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Abstract. In this paper we consider $J\emptyset rgensen’ s$ inequalities for classical Schottky groups
of the real type. The infimum of Jergensen’s numbers for groups of types II, V and VII
are 16, 4 $(1+\sqrt{2})^{2}$ and 4 $(1+\sqrt{2})^{2}$ , respectively, each of which is the best possible for
$J\emptyset rgensen’ s$ inequality.

$0$ . Introduction.

$J\emptyset rgensen’ s$ inequality gives a necessary condition for a non-elementary M\"obius

transformation group $G=\langle A_{1}, A_{2}\rangle$ to be discrete $(J\emptyset rgensen[2])$ : if $G=\langle A_{1}, A_{2}\rangle$ is a
non-elementary discrete group, then

$J(G):=|tr^{2}(A_{1})-4|+|tr(A_{1}A_{2}A_{1}^{-1}A_{2}^{-1})-2|\geq 1$ ,

where tr is the $trace$ . The lower bound is the best possible. We call $J(G)$ Jergensen’s
number for $G=\langle A_{1}, A_{2}\rangle$ .

With respect to $J\emptyset rgensen’ s$ numbers it gives rise to the following problems: (1)
Problem 1 is to find many non-Fuchsian extreme groups, where a two-generator group
$G$ is called extreme if $J(G)=1$ . (2) Problem 2 is to find the minimum values of
$J\emptyset rgensen’ s$ numbers for some subspaces of the Kleinian space of rank two, for example
the Teichmuller space, the Schottky space, where the Kleinian space of rank two is
the space of all two-generator Kleinian groups. For Problem 1, $J\emptyset rgensen$-Lascurain-
Pignataro [3] and Sato-Yamada [8] gave uncountably many non-conjugate, non-
Fuchsian extreme groups. For Problem 2, Gilman [1] and Sato [7] gave the best lower
bound of $J\emptyset rgensen’ s$ numbers for purely hyperbolic two-generator groups.

In this paper we will consider $J\emptyset rgensen’ s$ numbers for classical Schottky groups of
real type of genus two (see \S 1 for the definition). In Sato [5] we classified the groups
into eight types. The groups of the first and the fourth types are called Fuchsian
Schottky groups. In Gilman [1] and Sato [7] they gave $J\emptyset rgensen’ s$ inequalities and the
best lower bounds for Fuchsian Schottky groups:

(1) If $G=\langle A_{1}, A_{2}\rangle$ is of the first type, that is, a Fuchsian Schottky group such
that the axes of $A_{1}$ and $A_{2}$ are disjoint, then $J(G)>16$ . The lower bound is the best
possible.

Partly supported by the Grant-in-Aid for Scientific and Co-operative Research, the Ministry of Education,
Science and Culture, Japan.



946 H. SATO

(2) If $G=\langle A_{1}, A_{2}\rangle$ is of the fourth type, that is, a Fuchsian Schottky group such
that the axes of $A_{1}$ and $A_{2}$ intersect, then $J(G)>4$ . The lower bound is the best
possible.

In this paper we will consider $J\emptyset rgensen’ s$ numbers for three kinds of classical
Schottky groups of real type, that is, the second, the fifth and the seventh types (see \S 1
for the definitions). The main results in this paper are as follows, which will be stated
in \S 4.

(1) If $G=\langle A_{1}, A_{2}\rangle$ is of the second type, then $J(G)>16$ .
(2) If $G=\langle A_{1}, A_{2}\rangle$ is of the fifth type, then $J(G)>4(1+\sqrt{2})^{2}$ .
(3) If $G=\langle A_{1}, A_{2}\rangle$ is of the seventh type, then $J(G)>4(1+\sqrt{2})^{2}$ .
All of the lower bounds in the above inequalities are the best possible.
$J\emptyset rgensen’ s$ numbers for the rest types, that is, for classical Schottky groups of the

third, the sixth and the eighth types will appear in the coming paper [11]. The results
are as follows:

(1) If $G=\langle A_{1}, A_{2}\rangle$ is of the third type, then $J(G)>4$ .
(2) If $G=\langle A_{1}, A_{2}\rangle$ is of the sixth type, then $J(G)>16$ .
(3) If $G=\langle A_{1}, A_{2}\rangle$ is of the eighth type, then $J(G)>16$ .
All of the lower bounds are the best possible.
In [9] we announced the main results in this paper and [11].
In \S 1 we will state notation and terminology, and state eight kinds of classical

Schottky groups of real type of genus two. In \S 2 we will consider automorphisms of
a free group on two generators, that is, Nielsen transformations and their properties. In
\S 3 we will state fundamental regions for the Schottky modular groups of the second and
the seventh types which are given in Sato [6]. In \S 4 we will state the main results in this
paper. In \S 5 we will list properties of $J\emptyset rgensen’ s$ numbers in a series of lemmas, which
play important roles in the proofs of the main theorems. In \S 6 we will give a proof of
the theorem on $J\emptyset rgensen’ s$ numbers for classical Schottky groups of the second type.
In \S 7 through \S 10 we will prove the main theorems on $J\emptyset rgensen’ s$ numbers for the
groups of the fifth and the seventh types. In \S 11 we will give some examples which
guarantee that all of the lower bounds in the inequalities in the main theorems are the
best possible.

Thanks are due to the referees for their careful reading and valuable suggestions.

1. Notation and terminology.

Let $C_{1},$ $C_{g+1;}\ldots$ ; ${}_{g}C_{2g}$ be a set of $2g,$ $g\geq 1$ , mutually disjoint Jordan curves on
the Riemann sphere which comprise the boundary of a $2g$-ply connected region $\omega$ .
Suppose there are $g$ M\"obius transformations $A_{1},$

$\ldots,$
$A_{g}$ which have the property that $A_{j}$

maps $C_{j}$ onto $C_{g+j}$ and $A_{j}(\omega)\cap\omega=\emptyset,$ $1\leq j\leq g$ . Then the $g$ necessarily loxodromic
transformations $A_{g}$ generate a marked Schottky group $G=\langle A_{1}, \ldots, A_{g}\rangle$ of genus $g$ with
to as a fundamental region. In particular, if all $C_{j}(j=1,2, \ldots, 2g)$ are circles, then
we call $A_{1},$

$\ldots,$
$A_{g}$ a set of classical generators of $G$ . A classical Schottky group is a

Schottky group for which there exists some set of classical generator.
We denote by M\"ob the group of all M\"obius transformation. We say two marked

subgroups $G=\langle A_{1}, \ldots, A_{g}\rangle$ and $\hat{G}=\langle\hat{A}_{1}, \ldots,\hat{A}_{g}\rangle$ of M\"ob to be equivalent if there
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exists a M\"obius transformation $T$ such that $\hat{A}_{j}=TA_{j}T^{-1}$ for $j=1,2,$
$\ldots,$

$g$ . The
Schottky space (resp. the classical Schottky space) of genus $g$ , denoted by $S_{g}$ (resp. $S_{g}^{0}$ ),
is the set of all equivalence classes of marked Schottky groups (resp. marked classical
Schottky groups) of genus $g\geq 1$ .

We denote by $M_{2}$ the set of all equivalence classes $[\langle A_{1}, A_{2}\rangle]$ of marked groups
$\langle A_{1}, A_{2}\rangle$ generated by loxodromic transformations $A_{1}$ and $A_{2}$ whose fixed points are
all distinct. Let $[\langle A_{1}, A_{2}\rangle]\in M_{2}$ . For $j=1,2$ , let $\lambda_{j}(|\lambda_{j}|>1),$ $p_{j}$ and $p_{2+j}$ be the
multipliers, the repelling and the attracting fixed points of $A_{j}$ , respectively. We define $t_{j}$

by setting $t_{j}=1/\lambda_{j}$ . Thus $t_{j}\in D^{*}=\{z|0<|z|<1\}$ . We determine a M\"obius trans-
formation $T$ by $T(p_{1})=0,$ $T(p_{3})=\infty$ and $T(p_{2})=1$ , and define $\rho$ by $p=T(p_{4})$ .
Thus $\rho\in C-\{0,1\}$ . We can define a mapping $\alpha$ of the space $M_{2}$ into $(D^{*})^{2}\cross$

$(C-\{0,1\})$ by setting $\alpha([\langle A_{1}, A_{2}\rangle])=(t_{1}, t_{2},\rho)$ . Then we say $[\langle A_{1}, A_{2}\rangle]$ represents
$(t_{1}, t_{2},\rho)$ and $(t_{1}, t_{2},p)$ corresponds to $[\langle A_{1}, A_{2}\rangle]$ or $\langle A_{1}, A_{2}\rangle$ . We write $t_{1}=t_{1}(G)$ ,
$t_{2}=t_{2}(G)$ and $\rho=\rho(G)$ . Conversely, $\lambda_{1},$ $\lambda_{2}$ and $p_{4}$ are uniquely determined from
a given point $\tau=(t_{1}, t_{2},\rho)\in(D^{*})^{2}\cross(C-\{0,1\})$ under the normalization condition
$p_{1}=0,$ $p_{3}=$ oo and $p_{2}=1$ ; we define $\lambda_{j}(j=1,2)$ and $p_{4}$ by setting $\lambda_{j}=1/t_{j}$ and
$p_{4}=p$, respectively. We determine $A_{1}(z),$ $A_{2}(z)\in M\ddot{o}b$ from $\tau$ as follows: the multiplier,
the repelling and the attracting fixed points of $A_{j}(z)$ are $Z_{j},$

$p_{j}$ and $p_{2+j}$ , respectively.
Thus we obtain a mapping $\beta$ of $(D^{*})^{2}\cross(C-\{0,1\})$ into $M_{2}$ by setting $\beta(\tau)=$

$[\langle A_{1}(z), A_{2}(z)\rangle]$ . Then we note that $\beta\alpha=\alpha\beta=id$ . Therefore we identify $M_{2}$ with
$\alpha(M_{2})$ . Similarly we can define the mapping $\alpha^{*}$ of $S_{2}$ or $S_{2}^{0}$ into $(D^{*})^{2}\cross(C-\{0,1\})$

by restricting $\alpha$ to this space, and identify $S_{2}$ (resp. $S_{2}^{0}$ ) with $\alpha^{*}(S_{2})$ (resp. $\alpha^{*}(S_{2}^{0})$ ).
From now on we denote $\alpha(M_{2}),$ $\alpha^{*}(S_{2})$ and $\alpha^{*}(S_{2}^{0})$ by $M_{2},$ $S_{2}$ and $S_{2}^{0}$ , respectively.

We call $G=\langle A_{1}, A_{2}\rangle$ a marked group of real type if $(t_{1}, t_{2},\rho)\in R\cap M_{2}$ , that is, $t_{1}$ ,
$t_{2}$ and $p$ are all real numbers, where $(t_{1}, t_{2},\rho)$ corresponds to $G=\langle A_{1}, A_{2}\rangle$ . Then there
are eight kinds of marked groups of real type as follows.

DEFINITION 1.1 (cf. [5]).
(1) $G$ is of the first type (Type I) if $t_{1}>0,$ $t_{2}>0,$ $p>0$ .
(2) $G$ is of the second type (Type II) if $t_{1}>0,$ $t_{2}<0,$ $p>0$ .
(3) $G$ is of the third type (Type III) if $t_{1}>0,$ $t_{2}<0,$ $p<0$ .
(4) $G$ is of the fourth type (Type IV) if $t_{1}>0,$ $t_{2}>0,$ $\rho<0$ .
(5) $G$ is of the fifth type (Type V) if $t_{1}<0,$ $t_{2}>0,$ $\rho>0$ .
(6) $G$ is of the sixth type (Type VI) if $t_{1}<0,$ $t_{2}<0,$ $\rho>0$ .
(7) $G$ is of the seventh type (Type VII) if $t_{1}<0,$ $t_{2}<0,$ $\rho<0$ .
(8) $G$ is of the eighth type (type VIII) if $t_{1}<0,$ $t_{2}>0,$ $p<0$ .

