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Abstract. The purpose of this paper is to provide the reader with an introduction to
the theory of generalized Igusa local zeta functions associated to irreducible matrix
groups. As an application, the generalized Igusa local zeta function $Z_{K}(s)$ associated to
the simple Chevalley $K$-groups of type $B_{\ell},$ $C_{\ell},$ $D_{\ell},$ $E_{6},$ $E_{7},$ $E_{8},$ $F_{4}$ and $G_{2}$ under the adjoint
representation is explicitly exhibited as arational function satisfying acertain functional
equation.

1. Introduction.

The study of Igusa local zeta functions began in 1974 in [4] and continues today in
the work of anumber of authors including D. Meuser, J. Denef and F. Loeser (see [3]
and [7] $)$ . One defines these functions in the following way: Take afinite algebraic
extension $K$ of $Q_{p}$ . Let $O_{K},$ $\pi O_{K}$ denote the ring of integers of $K$, the ideal of nonunits
of $O_{K}$ , respectively, and let $card(O_{K}/\pi O_{K})=q$ . Denote by $||_{K}$ the absolute value on
$K$ normalized as $|\pi|_{K}=q^{-1}$ . Take an element $f\in K[x_{1}, \ldots, x_{n}],$ $f(x)\neq 0$ , and let
$dx_{1}\cdots dx_{n}$ denote Haar measure on $K^{n}$ normalized so that $dx_{1}\cdots dx_{n}(O_{K}^{n})=1$ . The
Igusa local zeta function is, then, given by

$Z(s)=\int_{0_{K}^{n}}|f(x)|_{K}^{s}dx_{1}\cdots dx_{n}$ .

Avery general result of Denef and Meuser ([3]) implies that $Z(s)$ has afinite form that
expresses $Z(s)$ as arational function $Z(q^{-1}, q^{-s})$ satisfying

$Z(q^{-1}, q^{-s})|_{q\rightarrow q^{-1}}=q^{-\deg(f)s}Z(q^{-1}, q^{-s})$ .

There is anatural generalization of the above $Z(s)$ . Let $X^{*}$ denote aclosed K-
analytic subvariety of $K^{N}$ of dimension $l$ . Let $X$ be the set of smooth points of $X$ ”

of dimension $l$ . Then $X$ is an everywhere $l$-dimensional $K$-analytic submanifold of $K^{N}$

$([12])$ . Hence, $X$ has acanonical measure $\mu_{c}$ and $\mu_{c}(X^{0})<\infty$ where $X^{0}=X\cap O_{K}^{N}$ .
Take a $K$-analytic function $f$ on $X^{*}$ , nowhere the constant 0and, for $s\in C$ , set

$Z_{K}(s)=\int_{X^{0}}|f(x)|_{K}^{s}\mu_{c}(x)$ .

For ${\rm Re}(s)>0$ , the above $Z_{K}(s)$ defines the generalized Igusa local zeta function ([5], [8]).
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In particular, let $X$ be the $K$-rational points $G_{K}$ of $G$ where $G$ is a $K$-subgroup of
$GL_{n}$ such that

(1) $G$ is aconnected irreducible $K$-subgroup of $GL_{n}$ not contained in $SL_{n}$ ,
(2) $G$ is $K$-split with the subgroup $T$ of all diagonal matrices in $G$ as amaximal K-

split torus and
(3) $G$ has very good reduction mod $\pi$ .

Therefore, by assumption (1), $G$ is the semi-direct product $[G, G]G_{m}$ where $[G, G]$

denotes the derived group of $G$ and, by assumption (3), $G$ and the $K$-splitting data for $G$

have good reductions $mod \pi$ . For the sake of concreteness, we recall the definition of
the $K$-splitting data for $G$ . Let $R$ be the root system for $G$ . The $K$-splitting data for
$G$ is the subgroup $T$ together with the $K$-homomorphisms $\theta_{\alpha}$ , $\alpha\in R$ , such that
each $\theta_{\alpha}$ : $G_{a}\rightarrow G$ is a $K$-isomorphism onto its image group $\theta_{\alpha}(G_{a})$ and $t\theta_{\alpha}(u)t^{-1}=$

$\theta_{\alpha}(\alpha(t)u)\forall t\in T$ and $\forall u\in G_{a}$ . Assumption (3) then means that $G,$ $T$, aK-isomorphism
$T=(G_{m})^{\dim(T)}$ and $\theta_{\alpha}$ , Vct $\in R$ , have good reductions $mod \pi$ . Let $f$ be the generator of
$Hom(G, G_{m})$ of degree $m>0$ . Taking $G^{0}=G_{K}\cap Mat_{n}(O_{K})$ as $X^{0}$ , then, yields, for
${\rm Re}(s)>0$ , the generalized Igusa local zeta function associated to $G$ :

$Z_{K}(s)=\int_{G^{0}}|f(g)|_{K}^{s}\mu_{c}(g)$ .

It is conjectured by Igusa in [5] that $Z_{K}(s)$ has afinite form that expresses $Z_{K}(s)$ as a
rational function $Z(q^{-1}, q^{-s})$ satisfying

$Z(q^{-1}, q^{-s})|_{q\rightarrow q^{-1}}=q^{-ms}Z(q^{-1}, q^{-s})$ .

In the first two sections of this paper, we will recall some results on the $Z_{K}(s)$

associated to $l$-dimensional $K$-subgroups $G$ of $GL_{n}$ satisfying assumptions (1), (2) and (3),
which are given by J. I. Igusa in [5]. The next two sections will apply this knowledge in
the case $G=Ad(G^{\prime})(G_{m}1_{\dim(G^{\prime})})$ where $G^{\prime}$ is asimple Chevalley $K$-subgroup of $SL_{n}$ of
type $B_{\ell},$ $C_{\ell},$ $D_{\ell},$ $E_{6},$ $E_{7},$ $E_{8},$ $F_{4}$ or $G_{2}$ and $1_{\dim(G^{\prime})}$ denotes the identity matrix of size
$\dim(G^{\prime})$ , yielding an explicit finite form for each $Z_{K}(s)$ as arational function $Z(q^{-1}, q^{-s})$

satisfying

$Z(q^{-1}, q^{-s})|_{q\rightarrow q^{-1}}=q^{-s}Z(q^{-1}, q^{-s})$ ,

thereby verifying the above mentioned conjecture of Igusa. Finally, we point out an
interesting universal property shared by the $Z_{K}(s)$ associated to $Ad(G^{\prime})(G_{m}1_{\dim(G^{\prime})}),$

$G^{\prime}$

as above, and put into perspective the general theory of the $Z_{K}(s)$ associated to $G$,
especially as regards the recent result of J. Denef and D. Meuser in [3].

