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Abstract. If a polynomial map f : C
n ! C has a nice behaviour at infinity (e.g. it is a

‘‘good polynomial’’), then the Milnor fibration at infinity exists; in particular, one can

define the Seifert form at infinity Gð f Þ associated with f . In this paper we prove a

Sebastiani-Thom type formula. Namely, if f : C
n ! C and g : C

m ! C are ‘‘good’’

polynomials, and we define h ¼ f l g : C
nþm ! C by hðx; yÞ ¼ f ðxÞ þ gð yÞ, then

GðhÞ ¼ ðÿ1Þmn
Gð f Þ n Gð gÞ. This is the global analogue of the local result, proved

independently by K. Sakamoto and P. Deligne for isolated hypersurface singularities.

The Seifert forms are unimodular bilinear forms (over Z) associated with some

geometrical objects: the spinnable structures.

A spinnable structure (or open book decomposition) on a closed manifold M is a

triple S ¼ fF ;m; gg such that F is a compact manifold (with boundary), m : F ! F is a

di¤eomorphism such that mjqF ¼ identity, and g : TðF ;mÞ ! M is a di¤eomorphism,

where TðF ;mÞ is a closed manifold defined as follows. It is obtained from F � ½0; 1� by

identifying ðx; 1Þ with ðmðxÞ; 0Þ for all x A F , and ðx; tÞ with ðx; t 0Þ for all x A qF and

t; t 0 A ½0; 1�. The spinnable structure S is called simple if F is a handle-body obtained

from a ball by attaching handles of index U ½dimM=2�.

A closed, oriented ð2nÿ 1Þ-manifold is called Alexander manifold, if HnðM;ZÞ ¼

Hnÿ1ðM;ZÞ ¼ 0. If it has a simple spinnable structure, then Hnÿ1ðF ;ZÞ is torsion free.

At the homological level, the geometry of a spinnable structure is coded in its Seifert

form. Let S ¼ fF ;m; gg be a simple spinnable structure on an Alexander manifold

M 2nÿ1. Then the bilinear form ~HHnÿ1ðFÞn ~HHnÿ1ðF Þ ! Z, given by ða; bÞ ¼ linking

number ðgaða� 0Þ; gaðb � 1=2ÞÞ is called the Seifert form of S.

The power of the Seifert form can be emphasized by the following result of M. Kato

[4], and (independently) A. Durfee [3]: there is a one-to-one correspondence of iso-

morphism classes of simple spinnable structures on a 1-connected Alexander manifold

M 2nÿ1 with congruence classes of unimodular matrices via Seifert matrices (provided

that nV 4).

We recall the following fundamental example. If f : ðC n; 0Þ ! ðC ; 0Þ is the germ

of an analytic function, which defines an isolated singularity, then by a result of J.

Milnor [6], for any ð2nÿ 1Þ-dimensional sphere S2nÿ1
e (centered at the origin, and with

su‰ciently small radius e), the map f =j f j : S2nÿ1
e n f ÿ1ð0Þ ! S1 is a Cy locally trivial

fibration with fiber F. Moreover, this fibration is equivalent to the fibration f :
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f ÿ1ðqDrÞVBn
e
! qDr, where Dr is a disc centered at the origin with radius r ð0 < rf eÞ,

and Bn
e
is the open ball centered at the origin with radius e.

The advantage of the first (Milnor) fibration is that it provides a simple spinnable

structure of the ð2nÿ 1Þ-dimensional sphere S2nÿ1
e

. The associated Seifert form is

denoted by Gð f Þ, and it is (maybe) the most powerful topological invariant of f. In

general, there is no algorithm to determine it, and even in special cases its computation

can be very di‰cult. For this reason, the following result of K. Sakamoto (or

equivalently, the result of P. Deligne, which solves the problem at the variation map

level) is crucial:

Theorem. [16, 17]. Assume that g : ðC m; 0Þ ! ðC ; 0Þ and h : ðC n; 0Þ ! ðC ; 0Þ

define isolated singularities. Define f : ðC nþm; 0Þ ! ðC ; 0Þ by f ðx; yÞ ¼ gðxÞ þ hðyÞ.

Then

Gð f Þ ¼ ðÿ1Þmn
GðgÞnGðhÞ:

Actually, the Milnor fiber F of f can be identified with the join G �H of the Milnor

fibers G and H of g and h respectively, therefore ~HHnþmÿ1ðFÞ ¼ ~HHmÿ1ðGÞn ~HHnÿ1ðHÞ,

hence the above formula makes sense by this identification.