For each $k=I$ , II, . . . , VIII, we call the set of all equivalence classes of marked
groups (resp. marked Schottky groups and marked classical Schottky groups) of Type $k$

the real space (resp. the real Schottky space and the real classical Schottky space) of
Type $k$, and denote them by $R_{k}M_{2}$ (resp. $R_{k}S_{2}$ and $R_{k}S_{2}^{0}$ ).

2. The Nielsen transformations.

In this section we consider automorphisms of a free group on two generators, that
is, Nielsen transformations, and their properties.
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THEOREM A (Neumann [4]). The group $\Phi_{2}$ of automorphisms of $G=\langle A_{1}, A_{2}\rangle$ has
the following presentation:

$\Phi_{2}=\langle N_{1},$ $N_{2},$ $N_{3}|(N_{2}N_{1}N_{2}N_{3})^{2}=1$ ,

$N_{3}^{-1}N_{2}N_{3}N_{2}N_{1}N_{3}N_{1}N_{2}N_{1}=1,$ $N_{1}N_{3}N_{1}N_{3}-N_{3}N_{1}N_{3}N_{1}\rangle$ ,

where $N_{1}$ : $(A_{1}, A_{2})->(A_{1}, A_{2}^{-1}),$ $N_{2}$ : $(A_{1}, A_{2})->(A_{2}, A_{1})$ and $N_{3}$ : $(A_{1}, A_{2})->(A_{1}, A_{1}A_{2})$ .

We call the mappings $N_{1},$ $N_{2}$ and $N_{3}$ Nielsen transformations.
Let $(t_{1}, t_{2},\rho)$ be the point in $S_{2}$ corresponding to a marked Schottky group $G=$

$\langle A_{1}, A_{2}\rangle$ . Let $(t_{1}(j), t_{2}(j),\rho(j))$ be the images of $(t_{1}, t_{2},\rho)$ under the Nielsen transfor-
mations $N_{j}(j=1,2,3)$ . Then by straightforward calculations, we have the following.

LEMMA 2.1 (Sato [5, Lemma 2.1]). (i) $t_{1}(1)=t_{1},$ $t_{2}(1)=t_{2}$ and $\rho(1)=1/\rho$ . (ii)
$t_{1}(2)=t_{2},$ $t_{2}(2)=t_{1}andp(2)=p$ . (iii) $t_{1}(3)=t_{1},$ $t_{2}(3)+(1/t_{2}(3))=Q^{2}/t_{1}t_{2}(\rho-1)^{2}-2$

and $\rho(3)+(1/\rho(3))=P^{2}/t_{1}\rho(1-t_{2})^{2}-2$ , where $P=p-t_{2}-pt_{1}t_{2}+t_{1}$ and $Q=\rho-t_{2}+$

$\rho t_{1}t_{2}-t_{1}$ .

We note that the spaces $M_{2},$ $S_{2}$ and $S_{2}^{0}$ are all, $\Phi_{2}$ -invariant, that is $\phi(M_{2})=M_{2}$ ,
$\phi(S_{2})=S_{2}$ and $\phi(S_{2}^{0})=S_{2}^{0}$ for $\emptyset\in\Phi_{2}$ . The following Propositions 2.1 and 2.2
are easily seen from Lemma 2.1 and the definitions of $R_{k}M_{2},$ $R_{k}S_{2}$ and $R_{k}S_{2}^{0}$

($k=I$ , II, . . . , VIII).

PROPOSITION 2.1. Let $X$ denote the spaces $M_{2},$ $S_{2}$ or $S_{2}^{0}$ . Then $N_{1}(R_{k}X)=R_{k}X$

for $k=I$ , II, . . . , VIII.

PROPOSITION 2.2. Let $X$ denote the spaces $M_{2},$ $S_{2}$ or $S_{2}$ . Then
(i) $N_{2}(R_{k}X)=R_{k}X$ for $k=I$ , IV, VI, VII.
(ii) $N_{2}(R_{II}X)=R_{V}X$ and $N_{2}(R_{V}X)=R_{II}X$ .
(iii) $N_{2}$ ( $R$ III $X$) $=R_{VIII}X$ and $N_{2}(R_{VIII}X)=R_{III}X$ .

PROPOSITION 2.3. Let $X$ denote the spaces $M_{2},$ $S_{2}$ or $S_{2}^{0}$ . Then
(i) $N_{3}(R_{k}X)=R_{k}X$ for $k=I$ , II, III, IV.
(ii) $N_{3}(R_{V}X)=R_{VII}X$ and $N_{3}(R_{VII}X)=R_{V}X$ .
(iii) $N_{3}(R_{VI}X)=R_{VIII}X$ and $N_{3}(R_{VIII}X)=R_{VI}X$ .

PROOF. For $k=$ I, IV, see Sato [5] and for $k=$ II, V, VII, see Sato [6, p. 453].

Here we will only show this proposition for $k=III$ , VI, VIII. By Lemma 2.1 we easily
see that $N_{3}(R_{III}X)=RmX$ . Let $\tau=(t_{1}, t_{2},\rho)\in R_{VI}X$ . We set $N_{3}(\tau)=(t_{1}^{*}, t_{2}^{*},p^{*})$ .
Since $t_{1}^{*}=t_{1}$ , we have $t_{1}^{*}<0$ . Let $p$ and $q$ be two solutions of the equation

$t_{1}(1-t_{2})z^{2}-(\rho-t_{2}-pt_{1}t_{2}+t_{1})z+\rho(1-t_{2})=0$ .

Then $pq=p(1-t_{2})/t_{1}(1-t_{2})=\rho/t_{1}<0$ . Hence $p^{*}=q/p<0$ . Since

$t_{2}^{*}+1/t_{2}^{*}+2=(p-t_{2}+t_{1}t_{2}p-t_{1})^{2}/t_{1}t_{2}(\rho-1)>0$ ,

we have $t_{2}^{*}>0$ . Hence $(t_{1}^{*}, t_{2}^{*},\rho^{*})\in R_{VIII}X$ . By the same way we have
$N_{3}(R_{VIII}X)=R_{VI}$X. q.e. $d$ .
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3. Fundamental region$s$.
Let $\Phi_{2}$ be the group of automorphisms of $G=\langle A_{1}, A_{2}\rangle$ introduced in \S 2. Let

$\phi_{1},$ $\phi_{2}\in\Phi_{2}$ . We say that $\phi_{1}$ and $\phi_{2}$ are equivalent if $\phi_{1}(G)$ is equivalent to $\phi_{2}(G)$ , that
is, if there exists $T\in M\ddot{o}b$ such that $\phi_{2}(G)=T\phi_{1}(G)T^{-1}$ , and we denote it by $\phi_{1}\sim\phi_{2}$ .
We denote by $[\phi]$ the equivalence class of $\emptyset\in\Phi_{2}$ . The Schottky modular group of genus
two, which is denoted by Mod $(S_{2})$ , is the set of all equivalence classes of orientation
preservimg automorphisms of $S_{2}$ . We denote by Mod $(R_{k}S_{2}^{0})$ the restriction of Mod $(S_{2})$

to $R_{k}S_{2}^{0}$ for $k=I$ , II, . .. , VIII. We denote by $F_{k}(Mod(S_{2}^{0}))$ fundamental regions in
$R_{k}S_{2}^{0}$ for Mod $(R_{k}S_{2}^{0})$ .

PROPOSITION 3.1 (Sato [6]).

$F_{IJ}(Mod(S_{2}^{0}))=\{(t_{1}, t_{2},\rho)\in R$ II $S_{2}^{0}|(1+(t_{1})^{1/2}t_{2})/((t_{1})^{1/2}+t_{2})$

$<\rho<((1-(t_{1})^{1/2}t_{2})/((t_{1})^{1/2}-t_{2}))^{2},$ $-1<t_{2}<0,0<t_{1}<1\}$ .

PROPOSITION 3.2 (Sato [6]).

$F_{V\Pi}(Mod(S_{2}^{0}))=\{(t_{1}, t_{2},\rho)\in R_{VII}S_{2}^{0}|((-t_{1})^{1/2}+(-t_{2})^{1/2})/(1-(-t_{1})^{1/2}(-t_{2})^{1/2})<(-\rho)^{1/2}$

$<(1-(-t_{1})^{1/2}(-t_{2})^{1/2})/((-t_{1})^{1/2}+(-t_{2})^{1/2}),$ $t_{2}<t_{1},$ $-1<t_{1}<0\}$ .

PROPOSITION 3.3 (Sato [6]). The group Mod $(R_{VII}S_{2}^{0})$ is generated by $[N_{3}^{2}]$ and
$\{N_{1}N_{2}]$ .

4. Main theorems.

In this section the main theorems in this paper will be stated. The proofs of the
theorems will be given in \S 6 through \S 10. Let $G$ be a marked two-generator group
generated by M\"obius transformations $A_{1}$ and $A_{2}$ : $G=\langle A_{1}, A_{2}\rangle$ . The number

$J(G):=|tr^{2}(A_{1})-4|+|tr(A_{1}A_{2}A_{1}^{-1}A_{2}^{-1})-2|$

is called Jorgensen’s number of $G=\langle A_{1},A_{2}\rangle$ , where tr is the $trace$ .

THEOREM 1. If $G=\langle A_{1}, A_{2}\rangle\in R_{U}S_{2}^{0}$ , then $J(G)>16$ . The lower bound is the best
possible.

THEOREM 2. If $G=\langle A_{1},A_{2}\rangle\in R_{V}S_{2}^{0}$ , then $J(G)>4(1+\sqrt{2})^{2}$ . The lower bound $\dot{i}$

the best possible.

THEOREM 3. If $G=\langle A_{1}, A_{2}\rangle\in R_{VII}S_{2}^{0}$ , then $J(G)>4(1+\sqrt{2})^{2}$ . The lower bound
is the best possible.

5. Jergensen’s inequality.

In this section we will give some lemmas which are necessary to prove the main
theorems stated in the previous section. We introduce the following two regions:

$M_{II}:=\{\tau=(t_{1}, t_{2},\rho)\in R^{3}|t_{2}=(t_{1}^{1/2}p^{1/2}-1)/(\rho^{1/2}-t_{1}^{1/2})$

$<t_{2}<0,1<\rho<1/t_{1},0<t_{1}<1\}$ .
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$M_{Vn:=}\{\tau=(t_{1}, t_{2},\rho)\in R^{3}|((-t_{1})^{1/2}+(-t_{2})^{1/2})/\{(1-(-t_{1})^{1/2}(-t_{2})^{1/2})\}<(-\rho)^{1/2}$

$<(1-(-t_{1})^{1/2}(-t_{2})^{1/2})/((-t_{1})^{1/2}+(-t_{2})^{1/2}),$ $-1<t_{2}<0,$ $-1<t_{1}<0\}$ .

We easily see the following lemma.

LEMMA 5.1. For each $k=II$ , VII

$F_{k}(Mod(S_{2}^{0}))\subseteq M_{k}\subseteq R_{k}S_{2}^{0}$ .

