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Abstract. Let Z3 be the ring of 3-adic integers. For each number field F, let Fy; 3

denote the basic Z3-extension over F; let l3ðFÞ and m3ðFÞ denote respectively the Iwasawa

l- and m-invariants of Fy; 3=F . Here a number field means a finite extension over the

rational field Q contained in the complex field C ; F HC , ½F : Q� < y. Now let k be a

number field. Let Qÿ denote the infinite set of totally imaginary quadratic extensions in

C over k (so that Qÿ coincides with the set Qÿ in the text when k is totally real); let Qþ

denote the infinite set of quadratic extensions in C over k in which every infinite place of

k splits (so that Qþ coincides with the set Q
þ in the text when k is totally real). After

studying the distribution of certain quadratic extensions over k, that of certain cubic

extensions over k, and the relation between the two distributions, this paper proves

that, if k is totally real, then a subset of fK A Qÿ jl3ðKÞ ¼ l3ðkÞ; m3ðKÞ ¼ m3ðkÞg has an

explicit positive density in Qÿ. The paper also proves that a subset of fL A Qþ jl3ðLÞ¼

m3ðLÞ¼0g has an explicit positive density in Qþ if 3 does not divide the class number of k

but is divided by only one prime ideal of k. Some consequences of the above results are

added in the last part of the paper.

Let k be a number field, namely, a finite extension over the rational field Q

contained in the complex field C . Let h denote the class number of k, R the regulator

of k, D the absolute value of the discriminant of k, w the number of roots of unity in k,

My the set of infinite places of k, r1 the number of real places in My, and r2 the

number of imaginary places in My. Let zk denote as usual the Dedekind zeta function

of k. For each finite place v of k, let pv denote the prime ideal of k corresponding to v,

and let qv denote the norm of pv in k. Given any number field F containing k, we

denote by nF=k or simply by nF the norm in k of the discriminant of F=k, by hF=k the

order of the kernel of the norm map from the ideal class group of F to that of k, by hF ;3
the order of the maximal elementary abelian 3-group in this kernel, and by Fv the

completion of F at each place v of F. Take any map a from My to the set consisting

of C and the real field R such that aðvÞ contains kv for every v A My. We then define

Qa to be the set of quadratic extensions K over k in C such that, for each real place v in

My, v is ramified or splits in K according as aðvÞ ¼ C or R. A place v of k is said to

be inert in a finte extension K over k if v is finite and if pv remains prime in K. Let S0,

S1, S2 be mutually disjoint finite sets of finite places of k, and let Q�
a denote the set of

number fields in Qa in which every place of S0 is ramified, every place of S1 is inert, and
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every place of S2 splits. Let us use the letter X as a real variable, assuming X > 0

throughout the following. Now, for any set F of finite extensions over k in C with

degrees bounded, let FðXÞ denote the set of number fields F in F for which nF=k do not

exceed X:

FðX Þ ¼ fF A F j nF UXg:

Note that FðXÞ is always a finite set: jFðXÞj < y. In this paper, basing our

arguments on some fundamental results and proofs in Datskovsky-Wright [2] and

Davenport-Heilbronn [3], we shall prove, along with

lim
X!y

jQ�
a ðX Þj
X

¼ pr2hR

zkð2Þw
ffiffiffiffi

D
p

Y

v AS0

1

qv þ 1

 !

Y

v AS1US2

qv

2ðqv þ 1Þ

 !

(cf. Lemma 2), the following two results.

Theorem 1. Let rðaÞ denote the number of real places v in My with aðvÞ ¼ R. Then

lim
X!y

1

jQ�
a ðXÞj

X

F AQ
�
a ðXÞ

hF ;3 ¼ 1þ 1

3r2þrðaÞ :

Theorem 2. With rðaÞ the same as in Theorem 1,

lim inf
X!y

jfF A Q
�
a ðX Þ j3ahF=kgj
jQaðXÞj

V 1ÿ 1

2 � 3r2þrðaÞ

� �

Y

v AS0

1

qv þ 1

 !

Y

v AS1US2

qv

2ðqv þ 1Þ

 !

:

Let p be any prime number and let Zp denote (the additive group of ) the ring of p-

adic integers. For each number field F, let Fy;p denote the basic Zp-extension over F,

i.e., the Zp-extension over F defined as the composite of F and the unique Zp-extension

over Q in C ; let lpðF Þ deonte the Iwasawa l-invariant of Fy;p and mpðFÞ the Iwasawa

m-invariant of Fy;p=F . We mean by a CM-field a totally imaginary quadratic extension

in C over a totally real number field. For each CM-field K, let

lÿp ðKÞ ¼ lpðKÞ ÿ lpðKþÞ; mÿp ðKÞ ¼ mpðKÞ ÿ mpðKþÞ;

where Kþ denotes the maximal real subfield of K; Kþ ¼ K VR. Let Qÿ denote the set

of CM-fields K with Kþ ¼ k, so that Qÿ is infinite or empty according as k is totally real

or not. Let TðpÞ denote the set of places of k lying above p. Then a well known

argument in Iwasawa theory leads us to the inequality

lim sup
X!y

jfK A Q
ÿðX Þ j lÿp ðKÞ ¼ 0gj
jQÿðX Þj U

1

2jTðpÞj

Y

v ATðpÞ

qv þ 2

qv þ 1
ð1Þ

if k is a totally real number field (cf. Proposition 1). On the other hand, it is con-

jectured that mpðF Þ ¼ 0 for every number field F (cf. Iwasawa [13], [15], Ferrero-
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Washington [4], etc.). We shall further see in the case p ¼ 3 that Theorem 2, together

with well known results in Iwasawa theory, yields the following results which generalize

Theorem 3 of [19] (cf. also [11, §3]).

