

PROPOSITION 5.  Assume that k is totally real, 3fh, and t, = 1. Then, for any
positive integer n, there exist infinitely many CM-fields K containing k such that

[K: k] =2 Z(K) = u(K) = 0.

COROLLARY. For any positive integer n, there exist infinitely many CM-fields K of
degree 2" with A3(K) = 15(K) = 0.
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