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Abstract. In this paper, we treat a quantum harmonic oscillator in thermal
equilibrium with any systems in certain classes of bosons with infinitely many degrees of
freedom. We describe the following results: (i) when a canonical correlation function is
given, we so reconstruct a Hamiltonian by the rotating wave approximation from it that
the Hamiltonian restores it. Namely, we solve an inverse problem in the quantum field
theory at finite temperature in a finite volume. Taking an infinite volume limit for the
result in (i), we consider long-time behavior of the canonical correlation function in the
finite volume limit.

1. Introduction

In this paper, we shall treat long-time behavior of the canonical correlation function
in an infinite volume limit. For that purpose, we shall apply Arai’s results |5] con-
cerning long-time behavior of two-point functions to a class of canonical correlation
functions of position and momentum operators in the infinite volume limit. In [5], Arai
argued long-time behavior of two-point functions of position operators for some models
of a quantum harmonic oscillator interacting with bosons.

We consider a quantum harmonic oscillator in thermal equilibrium with any system
in certain classes of bosons with infinitely many degrees of freedom in a finite volume
V> 0. Our models describe photons in a laser interacting with oscillation caused by a
heat bath, which can be observed when the laser passes in the heat bath as well as
photons in a laser interacting with oscillation caused by phonons on the surface of a
material, which can be observed when we irradiate the weak laser on the surface.

When a two-point function (or canonical correlation function) R (#1,7) of the
position operator or momentum operator of the harmonic oscillator is given by an
observation at a temperature, we take the infinite volume limit, ¥ — oo, for RV (11, 1),
and get Rgo(thtz) = limy_. R"(t1,1;) at the inverse temperature, S8, under suitable
conditions. And we argue long-time behavior of Ry (11,1).

For a positive parameter V' >0, we set I'y =2nZ/V:
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(11) FVdéf%E{k‘kzzgan:())i_l)iz)"'}.

The Hilbert space of state vectors of our system in the finite volume case is taken to be
the symmetric Fock space # over C @ /*(I'y). We denote by a, a* the annihilation
and creation operators of the quantum harmonic oscillator, respectively, and by by, b}
(ke I'y) those of bosons, acting in &#. We assume that there exists a self-adjoint
operator H on %, called a Hamiltonian, which governs the time development of the
system, such that e* is trace class for all 7 € (0,f] and

R"(1,1) def 7“(2_,8}1) J: datr(e” P=2H pitit o=itlt o=H piHl po=ifllzy
where B denotes either the position operator ¢ = (¢ +a*)/v/2 or the momentum op-
erator p = i(a* — a)/+/2 of the quantum harmonic oscillator and tr denotes trace on &
(we use units where 7 (the Planck constant divided by 27) = 1). However, we do not
specify the concrete form of H. The Hamiltonian H may be a complicated function of a,
a*, by and b} (keTly).

To apply Arai’s result [5, Theorem 1.3] to our case, we first solve the following
inverse problem: In terms of R (#;,#,) only, determine positive frequencies x°, x;
(ke I'y) of the quantum harmonic oscillator and scalar bosons, respectively, and
coupling constants y, € C (k € I'y), appearing in the Hamiltonian of the rotating wave

approximation (RWA),

def * * * —7 %
(1.2) Hrwa(x,y) = x%a*a + Z xXiby by + Z (ypa™bx + yibia),
kely kely

def def
x = x° @® (xk)kel“yﬂ Y = 0@ (yk)keFW

(where ¢ means the complex conjugate of ¢ € C) such that the Hamiltonian Hrwa (X, »)
recovers RV (t1,1,) in the following sense:

{energy levels of Hrwa(x, y)}\{0}
(where ‘energy level’ is the notion in the quantum theory of
many-particle systems [32,§2-1-a])
= {spectra (energy levels) of the one particle Hamiltonian hrwa of Hrwa (X, )
more than its lowest one}

(where this ‘energy level’ is the notion in the quantum mechanics [33, §1-3])

= {positive poles of the meromorphic function J dte™R" (0, l)}
0

with hgrwa a self-adjoint operator on C (—B/Z(F ) such that Hrwa = dI'(hgrwa), the
second quantization of /srwa (see §2.2), and

(1.3) R"(t1,t2) = a representation in terms of W (11,1,),
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with

WV(Zl, 12) déf (QO, eiHRWA(x,y)tl Be*iHRWA(X7}’)l1el'HRWA(XJ)fzBe*l‘HRWA(XJ)lz‘QO)g,
the two-point vacuum expectation value (two-point function) of B, with the Hamiltonian
Hrwa(x, ), where Q is the Fock vacuum in & (in fact, it is the vacuum (ground state)
of Hrwa(x,y)), and (), is the inner product of 7.

There are some negative criticisms in a physical sense against RWA [13, §V.D],
claiming that a model, called the independent-oscillator model, is more suitable and
useful in physics than RWA model [12, 13, 22]. But, in this paper, we use RWA
model, since we find that it is suitable for our purpose of investigating the long-time
behavior of R” (t;,1,) in the infinite volume limit. The reason why we employ RWA is
nothing but easy to argue the infinite volume limit for the Hamiltonian of RWA in a
mathematically rigorous way, and mathematical theories on RWA model are established
in [4, 5, 19]. If the inverse problem stated above is solved, then we can investigate the
long-time behavior of the infinite volume limit of R"(#, 1) through the infinite volume
limit W™ (t1,t,) of W"(t1,1) with representation (1.3). On the other hand, the long-
time behavior of the latter function is investigated in detail by Arai [5].

An answer to the inverse problem above is given by Theorem 3.1 in this paper. By
representation (1.3), we can consider the infinite volume limit Ry (11,1) of RV (11, 1),
through the right hand side of (1.3). Then, we have a representation of Ry (1,%) by
using W*(t1,1,) at in §4.2. And, applying Arai’s results in to the repre-
sentation, we consider the long-time behavior of Rj"(¢) = RF(0,¢) for B in
of this paper.

The present paper is organized as follows. In §2 we review some basic facts on the
Liouville space and RWA. In §3 we state our main results. In §4 we give proofs for
the main results. In the last section, as two appendices, we review Mori’s memory
kernel equation, and find an example.

The author would like to express his thanks to Professor H. Ezawa of Gakushuin
University for valuable suggestion and comments, and he wishes to express his gratitude
to Dr. M. Ban, Dr. S. Ogawa, and Dr. T. Miyake of Advanced Research Laboratory,
Hitachi Ltd., for helpful suggestions on the experimental side. He also acknowledges
helpful discussions on the inverse problem with participants in the international
workshop of “Constructive Results in Field Theory, Statistical Mechanics and Con-
densed Matter Physics,” satellite colloquium of ICMP-Paris, at Ecole Polytechnique on
27th of July ’94. He is grateful to the referee for his many useful and instructive
advice.

Research on §4.2 is supported by the Grant-in-Aid No0.09740092 for Encouragement
of Young Scientists and No. 09640014 for Scientific Research (C).

2. Preliminaries

2.1. Liouville space
We give a complex Hilbert space /*(I'y) by /*(I'y) &f {(ek)ier, lckeCkely,

doker, |ck|2 < o}. For each fe C@®/*I'y), we denote f by fOG-)(fk)keFV, where
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f%e C and (fi)ker, € /*(I'y). An inner product (,)ege of C ®/*(I'y) is given by

(f, 9 caor déff_ogo + > ker, figr (f,ge C@®L*(Iy)). We denote the symmetric Fock

space over C@/z(FV) by
(2.1) 7 E D s,(CdrAIy)),
n=0

where S,(C ® /*(I'y))" is the n-fold symmetric tensor product of C @ /*(I'y) for each
neN and Sy(C @/ (Iy))" e C (see [29, p. 53, Example 2]).