2. Canonical Measure.

Given an $l$-dimensional $K$-subgroup $G$ of $GL_{n}$ satisfying (1), (2) and (3), our goal is
to write down afinite form expression for $Z_{K}(s)$ . We will accomplish this in two
steps. The first step is to simplify the integral expression for $Z_{K}(s)$ . We recall the
definition of canonical measure $\mu_{c}([13])$ . Let $X$ be an everywhere $l$-dimensional K-
analytic manifold.
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DEFINITION 2.1. $X$ has Riemannian structure if and only if for all $a\in X$ there exists
achoice of alattice $L_{a}=O_{K}e_{1,a}+\cdots+O_{K}e_{l,a}$ , the $\{e_{*,a}\}$ a $K$-basis for $T_{a}(X)$ , in $T_{a}(X)$

such that, given acoordinate map $\emptyset$ : $U\rightarrow V\subset K^{l},$ $(D\phi)_{X}(L_{X})$ is alattice in $K^{l}$ in-
dependent of $x\in U$ .

If $X$ has Riemannian structure $\{L_{a}\}_{a\in X}$ , then awell-defined measure $\mu_{c}$ exists on $X$

called the canonical measure. The measure $\mu_{c}$ is defined locally in aneighborhood
$U\ni a$ with coordinate patch $\emptyset$ : $U\rightarrow V\subset K^{l}$ as follows: Let $\mu_{a}$ be the unique Haar
measure on $T_{a}(X)$ such that $\mu_{a}(L_{a})=1$ . Then $\mu_{c}|_{U}(U^{\prime})=v(\phi(U^{\prime}))$ where $U^{\prime}\subset U$ and
$v$ is the Haar measure on $K^{l}$ corresponding to $\mu_{a}$ on $T_{a}(X)$ . The global measure $\mu_{c}$ on
$X$ is the unique extension of $\mu_{c}|_{U}$ determined by apartition of unity subordinate to
neighborhoods $U$ as above. Note that if $X$ is a $K$-analytic submanifold of $K^{N}$ , then
$L_{a}=T_{a}(X)\cap O_{K}^{N}$ defines a‘locally constant’ choice of alattice on aneighborhood $U$

containing $a$ . Such an $X$ has its Riemannian structure induced by the ambient Rie-
mannian structure $O_{K}^{N}$ of $K^{N}$ . For example, $G_{K}$ is an $l$-dimensional $K$-submanifold of
$Mat_{n}(K)$ and, thus, has its Riemannian structure induced from that on $Mat_{n}(K)$ .

Since the measure $\mu_{c}$ on $G_{K}$ is difficult to work with, we define afunction $\Phi^{*}$ on $G_{K}$

by

$\Phi^{*}(g)=\frac{\mu_{c}(gG(O_{K}))}{\mu(G(O_{K}))}$

where $\mu$ denotes the Haar measure on $G_{K}$ normalized to equal canonical measure on
$G(O_{K})=G_{K}\cap GL_{n}(O_{K})$ .

PROPOSITION 2.1. $\Phi^{*}$ is a $G(O_{K})bi$-invariant function on $G_{K}$ with the property that
$\Phi^{*}(1_{n})=1$ .

PROOF. The hard part of the proposition is to show that $\mu_{c}(\gamma gG(O_{K}))=$

$\mu_{c}(gG(O_{K}))$ where $\gamma\in G(O_{K})$ . Without loss of generality, let $g\in G^{0}$ . By $G^{0}$ open
in $G_{K}$ and the group property of $G(O_{K})$ , there is adecomposition

$G^{0}=gG(O_{K})+\prod g\gamma_{i}G(O_{K})$

with $\gamma_{i}\not\in G(O_{K})$ . On the other hand, $diam(\gamma G^{0}\gamma^{-1})=1>0,$ $dist(G^{0}, G_{K}\backslash G^{0})>1$ and
$\gamma G^{0}\gamma^{-1}\cap G^{0}\neq\emptyset$ imply $\gamma G^{0}\gamma^{-1}\subset G^{0}$ with set diameter and distance between sets
defined with respect to the induced topology from $Mat_{n}(K)$ . Therefore,

$\gamma(gG(O_{K})+\prod g\gamma_{i}G(O_{K}))=gG(O_{K})+\prod g\gamma_{i}G(O_{K})$ .

Now $\gamma gG(O_{K})\not\subset g\gamma_{i}G(O_{K})\forall i$ since $|\det(\gamma g)|_{K}=|\det(g)|_{K}$ while $|\det(g\gamma_{i})|_{K}=|\det(g)|_{K}$ .
$|\det(\gamma_{i})|_{K}$ with $\gamma_{i}\not\in G(O_{K})$ . It follows that $\gamma gG(O_{K})\subset gG(O_{K})$ . The reverse inclusion
can be shown similarly so that $\gamma gG(O_{K})=gG(O_{K})$ . It is clear that $\mu_{c}(\gamma gG(O_{K}))=$

$\mu_{c}(gG(O_{K}))$ . Therefore, given $\gamma,$
$\gamma^{\prime}\in G(O_{K})$ ,

$\Phi^{*}(\gamma g\gamma^{\prime})=\frac{\mu_{c}(\gamma g\gamma^{\prime}G(O_{K}))}{\mu(G(O_{K}))}=\frac{\mu_{c}(gG(O_{K}))}{\mu(G(O_{K}))}=\Phi^{*}(g)$

$\forall g\in G^{0}$ . The extension to arbitrary $g\in G_{K}$ is trivial. This is the desired result. $\square $
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LEMMA 2.1. $\mu_{c}(gH)=\Phi^{*}(g)\mu(H)\forall g\in G_{K}$ and any compact open subgroup $ H\subset$

$G(O_{K})$ .

PROOF. The compactness of $G(O_{K})$ implies $G(O_{K})=H+\square H\gamma_{i}$ so that $\mu_{c}(gH)=$

$\Phi^{*}(g)\mu(H)$ is equivalent to $\mu_{c}(gH)(\mu(H)+\sum\mu(H\gamma_{i}))=(\mu_{c}(gH)+\sum\mu_{c}(gH\gamma_{i}))\mu(H)$ .
The lemma will follow if $\mu_{c}(gH)=\mu_{c}(gH\gamma)$ where $\gamma\in G(O_{K})$ . Without loss of
generality, we choose $H$ small such that canonical measure has the local meaning on
$gH$ previously mentioned. Express the Riemannian structure of $G_{K}$ at $g$ by $ T_{g}(G_{K})\cap$

$Mat_{n}(O_{K})$ . By definition, $(D\gamma)_{g}(T_{g}(G_{K})\cap Mat_{n}(O_{K}))=(T_{g}(G_{K})\cap Mat_{n}(O_{K}))\gamma=$

$T_{g\gamma}(G_{K})\cap Mat_{n}(O_{K})$ . In diagram form we have

$G_{K}$
$K^{l}$ $K^{l}$ $T_{g}(gH)$

$\cup$ $\cup$ $\cup$ $\cup$

$\emptyset$ : $gH$ $\rightarrow$ $W$ $MO_{K}^{l}-$ $L_{g}$ : $(D\phi)_{g}$

$\downarrow^{(D\gamma)_{g}}$

$\phi^{\prime}$ : $gH\gamma\rightarrow W^{\prime}M^{\prime}O_{K}^{l}-L_{g\gamma}$ : $(D\phi^{\prime})_{g\gamma}$

$\cap$ $\cap$ $\cap$ $\cap$

$G_{K}$
$K^{l}$ $K^{l}$

$T_{g\gamma}(gH)$

where horizontal maps denote isomorphisms in the category of analytic manifolds or
finite dimensional vector spaces and $M,$ $M^{\prime}\in GL_{l}(O_{K})$ . Note that

$M^{\prime}O_{K}^{l}=(D\phi^{\prime})_{g\gamma}\gamma(D\phi)_{0}^{-1}MO_{K}^{l}$ .