Theorem 3. Assume that k is totally real. Then

lim inf
X!y

jfK A Q
ÿðXÞ j lÿ3 ðKÞ ¼ mÿ3 ðKÞ ¼ 0gj

jQÿðX Þj
V

1

2jTð3Þjþ1

Y

v ATð3Þ

qv þ 2

qv þ 1
:

Theorem 4. Assume that 3ah and jTð3Þj ¼ 1. Let u be the place of k lying above

3 : Tð3Þ ¼ fug. Then

lim inf
X!y

jfF A QaðXÞ j l3ðFÞ ¼ m3ðF Þ ¼ 0gj

jQaðXÞj
V 2ÿ

1

3r2þrðaÞ

� �

qu þ 2

4ðqu þ 1Þ
:

When furthermore k is totally real,

lim inf
X!y

jfF A Q
þðXÞ j l3ðFÞ ¼ m3ðFÞ ¼ 0gj

jQþðXÞj
V 2ÿ

1

3½k :Q �

� �

qu þ 2

4ðqu þ 1Þ
;

Q
þ denoting the infinite set of all totally real quadratic extensions over k in C .

One easily finds that the right hand side of the second inequality in Theorem 4 is

greater than 1=2, while it is conjectured in general that lpðFÞ ¼ mpðF Þ ¼ 0 for every

totally real number field F (cf. Greenberg [6], [16, §11.7], etc.).

Some consequences of Theorems 2, 3 and 4 will be given in the last part of the

paper.

Acknowledgement. The second author expresses his sincere gratitude to Professor

Tatsuo Kimura for giving him continuous encouragement and invaluable advice. The

authors are also grateful to the referee for several helpful comments.

1. Let v be any place of k. If v is finite, let ov denote the ring of pv-adic integers

in kv, the completion of k at v. Let Wv be a fixed algebraic closure of kv, understanding

that Wv ¼ C if v A My. We then define Bv to be the set of cyclic extensions G over kv
in Wv with ½G : kv�U 3. Note that Bv is a finite set. In case v is finite, we put for each

G A Bv,

bðGÞ ¼ 3; cðGÞ ¼
jDjv
6

; if G ¼ kv;

bðGÞ ¼ 1; cðGÞ ¼
jDjv
2

; if ½G : kv� ¼ 2;

bðGÞ ¼ 0; cðGÞ ¼
jDjv
3

; if ½G : kv� ¼ 3:

Here D is an element of kv by which the discriminant of G=kv is generated as a module

over ov, and jxjv for each x A Wv denotes the absolute value of x on Wv such that

jxjv ¼ qÿ1
v whenever x is a prime element of kv. Obviously, cðGÞ does not depend on
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the choice of D. In case v is infinite, we put for each G A Bv,

bðGÞ ¼ 3; cðGÞ ¼ 1

6
; if G ¼ kv;

bðGÞ ¼ 1; cðGÞ ¼ 1

2
; if ½G : kv� ¼ 2:

Now, let V be any finite set of places of k. By a V-signature, we mean an element

of the direct product of Bv for all v A V , which is identified in the usual manner with

a map from V to the union of Bv for all v A V . Let g be any V-signature so that

g ¼ ðgðvÞÞv AV . We then put

bg ¼
Y

v AV

bðgðvÞÞ; cg ¼
Y

v AV

cðgðvÞÞ:

A number field F is said to belong to g or to be of signature g if F is an extension over k

of degree not greater than 3 and if, for each v A V , there exists a place v of F which lies

above v and satisfies the following two conditions:

(i) Fv is isomorphic to gðvÞ over kv,

(ii) ½Fv : kv�V ½Fw : kv� for any place w of F lying above v.

Let Ug denote the set of number fields F of signature g such that the ramification

index of every place of F for F=k equals 1 or 2, Cg the set of non-cyclic cubic extensions

over k which are number fields in Ug, C
0
g the set of unramified cyclic cubic extensions

over k in C of signature g, and Qg the set of quadratic extensions over k in C of

signature g. Then Ug is clearly the disjoint union of Cg, C
0
g and Qg. It should be noted

here that the definition of Qg above is consistent with that of Qa in the introduction.

Next, let

zV ðsÞ ¼ zkðsÞ
Y

v AV nMy

1ÿ qÿs
v

ÿ �

for s A C :

By fundamental properties of zk, z
V is a meromorphic function on C , which is analytic

in Cnf1g, and 1 is a simple pole of zV . Let rðVÞ denote the residue of zV at 1:

rðVÞ ¼ 2r1þr2pr2hR

w
ffiffiffiffi

D
p

Y

v AV nMy

1ÿ 1

qv

� �

:

Let n1ðVÞ and n2ðVÞ denote respectively the numbers of real and imaginary infinite

places of k not contained in V.