We denote by a(f) (f € C@® /*(I'y)) the (smeared) annihilation operator on % and
set a=a(1®0), by =a(0®ey) (kel'y) with e, e />(I'y) such that the k’-th com-
ponent of e, is given by (ex), = o (the Kronecker delta) for k,k" e I'y. The op-
erators a and a* (the adjoint of a) physically denote the annihilation and creation
operators of the quantum harmonic oscillator, respectively, and by, b; (k € I'y) those of
free bosons.

We consider a quantum harmonic oscillator in thermal equilibrium at an inverse
temperature f > 0 with a system of bosons with infinitely many degrees of freedom in a
finite volume. We take the Hilbert space of state vectors of the system to be #.

Let H be a strictly positive self-adjoint operator on % satisfying the condition

(H) e is a trace class operator on .# for every 7 € (0, f].

The operator H physically denotes the Hamiltonian of the quantum system under
consideration. Condition (H) implies that the spectrum of H consists of only ei-
genvalues, each having a finite multiplicity. We set N* &ef {0,1,2,...}. We denote the
eigenvalues of H by 4, (ne N*) with order 0 < g <A < - <4 <A1 < ..oy A/
oo as n /' oo, counting multiplicities. We can take a complete orthonormal system
{p,|ne N"} of # in such a way that each ¢, is a normalized eigenvector of H with
eigenvalue 7, : Hp, = A,0,.

For the Hamiltonian H, we can construct a space X.(H) consisting of suitable
operators on % [18, 19, 20], called a Liouville space. We denote the linear hull of
{p,Ine N*} by D, ie.,

(2.2) DE Lh. [{p,[neN"}.

From here on, we denote the linear hull of a set S by L.h. [S]. Obviously D is dense in
Z . Further, we denote by B(D, %) the space of bounded linear operators from D to
Z . Every element 4 in B(D, %) has a unique extension to an element in B(%), the
space of bounded linear operators on .%#. We denote the extension of 4 by 4~, and
A*[D (the restriction of 4* to D) by A™.

We first define a class T(H) of linear operators on %#. For a linear operator 4 on
Z, we denote its domain by D(4).

We say that a linear operator 4 on % is in the class T(H) if the following
conditions (T.1) and (T.2) are satisfied:

(T.1) D(4) =D and D(4*) o D.
When D(4) o D, we regard 4 as A[D and denote 4 [D by A4 only.
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(T.2) For all 7 in (0,f], e ™4 and Ae ™ are in B(D,#) with (e-™4)" and
(Ae ™)™ being Hilbert-Schmidt operators on ..

It is easy to see that T(H) is a complex vector space with the natural operations of
addition and scalar multiplication. We also remark that T(H) may contain not only
bounded operators but also unbounded ones.

We can introduce an inner product in T(H), called the Bogoliubov (Kubo-Mori)
scalar product, by

(2.3) A; B, ¥ ﬁ%() J: ditr((e”PPH 4%) (e B)7)

for A,BeT(H) with

(2.4) Z(B) & tr(ePH)

(see [19, Lemma 3.2]).

We denote by X.(H) the completion of T(H) in the norm || - ||, of T(H) induced
by the inner product <-;->y;. The Hilbert space X.(H) has a structure of partial -
algebra ([19, Proposition 3.14]). We also note here that an element in X.(H) is not
always an operator acting in % . It is noteworthy that Naudts et al. attempted to argue
in general about linear response theory on the Hilbert space which is constructed by a
completion of a von Neumann algebra with KMS-state [27]. Similarly we can for-
mulate Mori’s theory in statistical physics in terms of X.(H).

We define an operator % acting in X.(H), called the Liouville operator in physics,
by

(2.5) D(#) ¥ {4 eT(H)|HA,AH [D e T(H)},

(2.6) PAY H Al =HA- AH, AeD(2).
It is shown that % is essentially self-adjoint [19, Lemma 3.8]. We denote the closure of
& by the same symbol.

The spectral properties of ¥ can exactly be known as is shown below. Let @, , :
D — D be an operator defined by

(2.7) D(&,.,.) € D,
(2.8) Dy, nX < B2Z(B) 2 Wﬂl/}%((pm X) 5 O xeD;mneN",
where
/111 - /lm .

(2.9) W, ) T e L A #

BB if Aoy = .
Note that
(2.10) Wnn>0, mmneN~,

(2.11) Winn = Wpm, mmneN".
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It can be shown that {®,, ,}, ,.n+ 1S @ complete orthonormal system of X.(H) with

m,ne
(2.12) LDy = (Jan = 2n) P,y mneN",
(2.13) @D, =Pum, mneN’,

(see [20, Proposition 3.9]). Moreover, we can prove
(2.14) (L) ={An— An|m,ne N"},

(2.15) Oess(L) = {e € a(&) | ¢ is an eigenvalue of & of infinite multiplicity},

where a(S) (resp. g.:(S)) denotes the (resp. essential) spectrum of an operator S.

REMARK. One can easily show that the set of possible limit points of o(.%) is {0}.
The referee remarked this fact to the author. The author is thankful to the referee for
it. We note here that 0 is an eigenvalue of % of infinite multiplicity.

For every 4 € X.(H) and t € R, we define
(2.16) A € 14,

(2.17) Ri(t,6) & CA(1); A(6)>y,  tteR.

REMARK. The vector A(#) can be regarded as a generalization of the Heisenberg
operator for 4 with the Hamiltonian H [19, Proposition 3.13]. With an interpretation
that A4 is an observable in the quantum system under consideration, the function
R,(t1,1,) physically means a two-point correlation function of the Heisenberg operator
A(t) of A at inverse temperature /5.

Putting
(2.18) R4(t) = R4(0,1),
we have
(2.19) Ry(t1, ) = Ry(tr — 11).

Thus, as for the correlation function R4(t1,1,), we need only to consider R4(?).
By (2.12) and (2.14), we have

(2.20) R4(1) = Z Apy e =a)
m,n=0
with

We can enumerate elements of the set

(2.22) (e} . € a(2)N(0, )

with order 0 < -+ <ée_(y) <ep < - <e1<g<e <& << g < gy < -0



An inverse problem in quantum field theory 343

g — 00 as p — co. It is easy to see that o(.%) is reflection symmetric with respect to
the origin, so that we have

o0 def
(223) {_SP}p:—oo = O-(g) n (_007 O)
Introducing
(2.24) AF = 3" Aww, pez,

m7n§/1m_/1n:i8p
(225) Rg = Z Am.,na
m, 1 Jyy— A =0

we can write
(2.26) R4(1) = Ry (1) + R (1) + R},
with

w .

RAi(l‘) _ Z Agji)ei”‘gl’,
p=—00

Here we set the following condition:
(A.0) There exists p, € N such that A(_Jf,) =0 for each p with —p < —p,.
Let

(2.27) I'y={kely|k>0}, I'y,={kely|k<0}.

Under assumption (A.0), we reorder {e,},_ 5, 8 & =¢ for keI, and pe

{=po,—po+1,—py+2,---} with k=2n(p+ py)/V. We note here that for ke,
ek = é_jx| = —¢&|(—k = |k| e I'};) by the reflective symmetry above. Thus, under (A.0),
we have

(2.28) RE(f) = Z A}({i)eiimk‘
kers,
We define a self-adjoint operator # by

def

(2.29) PEPLDP,

where Z is the orthogonal projection onto

Lh. {®ymme N }U{D,, ,Jm,ne N* with 4,, — 4, =0, +ex, ke I'}}}].
Then, under (A.0), we have
(2.30) Ay =e?'4,  teR.