The measure $v$ on $K^{l}$ corresponding to the Haar measure $\mu_{g}$ on $T_{g}(gH)$ such that $\mu_{g}(L_{g})$

$=1$ is defined by the relation $1=v((D\phi)_{g}(L_{g}))=\lambda\cdot dx_{1}\cdots dx_{l}(MO_{K}^{l})$ . Hence, $\lambda=1$

and $v=dx_{1}\cdots dx_{l}$ . Similarly, the measure $v^{\prime}$ on $K^{l}$ corresponding to the Haar measure
$\mu_{g\gamma}$ on $T_{g\gamma}(gH\gamma)$ such that $\mu_{g\gamma}(L_{g\gamma})=1$ is $dx_{1}\cdots dx_{l}$ . By the $p$-adic change of variables
formula,

$\int_{W^{\prime}}dx_{1}\cdots dx_{l}=\int_{W}|\det((D\phi^{\prime})_{g\gamma}\gamma(D\phi)_{0}^{-1})|_{K}dx_{1}\cdots dx_{l}=\int_{W}dx_{1}\cdots dx_{l}$

so that $v^{\prime}(W^{\prime})=v(W)$ . It follows that $\mu_{c}(gH)=\mu_{c}(gH\gamma)$ . $\square $

The lemma may be extended, without difficulty, to the case where acompact open
subset $E\subset G(O_{K})$ replaces the compact open subgroup $H\subset G(O_{K})$ . Define afunction
$\Phi$ on $G_{K}$ by

$\Phi(g)=\frac{\Phi^{*}(g)}{|f(g)|_{K}^{\delta}}$

where $\delta=l/m$ .

PROPOSITION 2.2. $\Phi$ is a $K^{\times}G(O_{K})bi$-invariant function on $G_{K}$ .

PROOF. Since $\Phi^{*}$ is already a $G(O_{K})bi$-invariant function on $G_{K}$ by PROPOSITION
2.1, the proposition will follow if $\mu_{c}(\pi^{r}u1_{n}gG(O_{K}))=q^{-rl}\mu_{c}(gG(O_{K}))$ and $|f(\pi^{r}u1_{n}\gamma)|_{K}^{\delta}$
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$=q^{-rl}$ where $\pi^{r}u$ is ageneric element in $K$ ’, $\gamma\in G(O_{K})$ and $1_{n}$ denotes the $n\times n$ identity
matrix. The string of equalities

$|f(\pi^{r}u1_{n}\gamma)|_{K}^{\delta}=|f(\pi^{r}u1_{n})|_{K}^{\delta}\cdot|f(\gamma)|_{K}^{\delta}=|\det(\pi^{r}u1_{n})|_{K}^{l/n}=q^{-rl}$

holds by $f\in Hom(G, G_{m})$ of degree $m>O$ so that $f^{n/m}=det$ . Express the Riemannian
structure of $G_{K}$ at $g$ by $O_{K}e_{1}+\cdots+O_{K}e_{l}$ . It follows that the Riemannian structure of
$G_{K}$ at $\pi^{r}u1_{n}g$ is given by $O_{K}(\pi^{r}u1_{n}e_{1})+\cdots+O_{K}(\pi^{r}u1_{n}e_{l})$ or $\pi^{r}O_{K}e_{1}+\cdots+\pi^{r}O_{K}e_{l}$

from which it is clear that $\mu_{c}(\pi^{r}u1_{n}gG(O_{K}))=q^{-rl}\mu_{c}(gG(O_{K}))$ . $\square $

It is now possible to write down asimplified expression for $Z_{K}(s)$ and, thus, complete
the first step.

REDUCTION THEOREM. $\Phi$ is a $K^{\times}G(O_{K})bi$-invariant function on $G_{K}$ such that, for
${\rm Re}(s)>0$ ,

$Z_{K}(s)=Z(s, \Phi)=\int_{G^{0}}|f(g)|_{K}^{s}\Phi(g)\mu_{0}(g)$

where $\mu_{0}(g)=|f(g)|_{K}^{\delta}\mu(g)$ .

PROOF. Clearly,

$Z(s, \Phi)=\int_{G^{0}}|f(g)|_{K}^{s}\Phi^{*}(g)\mu(g)$ .

Write $G^{0}=\square \gamma_{i}G(O_{K})$ so that

$Z(s, \Phi)=\sum_{i}\int_{\gamma_{i}G(O_{K})}|f(g)|_{K}^{s}\Phi^{*}(\gamma_{i})\mu(g)=\sum_{i}\int_{\gamma_{i}G(O_{K})}|f(g)|_{K}^{s}\mu_{c}(\gamma_{i}g)=Z_{K}(s)$

follows by the remarked upon straightforward extension of LEMMA 2.1. $[$

3. Computation of $\Phi$ .
The second step is composed of writing down an explicit formula for the function

$\Phi^{*}$ and combining this formula with the REDUCTION THEOREM to produce afinite form
expression for $Z_{K}(s)$ . Again, let $G$ be a $K$-subgroup of $GL_{n}$ satisfying (1), (2)
and (3). Let $S=\{\alpha_{i}|1\leq i\leq\ell\}$ be abasis for $R$ . Note that, with respect to $S,$ $R$

decomposes into adirect sum of positive roots $R^{+}$ and negative roots $R^{-}$ . Let $\omega$

denote the dominant weight of the irreducible representation $g\mapsto {}^{t}g^{-1}$ ([1]). Set
$\alpha_{0}=f|_{T}$ . By construction, $\alpha_{0}\cup S$ and $\omega$ generate $Hom(T, G_{m})$ with relation

$\omega^{\deg(f)}=\alpha_{0}^{-1}\prod_{i=1}^{\ell}\alpha_{i}^{b_{i}}$

defining positive integers $b_{1},$
$\ldots,$

$b_{\ell}([5])$ . $Put--$. $=Hom(G_{m}, T)$ and let $\xi_{0},$

$\ldots,$
$\xi_{\ell}\in--$. be

such that $\langle\alpha_{i}, \xi_{j}\rangle=1$ if $i=j,$ $0\leq i,$ $ j\leq\ell$ , and zero otherwise, $\langle\cdot, \cdot\rangle$ denoting the natural
pairing –. $\times Hom(T, G_{m})\rightarrow Z$ . It follows that $\xi_{0},$

$\ldots,$
$\xi_{\ell}$ generate –..