THEOREM $B$ $(J\emptyset rgensen [2])$ . Suppose that Mobius transformations $A_{1}$ and $A_{2}$

generate a non-elementary discrete group G. Then

$J(G):=|tr^{2}(A_{1})-4|+|tr(A_{1}A_{2}A_{1}^{-1}A_{2}^{-1})-2|\geq 1$ .

The lower bound is the best possible.

Let $\tau=(t_{1}, t_{2},\rho)$ correspond to $G=\langle A_{1},A_{2}\rangle$ . Then since $|tr^{2}(A_{1})-4|=|1-t_{1}|^{2}/|t_{1}|$

and $|tr(A_{1}A_{2}A_{1}^{-1}A_{2}^{-1})-2|=(|1-t_{1}|^{2}/|t_{1}|)\cdot(|1-t_{2}|^{2}/|t_{2}|)\cdot(|\rho|/|\rho-1|^{2})$ , we have the
following proposition by Theorem B.

PROPOSITION 5.1. Let $G=\langle A_{1}, A_{2}\rangle$ be a non-elementary discrete group and let
$\tau=(t_{1}, t_{2},\rho)$ be the point corresponding to $\langle A_{1}, A_{2}\rangle$ . Then

$J( \tau):=\frac{|1-t_{1}|^{2}}{|t_{1}|}+\frac{|1-t_{1}|^{2}|1-t_{2}|^{2}|\rho|}{|t_{1}||t_{2}||\rho-1|^{2}}\geq 1$ .

Let $\tau=(t_{1}, t_{2},\rho)$ correspond to $G=\langle A_{1}, A_{2}\rangle$ . We set

$J_{1}(G):=|tr(A)^{2}-4|$ , $J_{1}(\tau):=|1-t_{1}|^{2}/|t_{1}$ ,

$J_{2}(G):=|tr(A_{1}A_{2}A_{1}^{-1}A_{2}^{-1})-2|$

and

$J_{2}( \tau):=\frac{|1-t_{1}|^{2}|1-t_{2}|^{2}|\rho|}{|t_{1}||t_{2}||\rho-1|^{2}}$ .

Then $J_{1}(G)=J_{1}(\tau),$ $J_{2}(G)=J_{2}(\tau)$ and $J(G)=J(\tau)$

LEMMA 5.2. $J_{2}(G)$ is $\Phi_{2}$ -invariant, that is, $J_{2}(\phi(G))=J_{2}(G)$ for any $\emptyset\in\Phi_{2}$ .

PROOF. Since $J_{2}(N_{j}(G))=J_{2}(G)$ $(j=1,2,3)$ , the desired result follows from
Theorem A. q.e. $d$ .

We can easily see the following lemma.

LEMMA 5.3. $J_{1}(G)$ and $J(G)$ are invariant under the Nielsen transformations $N_{1}$ and
$N_{3}$ , that is,

(i) $J_{1}(N_{1}(G))=J_{1}(G)$ and $J_{1}(N_{3}(G))=J_{1}(G)$ .
(ii) $J(N_{1}(G))=J(G)$ and $J(N_{3}(G))=J(G)$ .

By Lemma 5.1 we have the following.
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PROPOSITION 5.2. For $k=$ II, VII

$\inf\{J(G)|G\in p_{k}(ModS_{2}^{0})\}\geq\inf\{J(G)|G\in M_{k}\}\geq\inf\{J(G)|G\in R_{k}S_{2}^{0}\}$ .

LEMMA 5.4. For each $k=II$ , VII, if $\tau=(t_{1}, t_{2},\rho)\in M_{k}$ and $\tau_{0}=(t_{1}, t_{20},\rho)\in\partial M_{k}$

$(t_{20}\neq 0)$ , then $J(\tau_{0})<J(\tau)$ .

PROOF. Since the function $(1-t_{2})^{2}/t_{2}$ is negative and monotonously decreasing in
the interval $-1<t_{2}<0$ , the desired result follows from the definition of the space $M_{k}$ .

q.e. $d$ .

COROLLARY. For each $k=II$ , VII, $\inf\{J(G)|G\in\partial_{0}M_{k}\}\leq\inf\{J(G)|G\in M_{k}\}$ ,
where $\partial_{0}M_{k}=\{G\in\partial M_{k}|t_{2}(G)\neq 0\}$ and $(t_{1}(G), t_{2}(G),\rho(G))$ corresponds to $G$ .

6. Proof of Theorem 1.

LEMMA 6.1. Let

$f(x,y)= \frac{(1-x^{2})^{2}(1-x)^{2}y^{2}}{x^{2}(1-y)^{2}(1-xy)(y-x)}$

Then $f(x,y)>16$ for $1<y<1/x$ and $0<x<1$ .

PROOF. We set $X=x+1/x$ and $Y=y+1/y$ . Then we have

$f(x,y)=(1-x^{2})^{2}(1-x)^{2}y^{2}/x^{2}(1-y)^{2}(1-xy)(y-x)$

$=(X^{2}-4)(X-2)/(X-Y)$ (Y–2).

We write $g(X, Y)$ for the last term of the above equation. We will show
$g(X, Y)>16$ . Since $X>2,$ $Y>2$ and $X-Y=(y-x)(1-xy)/xy>0$ , it suffices to
show

$(X^{2}-4)(X-2)>16(X-Y)(Y-2)$ .

Noting that $X>2$ , we have the desired result, since

$(X^{2}-4)(X-2)-16(X-Y)(Y-2)=16Y^{2}-16Y(X+2)+(X^{2}-4)(X-2)+32X$

$=16\{Y-(X+2)/2\}^{2}+(X-2)^{3}$ . q.e.d.

COROLLARY. If $\tau=(t_{1}, t_{2},\rho)$ is a point on the boundary of $M_{II}$ defined by the
equation

$t_{2}=(t_{1}^{1/2}\rho^{1/2}-1)/(\rho^{1/2}-t_{1}^{1/2})$ $(0<\rho<1/t_{1},0<t_{1}<1)$ ,

then $J_{2}(\tau)>16$ .

PROOF. We set $x=t_{1}^{1/2}$ and $y=\rho^{1/2}$ . By substituting $t_{2}=(t_{1}^{1/2}\rho^{1/2}-1)/$

$(\rho^{1/2}-t_{1}^{1/2})$ for the defining equation of $J_{2}(\tau)$ ,

$J_{2}( \tau)=\frac{|1-t_{1}|^{2}|1-t_{2}|^{2}|\rho|}{|t_{1}||t_{2}||\rho-1|^{2}}$ ,
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we have

$J_{2}( \tau)=\frac{(1-x^{2})^{2}(1-x)^{2}y^{2}}{x^{2}(1-y)^{2}(1-xy)(y-x)}$ .

By Lemma 6.1 we have the desired result. q.e. $d$ .

LEMMA 6.2. Let $\tau=(t_{1}, t_{2},\rho)\in M_{II}$ and $\tau_{0}=(t_{1}, t_{20},\rho)\in\partial Mn$ $(t_{20}\neq 0)$ . Then
$J_{2}(\tau)>J_{2}(\tau_{0})$ .

PROOF. Since $-1<t_{20}<t_{2}<0$ , we have $(1-t_{20})^{2}/|t_{20}|<(1-t_{2})^{2}/|t_{2}|$ . Hence
$J(\tau)>J(\tau_{0})$ . q.e.d.

The following corollary follows from Corollary to Lemma 6.1 and Lemma 6.2.

COROLLARY. Let $\tau-(t_{1}, t_{2},\rho)\in M_{II}$ . Then $J_{2}(\tau)>16$ .

PROOF OF THEOREM 2. By Proposition 3.1 we have that for any $\tau\in R_{n}S_{2}^{0}$ there
exists $\emptyset\in Mod$ ( $R$ II $S_{2}^{0}$ ) such that $\emptyset(\tau)\in M_{II}$ . Then by Lemma 5.2, Proposition 5.2 and
Corollary to Lemma 6.2, we have $J(\tau)=J_{1}(\tau)+J_{2}(\tau)\geq J_{2}(\tau)=J_{2}(\phi(\tau))>16$ . q.e.d.

7. Proof of Theorem 3: Part 1.

In this section through \S 10 we will prove Theorem 3. Throughout this section let
$N_{1},$ $N_{2}$ and $N_{3}$ be the Nielsen transformations defined in \S 2, and let $\varphi=N_{3}^{2}$ and
$\chi=N_{1}N_{2}$ . Let $M_{VII}$ be the set introduced in \S 5. We easily see the following two
lemmas. We omit the proofs.

LEMMA 7.1. (i) $N_{1}^{2}=1,$ $N_{2}^{2}=1,$ $N_{1}N_{2}\sim N_{2}N_{1}$ and $N_{1}N_{2}N_{1}N_{2}\sim 1$ .

(ii) $\chi^{n}\sim\{$

$N_{1}N_{2}$ $\iota fn$ is odd.
1 1 $n$ is even.

(iii) $\chi^{-1}\sim\chi$ .
(iv) $\chi N_{1}=N_{1x^{-1}}$ .
(v) $\varphi N_{1}=N_{1}\varphi^{-1}$ and $N_{1}\varphi=\varphi^{-1}N_{1}$ .

LEMMA 7.2.

(i) $N_{1}(M_{VII})=M_{VII}$ and $N_{2}(M_{VU})=M_{V\Pi}$ .

(ii) $\chi^{n}(M_{VH})=M_{VII}(n\in Z)$ .

Let $J(G)$ be the $J\emptyset rgensen$ number for $G=\langle A_{1}, A_{2}\rangle$ . By Lemmas 5.3 and 7.2, we
have the following lemmas.

LEMMA 7.3. Let $G=\langle A_{1}, A_{2}\rangle\in R_{VII}$S. Then

(i) $J(\varphi^{m}(G))=J(G)(m\in Z)$ .

(ii) $J(\chi(G))=J(N_{2}(G))$ .

LEMMA 7.4.

(i) $\inf\{J(N_{1}(G))|G\in M_{VII}\}=\inf\{J(G)|G\in M_{VII}\}$ .

(ii) $\inf\{J(N_{2}(G))|G\in M_{VH}\}=\inf\{J(G)|G\in M_{VII}\}$ .
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(iii) $\inf\{J(\chi(G))|G\in M_{VII}\}=\inf\{J(G)|G\in M_{VII}\}$ .

(iv) $\inf\{J(\varphi^{m}(G))|G\in M_{VII}\}=\inf\{J(G)|G\in M_{VII}\}(m\in Z)$ .

Noting that $\neq\sim 1$ (Lemma 7.1), we can classify elements $\emptyset\in Mod(R_{VII}S_{2}^{0})$ into the
following four types by Proposition 3.3:

(T) $\phi=\varphi^{m(k)}\chi\varphi^{m(k-1)}\cdots\chi\varphi^{m(2)}\chi\varphi^{m(1)}$ ,

(T) $\phi=\chi\varphi^{m(k)}\chi\varphi^{m(k-1)}\cdots\chi\varphi^{m(2)}\chi\varphi^{m(1)}$ ,

(T3) $\phi=\varphi^{m(k)}\chi\varphi^{m(k-1)}\cdots\chi\varphi^{m(2)}\chi\varphi^{m(1)}\chi$ ,

(T) $\phi=\chi\varphi^{m(k)}\chi\varphi^{m(k-1)}\cdots\chi\varphi^{m(2)}\chi\varphi^{m(1)}\chi$ ,

where $m(k)=\pm 1,$ $\pm 2,$ $\pm 3,$
$\ldots$ .