Lemma 1. As above, let V be a finite set of places of k and g a V-signature. Then:

(i) lim
X!y

1

X

X

F AUgðX Þ

1

½F : k� ¼
2n1ðVÞÿ1rðVÞcg

3n1ðVÞ6n2ðVÞzV ð2Þ
þ rðVÞbgcg
2n2ðVÞþ1zV ð2Þ

,

(ii) lim
X!y

jQgðXÞj
X

¼ rðVÞbgcg
2n2ðVÞzV ð2Þ

,

(iii) lim
X!y

jCgðXÞj
X

¼ 2n1ðVÞÿ1rðVÞcg
3n1ðVÞÿ16n2ðVÞzV ð2Þ

.
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Proof. The proof of [2, Theorem 5.1], in which an ‘‘adelic’’ generalization by

Datskovsky-Wright [1] of Shintani’s work [22] actually plays an important part, has

essentially shown the assertion (i) as we see in the following. For simplicity, we put

d ¼
2n1ðVÞÿ1rðVÞcg

3n1ðVÞ6n2ðVÞzV ð2Þ
þ

rðVÞbgcg

2n2ðVÞþ1zV ð2Þ
:

Since (3.10) and Lemma 4.2 of [2] imply

lim sup
X!y

1

X

X

F AUgðXÞ

1

½F : k�
U d;

it su‰ces to prove

lim inf
X!y

1

X

X

F AUgðXÞ

1

½F : k�
V d:ð2Þ

Let Y be a real variable >0 (independent of X). Let MY denote the union of My and

the finite set of all finite places v of k with qvUY , and let Ug;Y denote the set of finite

extensions K over k in C with ½K : k�U 3 such that there exists an MY -signature to which

K and some number field in Ug belong. Then Ug;YnUg is a set of cubic extensions over

k in C in which some place outside MY is totally ramified. Hence, in virtue of Lemma

5.1 of [2], there exists a positive number C independent of X and Y satisfying

1

X

X

F A ðUg;Y nUgÞðX Þ

1

½F : k�
UC

X

v BMY

1

q2v
;

where v ranges over the finite places outside MY . Since

UgJUg;Y ;

X

v BMY

1

q2v
U zMY ð2Þ ÿ 1;

it follows that

1

X

X

F AUgðXÞ

1

½F : k�
V

1

X

X

F AUg;Y ðX Þ

1

½F : k�
ÿ CðzMY ð2Þ ÿ 1Þ:

However, we know from Theorem 4.1, Lemma 3.2 and (3.10) of [2] that

lim
X!y

1

X

X

F AUg;Y ðXÞ

1

½F : k�

exists and that this limit tends to d as Y ! y. Therefore, by limY!yzMY ð2Þ ¼ 1, the

inequality (2) is proved.

The assertion (ii) follows immediately from (3.9) and Theorem 4.2 of [2] (for the

proof of this Theorem 4.2, see also Wright [24, §5]). In view of

jUgðX Þj ¼ jQgðX Þj þ jCgðXÞj þ jC 0
gð1Þj;

we obtain (iii) from (i) and (ii). r
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2. As in the introduction, let a be any My-signature and let S0, S1, S2 be mutually

disjoint finite sets of finite places of k. For simplicity, we put S � ¼ S0 US1 US2.

Lemma 2. Let Q�
a denote as before the set of all quadratic extensions over k in C of

signature a in which every place of S0 is ramified, every place of S1 is inert, and every

place of S2 splits. Then

lim
X!y

jQ�
a ðXÞj
X

¼ pr2hR

zkð2Þw
ffiffiffiffi

D
p

Y

v AS0

1

qv þ 1

 !

Y

v AS1 US2

qv

2ðqv þ 1Þ

 !

:

Proof. Let H be the set of My US �-signatures g such that gðvÞ ¼ aðvÞ for every

v A My, gðvÞ is a ramified quadratic extension over kv for every v A S0, gðvÞ is the unique

unramified quadratic extension over kv in Wv for every v A S1, and gðvÞ ¼ kv for every

v A S2. Obviously,

jHj < y; n1ðMy US �Þ ¼ n2ðMy US �Þ ¼ 0:

It also follows immediately that Q�
a is the disjoint union of Qg for all g A H. Therefore,

by (ii) of Lemma 1 and by the definitions of bg and cg; g A H,

lim
X!y

jQ�
a ðX Þj
X

¼
X

g AH

lim
X!y

jQgðX Þj
X

¼
X

g AH

rðS �Þbgcg
zS

�ð2Þ

¼ rðS �Þbaca
zS

�ð2Þ
X

g AH

Y

v AS �
bðgðvÞÞcðgðvÞÞ

 !