The goal of this paper is to present a similar result for global polynomial maps

f : C
n ! C .

We say that the Milnor fibration at infinity of the polynomial map f : C
n ! C

exists, if for R su‰ciently big

f =j f j : S2nÿ1
R n f ÿ1ð0Þ ! S1

is a Cy locally trivial fibration ðS2nÿ1
R ¼ qBn

RÞ.

The main di‰culty is that, in general, the Milnor fibration at infinity does not exist

(see, for example, [13, 14, 12]). On the other hand, in the last years, a large number of

families of polynomial maps were constructed with nice behaviour at infinity.

In this paper, we will assume that our polynomials f : C
n ! C satisfy the following

condition:

(C) (Regularity at infinity)

For any t A C , the fiber f ÿ1ðtÞ is either smooth or has only isolated singularities,

and there exists a su‰ciently small neighbourhood Dt of t, and a su‰ciently large

RðtÞg 0 such that for any RVRðtÞ

f : ð f ÿ1ðDtÞnB
n
R; f

ÿ1ðDtÞVS2nÿ1
R Þ ! Dt

is a trivial fibration over Dt.

If a polynomial f satisfies the condition (C), then it has the following properties as

well:

(P1) The bifurcation set of f is exactly the set Sf of critical values, i.e.

f j
C

nn f ÿ1ðSf Þ
: C

nn f ÿ1ðSf Þ ! CnSf

is a Cy locally trivial fibration, with a (smooth) fiber F which has the homotopy type

of a bouquet 4S nÿ1 of ðnÿ 1Þ-dimensional spheres. (For the proof of (P1), see the

corresponding arguments in [1, 7, 8, 12, 11].)
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(P2) For any disc D with the property Sf HD, there exists R0 g 0 such that for

any RVR0

f : ð f ÿ1ðqDÞVB
n

R; f
ÿ1ðqDÞVS2nÿ1

R Þ ! qDðyÞ

is a locally trivial fibration of pair of spaces, such that its restriction on f ÿ1ðqDÞVS2nÿ1
R

is trivial, and actually it can be extended to a trivial fibration f ÿ1ðDÞVS2nÿ1
R ! D.

(The proof is easy.)

The fibration f ÿ1ðqDÞ ! qD is called the fibration of f at infinity, and it is

equivalent to the fibration f ÿ1ðqDÞVB
n

R ! qD.

(P3) The Milnor fibration f =j f j : S2nÿ1
R n f ÿ1ð0Þ ! S1 exists and it is equivalent

to the fibration of f at infinity. In particular, the fiber of f =j f j is di¤eomorphic to the

generic fiber f ÿ1ðtÞ of f (See the corresponding proofs in [14, 13] for n ¼ 2, and notice

that the dimension is not important; see also [12].)

Polynomial maps which satisfy the condition (C) provide simple spinnable structures

of S2nÿ1
R via their Milnor fibration at infinity.

Examples. 1. In the case of plane curves (i.e. for n ¼ 2) Neumann and Rudolf

[14] and Neumann [13] studied the Milnor fibration at infinity of ‘‘good curves’’ (i.e.

polynomials with condition (C)) proving among others that the link of a generic fiber

at infinity is fiberable if and only if f is ‘‘good’’. (In general, it is not true that the

existence of the Milnor fibration at infinity implies the condition (C), see for example the

case of ‘‘semi-tame’’ polynomials [12]; or the example f ðx; yÞ ¼ xðxyÿ 1Þ.)

2. Broughton introduced in [1] his ‘‘tame’’ polynomials, and proved that they

satisfy the condition (C), and he proved properties (P1–P2) for them. The author

generalized Broughton’s results for the larger class of ‘‘quasitame’’ polynomials [7,

8]. Moreover, A. Zaharia and the author extended all these results for the larger class

of ‘‘M-tame’’ polynomials, and actually they proved also that the property (P3) is

satisfied even for a larger class of (the ‘‘semi-tame’’) polynomials [11, 12]. In [12] the

interested reader can find some more examples and even some counter-examples.

3. Let f ¼ fd þ fdÿ1 þ � � � be the decomposition of f in its homogeneous parts.

Assume that f satisfies:

fq fd=qx1 ¼ � � � ¼ q fd=qxn ¼ fdÿ1 ¼ 0g ¼ f0g:

Then A. Dimca [2] proved that f is ‘‘quasitame’’, in particular it satisfies (C, P1, P2, P3)

(via the results of [7, 8, 12]). For more properties of these polynomials (and more

motivation for the present paper), see [5] (and the forthcoming joint papers of R. Garcı́a

López and the author).