Now let $C$ be the positive Weyl chamber relative to $S$ and put –.$0=\{\xi\in--$. $|\xi(\pi)\in$
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$Mat_{n}(O_{K})\}$ . Let $\xi\in--.0\cap\overline{C}$ and, following [5], express $\xi$ as

(3.1) $\xi_{0}^{mn_{0}}\prod_{i=1}^{\ell}(\xi_{0}^{b_{i}}\xi_{i})^{n_{i}}$

where $n_{0}\in N$ and $n_{i}\in N,$ $ 1\leq i\leq\ell$ . Set $\omega_{r}(t),$ $1\leq r\leq n$ , as the diagonal entries of an
arbitrary $t\in T$ . It is awell known result of E. Cartan that

(3.2) $\omega_{r}=\omega^{-1}\prod_{i=1}^{\ell}\alpha_{i}^{c_{i}(r)}$

where the $c(r)=(c_{1}(r), \ldots, c_{\ell}(r)),$ $1\leq r\leq n$ , form asubset $\Gamma\subset N^{\ell}$ . By the choice of
the expression (3.1) for $\xi$ ,

$\langle\omega_{r}, \xi\rangle=n_{0}+\sum_{i=1}^{\ell}c_{i}(r)n_{i}$ .

For convenience in stating the following theorem, set $\eta=(n_{1}, \ldots, n_{\ell})\in N^{\ell}$ .

$\Phi^{*}$ -THEOREM. For a fixed $\xi\in--.0\cap\overline{C}$ ,

$\Phi^{*}(\xi(\pi))=q^{-(\dim(G)n_{0}+\sum_{c\in\Delta_{\xi}}c\cdot\eta+\sum_{\alpha\in R}c_{\alpha,\xi}\cdot\eta)}$

where $\Delta_{\xi}\subset\Gamma$ is a basis for $Q^{\ell}$ such that the sum $ c\cdot\eta$ for all $c\in\Delta_{\xi}$ takes the smallest
value and we take 2from $R$ and determine $r=r(\alpha, \xi)$ such that the $r^{th}$ row of the tangent
vector at $\theta_{\alpha}(u)$ at $u=O$ is different from zero and such that $ c\cdot\eta$ for the corresponding
$c=c(\alpha, \xi)$ takes the smallest value.

We will give acomplete proof of the $\Phi^{*}$ -THEOREM. In the course of the proof it is
convenient to define the concept of an admissible choice of local coordinates. Let
$X\subset K^{N}$ be an everywhere $l$-dimensional $K$-analytic manifold. Hence, for all $a\in X$ ,
there exist $K$-analytic functions $f_{i},$ $1\leq i\leq N$ , defined in aneighborhood $U$ containing $a$

such that

$\frac{\partial(f_{1},\ldots,f_{N})}{\partial(y_{1},\ldots,y_{N})}|_{y=a}\neq 0$

and $X$ is defined locally by $f_{l+1}=\cdots=f_{N}=0$ . Write $\{1, 2, \ldots, N\}$ as $I\square J$ , card(I) $=$

$l$ , and set

$F=\left\{\begin{array}{lll}\frac{\partial f_{l+1}}{\partial y_{1}} & \cdots & \frac{\partial f_{l+1}}{\partial y_{N}}\\\vdots & & \vdots\\\frac{\partial f_{N}}{\partial y_{1}} & \cdots & \frac{\partial f_{N}}{\partial y_{N}}\end{array}\right\}$ with $ F_{j}=\left\{\begin{array}{l}\frac{\partial f_{l+1}}{\partial y_{j}}\\\vdots\\\frac{\partial f_{N}}{\partial y_{j}}\end{array}\right\}.\wedge$

DEFINITION 3.1. The projection $pr_{I}$ : $U\rightarrow K^{l}$ given by $pr_{I}(x)=(x_{i})_{i\in I}$ is said to
define an admissible choice of local coordinates on aneighborhood $U$ containing $a$ if
and only if $\det((F_{j}(a))_{j\in J})\neq 0$ .
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Note that, in this set-up, canonical measure has the meaning detailed in [5]. In
particular,

$\mu_{c}(U)=\max\{\mu(pr_{I}(U))\}$

where $pr_{I}$ : $U\rightarrow K^{l}$ defines an admissible choice of local coordinates on $U$ and $\mu$ is the
usual Haar measure on $K^{l}$ .

PROOF 0F THE $\Phi^{*}$ -THEOREM. Let $U$ be acompact open neighborhood in $G(O_{K})$

such that $U$ contains the identity $1_{n}$ . Recall that, as $G$ is a $K$-subgroup of $GL_{n}(K)$ , an
element $g\in G$ has apresentation in the basis $e_{ij},$

$1\leq i,$ $j\leq n$ , where $e_{ij}$ denotes the $n\times n$

matrix with a1in the $(i,j)th$ place and zeros elsewhere. Thus, any admissible choice of
local coordinates $pr_{I}$ : $U\rightarrow K^{l}$ defined by $pr_{I}(x)=((x_{ij})_{ij\in I})$ has image

$\sum\pi^{r_{ij}}O_{K}e_{ij}$ ,
$ij\in I$

where $r_{ij}\in N$ . Choosing local coordinates on $U\subset G(O_{K})$ corresponds to choosing
local coordinates in $T_{K}\cap U$ and $\theta_{\alpha}(G_{a})_{K}\cap U$ . Fix an $\alpha\in R$ . Since the dimension of
$\theta_{\alpha}(G_{a})$ is 1and $\theta_{\alpha}(G_{a})-1_{n}$ is nilpotent, local coordinates in $\theta_{\alpha}(G_{a})_{K}\cap U$ must have the
form $x_{ij},$ $i\neq j,$ $1\leq i,j\leq n$ . If $\alpha\in R^{+}$ ,

$\theta_{\alpha}(u)=\left\{\begin{array}{lll}1 & & *\\ & \ddots & \\0 & & 1\end{array}\right\}$

where the entries above the main diagonal have the form $a_{ij}u,$ $i<j$ , for fixed $a_{ij}\in K$ .
Therefore, possible choices for alocal coordinate on $\theta_{\alpha}(G_{a})_{K}\cap U$ correspond to the $x_{ij}$ ,
$i<j$ , such that $(d/du)\theta_{\alpha}(u)|_{u=0}\neq 0$ . Since $G$ has very good reduction mod $\pi,$

$\theta_{\alpha}$ has
good reduction mod $\pi$ and the coefficients $a_{ij}$ satisfy $|a_{ij}|_{K}=1$ implying any $x_{ij},$ $i<j$ ,
such that $(d/du)\theta_{\alpha}(u)|_{u=0}\neq 0$ will suffice to define the local coordinate. The situation is
similar for $\alpha\in R^{-}$ .