¼ rðS �Þbaca
zS

�ð2Þ
Y

v AS �

X

G AHðvÞ
bðGÞcðG Þ

0

@

1

A:

Here

HðvÞ ¼ fgðvÞ jg A Hg for v A S �:

Let us take any v A S �. For each G A HðvÞ, let dðGÞ ¼ jDjv with an element D of kv
generating over ov the discriminant of G=kv, so that bðGÞcðGÞ ¼ dðGÞ=2 by the defi-

nitions of bðGÞ and cðGÞ. In the case v A S1 US2, since dðGÞ ¼ 1 ¼ jHðvÞj, we obtain

X

G AHðvÞ
bðGÞcðGÞ ¼ 1

2

at once. In the case v A S0, since HðvÞ coincides with the set of ramified quadratic

extensions over kv in Wv, it follows from Theorem 1 of Serre [21] or (1.1) of [2] that

X

G AHðvÞ
bðGÞcðGÞ ¼ 1

2

X

G AHðvÞ
dðGÞ ¼ 1

qv
:

Hence

lim
X!y

jQ�
a ðXÞj
X

¼ rðS �Þbaca
zS

�ð2Þ2jS1jþjS2j

Y

v AS0

1

qv
:
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On the other hand, we know from the definitions of ba, ca, zS
�
, and rðS �Þ that

baca ¼
1

2 r1þr2
; zS

�ð2Þ ¼ zkð2Þ
Y

v AS �
1ÿ 1

q2v

� �

;

rðS �Þ ¼ 2 r1ð2pÞr2hR
w

ffiffiffiffi

D
p

Y

v AS �
1ÿ 1

qv

� �

:

Lemma 2 is therefore proved. r

Remark (cf. Nakagawa [18, Corollary 5]). In the case S � ¼ q, Q�
a is nothing but

Qa and Lemma 1 of course implies that

lim
X!y

jQaðX Þj
X

¼ pr2hR

zkð2Þw
ffiffiffiffi

D
p :

For any number field F containing k, we denote by DF the discriminant of F=k.

Lemma 3. Let K be a non-cyclic cubic extension over k in C in which no place of k

is totally ramified. Let L be the Galois closure of K=k in C , and K 0 the unique quadratic

extension over k in L. Then L is an unramified cyclic cubic extension over K 0 and

DK 0 ¼ DK whence nK 0 ¼ nK :

Furthermore, for any place v of k, the following assertions hold:

(i) v is ramified in K 0 if and only if some place of K above v is ramified for K=k,

(ii) v is inert in K 0 if and only if the residue degree for K=k of some place of K is

equal to 2,

(iii) v splits in K 0 if and only if v is inert in K or splits completely in K.

Proof. By the assumption, each place of K ramified for K=k must be unramified in

L, so that the ramification index of each place of L for L=k equals 1 or 2. Since L=K 0

is a cyclic cubic extension, it follows that L is unramified over K 0. Hence, v is ramified

in K 0 if some place of K lying above v is ramified for K=k. As the extension L=k is not

cyclic, the residue degree for L=k of each finite place of L does not exceed 3. Therefore,

v is inert in K 0 if the residue degree for K=k of some place of K above v is equal to 2.

It also follows that, if v is inert in K, then v is unramified in L and hence splits in K 0.
In the case where v splits completely in K, we easily see that v splits completely in L,

which implies that v splits in K 0. Thus the assertions (i), (ii), (iii) are proved.

Next, let N be the norm for K=k of the discriminant of L=K , i.e., the finite part of

the conductor of L=K . We then obtain D3
K 0 ¼ ND2

K from the fact that L is unramified

over K 0. To prove DK 0 ¼ DK (cf. [2, §5]), let us consider the case where v is finite and

ramified in K 0 so that pv ¼ ~pp2 with a prime ideal ~pp of K 0. In such a case, it follows

from (i) that there exist distinct prime ideals P1, P2 of K satisfying pv ¼ P1P
2
2 . There-

fore P1 ¼ ~PP2 with a prime ideal ~PP of L, whence ~pp ¼ ~PPP2. This decomposition shows

that ~pp splits completely in L. Let o be an algebraic integer of K 0 contained in ~ppn~pp2,

and let s be the non-trivial element of GalðL=KÞ. Noting that os A ~ppnfog, let g be the

maximal positive integer such that os ÿ o A ~ppg. Then pg equals the p-part of the

conductor of K 0=k, namely, the highest power of p dividing the conductor of K 0=k.
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As ~PP itself is the ~PP-part of ~pp, we also have

o A ~PPn ~PP2; os ÿ o A ~PPgn ~PPgþ1:

Therefore P
g
1 equals the P1-part of the conductor of L=K . It further follows that pg

equals the norm of Pg
1 for K=k. Since a prime ideal of k, which is divided by a prime

ideal of K ramified in L, is ramified in K 0, we consequently have N ¼ DK 0 , i.e.,

DK 0 ¼ DK (for the classical discussion of the present paragraph, cf. Hasse [7], [8] as well

as Takagi [23]).