The main result of this note is the following a‰ne analogue of Sakamoto’s local

result:

Theorem. Assume that the polynomials g : C
m ! C , h : C

n ! C and f : C
mþn !

C ð f ðx; yÞ ¼ gðxÞ þ hðyÞÞ satisfy the condition (C). Assume that GðgÞ, GðhÞ respectively

Gð f Þ denote their Seifert forms associated with their Milnor fibration at infinity. Then

Gð f Þ ¼ ðÿ1Þmn
GðgÞnGðhÞ:
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Remarks. 1. In [9, 10] the author proved the following fact. For any poly-

nomial maps g and h (and f defined as above), the generic fiber F of f is the join space

F ¼ G �H, where G and H are the generic fibers of g and h respectively. (For the

quasi-homogeneous case, see [15].) Moreover, in [9, 10] a global Sebastiani-Thom type

result is proved for the monodromy operators at infinity. If the condition (C) is

satisfied, then ~HHnþmÿ1ðFÞ ¼ ~HHmÿ1ðGÞn ~HHnÿ1ðHÞ, and these are the only interesting

homological groups of the fibers. The formula Gð f Þ ¼ ðÿ1Þmn
GðgÞnGðhÞ must be

understood via this identification.

2. In general, the set of spinnable structures provided by the Milnor fibrations at

infinity of polynomial maps is di¤erent from the set of spinnable structures provided by

the local Milnor fibrations of isolated singularities. In the case n ¼ 2, this was clarified

by W. Neumann [13] using splice diagrams: the only spinnable structures which can be

represented by both local and global construction are exactly the spinnable structures

provided by quasi-homogeneous maps.

3. Sakamoto’s proof cannot be extended to the global situation. His proof is

based on the existence of a continuous map ½0; 1� � ðBenf0gÞ ! Be, ðr; zÞ ! r � z, with

the properties: 1 � z ¼ z, 0 � z ¼ 0, ðrsÞ � z ¼ r � ðs � zÞ, f ðr � zÞ ¼ r f ðzÞ, and jr � zj is a

strictly increasing function of r. Since, in the global case we can have many singular

fibers with many singular points, a similar map as above does not exist. Our proof is

based on a similar construction as in [9, 10].

4. The following question appears naturally: what spinnable structures are

provided by Milnor fibration at infinity of polynomial maps?

Even in the local case, the corresponding question is still open, however some

restrictions provided by algebraic spinnable structures already appeared in the literature.

We think that the global problem is even more di‰cult.

The proof of the theorem.

Consider the polynomial maps g : C
m ! C and h : C

n ! C . Fix a closed disc

(centered at the origin) Dg (respectively Dh) such that Sg H intðDgÞ (respectively Sh H

intðDhÞ). Let Df be another closed disc such that intðDf ÞIDg þDh. Obviously:

Sf ¼ Sg þ Sh H intðDf Þ.

Consider the map u : C
m � C

n ! C � C , uðx; yÞ ¼ ðgðxÞ; hðyÞÞ. The line Le ¼

fðc; dÞ A C � C : cþ d ¼ eg intersects Dg � C (respectively C �Dh) in DgðeÞ (respec-

tively in DhðeÞ). If e A qDf , then DgðeÞVDhðeÞ ¼ q. Moreover, there exists r su‰-

ciently large such that for any e A qDf the ball B2
r ¼ fðc; dÞ A C

2
: jcj2 þ jdj2 U r2g

satisfies DgðeÞUDhðeÞHLe VB2
r .

Now, for e A qDf , by lemma 2.3 [9] one has:

u : uÿ1ðLenðC � Sh USg � C ÞÞ ! LenðC � Sh USg � C Þ

is a Cy locally trivial fibration. Therefore, uÿ1ðLeÞ can be identified with uÿ1ðLe VB2
r Þ.