Thus, as far as the operator A satisfying (A.0) is concerned, it is sufficient to consider %
instead of ¥. Since we are concerned with only A4 satisfying (A.0) in what follows,
henceforth

(2.31) we denote . by % under (A.0).



344 M. HIROKAWA

For a bounded measurable function f on [0, c0), we can define the Fourier-Laplace
transform [f](z) (3z > 0) by

(2.32) () J: dief(1), 320,
Note that
233 RiO) = S Ay = A1 < o,
m,n=0
and hence
(2.34) [Ra(0)], |RF () < |47, 1€ R.

By this fact, [R4] and [R}] exist. For all M,N e N and >0, we have

M N ) ' _
ZAmmezt(/lm—/l”)enz < HAH%-Ie_tJZ‘

m=0 n=0

Hence, by the Lebesgue dominated convergence theorem, under (A.0) we obtain

(2.35) [Ral(z) = [Ry](2) + [Ri](2) + @

with

(2.36) [R}](z) =i ) A4 . 3z2>0.
ver: Zt e

Vv

The function on the right hand side of is obviously meromorphic on C with

possible poles {0, +¢ |k e I'};}. Thus, [R4](z) can be extended uniquely to a mero-

morphic function on C. We denote the extension of [R,|(z) by the same symbol.
It follows from [2.35) and [2.36) that

(2.37) A = lim %(z +e)[Ri(z), keld,
Z— + &
1
(2.38) RY = lim 2[R ().

LemmA 2.1. Assume (A.0). Then the function R4(t) is twice continuously differ-
entiable if and only if

5 (1im e - a0lRi) )} < o

Z—Ek 1
+
kel

and

Z ( lim l_(z—i—ak)[RA](z))ai < 0.

==& 1
kel'},
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Proor. This lemma follows from the following well-known lemma and [2.37).
[

LEmMMA 2.2. Let pu be a finite measure on a measure space X. Let C(t) =
Jye™du(x), te R. Then C(t) is twice continuously differentiable if and only if

J x?du(x) < 0.
X
Here we note the following lemma:

Lemma 2.3, Assume (A.0). If AeD(¥), then Ry(t) is twice continuously
differentiable.

Proor. Let 4 e D(¥). Then we have

0< > (an—2n) Apn =1 LA|}; < %
m,n=0
by (2.21). Thus, our lemma follows from (2.14), (2.22), (2.24), (2.28), (2.37), (A.0) and
Lemma 2.7. ]

Let, for kel'}, XY (H) be the closed subspace generated by {®,,,|m,ne
N* with 1, — 2, = —¢;} and P%) be the orthogonal projection from X.(H) onto
X© ().

LEMMA 2.4.  Assume (A.0). Suppose that PX A # 0 for all k e I'j,.  Then, for each
k e I'}, there exists a simple zero wy of [R;](z) such that & < wi < &xi2z/y. Moreover,
the set of zeros of [R;|(z) is {wk}ker;-

Proor. Let [R;](c) =0. Then, by [2.36), we have >kers AT e—g) ' =0, It
is easy to see that ¢ must be positive. The function f(z) =), r A,(C_)(z—sk)_1 is
holomorphic on C\{e}, .+ and f'(z) ==, . r A,(C_)(z — &), Tt follows from this
and the assumption P%) 4 £0 (ke I'}) that, in each interval I = (ex, ektonyv), f(2) s
monotone decreasing with f(z) — o0 as z | & and f(z) — —o0 as z | o, p. Hence
there exists a unique wy in I such that f(w;) = 0. It is easy to check that wy is simple
and that there are no zeros of f(z) other than {wy}, . ri- ]

Under assumption (A.0) and that R4(¢) is twice continuously differentiable and
AEC_) # 0 for some k, we can define

S gk(liml(z—gk)[RA](z)> S Al

z—e 1

0 difkel"lt _ke]",*,
(2.39) o’ & i ; -
2 (Imgewlria) %

REMARK. We here note that the constant oY is determined by [R,](z) only.

2.2. The Hamiltonian of RWA.
In this subsection, we introduce the Hamiltonian of RWA. Let x=x"®
(xk)kerV € C@/z(FV) be a sequence of real numbers with 0 < x; < xi» for k,k' e
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Iy, with k <k';sxy=x_ for kel (—kely), and limy_. xx = oco. Then, for
this x = x° ® (xx);.,, and a sequence of complex numbers, y =0@® (y;)icy, € C®
ZZ(F ), we define operators sy and hrwa by

(2.40) h(1®0) X' 1@o0,
(2.41) hO0@e) X x 0@er, kely,
(2.42) hRWAdghOJF(;Va')C@/Zl @0+ (1D0,")cq2-

We here assume the following condition:
(2.43) |yl = [y_i| #0, kely.

We now define a function D(z) for every z e C\{xt};.r, by

=z—x"+ Z—}ZZ

def 0 | Vi
2.44 =z—
(2.44) D(z) =z—x"+ g X —7
kel

where ¥, = || and y, = v2|y| (k e I'}, with k > 0).
Then the following lemmas are well-known ([4, §II], [19, Lemma 4.1]):

LEMMA 2.5. For each k € I'},, there exists a simple zero Ey of D(z) such that Ey <
Xo = infyer, Xk, and Xy_opy < Ep < xi for k € '} with k >2n/V. Moreover the set of
zeros of D(z) is {Ek}ker;-

LEMMA 2.6. hy and hrwa are self-adjoint, and o(hrwa) = {Ek}; . i with each Ej
simple.

As [4, 19], we define the Hamiltonian of RWA by

(2.45) Hrwa(x,p) &« dI'(hrwa),

where dI'(hrwa) 1s the second quantization of /rwa.
We define two operators acting in & by

(2.46) Hy = dI'(hy) = x’a*a + Z Xib by,
kGFV
(2.47) HYWVA = N " (eaby + yibja),
kEFV

where a,by (ke 'y) are the annihilation operators, and a*,b; (ke I'y) the creation
operators acting in # ([11, §IV]). Then, it follows that D(HXWA) > D(H,), and

HRWA(X, y) =Hy+ H?WA
on D(H,) ([19, §IV]).

ReEMARK. The Hamiltonian Hgwa(x, y) of RWA is often used in the quantum
optics. Hrwa(x, y) is derived from the Hamiltonian Hyc(x, y) of the linear coupling
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model,

(2.48) Hiclx,y) S Hy + > (a® + a)(yiby + Vebr),

keFV

as follows: now we regard Ho and }_, _ (a*+ a)(yibi + Vibi) as the free part and
interaction one, respectively. We have

eiHoza*bZefiHot _ ei(x0+xk)ta*bz7
eiHUzabke—iHot _ €_i(x0+xk)tabk,
eiHota*bke—iHot _ ei(xo—xk)ta*bk7
eiHotab;;e—iHot — e—i(xo—xk)tab;:
for each ke I'y. We here assume that the time 7, spent in observing particles in an

experimental equipment satisfies the inequality,

L 1y < kely.

|x0 + x| |xo — xk|’

Then the equipment can find the effect of the terms for a*by, ab; (k € I'y), but it cannot
find that of the terms for a*b;,aby (keI'y). So, in the observation using the
equipment, we can neglect the terms for a*b}, aby (k € I'y) from [2.48), and we obtain
Hrwa(x,y). Thus Hrwa(x,y) is very unnatural Hamiltonian, which brings some
troubles into physics (see [13]).