Lemma 3 is now completely proved. r

Let C�
a denote the set of number fields K in Ca such that every place of S0 lies below

a place of K ramified for K=k, every place of S1 lies below a place of K whose residue

degree for K=k equals 2, and every place of S2 is inert or splits completely in K. We

then define y to be the map from C
�
a to the set of number fields such that for each

K A C
�
a , yðKÞ is the Galois closure of K=k in C . Let AF denote for each F A Q

�
a the set

of Galois extensions L over k in C , which are unramified cyclic cubic extensions over F,

with GalðL=kÞ isomorphic to the symmetric group of degree 3. It is obvious that

AF1
VAF2

¼ q for every pair of distinct number fields F1 and F2 in Q
�
a .

Lemma 4. The image of y coincides with the disjoint union of AF for all F A Q
�
a :

ImðyÞ ¼
a

F AQ�
a

AF :

Proof. Let H � be the finite set of My US �-signatures g such that gðvÞ ¼ aðvÞ for

every v A My, gðvÞ is a ramified quadratic extension over kv for every v A S0, gðvÞ is the

unique unramified quadratic extension over kv in Wv for every v A S1, and gðvÞ is either

kv or the unique unramified cubic extension over kv in Wv for every v A S2. It follows

that

C
�
a ¼
a

g AH �

Cg; Q
�
a ¼
a

g AH �

Qg:ð3Þ

For any g A H �, let g 0 be the element of H � such that

g 0ðvÞ ¼ gðvÞ for v A My US0 US1;

¼ kv for v A S2:

Then, given any K A C
�
a and the quadratic extension F over k in yðK Þ, we obtain from

Lemma 3 and (3) that

F A Qg 0JQ
�
a ; yðKÞ A AF :

On the other hand, take any L A AF , with F A Q
�
a . Then there exists a non-cyclic

cubic extension K over k in L, so that L ¼ KF . Since L is an unramified cubic

extension over F, no place of k is totally ramified in K. Hence Lemma 3, together with

(3), shows

K A C
�
a ; L ¼ yðKÞ:

These complete the proof of Lemma 4. r
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Lemma 5. Let rðaÞ denote (as in the statement of Theorem 1) the number of real

infinite places v of k with aðvÞ ¼ R. Then

lim
X!y

jC�
a ðX Þj
X

¼ pr2hR

2 � 3r2þrðaÞÿ1zkð2Þw
ffiffiffiffi

D
p

Y

v AS0

1

qv þ 1

 !

Y

v AS1US2

qv

2ðqv þ 1Þ

 !

:

Proof. By Lemma 1 (iii) and (3),

lim
X!y

jC�
a ðX Þj
X

¼
X

g AH �
lim
X!y

jCgðX Þj
X

¼
X

g AH �

3rðS �Þcg
2zS

�ð2Þ

¼ 3rðS �Þca
2zS

�ð2Þ
X

g AH �

Y

v AS �
cðgðvÞÞ

 !

¼ 3rðS �Þca
2zS

�ð2Þ
Y

v AS �

X

G AH �ðvÞ
cðGÞ

0

@

1

A;

where H � is of course the same as in the proof of Lemma 4 and

H �ðvÞ ¼ fgðvÞ jg A H �g for v A S �:

Let us take any v A S �. It follows that H �ðvÞ consists of the ramified quadratic

extensions over kv in Wv, only of the unramified quadratic extension over kv in Wv, or of

kv and the unramified cubic extension over kv in Wv, according as v belongs to S0, S1 or

S2. Hence, by Theorem 1 of [21] and the definitions of cðGÞ; G A H �ðvÞ,
X

G AH �ðvÞ
cðGÞ ¼ 1

qv
if v A S0;

¼ 1

2
if v A S1;

¼ 1

6
þ 1

3
¼ 1

2
if v A S2:

We therefore have

lim
X!y

jC�
a ðXÞj
X

¼ 3rðS �Þca
zS

�ð2Þ2jS1jþjS2jþ1

Y

v AS0

1

qv
:

This, together with the definitions of ca, zS
�
and rðS �Þ, proves the lemma. r

3. We shall prove the theorems stated in the introduction. For each number field

K, let ClðKÞ denote the ideal class group of K, hK the class number of K, and ClðKÞ3 the

maximal elementary abelian 3-group in ClðKÞ;

hK ¼ jClðKÞj; ClðKÞ3 ¼ fc A ClðKÞ j c3 ¼ 1g:

Note that ClðKÞ=ClðKÞ3 is isomorphic as a group to ClðKÞ3.

Proof of Theorem 1. Take any F A Q
�
a and let s be the non-trivial element of

GalðF=kÞ. Then the group ring of GalðF=kÞ ¼ f1; sg over the ring of (rational)

integers acts on ClðF Þ, ClðF Þ=ClðFÞ3, etc. in the obvious manner. We easily see from
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½F : k� ¼ 2 that the homomorphisms

ClðFÞ=ClðF Þ3 ! ClðkÞ=ClðkÞ3; ClðF Þ3 ! ClðkÞ3

induced by the norm map ClðFÞ ! ClðkÞ are surjective, the kernel of the former

homomorphism is ðClðF Þ=ClðFÞ3Þ1ÿs, and hF ;3 is nothing but the order of the kernel of

the latter homomorphism. Therefore,

jðClðF Þ=ClðFÞ3Þ1ÿsj ¼ hF ;3:ð4Þ

Now, let SF denote the set of subgroups W of ClðFÞ with index 3 satisfying ClðFÞ1þs
J

W . By class field theory, there exists a bijection AF ! SF . We further obtain a

bijection from SF to the set of subgroups of ðClðFÞ=ClðF Þ3Þ1ÿs with index 3, letting

W 1ÿsClðF Þ3=ClðFÞ3 correspond to each W A SF . Hence, by (4),

jAF j ¼
1

2
ðhF ;3 ÿ 1Þð5Þ

as explained in [2, §5] (cf. [3]).