As $T$ was assumed $K$-split and diagonal, there is a $K$-isomorphism $\gamma$ : $G_{m}^{\dim(T)}\rightarrow T$

and local coordinates in $T_{K}\cap U$ have the form $x_{ii},$
$1\leq i\leq n$ . If $l:G_{m}\rightarrow G_{m}^{\dim(T)}$

denotes the inclusion $v\mapsto(1, \ldots, 1, v, 1, \ldots, 1)$ , then

$\gamma\circ l(v)=[_{0}...$ $v^{t_{i}}$ $.0..]$

where $t_{i}\in Z,$ $1\leq i\leq n$ . Since $1+\pi^{t}O_{K}$ is asubgroup of $O_{K}^{\times}$ when $t$ is an integer
greater than or equal 1possible choices for alocal coordinate on $T_{K}\cap U$ corresponding
to $\gamma\circ l(G_{m})\cap U$ are any entries $x_{ii},$

$1\leq i\leq n$ , such that $(d/dv)(\gamma\circ l)(v)|_{v=1}\neq 0$ . Any
such choice will do.

Now apply Krasner’s Lemma to choose $U$ such that $pr_{I}(U)$ , for any choice I at $1_{n}$ ,
has the form $\sum\pi^{r}O_{K}e_{ij}$ where $r$ is afixed positive integer and the summation is over all
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$ij\in I$ . By definition,

$U\ni x\mapsto\left\{\begin{array}{lll}\pi^{\langle w_{1},\xi\rangle} & & \\ & \ddots & \\ & & \pi^{\langle w_{n},\xi\rangle}\end{array}\right\}\{$

$x_{11}$ . . . $x_{1n}$

.$\cdot$

.
.$\cdot$
.

$x_{n1}$ . . . $x_{nn}$

$=\xi(\pi)x\in\xi(\pi)U$ .

Furthermore, I is admissible at $1_{n}$ if and only if I is admissible at $\xi(\pi)$ . Therefore,
using the freedom in choosing I at $1_{n}$ ,

$\mu_{c}(\xi(\pi)U)=\max\{\mu(pr_{I}(\xi(\pi)U))\}=q^{-(\dim(G)n_{0}+\sum_{c\in\Delta\xi}c\cdot\eta+\sum_{\alpha\in R}c_{\alpha,\xi}\cdot\eta)}\mu(U)$

where $\Delta_{\xi}\subset\Gamma$ and $c_{\alpha,\xi}$ are as in the statement. This is as desired. $\square $

We complete the second step by citing the following theorem of Igusa. The
notation in the theorem is as follows: the $a_{i}$ are defined by $\prod\alpha=\prod\alpha_{i}^{a_{i}}$ where the first
product is over all 2in $R^{+}$ and the second product is over all $i,$ $ 1\leq i\leq\ell$ ; the $m_{i}$ ,
$ 1\leq i\leq\ell$ , are the exponents of the derived group $[G, G]$ of $G([2]);W$ is the Weyl group
of $G$ and an element $w\in W$ acts on aroot $\alpha\in R$ as $w(\alpha)(t)=\alpha(w^{-1}(t))$ where $t\in T$;and
2is the Bott function defined on $W$ by $\lambda(w)=card(w^{-1}(R^{+})\cap R^{-})$ .

THEOREM 3.1 ([5]). Let $s_{i}\in C,$ $ 1\leq i\leq\ell$ . If $\Phi$ is a $K^{\times}G(O_{K})bi$-invariant function
on $G_{K}$ such that

(3.3) $\Phi(\xi(\pi))=\prod_{i=1}^{\ell}|\alpha_{i}(\xi(\pi))|_{K}^{s_{i}}$

for every $\xi\in--.0\cap\overline{C}$, then

$Z(s, \Phi)=\frac{(1-q^{-1})}{(1-q^{-m(s+\delta)})}\cdot\prod_{i=1}^{\ell}(1-q^{-m_{i}})/(1-q^{a_{i}-b_{i}(s+\delta)-s_{i}})$

$\times\sum_{w\in W}q^{-\lambda(w)}\cdot\prod_{\alpha_{i}\in w(R^{-})}q^{a_{i}-b_{i}(s+\delta)-s_{i}}$

is a rational function of $q^{-1},$ $q^{-s}$ and $q^{-s_{i}},$ $ 1\leq i\leq\ell$ , of $degree-m=-\deg(f)$ in $q^{-s}$ with
rational coefftcients such that

$Z(s, \Phi)|_{q\rightarrow q^{-1}}=q^{-ms}Z(s, \Phi)$ .

Ageneralization of the above theorem suitable for applications where $\Phi(\xi(\pi))$ does not
have the multiplicative expression (3.3) exists. The interested reader is referred to [11]
for the statement and complete proof of this generalization.

4. Weights and Roots.

As an application of the results in the prior two sections, we consider the case $G=$

$Ad(G^{\prime})(G_{m}1_{\dim(G^{\prime})})$ where $G^{\prime}$ is asimple Chevalley $K$-subgroup of $SL_{n}$ of type $B_{\ell},$ $C_{\ell}$ ,
$D_{\ell},$ $E_{6},$ $E_{7},$ $E_{8},$ $F_{4}$ and $G_{2}$ . Since our choice of $G$ will satisfy (1), (2) and (3), we are
reduced to computing $\Phi(\xi(\pi))$ and verifying that it has the form required to apply
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THEOREM 3.1. For notational convenience, write $\Phi(\xi(\pi))=[s_{1}, \ldots, s_{\ell}]$ if

$\Phi(\xi(\pi))=\prod_{i=1}^{\ell}|\alpha_{i}(\xi(\pi))|_{K}^{s_{i}}$ .

We remark that our computational task was considerably reduced by the MAPLE
software package crystal ([6]).

In the case of $G^{\prime}$ of exceptional type, $G^{\prime}$ is assumed generated by aChevalley
basis. The computation of $\Phi(\xi(\pi))$ is, thus, reduced to listing the weights $P$ of $Ad(G^{\prime})$ ,
computing $\Gamma$ from $P$ , computing $\Delta_{\xi}$ by inspection of $\Gamma$ and computing $c_{\alpha,\xi}$ , for $\alpha\in P$

nonzero, by finding $\beta\in P$ such that $\alpha+\beta\in P$ and $\langle\alpha+\beta, \xi\rangle\in N$ is minimal. For
example, let $G^{\prime}$ be the Chevalley $K$-group $G_{2}$ . Let $\{\alpha_{1}, \alpha_{2}\}$ be abasis for the root
system $R$ of $G_{2}$ . Set $\lambda_{0}=-(\lambda_{1}+\lambda_{2}),$ $\lambda_{1}=\alpha_{1}$ and $\lambda_{2}=\alpha_{1}+\alpha_{2}$ . The weights of
$Ad(G_{2})$ are, then,

$P=\{\pm\lambda_{i}(i=0,1,2), \pm(\lambda_{i}-\lambda_{j})(0\leq i<j\leq 2)\}\cup\{0\}$ .