Moreover, by (C), there exists Rg g 0 (respectively Rh g 0) such that:

(1) ðuÿ1ðLe VB2
r Þ; u

ÿ1ðtÞÞ (for t A Le VB2
r Þ has the homotopy type of

ðuÿ1ðLe VB2
r ÞV ðBRg

� BRh
Þ; uÿ1ðtÞV ðBRg

� BRh
ÞÞ:
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(2) uÿ1ðLe VB2
r nðC � Sh USg � C ÞÞV ðBRg

� BRh
Þ ! Le VB2

r nðC � Sh USg � C Þ

is a locally trivial fibration with fiber

G �H ¼ ðgÿ1ðcÞVBRg
Þ � ðhÿ1ðdÞVBRh

Þ; ððc; dÞ genericÞ:

(3) The restriction of the above fibration on qðBRg
� BRh

Þ:

uÿ1ðLe VB2
r nðC � Sh USg � C ÞÞV qðBRg

� BRh
Þ ! Le VB2

r nðC � Sh USg � C Þ

can be extended to a trivial fibration

uÿ1ðLe VB2
r ÞV qðBRg

� BRh
Þ ! Le VB2

r ;

with fiber qðG �HÞ.

By the above facts, for e A qDf , one can identify the fiber f ÿ1ðeÞ ¼ uÿ1ðLeÞ with

ðuÿ1ðLe VB2
r ÞÞV ðBRg

� BRh
Þ. Actually, the ð2nþ 2mÿ 2Þ-dimensional manifold with

boundary

ðF ; qFÞ ¼ ð f ÿ1ðeÞVBRf
; f ÿ1ðeÞV qBRf

Þ ðfor Rf g 0Þ

can be identified with the manifold (with corners and boundary):

ðuÿ1ðLe VB2
r ÞV ðBRg

� BRh
Þ; uÿ1ðLe V qB2

r ÞU ½uÿ1ðLe VB2
r ÞV qðBRg

� BRh
Þ�Þ:

Fix e0 A qDf . Consider a di¤eomorpfism v ¼ ve0 : R
2 ! Le0 such that vÿ1ðDgðe0ÞÞH

ðÿy; 0Þ � R and vÿ1ðDhðe0ÞÞH ð0;yÞ � R (cf. lemma 2.1. [9]). Take l :¼ vðf0g � RÞ

VB2
r , this is the ‘‘segment’’ which separates Dgðe0Þ and Dhðe0Þ in Le0 VB2

r . Set G ¼

vððÿy; 0� � RÞVB2
r and H ¼ vð½0;yÞ � RÞVB2

r ; therefore GVH ¼ l and GUH ¼

Le0 VB2
r , Dgðe0ÞHG and Dhðe0ÞHH.

By lemma 2.3 [9] one has (� denotes a di¤eomorphism):

uÿ1ðGÞV ðBRg
� BRh

ÞABRg
�Hð4Þ

uÿ1ðHÞV ðBRg
� BRh

ÞAG � BRh

uÿ1ðlÞV ðBRg
� BRh

ÞAG �H � l:

Let mg : ðG; qGÞ ! ðG; qGÞ be a geometric monodromy at infinity of g (i.e. a

characteristic map of the fibration ðyÞ of g at infinity) with mgjqG ¼ identity. Similarly

define mh. Then the following holds:

(5) A geometric monodromy of u : uÿ1ðqDgðe0ÞÞ ! qDgðe0Þ is given by mg � id; a

geometric monodromy of u : uÿ1ðqDhðe0ÞÞ ! qDhðe0Þ is given by id �mh.

By (P3), (i.e. by the identification of the fibration of f at infinity and the Milnor

fibration at infinity), and using Alexander duality, similarly as in the local case, the

Seifert form of f can be identified (modulo a sign) with the variation map

Varf : Hnþmÿ1ðF ; qFÞ ! Hnþmÿ1ðFÞ:

(Similarly for g and h.) Hence the theorem can be reformulated in terms of the

variation maps: Varf ¼ GVarg nVarh. In the sequel, we verify this formula. For
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simlicity, we will assume that nV 2, mV 2. The case n ¼ 1 or m ¼ 1 can be proved

similarly (if we replace H0 by ~HH0).

In the sequel, we will identify the fiber F with:

uÿ1ðLe VB2
r ÞV ðBRg

� BRh
Þ:

Consider its decomposition in uÿ1ðGÞVF and uÿ1ðHÞVF . Then, by (4), for q ¼ nþm

ÿ 2 and q ¼ nþmÿ 1 one has: Hqðu
ÿ1ðGÞVF Þ ¼ Hqðu

ÿ1ðHÞVF Þ ¼ 0. Therefore,

by Mayer-Vietoris argument, the boundary map:

q : Hnþmÿ1ðFÞ ! Hnþmÿ2ðu
ÿ1ðlÞVFÞ

is an isomorphism. Geometrically, q can be described as follows: if ½g� A Hnþmÿ1ðF Þ

and the cycle g is in generic position with respect to uÿ1ðlÞ, then q½g� ¼ ½gV uÿ1ðlÞ�.