On the other hand, Lemmas 3 and 4 imply that

yðC�
a
ðX ÞÞ ¼

a

F AQ
�
a
ðX Þ

AF :

It also follows for each L A ImðyÞ that the three distinct cubic extensions over k in L

form the inverse image of L under y. Therefore, by (5),

jC�
a
ðX Þj ¼

3

2

X

F AQ
�
a
ðX Þ

ðhF ;3 ÿ 1Þ

or, equivalently,

X

F AQ
�
a
ðX Þ

hF ;3 ¼ jQ�
a
ðXÞj þ

2

3
jC�

a
ðX Þj:

We can now obtain Theorem 1 from Lemmas 2 and 5. r

Proof of Theorem 2. For simplicity, let

G ¼ fF A Q
�
a
j 3ahF=kg ¼ fF A Q

�
a
j hF ;3 ¼ 1g:

It is then clear that

X

F AQ
�
a
ðX Þ

hF ;3 V 3ðjQ�
a
ðXÞj ÿ jGðXÞjÞ þ jGðX Þj;

namely,

jGðXÞjV
3

2
jQ�

a
ðX Þj ÿ

1

2

X

F AQ
�
a
ðXÞ

hF ;3:

Hence, by Theorem 1,

lim inf
X!y

jGðXÞj

jQ�
a
ðXÞj

V
3

2
ÿ
1

2
lim
X!y

1

jQ�
a
ðX Þj

X

F AQ
�
a
ðXÞ

hF ;3 ¼ 1ÿ
1

2 � 3r2þrðaÞ
:
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However, by Lemma 2 (and [18, Corollary 5]),

lim
X!y

jQ�
a
ðXÞj

jQaðX Þj
¼

Y

v AS0

1

qv þ 1

 !

Y

v AS1US2

qv

2ðqv þ 1Þ

 !

:ð6Þ

We therefore have

lim inf
X!y

jGðX Þj

jQaðXÞj
V 1ÿ

1

2 � 3r2þrðaÞ

� �

Y

v AS0

1

qv þ 1

 !

Y

v AS1US2

qv

2ðqv þ 1Þ

 !

;

which is to be proved. r

Now, let p be a prime number. Assume that k is totally real, i.e., r2 ¼ 0, and take

as a the My-signature such that aðvÞ ¼ C for all v A My, i.e., rðaÞ ¼ 0. For each

subset V of TðpÞ, let Qp
V denote the set of CM-fields in Q

ÿ in which no place of TðpÞnV

but every place of V splits. Then Qa coincides with Q
ÿ and

Q
p
V ¼

a

V 0

Q
p
V ;V 0 ;

where V 0 ranges over the subsets of TðpÞnV with Q
p
V ;V 0 denoting the set of CM-fields in

Q
p
V in which every place of V 0 is ramified and every place of TðpÞnðV UV 0Þ is inert.

Hence we see from (6) that

lim
X!y

jQp
V ðXÞj

jQÿðX Þj
¼

X

V 0JTðpÞnV

lim
X!y

jQp
V ;V 0ðX Þj

jQÿðX Þj

¼
X

V 0JTðpÞnV

Y

v AV 0

1

qv þ 1

 !

Y

v ATðpÞnV 0

qv

2ðqv þ 1Þ

0

@

1

A

¼
Y

v ATðpÞnV

1

qv þ 1
þ

qv

2ðqv þ 1Þ

� �

0

@

1

A

Y

v AV

qv

2ðqv þ 1Þ

 !

¼
1

2jTðpÞj

Y

v AV

qv

qv þ 1

 !

Y

v ATðpÞnV

qv þ 2

qv þ 1

0

@

1

A

:

Next, for each positive integer mU jTðpÞj, let Qp;m denote the set of CM-fields in Q
ÿ in

which just m places of TðpÞ split, so that

Q
p;m ¼

a

V

Q
p
V ;

with V ranging over the subsets of TðpÞ such that jV j ¼ m. As the discussion of

Iwasawa [16, §11.7] shows, for any K A Q
ÿ, lÿp ðKÞ is at least equal to the number of all

places of TðpÞ which split in K. This fact means that, for any integer nU jTðpÞj,
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fK A Q
ÿ j lÿp ðKÞV ngK

a

jTðpÞj

m¼n

Q
p;m:

Thus the following assertion holds:

Proposition 1. If k is totally real, then for any prime number p and any positive

integer nU jTðpÞj,

lim inf
X!y

jfK A Q
ÿðXÞ j lÿp ðKÞV ngj

jQÿðXÞj
V

1

2jTðpÞj

X

V

Y

v AV

qv

qv þ 1

 !