The dominant weight $\omega$ of the irreducible representation $g\mapsto {}^{t}g^{-1}$ of $Ad(G_{2})$ is
$\lambda_{0}-\lambda_{2}$ . We compute the following elements contained in $\Gamma$ as in (3.2):

Hence, $\Delta_{\xi}=(1,2)$ for all $\xi\in--.0\cap\overline{C}$ . It is also easy to see that $c_{\lambda_{0}-\lambda_{2},\xi}=(0,0)$ for all $\xi$

since $O\in P$ such that $\lambda_{0}-\lambda_{2}+0=\lambda_{0}-\lambda_{2}\in P$ and $\langle\lambda_{0}-\lambda_{2}, \xi\rangle$ is minimal in $N$ . Now
$c_{\lambda_{2}-\lambda_{0},\xi}=(3,2)$ for all $\xi$ as, given $\lambda,$

$\lambda^{\prime}$ and $\omega$ in $P$ , if $\lambda+\lambda^{\prime}=\omega$ such that $\omega$ is unique
up to multiplicity and $\langle\omega, \xi\rangle$ is minimal in $N$ for all $\xi$ , then -%+co $=\lambda^{\prime}$ such that $\lambda^{\prime}$

is unique up to multiplicity and $\langle\lambda^{\prime}, \xi\rangle$ is minimal in $N$ for all $\xi$ . Similarly, $c_{\lambda_{0}-\lambda_{1},\xi}=$

$(0,0),$ $c_{\lambda_{1}-\lambda_{0},\xi}=(3,1),$ $c_{\lambda_{0},\xi}=(0,0),$ $c_{-\lambda_{0},\xi}=(2,1),$ $c_{-\lambda_{2},\xi}=(0,0),$ $c_{\lambda_{2},\xi}=(1,1),$
$c_{\lambda_{1}-\lambda_{2},\xi}$

$=(0,0),$ $c_{\lambda_{2}-\lambda_{1},\xi}=(0,1),$ $c_{-\lambda_{1},\xi}=(0,1)$ and $c_{\lambda_{1},\xi}=(1,1)$ for all $\xi\in--.0\cap\overline{C}$ . Hence,

$\Phi(\xi(\pi))=\frac{q^{-15_{n_{0}}-11_{n_{1}}-10_{n_{2}}}}{|f(\xi(\pi))|_{K}^{\delta}}=|\alpha_{1}(\xi(\pi))|_{K}^{11}|E2(\xi(\pi))|_{K}^{10}=[11,10]$

and THEOREM 3.1applies.
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In asimilar manner one finds $\Phi(\xi(\pi))=[39,61,51,46]$ for $G^{\prime}$ the Chevalley K-group
$F_{4},$ $\Phi(\xi(\pi))=[17,34,59,34,17,58]$ for $G^{\prime}$ the Chevalley $K$-group $E_{6},$ $\Phi(\xi(\pi))=[28,56$ ,
84, 115, 102, 101, 50] for $G^{\prime}$ the Chevalley $K$-group $E_{7}$ and $\Phi(\xi(\pi))=[192,193,214,245$ ,
282, 186, 93, 137] for $G^{\prime}$ of type $E_{8}$ .

In the case of $G^{\prime}$ of type $B_{\ell},$ $C_{\ell}$ or $D_{\ell}$ , we use the classical presentation of $G^{\prime}$ as the
connected component of the identity of

$G_{f}=\{g\in GL_{n}|f(gx)=f(x)\}$

where $f$ is chosen suitably in $K[x_{11}, \ldots x_{nn}]$ , i.e., for type $D_{\ell},$ $B_{\ell},$ $f(x)=(1/2)^{t}xSx$ where

$S$ equals $\left\{\begin{array}{ll}0 & 1_{\ell}\\1_{\ell} & 0\end{array}\right\},$ $\left\{\begin{array}{lll}1 & & \\ & 0 & 1_{\ell}\\ & 1_{\ell} & 0\end{array}\right\}$ , respectively, and for $C_{\ell},$ $f(x, y)={}^{t}xJy$ where $J=$

$\left\{\begin{array}{ll}0 & 1_{\ell}\\-1_{\ell} & 0\end{array}\right\}$ . The conditions of the $\Phi^{*}$ -THEOREM imply there is no loss of generality

in computing $\Phi(\xi(\pi))$ via examination of the Lie algebra $LG^{\prime}$ of $G^{\prime}$ . For example,
consider $LSO_{2\ell},$ $\ell\geq 4$ . Note that $LSO_{2\ell}$ is the type $D_{\ell}$ case. Let $V$ be avector space
with basis $v_{1},$

$\ldots,$
$v_{\ell},$ $v_{-1},$

$\ldots,$
$v_{-\ell}$ determined by the condition

${}^{t}v_{i}Sv_{j}=\{$

0if $|j-i|\neq 0$

1if $|j-i|=0$ .

With respect to the given basis for $V$, arepresentative element $L\in LSO_{2\ell}$ has the form

$L=\left\{\begin{array}{ll}A & B\\C & -{}^{t}A\end{array}\right\}$

where $A,$ $B$ and $C$ are in $Mat_{\ell}(K)$ and $B,$ $C$ are skew-symmetric. Assign the weight of
$v_{\pm i}$ as $\pm\lambda_{i}$ . If we let $Ext(V)$ denote the exterior algebra over $V$ in the given basis and
let $Ext_{m}(V)$ be the homogeneous subspace of degree $m$ , then $ad(LSO_{2\ell})$ has basis the
canonical choice of basis for $Ext_{2}(V)$ . Hence, the weights $P$ of $ad(LSO_{2\ell})$ are

$\{\pm(\lambda_{i}-\lambda_{j})|1\leq i<j\leq\ell\}\cup\{\pm(\lambda_{i}+\lambda_{j})|1\leq i<j\leq\ell\}$ $\cup\{0\}$ .

The dominant weight $\omega$ of the irreducible representation $L\mapsto-{}^{t}L$ of $ad(LSO_{2\ell})$

is $\lambda_{1}-\lambda_{2}$ . Abasis $S$ for the roots $R$ of $LSO_{2\ell}$ is chosen as $\{\alpha_{i}\}_{1\leq i\leq\ell}$ where $\alpha_{i}=\lambda_{i}$

$-\lambda_{i+1},1\leq i\leq\ell-1$ , and $\alpha_{\ell}=\lambda_{\ell-1}+\lambda_{\ell}$ . It follows that

(4.1) $\{$

$\pm(\lambda_{i}-\lambda_{j})=-\lambda_{1}-\lambda_{2}+[\lambda_{1}+\lambda_{2}+(\alpha_{i}+\cdots+\alpha_{j-1})]$

$\pm(\%_{i}+\lambda_{j})$ $=-\lambda_{1}-\lambda_{2}+[\lambda_{1}+\lambda_{2}+((\alpha_{i}+\cdots+\alpha_{\ell-2})+(\alpha_{j}+\cdots+\alpha_{\ell}))]$

where $ 1\leq i<j\leq\ell$ , with the coefficients of the $\alpha_{i},$
$ 1\leq i\leq\ell$ in the bracketed terms

determining the subset $\Gamma\subset N^{\ell}$ . We use the above information to compute the $\Delta_{\xi}$ and
$c_{\alpha,\xi},$