We define marked groups $G_{j}$ and $G_{j}^{*}(j=1,2,3, \ldots)$ by setting

$G_{2k-1}=G_{2k-1}(G_{0}):=\varphi^{m(k)}\chi\varphi^{m(k-1)}\cdots\chi\varphi^{m(2)}\chi\varphi^{m(1)}(G_{0})$ ,

$G_{2k}=G_{2k}(G_{0}):=\chi\varphi^{m(k)}\chi\varphi^{m(k-1)}\cdots\chi\varphi^{m(2)}\chi\varphi^{m(1)}(G_{0})$ ,

$G_{2k}^{*}=G_{2k}^{*}(G_{0}):=\varphi^{m(k)}\chi\varphi^{m(k-1)}\cdots\chi\varphi^{m(2)}\chi\varphi^{m(1)}\chi(G_{0})$ ,

$G_{2k+1}^{*}=G_{2k+1}^{*}(G_{0}):=\chi\varphi^{m(k)}\chi\varphi^{m(k-1)}\cdots\chi\varphi^{m(2)}\chi\varphi^{m(1)}\chi(G_{0})$

for $G_{0}=\langle A_{1}, A_{2}\rangle\in M_{VII}$ .

Then we have $G_{2k}=\chi G_{2k-1}$ and $G_{2k+1}^{*}=\chi G_{2k}^{*}$ .

LEMMA 7.5. Let $G_{2k-l},$ $G_{2k},$ $G_{2k}^{*}$ and $G_{2k+1}^{*}$ be the groups defined in the above.
Then

(i) $J(G_{2k-1})=J(G_{2k-2})$ $(k=1,2,3, \ldots)$ .

(ii) $J(G_{2k}^{*})=J(G_{2k-1}^{*})$ $(k=1,2,3, \ldots)$ .

(iii) $\inf\{J(G_{2k}^{*})|G_{0}\in MI\}=\inf\{J(G_{2k-1})|G_{0}\in MI\}$ $(k=1,2,3, \ldots)$ .

(iv) $\inf\{J(G_{2k+1}^{*})|G_{0}\in M_{VII}\}=\inf\{J(G_{2k})|G_{0}\in M_{VII}\}$ $(k=1,2,3, \ldots)$ .

PROOF. (i) and (ii) follow from Lemma 7.3. (iii) and (iv) follow from Lemma 7.2.
q.e. $d$ .

PROPOSITION 7.1.

$\inf\{J(G)|G=\langle A_{1}, A_{2}\rangle\in R_{VII}S_{2}^{0}\}=\inf\{J(G)|G=\langle A_{1}, A_{2}\rangle\in M_{VII}\}$ .

Proposition 7.1 follows from Proposition 5.2 if the following proposition is shown.

PROPOSITION 7.2.

$\inf\{J(G)|G=\langle A_{1}, A_{2}\rangle\in R_{VII}S_{2}^{0}\}\geq\inf\{J(G)|G=\langle A_{1}, A_{2}\rangle\in M_{Vn}\}$ .

This proposition follows from the following proposition and Lemma 7.5.
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PROPOSITION 7.3. Let $G_{2k}(k=0,1,2, \ldots)$ be the groups as in the above. Then

$\inf\{J(G_{2k})|G_{0}=\langle A_{1},A_{2}\rangle\in M_{VII}\}>\inf\{J(G_{2k-2})|G_{0}=\langle A_{1},A_{2}\rangle\in MI\}$

$(k=1,2,3, \ldots)$ .

In this section we will only prove Proposition 7.3 for the case of $k=1$ , that is, the
following Proposition 7.4, and we will prove the proposition for the general case by
induction in sections 8 and 9.

PROPOSITION 7.4. Let $G_{0}=\langle A_{1},A_{2}\rangle\in M_{VII}$ and let $G_{2}=\chi\varphi^{m}(G_{0})(m\in Z)$ . Then

$\inf\{J(G_{2})|G_{0}\in M_{VII}\}>\inf\{J(G_{0})|G_{0}\in M_{VII}\}$ .

We easily see the following lemma by Lemma 5.2 and the defining equation of
$J\emptyset rgensen’ s$ number, and so we omit the proof.

LEMMA 7.6. Let $G=\langle A_{1}, A_{2}\rangle$ and $G^{*}=\langle A_{1}^{*}, A_{2}^{*}\rangle$ be in $R_{VII}S_{2}^{0}$ . Let
$(t_{1}(G), t_{2}(G),\rho(G))$ and $(t_{1}(G^{*}), t_{2}(G^{*}),\rho(G^{*}))$ correspond to $G$ and $G^{*}$ , respectively.
Then the following four inequalities are equivalents:

(i) $J(G^{*})>J(G)$ .

(ii) $J_{1}(G^{*})>J_{1}(G)$ .

(iii) $-t_{1}(G^{*})<-t_{1}(G)$ .

(iv) $tr^{2}(A_{1}^{*})<tr^{2}(A_{1})<0$ .

Let $G_{0}=\langle A_{1}, A_{2}\rangle\in M_{VII}$ and let $(t_{1}, t_{2,\rho})$ correspond to $G_{0}$ . Then $G_{2}=$

$\chi\varphi^{m}(G_{0})=\langle A_{1}^{2m}A_{2}, A_{1}^{-l}\rangle$ , where $m=m(1)\in Z\backslash \{0\}$ . We consider Proposition 7.4 for
the following four cases:

$(C_{1})$ $\rho\leq-1$ and $m\geq 1$ .

$(C_{2})$ $\rho\leq-1$ and $m\leq-1$ .

$(C_{3})$ $-1<\rho<0$ and $m\geq 1$ .

$(C_{4})$ $-1<\rho<0$ and $m\leq-1$ .

LEMMA 7.7. Let $G_{0}=\langle A_{1},A_{2}\rangle\in M_{VII}$ . Then
(i) $J(\chi\varphi^{m}(G_{0}))\geq J(G_{0})$ for $G_{0}$ and $G_{2}$ in case $(C_{1})\iota f$ and only $\iota fJ(\chi\varphi^{m}(G_{0}))\geq$

$J(G_{0})$ for $G_{0}$ and $G_{2}$ in case $(C_{4})$ .
(ii) $J(\chi\varphi^{m}(G_{0}))\geq J(G_{0})$ for $G_{0}$ and $G_{2}$ in case $(C_{2})\iota f$ and only if $J(\chi\varphi^{m}(G_{0}))\geq$

$J(G_{0})$ for $G_{0}$ and $G_{2}$ in case $(C_{3})$ .

PROOF. (i) We assume that $J(\chi\varphi^{m}(G_{0}))\geq J(G_{0})$ for $G_{0}$ and $G_{2}$ in case $(C_{1})$ . Let
$(t_{1}, t_{2},\rho)$ correspond to $G_{0}$ in case $(C_{4})$ , that is, $-1<p<0$ and let $m\leq-1$ . Then
$\rho(N_{1}(G_{0}))<-1$ and $-m\geq 1$ . Thus $J(\chi\varphi^{-m}(N_{1}(G_{0})))\geq J(N_{1}(G_{0}))$ by the assumption.
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Hence by Lemmas 5.3 and 7.1 we have

$J(\chi\varphi^{m}(G_{0}))=J(N_{1}N_{2}\varphi^{m}(G_{0}))=J(N_{1}N_{2}\varphi^{m}(N_{1}N_{1}(G_{0})))$

$=J(N_{1}N_{2}N_{1}\varphi^{-m}(N_{1}(G_{0})))=J(\chi\varphi^{-m}(N_{1}(G_{0})))$

$\geq J(N_{1}(G_{0}))=J(G_{0})$ .

Conversely, suppose the inequality holds for $G$ in case $(C_{4})$ . By the same method
as above we have the inequality for $G$ in case $(C_{1})$ .

We also obtain (ii) by the same way as in (i). q.e. $d$ .

In order to prove Proposition 7.4 it suffices to show Proposition 7.3 for $G$ in cases
$(C_{1})$ and $(C_{3})$ by Lemma 7.7.

LEMMA 7.8. Let $G=\langle A_{1}, A_{2}\rangle\in M_{VII}$ and let $(t_{1}, t_{2},\rho)$ correspond to G. If $\rho\leq-1$

and $m\geq 1$ , then $J(\chi\varphi^{m}(G))>J(G)$ .

PROOF. Since $\chi\varphi^{m}(G)=\langle A_{1}^{2m}A_{2}, A_{1}^{-1}\rangle$ , it suffices to show by Lemma 7.6 that
$tr^{2}(A_{1}^{2m}A_{2})<tr^{2}(A_{1})$ . Since

$tr^{2}(A_{1}^{2m}A_{2})=\{(\rho-t_{2})+t_{1}^{2m}(t_{2}\rho-1)\}^{2}/t_{1}^{2m}t_{2}$ (p–l)2

and $tr^{2}A_{1}=(1+t_{1})^{2}/t_{1}$ , it suffices to show

$\{(\rho-t_{2})+t_{1}^{2m}(t_{2}\rho-1)\}^{2}>t_{1}^{2m-1}t_{2}(p-1)^{2}(1+t_{1})^{2}$ .

We se$tx=-t_{1},$ $y=-t_{2}$ and $z=-\rho$ . Then $0<x<1,0<y<1$ and $z>1$ . We set

$I:=\{(\rho-t_{2})+t_{1}^{2m}(t_{2}\rho-1)\}^{2}-t_{1}^{2m-1}t_{2}(\rho-1)^{2}(1+t_{1})^{2}$

$=\{(y-z)+x^{2m}(yz-1)\}^{2}-x^{2m-1}y(z+1)^{2}(1-x)^{2}$ .

Furthermore, we set

$I_{1}:=\{(y-z)+x^{2m}(yz-1)\}-x^{m-1/2}y^{1/2}(z+1)(1-x)$

and
$I_{2}:=\{(y-z)+x^{2m}(yz-1)\}+x^{m1/2}y^{1/2}(z+1)(1-x)$ .

Then $I=I_{1}I_{2}$ . We will show $I_{1}<0$ and $I_{2}<0$ . We note that $yz<1$ for $G\in M_{VII}$ .
It is easy to see $I_{1}<0$ , because $y-z<0$ and $x^{2m}(yz-1)<0$ . Next we will show
$I_{2}<0$ . Since $G\in M_{V\Pi}$ , we have

$1<(-p)^{1/2}<\{1-(-t_{1})^{1/2}(-t_{2})^{1/2}\}/\{(-t_{1})^{1/2}+(-t_{2})^{1/2}\}$ ,

that is,
$1<z^{1/2}<(1-x^{1/2}y^{1/2})/(x^{1/2}+y^{1/2})$ .

It suffices to show

$f(z):=z\{1-x^{2m}y-x^{m-1/2}y^{1/2}(1-x)\}-\{y-x^{2m}+x^{m-\iota/2}y^{1/2}(1-x)\}>0$

in the interval $1<z<\{(1-x^{1/2}y^{1/2})/(x^{1/2}+y^{1/2})\}^{2}$ .
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Since
$f’(z)=1-x^{2m}y-x^{m-1/2}y^{1/2}(1-x)$

$=(1-x^{m-1/2}y^{1/2})(1+x^{m+1/2}y^{1/2})>0$ ,

it suffices to show $f(1)>0$ , that is,

$g(y):=\{1-x^{2m}y-x^{m-1/2}y^{1/2}(1-x)\}-\{y-x^{2m}+x^{m-1/2}y^{1/2}(1-x)\}>0$

in the interval $0<y<\{(1-x^{1/2})/(1+x^{1/2})\}^{2}$ .
Set $Y=y^{1/2}$ . Then

$g(Y)=-Y^{2}(1+x^{2m})-2x^{m-1/2}(1-x)Y+(1+x^{2m})$ .