Y

v ATðpÞnV

qv þ 2

qv þ 1

0

@

1

A;

where the sum is taken over the subsets V of TðpÞ with jV jV n.

It should be added that the inequality (1) in the introduction is an immediate

consequence of Proposition 1 since the right hand side of the inequality of the

proposition for the case n ¼ 1 equals

1ÿ
1

2jTðpÞj

Y

v ATðpÞ

qv þ 2

qv þ 1
:

Furthermore, we immediately obtain from Proposition 1 the following result:

Corollary. Suppose that k is a real Galois extension over Q. Then, for any prime

number p and any positive integer nU jTðpÞj,

lim inf
X!y

jfK A Q
ÿðX Þ j lÿp ðKÞV ngj

jQÿðXÞj
V

qþ 2

2qþ 2

� �jTðpÞj
X

jTðpÞj

m¼n

jTðpÞj
m

� �

q

qþ 2

� �m

where q is the norm in k of a prime ideal of k dividing p.

Proof of Theorem 3. Note that r2 ¼ 0, and take again as a the My-signature

such that rðaÞ ¼ 0, i.e., Qa ¼ Q
ÿ. For each subset V of Tð3Þ, let RV denote the set of

CM-fields of Q
ÿ in which every place of V is ramified and every place of Tð3ÞnV is

inert: RV ¼ Q
3
q;V . Then

‘

V JTð3Þ RV is nothing but Q
3
q, the set of CM-fields of Q

ÿ

in which no place of Tð3Þ splits. As is well known, a CM-field K in Q
ÿ satisfies

lÿ3 ðKÞ ¼ mÿ3 ðKÞ ¼ 0 if and only if 3 neither divides hK=k nor lies below any place of k

splitting in K (see, e.g., Friedman [5]). Namely, we have

fK A Q
ÿ j lÿ3 ðKÞ ¼ mÿ3 ðKÞ ¼ 0g ¼

a

V JTð3Þ

fK A RV j 3ahK=kg:

This gives, in particular,

lim inf
X!y

jfK A Q
ÿðX Þ j lÿ3 ðKÞ ¼ mÿ3 ðKÞ ¼ 0gj

jQÿðXÞj

V
X

V JTð3Þ

lim inf
X!y

jfK A RV ðXÞ j 3ahK=kgj

jQÿðXÞj
:
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Theorem 2 implies however that, for each subset V of Tð3Þ,

lim inf
X!y

jfK A RV ðX Þ j 3ahK=kgj

jQÿðX Þj
V

1

2

Y

v AV

1

qv þ 1

 !

Y

v ATð3ÞnV

qv

2ðqv þ 1Þ

0

@

1

A:

Therefore

lim inf
X!y

jfK A Q
ÿðXÞ jlÿ3 ðKÞ ¼ mÿ3 ðKÞ ¼ 0gj

jQÿðX Þj

V
1

2

X

V JTð3Þ

Y

v AV

1

qv þ 1

 !

Y

v ATð3ÞnV

qv

2ðqv þ 1Þ

0

@

1

A ¼
1

2jTð3Þjþ1

Y

v ATð3Þ

qv þ 2

qv þ 1
;

and consequently Theorem 3 is proved. r

Proof of Theorem 4. Let Q 0
a denote the set of number fields of Qa in which u does

not split, i.e., u is ramified or inert. In view of the assumption of Theorem 4, 3ahF=k is

equivalent to 3ahF for every F A Qa while it follows from Iwasawa [12, II] that l3ðFÞ ¼

m3ðFÞ ¼ 0 for every F A Q
0
a with 3ahF (cf. Iwasawa [14, §7.5]). Hence

fF A Qa j l3ðFÞ ¼ m3ðFÞ ¼ 0gK fF A Q
0
a j 3ahF=kg:

Therefore, by Theorem 2,

lim inf
X!y

jfF A QaðXÞ j l3ðF Þ ¼ m3ðFÞ ¼ 0gj

jQaðX Þj

V 1ÿ
1

2 � 3r2þrðaÞ

� �

1

qu þ 1
þ

qu

2ðqu þ 1Þ

� �

¼ 2ÿ
1

3r2þrðaÞ

� �

qu þ 2

4ðqu þ 1Þ
:

The former part of Theorem 4 is thus verified. When k is totally real, i.e., r2 ¼ 0, we

have

Qa ¼ Q
þ; rðaÞ ¼ ½k : Q�;

taking as a the My-signature such that aðvÞ ¼ R for every v A My. Hence the latter

part of the theorem follows from the former. r

4. For each number field F, let AðFÞ denote the 3-class group of F and let F ðnÞ

denote, for each positive integer n, the intermediate field between F and the basic Z3-

extension over F such that ½F ðnÞ
: F � ¼ 3n. Moreover, for any CM-field K, let AÿðKÞ

denote the kernel of the norm map from AðKÞ to AðKþÞ.