We now introduce the position and momentum operators exactly. The position
operator ¢ and the momentum operator p are given by

def 1 % def i %
=—(a+a), = —(a —a).
q \/5( ) p ( )

For B =g, p, we define the two-point function Wp(t),1,;) by

(2.49)

N

(2.50) Wt 12) def (o, eiHRWA(X,}’)[lBe*iHRWA(xvyyleiHRWA(xvy)ZZBe*iHRWA(va)tZQO)%‘
So putting

(2.51) W (1) def % (a*Q, eiHRWA(x,y)ta*e—iHRWA(x,y)fQO)g;7

we have

(2.52) Wy(ti, 1) = Wy(ti, ) = W(ta — t1).

Then, for instance, by [19, Lemma 4.5(b), (60)], we obtain

(2.53) W (1) :% > DR
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3. Statement of the main results.
Now, we can state our main results:

THEOREM 3.1. Assume that (H), (A.0) and A€ T(H)ND(¥) is symmetric with
PRA£0 for all ke I'},. Let o) be given (2.39) and {a’k}ker; be the set of zeros of
[R,)(z) (Lemma 2.4). Set x=x"® (Xt)pcp, and y=0@ (yi)rcr, With

(3.1) xozw?/, Xy =X_p=wr, kel (so—kely),
(3.2) v =V2ap NV, kely,

where

(3.3) Po = Pos Pe=pPx =P V2, kel}(so—kely)

(ie., Yo =V2mp/VV)

and

- VR (0)
34 = A kel.
Then;

. 2n ~
(i) ZkeFV !yk|2 — VZkEFt p]% < oo and
o(hrwa)\{inf o(hrwa)} = {positive poles of [R4](2)},

where hrwa is defined by (2.42) with x and y given above.
(i) For all t),t e R and B = q, p,

Ry(t1,12) = 2(R4(0) — R)RWp(t1, 1) + RY,

where Wpg(t),ty) is defined by (2.50) with x and y given above.

ReMARK. In Theorem 3.1, the assumption with respect to Hamiltonian H is (H)
only. The other assumptions are concerned with observable A.

From now on, we consider the case that the operator A4 is given by B=g¢, p. So
we omit the index “B(= ¢, p)” in Rp(t) and Rj (f). Moreover, we write clearly V' > 0
in Rp(f) and R (1). That is R"(f) = Rp(t) and R*V (1) = RF(¢). And besides, we
set R%V = RY.

We find functions wg(k) and pg(k) (k € R) such that data wy and p; (kel'y)
derived from R"(r) are distributed around ws(k) and pg(k) respectively. We set

(3.5) w_k=wr, kel7.

So, we extend {wi .+ to the sequence {wi}cp,. In order to find such functions, we
assume the following technical conditions for existence of the infinite volume limit:
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(A1) o) — wp>0as V — 0.
(A.2) There exist a non-negative, continuously differentiable function wg, and a real-
valued continuous function p; € L*(R), which satisfy the following conditions;

(3.6) a)/;(k') < a)ﬁ(k), 0<k'<k,
(3.7) ws(—k) = wp(k), keR,
(3.8) lim (k) = o,

(3.9) m=wp(0) = igi wp(k) > 0,

and there exist constants o > 1/2,Ky >0, and o; > 0,C; >0 (i =1,2) such that

A
(3.10) Ipg(k)| < TT k™

for all |k| > Ky, with 4 a constant (which may depend on oy and Kj).

G Joplk) — op(k)] < Cilk = K| (1 +op(k) + op(K)), kK€ R
(3.12) s (k) — o] < c2<%) " kerly,
(3.13) 20 oy,
Ct)ﬁ \/QT/)’ L2
(3.14) D wp(k)’pp(k)* < o,
kEFV
(3.15) J p(k)2py() ek < oo,

which implies

(3.16) wjpg e LX(R),  j=-1,-1/2,0,1/2,1.
Furthermore, for every V' > 0, there exists a sequence 4p; € R (k € I'y) such that

(3.17) 1pp(k) = pil < 4py, kely,
(3.18) S 0 dp)? < o,

kEFV

.1 )
(3.19) Jim > (4p)? =0.

kEFV

Then, we have

Lemma 3.1 If Ry (0) = limy_o RY(0) and Ry = limy_o ROV exist, then
[R;;’Oo](z) = limy_,[R"V](z) also exists.
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Proor. We note R*7(0) € R, so by [4.2), [4.10), [4.11)| and [4.33) below, we have

Vi _ pOV - ~9 -1
o w5 g )

So, we have our lemma. ]

Here, to use [ITheorem 3.1 and [Lemma 3.1, we assume that
(A.3) For every V > 0,R"(¢) is twice continuously differentiable. And Ry (0) =
limy_,, RV (0) and RF, = limy ., R) exist.

We define a function DﬁWA(z) by

3.21) Pha(e)® (MEO) (w73

REMARK. D{iWA(z) is Arai’s original function [5, (1.14)] multiplied by —1 (see

below).

It is clear that there exists the inverse function gg(x) of ws such that gg(x) is
differentiable and monotone increasing in (m, c0) with

lim gp(x) =0,  pp(x) = (@plpg(x) ", x>m.

xlm

To use Arai’s results in [5], we assume a little more assumptions:
(A4) (see [5, (AD)])

sup dk

O<e,m < x

< o0, iInf
O<e,m < x

< 0.

ro Pﬁ(k>2

) :
=) — apB) Drywa b = 1)

(A.5) (see [5, (AIl) and §IV]) There exists a constant 0(f) € (0,7/2) such that the
function goé(x)pﬁ(goﬁ(x))z has an analytic continuation Iﬂ(o) (z) onto the domain

(3.22) D!, < {ze C|Rz > m, —0(p) < argz < 0}

with the following properties:

(3.23) liig Iﬁ(o) (x —ie) = 120) (x), x>m,

(3.24) 11" (2)] < const|z| "1,
for all sufficiently large |z| (z eDﬁl’ ) With a constant qy(f) > 0. Moreover,

) (s 4 -

. m
2—70;Z€Dfll0 ZpO(ﬁm)
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with constant A\ (B) #0 and py(f;m) =0, and

(3.26) inf | DRya(x — i) — 2inl) (x — ig)] > 0

O<e<ey;m < x

for all sufficiently small ¢ > 0.
So by using Arai’s result [S, Theorem 1.3], we obtain the following theorem:

THFHOIBEM 3.2. For B=gq,p, there exists R/?O(ll,lz) = limy_., R"(11,00). Let
. 0 o0
BY(p) & (DI{WA< ) + 2700, p, ) Al ) Dl (), and R (1) = Ry (0, 1).
i) If R ;é 0, then lim,_, RZP( ) = Rg.
(i) If 50 =0, then

Ry (1) =Ry ™ (1) + Ry (—1),

A (B)e =BV (po (Bm) + 1)
BY (B)

Ry (1) ~ (Rf(0) = Rfy)

B t— o0
x ¢~ = (o(Bm)+1).

where I'(z) is the gamma function.

REMARK.  Concerning part (i), if the condition that R;, # 0 occurs, it may be the
case where there are infinitely many elements in the thermal states for every V' > 0 such
that the elements are not orthogonal to B just like the superfluidity at 7 = 0. Here the
thermal states is a physical notion given by Lh. {®,,},, | (ie., & (the thermal
state) = 0) in thermo field dynamics (e.g. [18]). l

4. Proofs of main results.

4.1. Proof of Theorem 3.1.
In this subsection, we prove our main theorem, [Theorem 3.1, by using the

mathematical structure of Mori’s memory kernel equation for quantum statistical physics
(19, 20, 21].