Since $g(O)=(1+x^{2m})>0$ and $g(\{(1-x^{1/2})/(1+x^{1/2})\}^{2})>0$ , we have $g(Y)>0$ in the
interval $0<Y<(1-x^{1/2})/(1+x^{1/2})$ . q.e.d.

LEMMA 7.9. Let $G=\langle A_{1}, A_{2}\rangle\in M_{VII}$ and let $(t_{1}, t_{2},\rho)$ correspond to G. If
$-1<\rho<0$ and $m\geq 1$ , then $J(\chi\varphi^{m}(G))>J(G)$ .

PROOF. It suffices to show $tr^{2}(A_{1}^{2m}A_{2})<tr^{2}(A_{1})$ by Lemma 7.6. We use the same
notation $I,$ $I_{1}$ and $I_{2}$ as in the proof of Lemma 7.8. We set $x=-t_{1},$ $y=-t_{2}$

and $z=-p$ . Since $\{(-t_{1})^{1/2}+(-t_{2})^{1/2}\}/\{1-(-t_{1})^{1/2}(-t_{2})^{1/2}\}<(-\rho)^{1/2}<1$ , that is,
$(x^{1/2}+y^{1/2})/(1-x^{1/2}y^{1/2})<z^{1/2}<1$ , we have

$y-z+x^{2m}(yz-1)=-z(1-x^{2m}y)+y-x^{2m}$

$<-\{(x^{1/2}+y^{1/2})/(1-x^{1/2}y^{1/2})\}^{2}(1-x^{2m}y)+(y-x^{2m})<0$ .

Hence $I_{1}<0$ .
Next we will show $I_{2}<0$ . We set $f(z)=I_{2}$ . Since

$f(z)=z\{-1+x^{2m}y+x^{m-1/2}y^{1/2}(1-x)\}+\{y-x^{2m}+x^{m-1/2}y^{1/2}(1-x)\}$

and
$-1+x^{2m}y+x^{m-1/2}y^{1/2}(1-x)=-(1-x^{m-1/2}y^{1/2})(1+x^{m+1/2}y^{1/2})<0$ ,

it suffices to show $f(z)<0$ for $z=\{(x^{1/2}+y^{1/2})/(1-x^{1/2}y^{1/2})\}^{2}$ . Since

$f(\{(x^{1/2}+y^{1/2})/(1-x^{1/2}y^{1/2})\}^{2})$

$=-\{(x^{1/2}+y^{1/2})^{2}(1-x^{2m}y-x^{m-1/2}y^{1/2}+x^{m+1/2}y^{1/2})$

$+(1-x^{1/2}y^{1/2})^{2}(y-x^{2m}+x^{m-1/2}y^{1/2}-x^{m+1/2}y^{1/2})\}/(1-x^{1/2}y^{1/2})^{2}$ ,

it suffices to show

$g(z):=(x^{1/2}+y^{1/2})^{2}(1-x^{2m}y x^{m-1/2}y^{1/2}+x^{m+1/2}y^{1/2})$

$-(1-x^{1/2}y^{1/2})^{2}(y-x^{2m}+x^{m-1/2}y^{1/2}-x^{m+1/2}y^{1/2})>0$ .

By straightforward calculations, we have

$g(z)=(1+y)[x(1+x^{2m-1})(1-y)+x^{1/2}y^{1/2}\{2(1-x^{2m})-x^{m-1}(1-x^{2})\}]$ .
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Since

2$(1-x^{2m})-x^{m-1}(1-x^{2})=(1-x^{2m})+(1-x^{m-1})+x^{m+1}(1-x^{m-1})>0$ ,

we have $g(z)>0$ . Hence $I_{2}<0$ and so $I>0$ . q.e.d.

\S 8. Proof of Theorem 3: Part 2.

Throughout this section let $N_{1},$ $N_{2}$ and $N_{3}$ be the Nielsen transformations and let
$\varphi=N_{3}^{2}$ and $\chi=N_{1}N_{2}$ . Let $G_{0}=\langle A_{10}, A_{20}\rangle\in M_{VII}$ and set

$G_{2k}=\chi\varphi^{m(k)}\chi\varphi^{m(k-1)}\cdots\chi\varphi^{m(2)}\chi\varphi^{m(1)}(G_{0})\in R_{VII}S_{2}^{0}$ $(k=1,2,3, \ldots)$

as in \S 7. In this and next sections we will show the following proposition.

PROPOSITION 8.1.

$\inf\{J(G_{2k})|G_{2k}\in R_{VII}S_{2}^{0}\}>\inf\{J(G_{0})|G_{0}\in M_{VII}\}$

for $k=2,3,4,$ $\ldots$ .

Let $G_{2k-2}=\langle A_{1}, A_{2}\rangle\in R_{VII}S_{2}^{0}$ and let $(t_{1}, t_{2},\rho)$ correspond to $G_{2k-2}$ . Then we have
$G_{2k}=\chi\varphi^{m}(G_{2k-2})=\langle A_{1}^{2m}A_{2}, A_{2}^{-1}\rangle$ with $m=m(k+1)$ . As in the previous section, we
consider the following four cases:

$(C_{1})$ $\rho\leq-1$ and $m\geq 1$ .

$(C_{2})$ $\rho\leq-1$ and $m\leq-1$ .

$(C_{3})$ $-1<\rho<0$ and $m\geq 1$ .

$(C_{4})$ $-1<\rho<0$ and $m\leq-1$ .

By the same way as in the proof of Lemma 7.7, we have the following.

LEMMA 8.1. Let $G=\langle A_{1}, A_{2}\rangle\in R_{VII}S_{2}^{0}$ and let $(t_{1}, t_{2},\rho)$ correspond to $G$.
(i) The inequality

$(*)$ $J(G)<J(\chi\varphi^{m}(G))$

holds for $G$ in case $(C_{1})\iota f$ and only if the inequality $(*)$ holds for $G$ in case $(C_{4})$ .
(ii) The inequality $(*)$ holds for $G$ in case $(C_{2})$ if and only if the inequality $(*)$ holds

for $G$ in case $(C_{3})$ .

In this section, from now on let $G=\langle A_{1}, A_{2}\rangle\in R_{VII}S_{2}^{0}\backslash M_{VII}$ and let $(t_{1}, t_{2},p)$

correspond to $G$ . Throughout this section, let

$(**)$ $A_{1}=1/t_{1}^{1/2}(\begin{array}{ll}1 00 t_{1}\end{array})$ and $A_{2}=1/t_{2}^{1/2}(\rho-1)(\begin{array}{ll}-\rho t_{2} t_{2}\rho-1)1-t_{2} -t_{2}\rho 1\end{array})$ .

Thenwe have tr $A_{1}=(1+t_{1})/t|^{/2}$ and tr $A_{2}=\{(p-t_{2})+(t_{2}p-1)\}/t_{2}^{1/2}(\rho-1)$ . Further-
more we set $x=-t_{1},$ $y=-t_{2}$ and $z=-\rho$ . In this section we consider the case of
$p<-1$ , that is, the case of $z>1$ .
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LEMMA 8.2. Let $G=\langle A_{1}, A_{2}\rangle\in R_{VII}S_{2}^{0}\backslash M_{V\Pi}$ and let $(t_{1}, t_{2},\rho)$ correspond to $G$.
Set $x=-t_{1},$ $y=-t_{2}$ and $z=-\rho$ . If $z>1$ , then

$z-y+x(yz-1)>0$ .

PROOF. Since $G\in R_{VII}S\#\backslash M_{\Pi}$ , we have

(1) $z^{1/2}>(1-x^{1/2}y^{1/2})/(x^{1/2}+y^{1/2})>1$ .

From (1), we have

(2) $1-x^{1/2}y^{1/2}>x^{1/2}+y^{1/2}$

and

(3) $1>x^{1/2}+y^{1/2}$ .

By (1), (2) and (3) we have

$z-y+x(yz-1)=z(1+xy)-(x+y)$

$>\{(1-x^{1/2}y^{1/2})/(x^{1/2}+y^{1/2})\}^{2}(1+xy)-(x+y)$

$=(1+x)(1+y)\{(1+xy)-(x^{1/2}+y^{1/2})^{2}\}/(x^{1/2}+y^{1/2})^{2}$

$>(1+x)(1+y)\{(1+xy)-x^{1/2}-y^{1/2}\}/(x^{1/2}+y^{1/2})^{2}$

$>(1+x)(1+y)(1-x^{1/2}y^{1/2}-x^{1/2}-y^{1/2})/(x^{1/2}+y^{1/2})^{2}>0$ . q.e.d.

LEMMA 8.3. Under the same assumption as Lemma 8.2, for $m=1,2,3,$ $\ldots$

$(*)$ $\frac{(z-y)+x^{2m-1}(yz-1)}{x^{m-1/2}y^{1/2}(z+1)}>\frac{(z-y)+x(yz-1)}{x^{1/2}y^{1/2}(z+1)}$

PROOF. By simple calculation we can see that if we show the inequality

$(z-y)-x^{m}(yz-1)>0$

holds, then we have the desired inequality $(*)$ .
Since $z>\{(1-x^{1/2}y^{1/2})/(x^{1/2}+y^{1/2})\}^{2}$ , we have

$(z-y)-x^{m}(yz-1)>(1+y)\{(1-y)(1+x^{m+1})-2x^{1/2}y^{1/2}(1-x^{m})\}/(x^{1/2}+y^{1/2})^{2}$ .

Since $1>x^{1/2}y^{1/2}+x^{1/2}+y^{1/2}$ , we have

$(1-y)(1+x^{m+1})-2x^{1/2}y^{1/2}(1-x^{m})$

$>(1-y^{1/2})(x^{1/2}+y^{1/2})+(1-y)x^{m+1}+2x^{m+1/2}y^{1/2}>0$ . q.e. $d$ .

REMARK. Lemma 8.3 means $tr(A_{1}^{2m-1}A_{2})\leq tr(A_{1}A_{2})<0$ .

COROLLARY. Let $G=\langle A_{1}, A_{2}\rangle\in R_{VII}\backslash M_{V\Pi}$ and let $A_{1}$ and $A_{2}$ be the matrices as
in $(**)$ . Then for $m=1,2,3,$ $\ldots$

(i) $tr(A_{1}^{4m-1}A_{2})>2$ .

(ii) $tr(A_{1}^{4m-3}A_{2})<-2$ .
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PROOF. By Lemmas 8.2 and 8.3, we have

$tr(A_{1}^{4m-1}A_{2})=\{(\rho-t_{2})+t_{1}^{4m-1}(t_{2}p-1)\}/t_{1}^{(4m-1)/2}t_{2}^{1/2}(\rho-1)$

$=\{(z-y)+x^{4m-1}(yz-1)\}/x^{(4m-1)/2}y^{1/2}(z+1)$

$>\{(z-y)+x(yz-1)\}/x^{1/2}y^{1/2}(z+1)>0$ .