Assume now that k is totally real. Let K1 and K2 be distinct CM-fields

such that Kþ
1 ¼ Kþ

2 ¼ k, and let n be any positive integer. It is then clear that

ðK
ðnÞ
1 Þþ ¼ ðK

ðnÞ
2 Þþ ¼ kðnÞ. For each j A f1; 2g, let ij denote the natural map AðK

ðnÞ
j Þ !

AðK
ðnÞ
1 K

ðnÞ
2 Þ. As K

ðnÞ
1 K

ðnÞ
2 is a quartic bicyclic extension over kðnÞ, we easily see not only

that i1 and i2 are injective but also that

AÿðK
ðnÞ
1 K

ðnÞ
2 Þ ¼ i1ðA

ÿðK
ðnÞ
1 ÞÞ � i2ðA

ÿðK
ðnÞ
2 ÞÞ:
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In particular,

jAÿðK
ðnÞ
1 K

ðnÞ
2 Þj ¼ jAÿðK

ðnÞ
1 Þj � jAÿðK

ðnÞ
2 Þj:

On the other hand, Iwasawa’s class number formula, i.e., Theorem 11 of [14] implies

that the three numbers

jAÿðK
ðnÞ
1 K

ðnÞ
2 Þj3ÿlÿ3 ðK1K2Þnÿmÿ

3
ðK1K2Þ3

n

; jAÿðK
ðnÞ
1 Þj3ÿlÿ3 ðK1Þnÿmÿ

3
ðK1Þ3

n

;

jAÿðK
ðnÞ
2 Þj3ÿlÿ3 ðK2Þnÿmÿ

3
ðK2Þ3

n

are independent of n if n is su‰ciently large. Thus we have

lÿ3 ðK1K2Þ ¼ lÿ3 ðK1Þ þ lÿ3 ðK2Þ; mÿ3 ðK1K2Þ ¼ mÿ3 ðK1Þ þ mÿ3 ðK2Þ

(for more general relations, see e.g., [9, §2]). Since Theorem 3 shows that there exist

infinitely many CM-fields K with the properties

Kþ ¼ k; lÿ3 ðKÞ ¼ mÿ3 ðKÞ ¼ 0;

the following result is therefore obtained:

Proposition 2. If k is totally real, then there exist infinitely many CM-fields L

which are quartic bicyclic extensions over k and satisfy lÿ3 ðLÞ ¼ mÿ3 ðLÞ ¼ 0.

Still assuming k to be totally real, let

ak ¼ 2
Y

l

lmðl Þ

where l ranges over the prime numbers j 6D, with mðlÞ denoting the maximal integer V0

such that the lmðlÞ-th roots of unity in C belong to some quadratic extension over k. It

is known that akzkðÿ1Þ is an integer 00 (cf. Serre [20, Proposition 29]). Now, let p be

any prime number and let Bp denote the set of CM-fields L which are quartic bicyclic

extensions over k and satisfy lÿp ðLÞ ¼ mÿp ðLÞ ¼ 0. Then, as the discussion above

Proposition 2 suggests, Bp is an infinite set if and only if there exist infinitely many CM-

fields K in Q
ÿ satisfying lÿp ðKÞ ¼ mÿp ðKÞ ¼ 0. On the other hand, the main result of

Naito [17] implies that, unless p divides akzkðÿ1Þ, there exist infinitely many CM-fields

K in Q
ÿ with lÿp ðKÞ ¼ mÿp ðKÞ ¼ 0. Thus follows

Proposition 3 (cf. [17]). If k is totally real, then Bp is infinite for every prime

number p not dividing akzkðÿ1Þ.

Remark. Proposition 2 states that B3 is always infinite whether akzkðÿ1Þ is

divisible by 3 or not (cf. [11, §3]). Proposition 3 for the simplest case where k ¼ Q is

given in [10]. Meanwhile, there exist infinitely many examples of k with jB2j < y (cf.

[11, §2]).

Next, for each number field F, we let tF denote the number of places of F lying

above 3, so that tk ¼ jTð3Þj.

Proposition 4. Assume that k is totally real, 3ah, and tk ¼ 1. Then, for any

positive integer n, there exist infinitely many totally real number fields F containing k such
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that

½F : k� ¼ 2n
; l3ðF Þ ¼ m3ðF Þ ¼ 0:

Proof. It follows from the assumption above and the proof of Theorem 4 that

there exist infinitely many number fields F of Q
þ which satisfy 3ahF , tF ¼ 1, and so

l3ðFÞ ¼ m3ðFÞ ¼ 0. Hence, by induction on n, the proposition is proved. r

Since hQ ¼ tQ ¼ 1, Proposition 4 yields

Corollary. For any positive integer n, there exist infinitely many totally real

number fields F of degree 2n with l3ðFÞ ¼ m3ðF Þ ¼ 0.

Proposition 4, together with Theorem 2 or 3, also yields

Proposition 5. Assume that k is totally real, 3ah, and tk ¼ 1. Then, for any

positive integer n, there exist infinitely many CM-fields K containing k such that

½K : k� ¼ 2n
; l3ðKÞ ¼ m3ðKÞ ¼ 0:

Corollary. For any positive integer n, there exist infinitely many CM-fields K of

degree 2n with l3ðKÞ ¼ m3ðKÞ ¼ 0.
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