LemmA 4.1. For all Ce T(H) and m,ne N*,
<cpm,n; C>H = <¢n,m; C+>H
Proor. By [2.8), (2.11) and (2.13), we have

ﬁ—l/zz(ﬁ)—l/z 1/2<d§m n C>H - (&m? C(ﬂn)

= (C* 0 0) 7 = 0 CT0,) 7 = B 2Z(B) P W, @i o 0

It follows from and 4 = A" (by the present assumption in [Theorem 3.1))
that A, , = A, for each m,ne N*, which implies that A,(:”) :A,(C_) for all keF};.
Hence we have

(4.1) Ry (1) = Ry (1)
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so that
(4.2) R4(t) = 2RR,(¢) + RY.

Let X, (H) be the closed subspace generated by the vectors @, , with 4,, — 4, >0
and P, be the orthogonal projection from X.(H) onto X, (H). It follows that
P, ¥ < #P,. Hence the vector

(4.3) A, ¥ P4

is in D(%), since 4 is in D(%). Using Parseval’s formula with respect to the complete
orthonormal system {®,, ,|m,ne N*}, one can easily show that

147 =" 4 =R (0),

"\
kel

A LAy =Y adl’.

keF;
Hence
CAy; LA
(4.4) a)?, :+—2+H
A+ 7

since 4.7 = A7) (keTI?), where o) is defined by [2.39)

Let 11, be the orthogonal projection from X.(H) onto the one-dimensional subspace
{ad,|oe C}. We can define a self-adjoint operator & acting in (I — I1p)X.(H),
called the projected Liouville operator, by

(4.5) D(#) ¥ D(2)N (I - o)X (H),

(4.6) P (1-1) 2
(see [19, 20, 28]).
LemmA 4.2.  Assume (A.0). Then, under identification (2.31), the spectrum of the

projected Liouville operator ¥\ consists of isolated points only, and c..( 1) is a set of all
eigenvalues Ay — 2y #0 (m,ne N*) with infinitely dimensional eigenspace of & .

ProoF. We now define symmetric operator 7~ acting in X.(H) by

v L (1% + L11,) + Ty L1,
We note here that I7)C € D(¥) for every C e X.(H) since 4. € D(¥). It is evident
that (1 —I1p)¥(1 —I1)) = £ + 7" on D(¥). Let C,eD(¥) (ne N) with conditions
sup,—12. |Cully < o0 and sup,_;, [|[ZC,; < co. Then, there exist subsequences
{CK}K’C, {C,}, and vectors B, B,eX.(H) such that w-lim,.,C.=B; and
w-lim,_, ., #C, = B,. It follows that s-lim,_ .. /1oC, = IIyB; and s-lim,_, 1o C, =
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11y B, since Il is a finite rank operator, so a compact operator. And besides, we have

<A+7 C >H <A+7B1 >H
SLI)Ce =TT pyq, - 1 @y
T Ay T A Ay T
as k — oo. Therefore, we have
{A+;Bi)y

V' C,. — —IlyBy + (—$A+ + H0$A+)

A+; A on

as k¥ — oo. Thus, 77 is relatively compact with respect to &, so that ¥ + ¥~ is self-
adjoint, and o.4(%) = 0.(¥L + 77). Hence it follows our lemma from (2.14), (2.15)
and (2.31). [

Let
(4.7) A ei? 4. teR
Then we have

Rj(1) =<A; AL (D))

Let
(4.8) L)Y (] - [T)#A., teR,
(4.9) 4. (1) def <I+<0>§I+<t)>H, fe R

2
AN

Then A, (¢) satisfies Mori’s memory kernel equation

d

C A0 =i () - JO b (i— A (s5)ds+1.(1), teR,

(see Theorem A.I[iii] in §5. Appendix). Since {Ay;Li(t)>y =0, it follows that, by
Theorem A.1(i) in §5.  Appendix,

(4.10) %R*( 1) = i R (1) — L ¢, (t—s)RY(s)ds.

LEmMA 4.3, Assume (A.0). Let wy (ke I'}) be the zeros of [R,](z) (Lemma 2.4).
Then {wk}ker; co(¥)) and

(411) ¢+(t> — Z [Rf] ((O etk — Z 52 gt _7 Z ﬁ;%eitwk

kerls kel

with

(4.12) >
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ProoF. By and the fact dim(/ — I19)X.(H) = oo, there exist real
constants y, (k € I'};) and vectors ¥y € D(%) such that &1 ¥y =y, Vi (ke I'}); y #
y; if k#j, and o(Z) = {yk}keF+' Then we have

ityy

(4.13)

kEFJr

with ap = KWy (I — o) LA >yl It is easy to see that [$,](z) (3z>0) can be
analytically continued as a meromorphic function on C with

(414 6.1 = ) 2o

On the other hand, by Theorem A.1(ii) in §5. Appendix, gives

2) =i(z + & RZ(O)
(4.15) (4.12) = e + o) + R

From this and [4.14), it follows that —y, with a; # 0 is a zero of [R}](z) and we have

R} (0)°
iRY) (=)
It is obvious that any zero of [R}](z) is a pole of [¢,](z) and hence it is equal to one of
—p’s with a; #0. Since [R;](z) = [R}](=2) by [41), we have y, = e, namely the
set of zeros of [RY](z) is equal to {—wi},. ri- Thus the first half of lemma fol-
lows. Putting (4.16) and y, = w; into (4.13), we obtain (4.11). Since Zker; ax =
(I — IT)) LA, |3 < o0, we have (4.12). u

(4.16) a = > 0.

PROOF OF PART (i) OF THEOREM 3.1. The fact Zker; 1v|* < oo follows from [4.12))
It is clear that the set of positive poles of [R,](z) is equal to the set of poles of [R}](z

),
ie., {Sk}keflt' By [3.20), [4.14), [4.15), [Cemma 4.3, and the fact lim._._, 1/[R}](z) =0,
we have

1

6k—a)V—|—Z a)—e:O’
feFJr ¢ ¢

i.e., & is a solution to D(z ) =0 with x* =¥, xy = x = (kel}), and y, = J,

V= y = fyé, where j,2 = R}(0)/i[R}] (—wy) (€€ T'}). Hence & = Ex (kel’}:
see in §2.2). Thus, by [ in §2.2, we obtain the desired result.

PROOF OF PART oF THEOREM 3.1. Let W(¢) be given by [2.51) in §2.2. Let
a*(t) — eiHRWA(X,y)la*e*iHRWA(X,y)[, te R
Then we can show that

%a*(l) = ix%* (1) — L drwa (t — 8)a™(s) ds + Irwa(2),

where
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Irwa(1) =1 Z ey, drwalt) = Z yie™!

kely kely

(see [17], [19, (120)]). Since (a*Qo, Irwa(t)Q0), = 0, it follows that

d

7 W(t) = ix"w(t) — j; drwa(t — $) W (s) ds.

Note that W (0) = 1/2. Take x°, x; and y, as in the assumption of MTheorem 3.1. Then
¢, (1) = dpwa(?) (€ R). Hence W(t) obeys the same equation as that R} (7) satisfies

(see (4.10)). Thus, by the uniqueness of solution to Eq. [4.10), we have
R (1) =2R4(0)W(t), teR.

Putting this expression into [4.2), we obtain the desired result. Note that, by [4.1),
2R (0) = R4(0) — RY and R (0)eR.

4.2. Proof of Theorem 3.2.

We prepare basic tools from [7, 8, 16]. Let #,° be the symmetric Fock space given
by standing ¢*(I'y) for L?(R) in [2.1), i.e.,

(4.17) Fr < é_o-%sn(Lz(R))".

We use the operator-valued distribution kernels b(k) and b(k)" of the standard
smeared annihilation and creation operators, respectively [11, (4.3.13)-(4.3.15)].
We define a Hamiltonian H, of boson free particles in the infinite volume by

(4.18) Hy, € dr(wp) = JOO ws(k)b(k) "b(k) dk.