Since $A_{1}^{4m-1}A_{2}$ is a hyperbolic transformation, we have $tr(A_{1}^{4m-1}A_{2})>2$ .
(ii) By Lemmas 8.2 and 8.3, we have

$tr(A_{1}^{4m-3}A_{2})=\{(\rho-t_{2})+t_{1}^{4m-3}(t_{2}\rho-1)\}/t_{1}^{(4m-3)/2}t_{2}^{1/2}(\rho-1)$

$=-\{(z-y)+x^{4m-3}(yz-1)\}/x^{(4m-3)/2}y^{1/2}(z+1)$

$<-\{(z-y)+x(yz-1)\}/x^{1/2}y^{1/2}(z+1)<0$ .

Since $A_{1}^{4m-3}A_{2}$ is a hyperbolic transformation, we have $tr(A_{1}^{4m-3}A_{2})<-2$ . q.e.d.

LEMMA 8.4. Under the same assumption as Lemma 8.2

$(z-y)-x^{2}(yz-l)>0$ .

PROOF. Since $z>\{(1-x^{1/2}y^{1/2})/(x^{1/2}+y^{1/2})\}^{2}$ , we have

$(z-y)-x^{2}(yz-x^{2})>\{(1-x^{1/2}y^{1/2})/(x^{1/2}+y^{1/2})\}^{2}(1-x^{2}y)-(y-x^{2})$

$=\{(1-x^{1/2}y^{1/2})^{2}(1-x^{2}y)-(x^{1/2}+y^{1/2})^{2}(y-x^{2})\}/(x^{1/2}+y^{1/2})^{2}$ .

Since $1>x^{1/2}y^{1/2}+x^{1/2}+y^{1/2}$ , we have

$(1-x^{1/2}y^{1/2})^{2}(1-x^{2}y)-(x^{1/2}+y^{1/2})^{2}(y-x^{2})$

$=(1+y)(1+x^{3}-y-yx^{3}-2x^{1/2}y^{1/2}+2x^{2}x^{1/2}y^{1/2})$

$>(1+y)\{(1-y^{1/2})(x^{1/2}+y^{1/2})+x^{3}(1-y)+2x^{2}x^{1/2}y^{1/2}\}>0$ . q.e.d.

LEMMA 8.5. Under the same assumption as Lemma 8.2,

$\frac{(z-y)-x^{2m}(yz-1)}{x^{m}y^{1/2}(z+1)}\geq\frac{(z-y)-x^{2}(yz-1)}{xy^{1/2}(z+1)}$

for $m=1,2,3,$ $\ldots$ .

PROOF. The inequality in this lemma is equivalent to the following one:

$(*)$ $(1-x^{m-1})\{(z-y)+(yz-1)x^{m+1}\}\geq 0$ .

If $yz-1\geq 0$ , then it is obvious that the inequality $(*)$ holds. Therefore we assume
$yz-- l<0$ . Then since $1>x^{1/2}y^{1/2}+x^{1/2}+y^{1/2}$ , we have

$(z-y)+x^{m+1}$ (yz–l) $>(z-y)-x(1-yz)>z-y-x>1-y-x$
$>x^{1/2}y^{1/2}+x^{1/2}+y^{1/2}-x-y$

$=x^{1/2}(1-x^{1/2})+y^{1/2}(1-y^{1/2})+x^{1/2}y^{1/2}>0$ . q.e.d.
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REMARK. Let $A_{1}$ and $A_{2}$ be the matrice $(**)$ . Then the inequality in Lemma 8.5
means $itr(A_{1}^{2m}A_{2})\leq itr(A_{1}^{2}A_{2})$ .

LEMMA 8.6. Let $G=\langle A_{1}, A_{2}\rangle$ be as in Lemma 8.2 and let $A_{1}$ and $A_{2}$ be the
matrices $(**)$ . Then

(i) $itr(A_{1}^{4m-2}A_{2})<0$ $(m=1,2,3, \ldots)$ .

(ii) $itr(A_{1}^{4m}A_{2})>0$ $(m=1,2,3, \ldots)$ .

PROOF. (i) Let $x,$ $y$ and $z$ be as in Lemma 8.2. By Lemmas 8.4 and 8.5, we have

$-itr(A_{1}^{4m-2}A_{2})=-\{(z-y)-x^{4m-2}(yz-1)\}/x^{2m-1}y^{1/2}(z+1)$

$\leq-\{(z-y)-x^{2}(yz-1)\}/xy^{1/2}(z+1)<0$ .

(ii) By Lemmas 8.4 and 8.5, we have

$itr(A_{1}^{4m}A_{2})=\{(z-y)-x^{4m}(yz-1)\}/x^{2m}y^{1/2}(z+1)$

$>\{(z-y)-x^{2}(yz-1)\}/xy^{1/2}(z+1)>0$ . q.e. $d$ .

The following lemma is easily seen and so the proof is omitted.

LEMMA 8.7. Let

$A=1/t_{1}^{1/2}(\begin{array}{ll}1 00 t_{l}\end{array})$ .

Then for $m=1,2,3,$ $\ldots$ ,

(i) $itr(A^{4m-3})>0$ .

(ii) $tr(A^{4m-2})<-2$ .

(iii) $itr(A^{4m-1})<0$ .

(iv) $tr(A^{4m})>2$ .

PROPOSITION 8.2. Let $G_{0}=\langle A_{10},A_{20}\rangle\in M_{V\Pi}$ and let $G_{2_{J}}=\chi\varphi^{m(j)}\chi\varphi^{m(j-1)}\cdots$

$\chi\varphi^{m(2)}\chi\varphi^{m(1)}(G_{0})$ with $m(l)\in Z\backslash \{0\}$ $(l=1,2,3, \ldots)$ . Suppose that $\rho(G_{2k})\leq-1$

and $m(k+1)\geq 1$ $(k=1,2,3, \ldots)$ . If $J(G_{2k-2})<J(G_{2k})$ , then $J(G_{2k})<J(G_{2k+2})$

$(k=1,2,3, \ldots)$ .

REMARK. This proposition means that $J(G_{2k})<J(G_{2k+2})(k=1,2,3, \ldots)$ holds in
case $(C_{1})$ .

PROOF OF PROPOSITION 8.2. We set $G_{2k}=\langle A_{1,2k}, A_{2,2k}\rangle=\langle B_{1}, B_{2}\rangle$ . Then
$J(G_{2k-2})<J(G_{2k})$ if and only if $tr^{2}(B_{1})<tr^{2}(B_{2})<0$ . We have $G_{2k+2}=$

$\langle B_{1}^{2m}B_{2}, B_{1}^{-1}\rangle$ , where $m=m(k+1)$ . We set $Y:=tr^{2}(B_{1})-tr^{2}(B_{1}^{2m}B_{2})$ . Then

$Y=(itr(B_{1}^{2m}B_{2})+itr(B_{1}))(itr(B_{1}^{2m}B_{2})-itr(B_{1}))$ .

We note that

$(*)$ $itr(B_{1}^{2m}B_{2})=itr(B_{1}^{m})tr(B_{1}^{m}B_{2})-itr(B_{2})$ .
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Then we may assume that

$(**)$ $B_{1}=1/t_{1}^{1/2}(\begin{array}{ll}1 00 t_{l}\end{array})$ and $B_{2}=1/t_{2}^{1/2}(\rho-1)(\begin{array}{ll}p-t_{2} \rho(t_{2}-1)1-t_{2} t_{2}\rho-1\end{array})$ .

Then we have $tr(B_{1})=(1-t_{1})/t_{1}^{1/2}$ and $tr(B_{2})=\{(\rho-t_{2})+(t_{2}p-1)\}/t_{2}(\rho-1)$ .
(i) The case of $m=4n-1(n=1,2,3, \ldots)$ .
By corollary to Lemma 8.3, we have $tr(B_{1}^{m}B_{2})>2$ . Since $itr(B_{2})>0$ and

$itr(B_{1}^{m})<0$ by Lemma 8.7, we have $itr(B_{1}^{2m}B_{2})<2itr(B_{1}^{m})-itr(B_{2})<0$ . Hence
$itr(B_{1}^{2m}B_{2})-itr(B_{1})<0$ . Therefore if we show $itr(B_{1}^{2m}B_{2})+itr(B_{1})<0$ , then we have
the desired inequality $Y>0$ . By $(*)$ and corollary to Lemma 8.3, we have

$itr(B_{1}^{2m}B_{2})+itr(B_{1})=itr(B_{1}^{m})tr(B_{1}^{m}B_{2})-itr(B_{2})+itr(B_{1})$

$<2itr(B_{1}^{4n-1})-itr(B_{2})+itr(B_{1})$

$<-2itr(B_{1})-itr(B_{2})+itr(B_{1})<0$ .

for $m=1,2,3,$ $\ldots$ .
(ii) The case of $m=4n-3(n=1,2,3, \ldots)$ .
By corollary to Lemma 8.3, we have $tr(B_{1}^{m}B_{2})=tr(B_{1}^{4n-3}B_{2})<-2$ . By $(*)$ and

Lemma 8.7 we have

$itr(B_{1}^{2m}B_{2})=itr(B_{1}^{m})tr(B_{1}^{m}B_{2})-itr(B_{2})$

$<-2itr(B_{1}^{m})-itr(B_{2})<0$ .

Hence $itr(B_{1}^{2m}B_{2})-itr(B_{1})<0$ . Therefore if we show $itr(B_{1}^{2m}B_{2})+itr(B_{1})<0$ , then
we have the desired inequality $Y>0$ .

By $(*)$ and corollary to Lemma 8.3, we have

$itr(B_{1}^{2m}B_{2})+itr(B_{1})=itr(B_{1}^{m})tr(B_{1}^{m}B_{2})-itr(B_{2})+itr(B_{1})$

$<-2\iota tr(B_{1}^{m})-itr(B_{2})+itr(B_{1})$

$<-2itr(B_{1})-itr(B_{2})+itr(B_{1})<0$

for $m=1,2,3,$ $\ldots$ .
(iii) The case of $m=4n-2(n=1,2,3, \ldots)$ .
In this case we have

$Y=(itr(B_{1}^{8n-4}B_{2})+itr(B_{1}))(itr(B_{1}^{8n-4}B_{2})-itr(B_{1}))$ .

1) The case of $n=2l(l=1,2,3, \ldots)$ .
By corollary to Lemma 8.3, $tr(B_{1}^{2n-1}B_{2})=tr(B_{1}^{4l-1}B_{2})>2$ . Hence by $(*)$ , Lemma

8.7 and corollary to Lemma 8.3, we hav$e$ $itr(B_{1}^{4n-2}B_{2})+itr(B_{1})<0$ . Thus
$itr(B_{1}^{4n-2}B_{2})<-itr(B_{1})<0$ . By using this inequality and the hypothesis of induction
$itr(B_{1})>itr(B_{2})$ , we have

$itr(B_{1}^{8n-4}B_{2})-itr(B_{1})=itr(B_{1}^{4n-2}B_{2})trB_{1}^{4n-2}-itr(B_{2})-itr(B_{1})$

$>-itr(B_{1})tr(B_{1}^{4n-2})-itr(B_{2})-itr(B_{1})$

$>2itr(B_{1})-itr(B_{2})-itr(B_{1})>0$ .
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Furthermore, since $itr(B_{1})>0$ , we have

$itr(B_{1}^{8n-4}B_{2})+itr(B_{1})>itr(B_{1}^{8n-4}B_{2})-itr(B_{1})+2itr(B_{1})$

$>2itr(B_{1})>0$ .