Let P A l be an arbitrary point on l. Then by the local triviality of u over l, the

natural strong deformation retract l 7! P induces an isomorphism:

r : Hnþmÿ2ðu
ÿ1ðlÞVF Þ ! Hnþmÿ2ðu

ÿ1ðPÞV ðBRg
� BRh

ÞÞ

¼ Hnþmÿ2ðG �HÞ ¼ Hmÿ1ðGÞnHnÿ1ðHÞ:

Notice that uÿ1ðlÞVF is a manifold (with corners) of dimension ð2nþ 2mÿ 3Þ, and with

boundary:

½uÿ1ðqlÞV ðBRg
� BRh

Þ�U ½uÿ1ðlÞV qðBRg
� BRh

Þ�;

and by duality:

Hnþmÿ1ðu
ÿ1ðlÞVF ; qðuÿ1ðlÞVF ÞÞ ¼ H nþmÿ2ðuÿ1ðlÞVFÞ:

Then, by a duality argument, or by similar Mayer-Vietoris argument as above, one can

prove that the natural inclusion induces an isomorphism:

i : Hnþmÿ1ðu
ÿ1ðlÞVF ; qðuÿ1ðlÞVFÞÞ ! Hnþmÿ1ðF ; qFÞ:

We want to investigate the composition V ¼ r � q � Var � i:

Hmÿ1ðG;qGÞnHnÿ1ðH;qHÞnH1ðl;qlÞ¼Hnþmÿ1ðu
ÿ1ðlÞVF ; qðuÿ1ðlÞVFÞÞ!

i
Hnþmÿ1ðF ;qFÞ

?
?
?
y
V

?
?
?
y
Varf

Hmÿ1ðGÞnHnÿ1ðHÞ  ��
r

Hnþmÿ2ðu
ÿ1ðlÞVF Þ  ��

q
Hnþmÿ1ðF Þ

If mf : ðF ; qF Þ ! ðF ; qF Þ is the geometric monodromy of f at infinity (with

mf jqF ¼ identify) then the variation map, by its very definition, is Var½g� ¼ ½mf ðgÞ ÿ g�.

Let ½a� A Hmÿ1ðG; qGÞ and ½b� A Hnÿ1ðH; qHÞ be the homology classes of the relative

cycles a, respectively b. In order to find the map V, we wish to describe the intersection

of the geometric cycle mf ða� b � lÞ ÿ ða� b � lÞ with uÿ1ðlÞ.

Moving e along qDf , we can construct a continuous family ve : R
2 ! Le with similar

properties as ve0 (cf. [9]). Then the monodromy action on the line l ¼ le0 is the

following:
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Then the cycle g ¼ mf ða� b � lÞ ÿ ða� b � lÞ can be identified with the total space

of a fibering p with fiber a� b and base space the loop C in Le0 :

The intersection gV uÿ1ðlÞ is the collection of the fibers of p over the (oriented)

intersection CV l ¼ Pÿ Aþ Bÿ C. Now, (5) and the retract r 0 : uÿ1ðlÞ ! uÿ1ðPÞ give

the identifications:

r 0ðuÿ1ðPÞÞ ¼ a� b; r 0ðuÿ1ðAÞÞ ¼ a�mhðbÞ;

r 0ðuÿ1ðBÞÞ ¼ mgðaÞ �mhðbÞ; r 0ðuÿ1ðCÞÞ ¼ mgðaÞ � b:

Therefore:

V ½a� b� ¼ G½a� b ÿ a�mhðbÞ þmgðaÞ �mhðbÞ ÿmgðaÞ � b�

¼ G½ðmgðaÞ ÿ aÞ � ðmhðbÞ ÿ bÞ� ¼ GVargðaÞnVarhðbÞ:

This gives Gð f Þ ¼ GGðgÞnGðhÞ.

The sign G is a universal sign which depends only on n and m, and can be

determined also by a careful study of the orientation of the cycles which are inter-

sected. But, this sign does not depend on the polynomials g and h, therefore it is the

same as in the case of generic homogeneous polynomials. Since for homogeneous

polynomials the local and global theory agree, this sign is the same as in the local theory

(i.e. as in Sakamoto’s theorem) (provided that we use the same orientation conventions).

This ends the proof of the theorem.
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