We can define the Fock space ) for the volume V by standing ¢>(I"y) for C & (*(I'y)

in (2.1}, i.e.,
(4.19) 7V E P S, ()",

which describes state vectors of bosons in the finite box [—V/2,V/2]. Then we can
identify #) with the subspace of %} since each element in S,(¢*(I'y))" can be
identified with a piecewise constant function in S,(L*(R))" which is a constant on
each cube of volume (27/V)" centered about a lattice point (ki,...,k,) e '}, = I'y X
I'y x---x1Iy.

The periodic annihilation and creation operator-valued distribution kernels by (k)
and by (k)" are defined by

1/2 om/V

(4.20) by () (K) J bk + 1)dl,
2n —n/V
1/2 n/V

(421 by (k)" % (K> J bk +1)"dl
2n -V

acting in F) .
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We define functions w/;/ and a)éV) by

(4.22) o (k) < wp(ky),

(4.23 o) (k) E o,

for ke R with ky a discrete point closed to k:

(4.24) ky € I'y, with [k —ky| <

</

We define Hamiltonians H,” and HZEV) of boson free particles in the finite volume
V>0 by

(4.25) 1Y < dr(o)) = J of (K)b(k)"b(K) dk.
(4.26) o Ear]”) = J o (k)b(k)*b(k) dk.
We set
v oo (B) (L - L I my»
(4.27) C, _C1<V) <2m+1>, C; _szax{m,go}(V> .

In what follows we assume that

(4.28) /<1, i=1.2

since this is satisfied for all sufficiently large V. Here we note that implies
v 2¢y

(4.29) |wp(k) — wg (k)] < =7 wp(k), keR

(4.30) ) (k) — wy (k)] < ¢ o) (k), keR

(see [8, proof of Lemma 3.1]).

In the same way as [7, LEeMMA 3.1] and [8, LEmmA 3.1], by with
with [4.30), and (4.24) we have the following lemma:

Lemva 44. D(H)) = D(H")) = D(H,)
and

2cy

I(Hy — Hy )| 72 < T—cr

\|Hy¥

g 0
Fo

V
I(H = Bl < C(1H) |

for ¥ € D(Hp).
In the same way as [7, Lemma 3.3 and (3.12)], by (3.10), we can define a function
py € L*(R) as



An inverse problem in quantum field theory 357

def .
(4.31) py = L*— Jim > sy reny 7
Preryj <k

= Z Pﬁ(f))qun/v,un/r/],

where y; denotes the characteristic function of an interval I. Moreover, we define péV)

on R by

def

(4.32) Z PiXit—n)V b4/ V]

EGFV
where p,’s were given in (3.3). We note that p(ﬁV) e L*(R) by [ ) and [3.2)
LemmA 4.5.
(1)  limy_g HPﬁV — gl = 0.
(i) limy ., Hpﬁ —p{ HLz = 0.

(iil) limyp_

V 2
3 L

(iv) limp_

(v) For every z € C wzth 3z #0,

(4.33) lim 22§ 2 i J ’)5# dk J ppk)”
v 7<xco§3 (k) + z o 0p(K) + 2

PROOF. Since we can use [3.10) as a growth condition for pj, in the same way as [7,
Lemma 4.2], we have part (i). By [3.9) and [3.10), we have

Vo) | = v T

which is a growth condition for ps/,/@ws. So we have part in the same way as part

(i). Part follows from (3.19). We have the following inequality by Lemma 2.4
(3.12), (3.19) and part (i):

2

y W
22 2 2 ’
< EVHZEFV(AP[)ZJF\/”TEB?:;V Vor —Jog(0)] pg(0)?
2 2n

2 2 Cz 7T 20 2
2SN (ap) 4 2 (—) I/ 12: =0
0V, Vime (e +m)> \V)
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as V — oo, which is a proof of part [iv]. For every ze C with 3z # 0, we have

(4.34)

V) (12 2
[ py (k) pp(k)
/@) (@” )1z o)+ z) dk

A
8
—N
—
<
S
=
N~—
o
|
X
=3
Xa)
N

By Schwarz’s inequality,

x V V V
(4.35) j g (k) = p) (k) dke < (lpg N2 + o) 1) llpy” = o Nl o

(4.36) J g (k)* = (k) e < (pg Nl 22 + lpgll o)y = ppl e

By [3.12), [3.16) and [4.29),

© 7\
(4.37) | 1o @~ ol 002 < cx(3) 12
0 2CV
(4.39) | tonth) = o 0oy h)* < 2Ly iyl
— 0 1

By (4.34)(4.38),

1

V V
J(z) < @«npg N+ oy e)les™ = o)l + Ulof e + logll2)lof = pyll2}

1 AN 2¢cy 5
t G F) W+ 2 a0
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as V — oo since limVHooHp;;V)HLz = llpgll2 =limp o [lpg ll;-  and limVHOOHpE,V) -
pglle =0=limy_llpy — pyll;> by parts (i) and [} So we obtain part (v). |

Let H) and H, be self-adjoint operators defined as the closure of w)a*a and wga*a,
respectively, where a and a* above are annihilation and creation operators acting in
L*(R) defined by af, o vnf,_; and a*f, LY/ Jusr1, respectively, for a complete
orthonormal basis {f,},.y- of L*(R).

Let

(4.39) 7oL I2R) Q@ FY.
We define Hamiltonians Hgrwa, HI{/WA, and HI(JQ,A by

(4.40) Hrwa o Hy+ Hj,

H = JOO pp(k)(a* ® b(k) +a ® b(k)*) dk,

(4.41) Hlyn € H +H/,

H/ =H'®I+I® H/,

0

HY = J p) (k) (a* ® b(k) +a ® b(k)") dk,

(4.42) 2O SRy

H=u'@1+19H),

1" = f (k) (@ @ b(k) +a® b(k)") dk.

We note that, for v=—1/2,0,1, (wp)'pg e L*(R) by [3.9) and [3.16). Similarly,
(3.14) implies (w;)'p; € L*(R) for v=—1/2,0,1. By (3.12), (3.17) and (3.18), we
have

200
dr AN
VY (V)12 2 2 2
leo 122 < 7@2 @} (4pe)” + 4oy py 12 +4C (T/) log 1122
GFV

which implies (coz,V))VpéV) e L*(R) (v=-1/2,0,1). So, by Lemma 4.4 and applying [4,
Proposition2.1] to (3.15) and (3.16),

Lemma 4.6. (i) D(H)) = D(H\")) = D(H,), and
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[(Hy ~ Ho) | < V2maxq -ty b [ HoP|l
|(Hy" — H )| < V2C) | HY P
for ¥ e D(H,).
(i) D(Hy) = D(Hfwa) and the closure of Hiwa [ D(Hy) is essentially self-adjoint on
any core for HY , where Hi = Hy (if H{wx = Hrwa); H] = H) (if Hiwa = Hpwa);

vy . v
Ho# = H(g ) (lf H}fWA = HI(W\)/A)'

By using well-known inequalities [11, (4.3.33) and (4.3.34)] with respect to creation

and annihilation operators, and noticing f/,/@z € L*(R) for every f e L*(R) since
m, g > 0, we have

Lemma 4.7.  For ?’eD(HO#l/z), feL?*R),
la®b(f)" Il < F} (0}, 0f , NIIHT Il + G (%, NI,

la* ® b(/) Pl < Fi(w}, of  IIHT Pl + G (of , I,

where

1 1
Flefof = (31 o s +ell s,
W

1
F (Y of f) = (w/mﬂ') 1717 Jeof
#

Gl(a)O f)= ”fHL2

e =

# 0 )
dey/wy

for every e, &' >0, where
o', —wﬁ (if H = Hy); w# =Y, (sz# —H) H", and wj =wg (if H] = Hy);
wj =of (if Hf = H{); of —col(f (if HY _HSV)).