Therefore we have $Y>0$ .
2) The case of $n=2l-1(l=1,2,3, \ldots)$ .
By corollary to Lemma 8.3, we hav$e$

$tr(B_{1}^{2n-1}B_{2})=tr(B_{1}^{4l-3}B_{2})<-2$ .

Hence

$itr(B_{1}^{4n-2}B_{2})+itr(B_{1})=itr(B_{1}^{2n-1}B_{2})tr(B_{1}^{2n-1})-itr(B_{2})+itr(B_{1})$

$<-2itr(B_{1}^{2n-1})-itr(B_{2})+itr(B_{1})$

$<-2itr(B_{1})-itr(B_{2})+itr(B_{1})$

$=-itr(B_{1})-itr(B_{2})<0$ .

Thus we have

$itr(B_{1}^{4n-2}B_{2})<-itr(B_{1})<0$ .

Hence by Lemma 8.7 and the hypothesis of induction $itr(B_{1})>itr(B_{2})$ , we have

$itr(B_{1}^{8n-4}B_{2})-itr(B_{1})=itr(B_{1}^{4n-2}B_{2})tr(B_{1}^{4n-2})-itr(B_{2})-itr(B_{1})$

$>-itr(B_{1})tr(B_{1}^{4n-2})-itr(B_{2})-itr(B_{1})$

$>2itr(B_{1})-itr(B_{2})-itr(B_{1})>0$ .

Furthermore, since $itr(B_{1})>0$ , we have

$itr(B_{1}^{8n-4}B_{2})+itr(B_{1})=itr(B_{1}^{8n-4}B_{2})-itr(B_{1})+2itr(B_{1})$

$>2itr(B_{1})>0$ .

Therefore we have $Y>0$ .
(iv) The case of $m=4n(n=1,2,3, \ldots)$ .
In this case we have

$Y=(itr(B_{1}^{8n}B_{2})+itr(B_{1}))(itr(B_{1}^{8n}B_{2})-itr(B_{1}))$ .

By $(*)$ we have the following:

$itr(B_{1}^{8n}B_{2})=itr(B_{1}^{4n}B_{2})tr(B_{1}^{4n})-itr(B_{2})$ ,

$itr(B_{1}^{4n}B_{2})=itr(B_{1}^{2n}B_{2})tr(B_{1}^{2n})-itr(B_{2})$ ,

and

$itr(B_{1}^{2n}B_{2})=itr(B_{1}^{n}B_{2})tr(B_{1}^{n})-itr(B_{2})$ .

1) The case of $n=4l-1(l=1,2,3, \ldots)$ .
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By corollary to Lemma 8.3, $tr(B_{1}^{n}B_{2})=tr(B_{1}^{4l-1}B_{2})>2$ . Therefore by Lemma 8.7
we have

$itr(B_{1}^{2n}B_{2})+itr(B_{1})=itr(B_{1}^{n}B_{2})tr(B_{1}^{n})-itr(B_{2})+itr(B_{1})$

$<2itr(B_{1}^{n})-itr(B_{2})+itr(B_{1})$

$<-2itr(B_{1})-itr(B_{2})+itr(B_{1})$

$=-itr(B_{1})-itr(B_{2})<0$ .

Hence $itr(B_{1}^{2n}B_{2})<-itr(B_{1})$ . By using this inequality and the hypothesis of induction
$itr(B_{1})>itr(B_{2})$ , we have

$itr(B_{1}^{4n}B_{2})-itr(B_{1})=itr(B_{1}^{2n}B_{2})tr(B_{1}^{2n})-itr(B_{2})-itr(B_{1})$

$>-2itr(B_{1}^{2n}B_{1})-itr(B_{2})-itr(B_{1})$

$>2itr(B_{1})-itr(B_{2})-itr(B_{1})>0$ .

Thus $itr(B_{1}^{4n}B_{2})>itr(B_{1})$ . By using this inequality and the hypothesis of induction
$itr(B_{1})>itr(B_{2})$ , we have

$itr(B_{1}^{8n}B_{2})-itr(B_{1})=itr(B_{1}^{4n}B_{2})tr(B_{1}^{4n})-itr(B_{2})-itr(B_{1})$

$>itr(B_{1})tr(B_{1}^{4n})-itr(B_{2})-itr(B_{1})$

$>2itr(B_{1})-itr(B_{2})-itr(B_{1})>0$ .

Furthermore since $itr(B_{1})>0$ , we have

$itr(B_{1}^{8n}B_{2})+itr(B_{1})=itr(B_{1}^{8n}B_{2})-itr(B_{1})+2itr(B_{1})>0$ .

Therefore we have the desired inequality $Y>0$ .
2) The case of $n=4l-3(l=1,2,3, \ldots)$ .
By corollary to Lemma 8.3, we have $tr(B_{1}^{n}B_{2})=tr(B_{1}^{4l-3}B_{2})<-2$ . By using this

inequality we have

$itr(B_{1}^{2n}B_{2})+itr(B_{1})=itr(B_{1}^{n})tr(B_{1}^{n}B_{2})-itr(B_{2})+itr(B_{1})$

$<-2itr(B_{1}^{n})-itr(B_{2})+itr(B_{1})$

$<-2itr(B_{1})-itr(B_{2})+itr(B_{1})<0$ .

Hence $itr(B_{1}^{2n}B_{2})<-itr(B_{1})<0$ . By hypothesis of induction $itr(B_{1})>itr(B_{2})$ and
Lemma 8.7, we have

$itr(B_{1}^{4n}B_{2})-itr(B_{1})=itr(B_{1}^{2n}B_{2})tr(B_{1}^{2n})-itr(B_{2})-itr(B_{1})$

$>-itr(B_{1})tr(B_{1}^{2n})-itr(B_{2})-itr(B_{1})$

$>2itr(B_{1})-itr(B_{2})-itr(B_{1})>0$ .

Hence $itr(B_{1}^{4n}B_{2})>itr(B_{1})>0$ . By this inequality and the hypothesis of induction
$itr(B_{1})>itr(B_{2})$ , we have
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$itr(B_{1}^{8n}B_{2})-itr(B_{1})=itr(B_{1}^{4n}B_{2})tr(B_{1}^{4n})-itr(B_{2})-itr(B_{1})$

$>itr(B_{1})tr(B_{1}^{4n})-itr(B_{2})-itr(B_{1})$

$>2itr(B_{1})-itr(B_{2})-itr(B_{1})>0$ .

Furthermore noting $itr(B_{1})>0$ , we have $itr(B_{1}^{8n}B_{2})+itr(B_{1})>0$ and so $Y>0$ .
3) The case of $n=4l-2(l=1,2,3, \ldots)$ .
This case is similarly treated to the case of (ii), that is, the case of $m=4n-2$ .
4) The case of $n=4l(l=1,2,3, \ldots)$ .
By Lemma 8.7 and the same way as the case of $m=4n,$ $n=2l$, we have

$itr(B_{1}^{16l}B_{2})+itr(B_{1})=itr(B_{1}^{8l}B_{2})tr(B_{1}^{8l})-itr(B_{2})+itr(B_{1})$

$>2itr(B_{1})-itr(B_{2})+itr(B_{1})$ .

By the hypothesis of induction $itr(B_{1})>itr(B_{2})$ , we have the desired inequality
$itr(B_{1}^{16l}B_{2})>itr(B_{1})$ . q.e.d.

\S 9. Proof of Theorem 3: Part 3.

Let $(t_{1}, t_{2},\rho)$ correspond to $G=\langle A_{1}, A_{2}\rangle$ . Then we write $t_{1}=t_{1}(G),$ $t_{2}=t_{2}(G)$

and $p=\rho(G)$ , respectively. In this section we will show the following proposition.

PROPOSITION 9.1. Let $G_{0}\in M_{VII}$ and set $G_{2j}=\chi\varphi^{m(j)}\chi\cdots\varphi^{m(2)}\chi\varphi^{m(1)}(G_{0})$ with
$m(l)\in Z\backslash \{0\}(l=1,2,3, \ldots)$ . Suppose $\rho(G_{2k})<-1$ and $m(k+1)\leq-1$ . If $J(G_{2k-2})$

$<J(G_{2k})$ , then $J(G_{2k})<J(G_{2k+2})(k=1,2,3, \ldots)$ .

REMARK. This proposition means that $J(G_{2k})<J(G_{2k+2})(k=1,2,3, \ldots)$ holds in
case $(C_{2})$ in \S 8.

LEMMA 9.1. Let $G_{0}=\langle A_{10}, A_{20}\rangle\in M_{VII}$ and $G_{2}=\chi\varphi^{-1}(G_{0})=\langle B_{1}, B_{2}\rangle$ . Let
$(t_{1}, t_{2},\rho)$ correspond to $G_{2}$ and set $x=-t_{1},$ $y=-t_{2}$ and $z=-p$ . Then

$x(z-y)+(yz-1)>0$ ,

that is, $tr(B_{1}^{-1}B_{2})>0$ , where

$B_{1}=1/t_{1}^{1/2}(\begin{array}{ll}1 00 t_{1}\end{array})$ and $B_{2}=1/t_{2}^{1/2}(\rho-1)(\begin{array}{lll}-\rho t_{2} \rho(t_{2} -1)1-t_{2} t_{2}p -1\end{array})$ .

PROOF. We note $z^{1/2}>(1+x^{1/2}y^{1/2})/(y^{1/2}-x^{1/2})$ . By this inequality, we have

$x(z-y)+(yz-1)=z(x+y)-(1+xy)$

$>\{(1+x^{1/2}y^{1/2})/(y^{1/2}-x^{1/2})\}^{2}(x+y)-(1+xy)$

$=2x^{1/2}y^{1/2}(1+x)(1+y)/(y^{1/2}-x^{1/2})^{2}>0$ . q.e. $d$ .

LEMMA 9.2. Let $G=\langle A_{1}, A_{2}\rangle\in R_{vu}S_{2}^{0}\backslash M_{VII}$ and set $H=\chi\varphi^{-1}(G)=\langle B_{1}, B_{2}\rangle$ .
Let $x=-t_{1}(G),$ $y=-t_{2}(G),$ $z=-\rho(G);x_{1}=-t_{1}(H),$ $y_{1}=-t_{2}(H),$ $z_{1}=-\rho(H)$ . If
$x(z-y)+(yz-1)>0$ , then $x_{1}(z_{1}-y_{1})+(y_{1}z_{1}-1)>0$ .
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REMARK. Since $tr(A_{1}^{-1}A_{2})=\{x(z-y)+(yz-1)\}/x^{1/2}y^{1/2}(z+1)$ and $tr(B_{1}^{-1}B_{2})=$

$\{x_{1}(z_{1}-y_{1})+(y_{1}z_{1}-1)\}/x_{1^{/2}}y_{1^{/2}}(z_{i}+1)$ , this lemma means that if $tr(A_{1}^{-1}A_{2})>0$ , then
$tr(B_{1}^{-1}B_{2})>0$ .

PROOF OF LEMMA 9.2. Since $B_{1}=A_{1}^{-2}A_{2}$ and $B_{2}=A_{1}^{-1}$ , we have $tr(B_{1}^{-1}B_{2})=$

$tr((A_{1}^{-2}A_{2})^{-1}A_{1}^{-1})=tr(A_{1}^{-1}A_{2})>0$ . q.e.d.

LEMMA 9.3. $If-l<\rho(G)<0$ , then $\rho(\chi(G))<-1$ .

PROOF. This lemma follows from $p(\chi(G))=1/p(G)$ . q.e.d.

By straightforward calculations we have the following lemma.