$\alpha\in R$ , appearing in the $\Phi^{*}$ -THEOREM for $ad(LSO_{2\ell})$ . An examination of (4.1)
yields $\Delta_{\xi}$ determined by $-\lambda_{1}-\lambda_{3},$ $-\lambda_{1}-\lambda_{4},$

$\ldots,$
$-\lambda_{1}-\lambda_{\ell},$ $-\lambda_{2}-\lambda_{3}$ and $\lambda_{\ell}-\lambda_{1}$ for all

$\xi\in--.0\cap\overline{C}$ . The representative element $L$ acts on $v_{i}\wedge v_{j}\in Ext_{2}(V)$ as $L(v_{i}\wedge v_{j})=$

$(Lv_{i})\wedge v_{j}+v_{i}\wedge(Lv_{j}),$ $-\ell\leq i<j\leq\ell$ . By construction, $c_{-\lambda_{i}-\lambda_{j},\xi},$ $i<j$ , corresponds to
the row vector of miminal weight in which $\pm c_{ij}\in C$ appears under the action of $L$ on all



Generalized Igusa local zeta functions 263

basis elements of $Ext_{2}(V)$ . Under the action of $L,$ $\pm c_{ij}$ occurs in rows of weight

$-\lambda_{i}+\lambda_{(\hat{j})}$ , $-\lambda_{i}-\lambda_{(\hat{i})}$ ,
(4.2)

$-\lambda_{j}+\lambda_{(\hat{i})}$ , $-\lambda_{j}-\lambda_{(\hat{j})}$ ,

where $(\hat{r})$ denotes any integer value from 1to 1except $r$ . The set of weights of the
form $-\lambda_{r^{\prime}}\pm\lambda_{(\hat{r})},$ $r,$ $r^{\prime}\in\{1, \ldots, \ell\}$ , is linearly ordered by $<the$ usual partial ordering on
roots with respect to $R^{+}$ . Therefore, let

$-\lambda_{i}+\lambda_{u}$ , $-\lambda_{i}-\lambda_{v}$ ,

$-\lambda_{j}+\lambda_{v^{\prime}}$ , $-\lambda_{j}-\lambda_{u^{\prime}}$ ,

be the respective minimal weights from (4.2). Then

$-\lambda_{i}+\lambda_{u}>-\lambda_{i}-\lambda_{v}$ ,
$\wedge$

$-\lambda_{j}+\lambda_{v^{\prime}}>-\lambda_{j}-\lambda_{u^{\prime}}$ .

In particular, $-\lambda_{i}-\lambda_{v}<-\lambda_{j}-\lambda_{u^{\prime}}$ for either $u^{\prime}=v=1,$ $i<j$ , or $i=u^{\prime}=1,$ $v=2$ and
$j\geq 2$ . Hence, $c_{-\lambda_{i}-\lambda_{j},\xi},$ $i<j$ , is determined by $-\lambda_{i}-\lambda_{v}$ where $v=1$ if $i\neq 1$ and $v=2$

if $i=1$ .
Finding the weight determining $c_{\alpha,\xi}$ for 2of the form $\lambda_{i}+\lambda_{j},$ $i>j,$ $\lambda_{i}-\lambda_{j},$ $i<j$ ,

$and-\lambda_{i}+\lambda_{j},$ $i>j$ , is similar. The possible choices for this determining row weight and
the determining row weight for the various 2are listed below:

$\lambda_{i}+\lambda_{j},$ $i>j$ : $\lambda_{i}-\lambda_{(\hat{j})},$ $\lambda_{i}+\lambda_{(\hat{i})}$

$\lambda_{j}-\lambda_{(\hat{i})},$ $\lambda_{j}+\lambda_{(\hat{j})}$

and $c_{\lambda_{i}+\lambda_{j,\xi}}$ is determined by $\lambda_{j}-\lambda_{u}$ minimal of the form $\lambda_{j}-\lambda_{(\hat{i})}$ ;

$\lambda_{i}-\lambda_{j},$ $i<j$ : $-\lambda_{j}+\lambda_{d},$ $-\lambda_{j}-\lambda_{(\hat{i},\hat{j})}$

$\lambda_{i}+\lambda_{(\hat{i},\hat{j})},$
$\lambda_{i}-\lambda_{d}$ ,

$d$ arbitrary, $ 1\leq d\leq\ell$ , and $c_{\lambda_{i}-\lambda_{j},\xi},$ $i<j$ , is determined by $-\lambda_{j}-\lambda_{u}$ minimal of the form
$-\lambda_{j}-\lambda_{(\hat{i},\hat{j})}$ ;

$-\lambda_{i}+\lambda_{j},$ $i>j$ : $\lambda_{i}+\lambda_{(\hat{i},\hat{j})},$
$\lambda_{i}-\lambda_{d}$

$-\lambda_{j}+\lambda_{d},$ $-\lambda_{j}-\lambda_{(\hat{i},\hat{j})}$ ,

$d$ arbitrary, $ 1\leq d\leq\ell$ , and $c_{-\lambda_{i}+\lambda_{j},\xi},$ $i>j$ , is determined by $-\lambda_{j}-\lambda_{u}$ minimal of
the form $-\lambda_{j}-\lambda_{(\hat{i},\hat{j})}$ . Hence, in the same notation as was used in the exceptional
cases,

$\Phi(\xi(\pi))=[(1, \ell, \ell-2, \ell-3, \ldots, 3,1,1)$

$+(0,$ $\frac{(\ell-2)(\ell-3)}{2},$ $\frac{(\ell-3)(\ell-4)}{2},$
$\ldots,$

$1,0,0)$



264 R. MARTIN

$+(\ell-1,$
$\ldots,$

$\frac{(\ell-i+1)(\ell-i))}{2}+(i-1)\ell,$ $\ldots,\frac{(\ell-2)(\ell-1)}{2},\frac{(\ell-1)\ell}{2})$

$+(0,$ $\frac{(\ell-2)(\ell-3)}{2}+1,$ $\frac{(\ell-3)(\ell-4)}{2},$
$\ldots,$

$\frac{(\ell-i)(\ell-(i+1))}{2},$
$\ldots,$

$1,0,0)$

$+(\ell-1,$ $\frac{(\ell-1)\ell}{2},$

$\ldots,$
$(i-1)(\ell-i)+\frac{(\ell-i)(\ell-(i+1))}{2},$

$\ldots,$
$\ell-1,0)]$ .