We set

(443) FF?(w#vw[};f) 1<w#awﬁ7f)+F2<w#awﬁ7f)

:\f /o e + @IIfHLerSIIf/ oI

IA

2 max{ L }+ LR
CO(;)# \/17—/17\/56 w?# L%
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(4.44) Gy (0, 0 #, =G (0%, f) + Gi(w f)

12 ||f/\/7||L2

0

L 1 max{ 1} .

R N

By Lemmas B.3, &6, B.7 with (A.1) and [3.13), similarly to [8, LEMmA 3.4],

B

LeEMMA 4.8. (1) There exist constant ¢y > 0 and d; > 0 (¢ and dy may depend on ¢,
¢ >0 in Lemma 4.7) such that

|Ho V|| < c1||[HrRwa || + di[| ]|, ¥ € D(Hp).

In particular, for all ze€ C\R, Hyo(Hrwa —z)"" is bounded.
(ii) There exist constant ¢; > 0 and dy > 0 independent of V (ca and dy may depend on
¢, & >0 in Lemma 4.7) such that

1Hy P < c2 HRwa Pl + do|| P, ¥ € D(Ho)

for sufficiently large V > 0. In particular, for all z€ C\R, H) (Hgwa — 2)"" is bounded.
Lemma 4.9. For all ze C\R,

v -1 -1
lim (s —2)™" = (Hawa —2)"'1 =0,
limy— || (Hwa —2)” = (Hrwa —2)"' [ =0,
50
4 -1 -1
Jim [[(Hya —2)" = (Hrwa —2) [ =0.
ProOOF. We can prove our lemma in the same way as [8, Lemma 3.5]. We have
V) -1 1% -1
(Hrwa —2) — (Hrpwa —2) = Li(V) + Lo(V),
where

|4 — V —1
Li(V) = (H{gs — 27 (HY = HY Y (HEya —2)7"
V —1 V —1
Ly(V) = (Hyga —2)"(H) = H)(Hiya —2) 7"
By Lemma 4.8(ii) and using ||(HYws —2) "' < |3z7", we have

|z| d

4.4 H (Hywa —2) ' < e 14+ == ) +—
(4.45) I (fn =271 < (14750 ) + 52
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where ¢, and d, are in (ii) so they are independent of V' > 0. By
4.6(1), ) and using H( RWA _Z) H < |SZ|_1, we have

1l )”—|[| Ho(egy) ) -

32|

as V — oo. By (4.43), [4.44), [4.45] and applying Lemma 47 to f = p, —pé)
L*(R), we have

|4 —1
I(H] — H ) (Hgwa —2)7'|
|4 _
< Foo(@0) pf — i )IHY (Hiwa =27

14 -1
+ Goor(@ ) pf = py I (HEya —2) 7'

< 2 — +¢& max{ L 1 }—i— ¢ {cz<1+—|z|>—|——d2 }HpV—p(V)H >
=1 \Veb Vil T g 3:0) TS T
+ : : + 1ma ||
e X _P L2
4|3 & b
1521 ] ¢y fe0t,
By the inequality above, [Lemma 4.5(ii), (A.1) and using ||(H RQ,A — )7 < |32, we

have limy_ | L(V)| =0. Thus, we obtam the first statement of our lemma. The
second statement of our lemma can be proven similarly to the first one, and the last
statement follows from the first and second ones. ]

Let

By using the same way as the proof in [8, Lemmas 3.6, 3.7] with Lemma 4.6{ii), we can
show the following lemma:

LemMA 4.10. (i) The operator H,SV) is reduced by F, and

the second quantization of a)ﬂ [fz(FV) =A{wk}rer, in F.

(i) The operator ngQA is reduced by FV.

It 1s well known that

F

DS(C® AT = LR @ D S,(A(1)" = LR @ 7 = 7"
n=0 n=0

since C and ¢2(I'y) intersect orthogonally in C@®*(I'y). So, by Lemma 4.10] we can
identify Hrwa(x,») acting in #, given by [2.1) in Section 2, as HI(JQ,A acting in # .
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For simplicity, we set

(4.46) WV (1, 6) = Ws(t1,6)

(V) (V) (V) (V)
— (,Q7 elHRWAZl Be_lHRWAZlelHRWAlzBe_lHRWAZZQ)gTV,

(4.47) wV(t) = w(r)

= %(a* ® 12, eiHl(%QAt(a* ® I)e_"Hl(%QAtQ)W,
(4.48) W™ (t1,12) = (Q, eMrwalt Be=iHrwal piHrwals po=ifrwalr )
(4.49) W (1) = l(a* ® IQ, ™ol (g* @ INe Hrwal )

2

where Q = f; ® Qy, Qo is the Fock vacuum of #) and #;°. We remember that
WV (t, ) = WV (ty — t1) (see [2.52)), and similarly we have W*(¢1,t) = W*(t, — 1;).

PrROOF OF THEOREM 3.2.

By [Cemma 4.9, for (x,y) given in Mheorem 3.0, His — Hrwa in the norm
resolvent sense as V' — oo through the identification in the remark after I[Lemma 4.10
So, by [29, Theorem VIII.21], we have

ch(ll, l2) = lim WV(tl, lz),
V—o0
so by Mheorem 3.1, there exists
0 — 1 Vv
Ry (n,0) = lim R™(11,0)
such that
(4.50) Ry (t1,1) = (R (0) = R o) (W™ (11, 12) + W™ (12, 1)) + RSy,

where we note 2RW ™ (t1,t2) = W (t1, ) + W*(tp,1).
On the other hand, like as [3.20), by [4.1), [4.10), [4.11) and [4.33), we have

* Pﬂ(k)z

— o COﬁ(k) —Zz dk.

(4.51) Dhwa(2) :z—cog-l—J
Therefore, follows from Arai’s result [5, (1.5) and Theorem 1.3(a)].

5. Appendix

5.1. Mori’s memory kernel equation.

In this subsection, we recall briefly Mori’s memory kernel equation [25, 26]. Let X
be a Hilbert space with an inner product ( , )y, % a self-adjoint operator in X with
domain D(%), and 4 a non-zero element in D(%), where the inner product ( , )y is
linear in the right vector.
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We consider a stationary curve {A4(¢)|t€ R} defined by A(¢) L pizry (te R) and

the autocorrelation function R4 of A given by Ry(?) &f (A4(0), A(1))x-
Let X, be the closed subspace generated by A4, and I, and X; the orthogonal
projection operator on X, and the complementary subspace of X, in X, respectively.

Then we define a linear operator % on the Hilbert space X; by

D(#) ¥ (1 - 1)XND(2)

Zix Y (1- M) %x, xeD(Z).

From this, we note that ., is a self-adjoint operator acting in the Hilbert space X; [25,
28]. And we define Mori’s frequency w,, fluctuation I4(¢) (¢ € R) and memory function

¢, by

(5.1) ©, = —(A4(0), ZA4(0))x(4(0), 4(0))y",
(5.2) Li(t) & i1 — [1,) %4, teR,

(53) $,(6) = (14(0), L4(2) x (4(0), 4(0))y, 1€ R.

We note here that we change the original definition of Mori’s frequency into to
discuss our argument. Then we have the following theorem:

THEOREM A.l. ([25, 26, 28]). (i) For all t€ R,

%RA(I) = —iw,R4(1) — JOI ds¢ (1 — s)Ra(s).

(i) For all ze C* ¥ {ze C|3z> 0},

JOO dte™ R4(t) = R4(0) lm :
0 iw, —iz+ J die" ¢ (1)
0
(i) For all te R,
(5.4) iA(t) = —iw A1) — Jtds%(z — $)A(s) + 14(1).
dt 0

Equation (5.4) is Mori’s memory kernel equation, or Mori's Langevin equation.