LEMMA 9.4. $If-l<\rho(G)<0$ , then $-1<\rho(\varphi^{-1}\chi(G))<0$ .

LEMMA 9.5. $If-l<\rho(\varphi^{-1}\chi(G))<0$ , then

$J(\chi\varphi^{-1}\chi(G))<J(\chi\varphi^{-m}\chi(G))$ $(m\geq 2)$ .

PROOF. By Lemma 7.1, we have

$J(\chi\varphi^{-m}\chi(G))=J(N_{1}N_{2\varphi^{-m}x}(G))=J(N_{2}N_{1}\varphi^{-m}\chi(G))$

$=J(N_{2}\varphi^{m}N_{1}\chi(G))=J(N_{1}N_{2}\varphi^{m}N_{1}\chi(G))=J(\chi\varphi^{m}N_{1}\chi(G))$ .

for $m=1,2,3,$ $\ldots$ . Since $\rho(\varphi N_{1}\chi(G))<-1$ by Lemmas 7.1 and 9.4, we have
$J(\chi\varphi N_{1}\chi(G))<J(\chi\varphi^{m}N_{1}\chi(G))(m\geq 2)$ by the same way as in \S 8. Therefore we have
the desired inequality, $J(\chi\varphi^{-1}\chi(G))<J(\chi\varphi^{-m}\chi(G))$ for $m\geq 2$ . q.e.d.

LEMMA 9.6. Let $G=\langle A_{1}, A_{2}\rangle\in R_{VII}S_{2}^{0}\backslash M_{VII},$ $H_{1}=\chi\varphi^{-1}(G)$ and $H_{m}=\chi\varphi^{-m}(G)$

$(m\geq 2)$ . $If-l<p(\varphi^{-1}(G))<0$ , then $J(H_{1})<J(H_{m})$ .

PROOF. We consider $G$ in this lemma as $\chi(G)$ in Lemma 9.5. By Lemma 9.5, we
have $J(H_{1})=J(\chi\varphi^{-1}(G))<J(\chi\varphi^{-m}(G))=J(H_{m})$ . q.e.d.

LEMMA 9.7. Let $G=\langle A_{1}, A_{2}\rangle\in R_{VII}S_{2}^{0}\backslash M_{VII}$ with $-1<\rho(G)<0$ . Let $H^{*}=$

$\chi(G)=\langle B_{1}, B_{2}\rangle$ . Then $J(H^{*})<J(\chi\varphi^{-1}(H^{*}))$ .

PROOF. By Lemmas 9.1 and 9.2, we have $tr(A_{1}^{-1}A_{2})>0$ . Hence by Lemma 9.2,
we have $tr(B_{1}^{-1}B_{2})>0$ . Since $\chi\varphi^{-1}(H^{*})=\langle B_{1}^{-2}B_{2}, B_{1}^{-1}\rangle$ , by Lemma 7.4 we have that
$J(H^{*})<J(\chi\varphi^{-1}(H^{*}))$ if and only if $tr^{2}(B_{1}^{-2}B_{2})<tr^{2}(B_{1})<0$ . Hence it suffices to show
that $Y:=i^{2}tr^{2}(B_{1}^{-2}B_{2})-i^{2}tr^{2}(B_{1})>0$ . By induction we will show $Y>0$, that is, we
will show that if $itr(B_{1})>itr(B_{2})$ , then $itr(B_{1}^{-2}B_{2})>itr(B_{1})$ . Since $tr(B_{1}^{-1}B_{2})>2$ by
Lemmas 9.1 and 9.2, we have

$itr(B_{1}^{-2}B_{2})-itr(B_{1})=itr(B_{1}^{-1}B_{2})tr(B_{1}^{-1})-itr(B_{2})-itr(B_{1})$

$>2itr(B_{1}^{-1})-itr(B_{2})-itr(B_{1})>0$ .
Since $itr(B_{1})>0$ , we have

$itr(B_{1}^{-2}B_{2})+itr(B_{1})=itr(B_{1}^{-2}B_{2})-itr(B_{1})+2itr(B_{1})>0$ .

Therefore we have the desired inequality $Y>0$ . q.e.d.
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COROLLARY. Let $G=\langle A_{1}, A_{2}\rangle\in R_{VII}S_{2}^{0}\backslash M_{VII}$ with $-1<\rho(G)<0$ . Let $H^{*}=$

$\chi(G)$ . Then $J(H^{*})<J(\chi\varphi^{-m}(H^{*}))(m=1,2,3, \ldots)$ .

PROOF. By Lemma 9.7, we have $J(H^{*})<J(\chi\varphi^{-l}(H^{*}))$ . Since $-1<p(\varphi^{-1}\chi(G))<$

$0$ by Lemma 9.4, we have $J(\chi\varphi^{-1}(H^{*}))\leq J(\chi\varphi^{-m}(H^{*}))(m=1,2,3, \ldots)$ by Lemma 9.5.
Hence we have the desired inequality. q.e. $d$ .

Proposition 9.1 follows from thi $s$ corollary. Proposition 7.3 follows from Prop-
ositions 7.4, 8.2 and 9.1. We have Proposition 7.2 by Proposition 7.3 and Lemma 7.5.

\S 10. Proof of Theorem 3: Part 4 and Proof of Theorem 2.

In this section we will finish the proof of Theorem 3 and give a proof of Theorem 2.
First we will show the following proposition.

PROPOSITION 10.1. Let $G=\langle A_{1}, A_{2}\rangle\in M_{VII}$ . Then $J(G)>4(1+\sqrt{2})^{2}$ . The lower
bound is the best possible.

We set

$\partial^{+}M_{VII}=\{(t_{1}, t_{2},\rho)|(-\rho)^{1/2}=\{1-(-t_{1})^{1/2}(-t_{2})^{1/2}\}/\{(-t_{1})^{1/2}+(-t_{2})^{1/2}\}$ ,

$-1<t_{2}<0,$ $-1<t_{1}<0\}$

and

$\partial^{-}M_{VII}=\{(t_{1}, t_{2},\rho)|(-p)^{1/2}=\{(-t_{1})^{1/2}+(-t_{2})^{1/2}\}/\{1-(-t_{1})^{1/2}(-t_{2})^{1/2}\}$ ,

$-1<t_{2}<0,$ $-1<t_{1}<0\}$ .

LEMMA 10.1.

$\inf\{J(G)|G\in\partial^{+}M_{VII}\}=\inf\{J(G)|G\in\partial^{-}M_{VII}\}$ .

PROOF. Noting that $N_{1}(\partial^{+}M_{VII})=\partial^{-}M_{VII}$ , we have the desired result by Lemma
5.3. q.e. $d$ .

LEMMA 10.2. $J(G)\geq 4(1+\sqrt{2})^{2}$ on $\partial^{+}M_{VII}$ . The lower bound is the best possible.

PROOF. Let $\tau=(t_{1}, t_{2},\rho)\in\partial^{+}M_{VII}$ . We set $X=(-t_{1})^{1/2}$ and $Z=(-\rho)^{1/2}$ . Then
the equation

$(-t_{2})^{1/2}=\{1-(-\rho)^{1/2}(-t_{1})^{1/2}\}/\{(-\rho)^{1/2}+(-t_{1})^{1/2}\}$

tums into

$t_{2}=-\{(1-XZ)/(X+Z)\}^{2}$ .

By substituting $t_{1}=-X^{2},$ $\rho=-Z^{2}$ and $t_{2}=-\{(1-XZ)/(X+Z)\}^{2}$ for

$J( \tau)=\frac{|1-t_{1}|^{2}}{|t_{1}|}+\frac{|1-t_{1}|^{2}|1-t_{2}|^{2}|\rho|}{|t_{1}||t_{2}||\rho-1|^{2}}$ ,
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we have

$J( \tau)=\frac{(1+X^{2})^{2}}{X^{2}}+\frac{(1+X^{2})^{4}Z^{2}}{X^{2}(X+Z)^{2}(1-XZ)^{2}}$ .

By calculus we have that $J(\tau)$ attains the minimum value $4(1+\sqrt{2})^{2}$ at the point
$(t_{1}, t_{2},\rho)=(t_{10}, t_{20}, -1)$ , where $t_{10}=-(1+\sqrt{2})+\sqrt{2+2\sqrt{2}}$ and $t_{20}=-\{(1-(-t_{10})^{1/2})/$

$(1+(-t_{10})^{1/2})\}^{2}$ . q.e.d.

By corollary to Lemma 5.4, Lemmas 10.1 and 10.2 we have Proposition 10.1.

PROOF OF THEOREM 3. We can prove Theorem 3 by Proposition 7.1 and 10.1.
We can see by Example 2 in \S 11 that the lower bound $4(1+\sqrt{2})^{2}$ is the best possible.

q.e. $d$ .

PROOF OF THEOREM 2. Theorem 2 follows from Theorem 3, Proposition 2.3 and
Lemma 5.3. Example 3 in \S 11 shows that the lower bound $4(1+\sqrt{2})^{2}$ is the best
possible. q.e. $d$ .

\S 11. Examples.

Let $\tau_{n}=\{(t_{1n}, t_{2n},\rho)\}(n=1,2,3, \ldots)$ be a sequence of points in $R^{3}\cap M_{2}$ and let
$G_{n}=\langle A_{1n}, A_{2n}\rangle$ be the groups representing $\tau_{n}$ . In this section we will give sequences of
classical Schottky groups $\{G_{n}\}$ whose $J\emptyset rgensen’ s$ numbers $J(G_{n})$ tend to the lower
bound in the inequalities in Theorems 1, 2 and 3.

EXAMPLE 1 (Type II). Let $t_{1n}=(1-1/n)^{2},$ $t_{2n}=-(2-\sqrt{3})+(3-\sqrt{3})/2(n+5)$

and $\rho_{n}=2/\sqrt{3}n+1(n=1,2,3, \ldots)$ . Then (i) $G_{n}\in R$ II $S_{2}^{0}$ for all sufficiently large
integers $n$ and (ii) $\lim_{narrow\infty}J(G_{n})=16$ .

EXAMPLE 2 (Type VII). Let $t_{1n}=-(\sqrt{-t_{10}}-1/n)^{2}$ , $t_{2n}=t_{20}$ and $\rho_{n}=-1$

$(n=1,2,3, \ldots)$ , where $t_{10}=-(1+\sqrt{2})+\sqrt{2}+\sqrt{2+\mathcal{F}}Zi1$ and $t_{20}=-\{(1-(-t_{10})^{1/2})/$

( $1+(-t_{10})^{1/2}\}^{2}$ . Then (i) $G_{n}\in R_{VII}S_{2}^{0}$ for all sufficiently large integers $n$ and (ii)
$\lim_{narrow\infty}J(G_{n})=4(1+\sqrt{2})^{2}$ .

EXAMPLE 3 (Type V). Let $\tau_{n}=(t_{1n}, t_{2n},p)(n=1,2,3, \ldots)$ be as in Example 2, and
let $G_{n}=\langle A_{1n}, A_{2n}\rangle\in R_{VII}S_{2}^{0}$ represent $\tau$ . We set $G_{n}’=N_{3}(G_{n})$ , where $N_{3}$ is the Nielsen
transformation defined in \S 2. By Proposition 2.3 and Lemma 5.3, we have (i) $G_{n}’\in$

$R_{V}S_{2}^{0}$ for all sufficiently large integer $n$ and (ii) $\lim_{narrow\infty}J(G_{n}’)=4(1+\sqrt{2})^{2}$ .
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