The $LSO_{2\ell+1}$ or type $B_{\ell},$ $l\geq 3$ , case is similar and

$\Phi(\xi(\pi))=[(1, \ell, \ell-2, \ldots, 2,1)+(0, \ell-2, \ell-3, \ldots, 1,0)$

$+(1, \ell, \ell, \ldots, \ell)+(0,$ $\frac{(\ell-2)(\ell-3)}{2},$ $\frac{(\ell-3)(\ell-4)}{2},$
$\ldots,$

$1,0,0)$

$+(\ell-1,$
$\ldots,$

$\frac{(\ell-i)(\ell-i+1))}{2}$ $ $(i-1)\ell,$
$\ldots,$

$\frac{(\ell-1)\ell}{2})$

$+(0,$ $\frac{(\ell-2)(\ell-3)}{2}+1,$ $\frac{(\ell-3)(\ell-4)}{2},$ $\ldots,,$ $\ldots,$
$1,0,0)(\ell-i)(\ell_{2}-(i+1))$

$+(\ell-1,$ $\frac{(\ell-1)\ell}{2},$

$\ldots,$
$(i-1)(\ell-i)+\frac{(\ell-i)(\ell-(i+1))}{2},$

$\ldots,$
$\ell-1,0)]$ .

We compute the $LSO_{5}$ case directly. Asimple calculation gives $\Phi(\xi(\pi))$ equal $[4, 8]$ .
The $LSp_{2\ell}$ or type $C_{\ell}$ case, $\ell\geq 3$ , may also be handled in astraightforward

manner. In this case we have

$\Phi(\xi(\pi))=[(\ell, \ell-1, \ldots, 2,1)+(\ell+1, \ell+2, \ldots, \ell+\ell-1, \ell)$

$+(\ell-1, \ell-2, \ldots, 1,0)$

$+(\frac{(\ell-1)\ell}{2},$
$\ldots,$

$\ell(i-1)+\frac{(\ell-i+1)(\ell-i)}{2},$ $\ldots,\frac{(\ell-1)\ell}{2})$

$+(\frac{(\ell-2)(\ell-1)}{2},\frac{(\ell-3)(\ell-2)}{2},$
$\ldots,$

$1,0,0)$

$+(\frac{(\ell-1)\ell}{2},$
$\ldots,$

$(i-1)(\ell-i)+\frac{(\ell-i+1)(\ell-i)}{2},$
$\ldots,$

$0)$

$+(\frac{(\ell-2)(\ell-1)}{2},$ $\ldots,,$ $\ldots,$
$0)(\ell-i+1)(\ell-1)]2^{\cdot}$

It is aremarkable fact that for $G^{\prime}$ of type $A_{\ell},$ $\ell>3$ , there does not exist an
expression for $\Phi(\xi(\pi))$ suitable for application of THEOREM 3.1. This is because, in
contradistinction with the cases of $G^{\prime}$ just considered, the choice of $\Delta_{\xi}$ and $c_{\alpha,\xi}$ in this
case depend on $\xi$ . The interested reader is referred to [11] for adetailed examination of
this case.
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5. Results.

In the case $Ad(G^{\prime})(G_{m}1_{\dim(G^{\prime})})$ , where $G^{\prime}$ is asimple Chevalley $K$-subgroup of $SL_{n}$

of type $B_{\ell},$ $C_{\ell},$ $D_{\ell},$ $E_{6},$ $E_{7},$ $E_{8},$ $F_{4}$ and $G_{2}$ , we have now explicitly computed $\Phi(\xi(\pi))$ ,
$\xi\in--.0\cap\overline{C}$ . In addition, each such $\Phi(\xi(\pi))$ was exhibited in the form required for
application of THEOREM 3.1. We are, thus, led to consider the generalized Igusa local
zeta function

$Z_{K}(s)=Z(s, \Phi)=\int_{[Ad(G^{\prime})(G_{m}1_{\dim(G^{\prime})})]^{0}}|f(g)|_{K}^{s}\Phi(g)\mu_{0}(g)$ .

THEOREM 5.1. Let $G^{\prime}$ be of type $G_{2},$ $F_{4},$ $E_{6},$ $E_{7},$ $E_{8},$ $D_{\ell},$ $B_{\ell}$ or $C_{\ell}$ . Then $Z_{K}(s)$ is $a$

rational function of $q^{-1},$ $q^{-s}$ of degree $-1=-\deg(f)$ in $q^{-s}$ with rational coefftcients and
it satisftes the functional equation

$Z_{K}(s)|_{q\rightarrow q^{-1}}=q^{-s}Z_{K}(s)$ .

PROOF. This is an immediate consequence of the forth section. $\square $

This completes the verification in the case $Ad(G^{\prime})(G_{m}1_{\dim(G^{\prime})}),$
$G^{\prime}$ as above, of the

conjecture of Igusa mentioned in the introduction. The straightforwardness of this
result was completely unexpected as $\Phi(\xi(\pi))$ rarely has the multiplicative expression
(3.3) required by THEOREM 3.1. The interested reader is referred to [9], [10] and [11] for
examples of more pathological $\Phi(\xi(\pi))$ .

The closure of $Ad(G^{\prime})(G_{m}1_{\dim(G^{\prime})})$ is an absolutely irreducible $(\dim(G^{\prime})+1)-$

dimensional affine $K$-variety. Taking the $K$-rational points of $Ad(G^{\prime})(G_{m}1_{\dim(G^{\prime})})$ as
the $X$ of the introduction, observe that not only $Z_{K}(s)$ but also $Z_{L}(s)$ for every finite
extension $L$ of $K$ is defined.

DEFINITION 5.1. The polynomial $Z(u, v)\in Q(u, v)$ is called auniversal $p$-adic zeta
function of $(G,f)$ if, after apossible extension $K^{\prime}$ of $K$,

$Z(u, v)=Z_{L}(s)$

for some choice of variables $u,$ $v$ and all extensions $L$ of $K^{\prime}$ .

COROLLARY 5.1. Let $G^{\prime}$ be of type $G_{2},$ $F_{4},$ $E_{6},$ $E_{7},$ $E_{8},$ $D_{\ell},$ $B_{\ell}$ or $C_{\ell}$ . If $u,$ $v$ are
taken as $q^{-1},$ $q^{-s}$ , respectively, and $K=Q_{p},$ $p\neq 2$ , the corresponding universal $p$-adic zeta

function of $(Ad(G^{\prime})(G_{m}1_{\dim(G^{\prime})}), f)$ is

$Z(q^{-1}, q^{-s})=Z_{L}(s)$

with universal functional equation

$Z(u^{-1}, v^{-1})=vZ(u, v)$ .

PROOF. This is an immediate consequence of THEOREM 5.1. $\square $

Finally, we remark that the function $\Phi$ is not ‘residual’ as defined by J. Denef and
D. Meuser in [3]. Therefore, the general result Denef and Meuser prove in [3] about the
finite form and functional equation of an Igusa local zeta function does not apply to a
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generalized Igusa local zeta function. It is not known how far the theory Denef and
Meuser develop in [3] extends to generalized Igusa local zeta functions. As one would
expect, the major stumbling block to extending this theory is the nontranslation in-
variance of Serre’s canonical measure. The reader is referred to [5], [10] and, in
particular, [9] for alook at some of the difficulties one faces in trying to push through
for generalized Igusa local zeta functions the Denef-Meuser theory. The reader will
also find in [8] or [10] acomplete answer to this extension question for Chevalley K-
groups.
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