5.2. An example of the Hamiltonian H and the observable 4 in Theorem 3.1.

In this subsection, we give an example of the Hamiltonian H and the observable 4
in Theorem 3.1. We find the example in [6].

There are many examples in models with free or quasi-free Hamiltonians which are
solvable. However, it is worth applying our theory to non-quasi-free (unsolvable)
models rather than quasi-free (solvable) ones.

Let # be a separable real Hilbert space with inner product ( , ),, and hg a strictly
positive self-adjoint operator acting in # such that

(h), for some constant o > 0, h;“/ ® is Hilbert-Schmidt on .
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Then we obtain a real Hilbert space ## ; by the completion of # with respect to the
inner product

def ,, — —
(55) (fv g)—l = (hBl/zfvhBl/zg)]fv f7g eA.

We consider the Gaussian mean zero random process {¢(f)|f € #_1} indexed by
H_1. We denote by Q (resp. du,) the underlying measure space (resp. the Gaussian
probability measure) and by { > the expectation with respect to du,. Then we have

(5.6) P9 = (f,9) -, frge A

The symmetric Fock space #p over #_; is given by

def

(5.7) Ty = L*(Q,du).

It is well-known [11, Theorem 3.2.10] that 7 is written as follows:

(5.8) fBZéFn(%fl)y
n=0
I'o(#-)=C,

closure

Lp(A1) =Lh L g(f1) - 9(f) s | fie A j=1,....np
where : ¢(f) - ¢(f,) : is the Wick product of random variables ¢(f,)---¢(f,), and

closure

L.h.{} denotes the closure of L.h.{} in L%*(Q,du,). We define a subspace
Falg(vyf—l) by

(5-9) Falg(%fl) = @Fff))(yﬂl),

Iy (#1) = C.

IO ) = Lh L (i) g(f) : [ freA1,j=1,....n},
then Iy, (#_1) is dense in Fp.
It is evident that Az has a unique extension kg to #_; such that

(510) <g7ile)—1 :<g7f)f7 fngD(hB)

For each f e D(lelg/ 2), we define the annihilation operator b(f) on Iy, (#_1) by [6,
27)

(5.11) b)Y B - BT
=SSR S S B BB - B
=

and extending it by linearity to Iy, (H#_1).
The creation operator b*(f) is defined as the adjoint of b(f) [ Iuy(H#-1):

(5.12) bT(f) = (b)) [ Tag(A 1))
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Then, D(b*(f)) o uy(#-1) and

(5.13) b)Y d(f) - o(f,) = d(h1)p(f) - b(f,) -

hold [6, (2.8)]. Therefore, b(f) is closable and we denote the closure by the same
symbol. Both b(f) and b*(f) leave I'y,(#_;) invariant and satisfy the canonical
commutation relation on I, (H#_;1) (see [6, (2.9)]).

We denote by b7# either b or b*. In terms of b#(f), #(f) is written as

(5.14) W(f) = blhy'f) + 075" ), f e A
on I'yy(A_1) [6, (2.12)]. For f e D(hg) we define the canonical conjugate momentum
operator n(f) by

def 1, oo -
(5.15) n(f) € 5 (bls' ") = b* (kg "1)).
As [6, p. 334], we can show that ¢(f) and n(f) are essentially self-adjoint on 1"y, (# )
with the canonical commutation relation on it, and we denote self-adjoint operators as

their closure by the same symbols, respectively.
Let

(5.16) Hop & dr (hp),
where of course dI’ (sz) is the second quantization of hg.

By (h)y, for all 7> 0, exp(—thp) is trace class on #_;, and hence compact. So
that hg has a purely discrete spectrum {wa}y with 0<wpg<wy < -+ <w, <
Wpe1 < -oo, Wy /00 asn— o0, Let {e,},~, be the complete orthonormal system of the
corresponding eigenvectors in #_i:

(5.17) hge, = Wpen, nenN”.
Let

def def
(5.18) q =y = Pleo), p =m = n(eo),
(5.19) b & Ple), 10 nle), neN.

Then we have, for m,ne N*,
(520) [¢m7 nn] = i5mn7
(5.21) [Py @] = 0 = [10m, 7).

Let v be a polynomially bounded continuous real function on R and bounded
below. Let (Y,da(y)) be a finite measure space with Y being compact Hausdorff (the
o-field is omitted) and y be an #_;-valued strongly continuous function on Y. Then
v(¢(y)) € L*(Q,du,) for all ye Y, and that the Bochner integral

vig) & j o($((1))do(y) € L3(Q, dgy)
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is defined. Since o(Y) is finite, V' (¢) is bounded below. Thus, by a general theorem
[30, p. 265, Theorem X.59], the operator Hyp+ V(¢) is essentially self-adjoint on
C*(Hog) ND(V(¢)) and bounded below. We set for fixed constant ¢; > 0

(5.22) H € v(p) —infa(V(g) + ¢ > 0,

where a(V'(¢)) is the spectrum of V(¢). And let

(5.23) HY Hyp + H.

Then H is essentially self-adjoint on C*(Hyg) ND(H;). We denote the closure of H by
the same symbol.

ProposITION B.1. (i) e " is trace class for every t> 0.
(i) For B=gq,p, Be T(H).

Proor. First part (i) follows from Golden-Thompson inequality [31, Corollary,
p320]. So we can take D as (2.2) for the present H. It is well known that
D(Hyy’) = D(p) ND(g) and

1/2 1/2
lgxll < CQUHu Il + 1), [1pxll < C(IIHop ] + 1]

for x e D(Holl/f), where C > 0 is a constant. By the fact that H; > 0, we have for all
x € D(Hog) ND(Hy), (x,Hogx) < (x, Hx). Since D(Hyg) ND(H) is a core for H, it is a
core for H'/?. Hence we can extend, by a limiting argument, this inequality to all
x e D(H'?), showing that D(H'2) « D(H,}?) and |[H x| < ||H"x|| (x e D(H/?)).
Hence D(H'/?) = D(p)ND(q) and

(5.24) lgxll < CIH2x] +1Ix]),  lpxll < COLHY x| + [1x])

for x e D(H'/?). 1In particular D = D(¢) N D(p). Since ¢ and p are self-adjoint, B = ¢
(or B = p) satisfies (T.1). Since e #xe D(H'?) (r>0), by [5.24), we have for all
>0

lge™" x|l < C(I1HZe x| + [lex]l),  x € Fp.

Since H'/?¢=™ and e ™ are Hilbert-Schmidt, it follows that ge 7 is also Hilbert-
Schmidt. Hence (ge~*#)" is Hilbert-Schmidt. We have (e"*#¢q)” = (¢qe~")". Hence
(e™¢)” is Hilbert-Schmidt. Thus B = ¢ satisfies (T.2). Similarly we can prove that
peT(H). O

ExampLE. Fix arbitrary natural number M € N and positive number ¢ > 0. For
B =g, p, by using and (2.12) we set

(5.25) AM,e) < 3 (D B P

0<m,n<M;e<|lm—/ul

Then A(M,e) satisfies (A.0), and A(M,¢) e D(¥). Therefore H and A(M,¢) give an
example for such that

(5.26) lim lim A(M,e) = B

el0 M—wo

in X.(H).
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REMARK. Actually, we can have finite numbers of data from an experiment. So

we have to build a model 4(M,¢) for the observable B using the data. Thus, we can
say that M € N and ¢ > 0 mean parameters representing precision of an experimental
equipment. So, M — oo and ¢ | 0 in correspond to making the precision better.
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