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1. Introduction.

In this note, we shall give realizations of divergent formal power series solutions of
semilinear Goursat problems when small divisor difficulities occur without assuming any
diophantine condition. As far as the author knows, small divisor phenomenon in
Goursat problems was first noted by Leray for the following equation (cf. [3])

(1.1) $\epsilon\partial_{1}\partial_{2}u-\partial_{1}^{2}u-\partial_{2}^{2}u=f(x)$ , $x=(x_{1}, x_{2})\in R^{2}$

with the boundary condition

(1.2) $u(x)=0$ if $x_{1}=0$ or $x_{2}=0$ ,

where $f(x)$ is analytic at the origin and $\partial_{j}=\partial/\partial x_{j},$ $j=1,2$ . For the sake of brevity we
denote the condition (1.2) by $u=O(x_{1}x_{2})$ and the problem $(1.1)-(1.2)$ by $(G)$ . If we set
$\partial_{1}\partial_{2}u=v$ then, by (1.2), the problem (G) is equivalent to the equation $(\epsilon-L)v=f(x)$ ,
where $L=\partial_{1}^{-1}\partial_{2}+\partial_{1}\partial^{-1}$ with $\partial_{1}^{-l}v(x_{1}, x_{2})=\int_{0}^{x_{1}}v(t, x_{2})dt$ and so on.

Leray showed that the eigenvalues of $L$ have infinite dimensional eigenspaces and
they form a dense subset of the closed interval [-2, 2]. Moreover, there exists a dense
subset of $\epsilon\in[-2,2]$ which are not eigenvalues of $L$ such that the equation $(\epsilon-L)v=$

$f(x)$ has divergent formal power series solutions with arbitrarily given growth order for
an appropriate choice of $f$ He also proved the convergence of formal power series
solutions under a certain diophantine condition. (cf. [3], [11] and Corollary 2.3 which
follows.) One can easily prove that Leray’s diophantine condition is weaker than the
so-called Brjuno condition. (cf. [4] and [10]). The problems caused by such resonances
and diophantine phenomena are typical small divisor problems which have been
extensively studied by many authors. (cf. [1] and [10]).

The main point in this note is that we assume neither Brjuno condition nor Leray’s
diophantine condition. In spite of this we shall show that there exists a smooth solution
which is asymptotically equal to a given divergent formal power series solution if the
equations are nonresonant. (cf. (2.5) and a) of Remark 2.1.) This, in particular,
implies the solvability of $(G)$ in a class of smooth functions in a nonresonant case. We
stress that because the linearized operator $L$ has a dense eigenvalues in $[-2,2]$ a
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generalized implicit function theorem no longer works in order to solve nonlinear
problems with linear part $L$ if $\epsilon\in[-2,2]$ satisfies no diophantine condition. (cf.
Nirenberg, [8] $)$ . On the other hand, our problem corresponds to an exceptional case
from the viewpoint of the $t\mathscr{F}$-wellposedness, i.e., unique solvability in a class of smooth
functions. Indeed, in [9] it was proved that the problem $(G)$ is $\ovalbox{\tt\small REJECT}$-wellposed in some
neighborhood of the origin if and only if $\epsilon\in R\backslash [-2,2]$ , i.e., the equation is hyperbolic.
Therefore our problem is illposed and we cannot expect the existence of a smooth
solution in a neighborhood of the origin even for the linear problem (G). Finally, we
remark another critical situation of our problem. In [6], it was proved that the unique
solvability of a Goursat problem is equivalent to invertibility of a certain Toeplitz
operator on a Hardy space $H^{2}(T^{2})$ on the torus $T^{2}=R^{2}/2\pi Z^{2}$ . In case of the
problem (G), we can easily see that the corresponding Toeplitz operator is invertible if
and only if $\epsilon\not\in[-2,2]$ . If $\epsilon\in[-2,2]$ , the Toeplitz operator is not a Fredholm operator
due to the fact that the Toeplitz symbol is not Riemann-Hilbert factorizable. (cf. [6]).

We shall show that divergent formal solutions are asymptotic expansions of some
smooth solutions to $(G)$ in the sector $x_{1}\geq 0,$ $x_{2}\geq 0$ without any diophantine conditions
on $\epsilon$ . The result can be extended to semilinear equations. As an application of our
theorem, we shall show a certain altematives for the illposed problem (G). (cf.
Theorem 2.4.)

2. Notations and results.

For $d\geq 2$ we write the variable in $R^{d}$ by $x=(x_{1},x_{2}, \ldots, x_{d})=(x_{1}, x_{2},x’’)=(x’, x’’)$ ,
and the differentiations by $D^{\alpha}=(-i\partial_{1})^{\alpha_{1}}\cdots(-i\partial_{d})^{\alpha_{d}}$ where $\partial_{j}=\partial/\partial x_{j}(j=1, \ldots, d)$ ,
$\alpha=(\alpha_{1}, \ldots, \alpha_{d})\in Z_{+}^{d}$ . We consider the following semilinear equation in $R^{d}$

(2.1) $L(x, D)u-b(x, u)=0$ ,
$L(x, D)u= \sum_{|\alpha|\leq 2}a_{\alpha}(x)D^{\alpha}u$

with the boundary condition

(2.2) $u=0$ on $x_{1}=0$ and $x_{2}=0$ ,

where $a_{\alpha}(x)$ is real-valued and $C^{\infty}$ in some neighborhood of the origin, and where
$b(x, u)$ is smooth with respect to $x$ and $u$ in some neighborhood of the origin. Without
loss of generality, we may assume that

(2.3) $(\partial b/\partial u)(x, 0)\equiv 0$ .

We assume that (2.1) is elliptic at the origin, that is, there exists $K>0$ such that

(2.4)
$\sum_{|\alpha|=2}a_{\alpha}(O)\xi^{\alpha}\geq K|\xi|^{2}$

for all $\xi\in R^{d}$ .

Let $a_{\alpha}(x) \sim\sum_{\eta}a_{\eta}^{\alpha}(x’’)x^{;\eta}$ and $b(x, u) \sim\sum_{\eta,j}b_{\eta j}(x’’)x^{\prime\eta}u^{j}$ be partial Taylor expan-
sions of $a_{\alpha}(x)$ and $b(x, u)$ at $x=0$ and $u=0$ , respectively. And, let $v(x)=$

$x_{1}x_{2} \sum_{\eta}v_{\eta}(x’’)x^{\prime\eta}$ be a formal power series, where $v_{\eta}(x’’)$ are smooth and real-valued in
some neighborhood of the origin independent of $\eta$ . We say that $v(x)$ is a formal power
series solution of $(2.1)-(2.2)$ , if $v(x)$ formally satisfies (2.1) with $a_{\alpha}(x)$ and $b(x, u)$

replaced by their partial Taylor expansions in the above.
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We set $\Omega=\{x=(x_{1}, x_{2}, x’’)\in R^{d};x_{1}\geq 0, x_{2}\geq 0, |x|<\delta\}$ , where we take $\delta>0$ so
small that $L$ is strongly elliptic in $\Omega$ , that is, the condition (2.4) with $a_{\alpha}(O)$ replaced by
$a_{\alpha}(x)$ is satisfied for each point $x\in\Omega$ . We modify $\Omega$ in such a way that the boundary
of $\Omega$ is smooth except for the edge $x_{1}=x_{2}=0$ of some neighborhood of the origin.
For the sake of simplicity, we denote the modified $\Omega$ by the same letter $\Omega$ . Following
the terminology of [2], such a domain $\Omega$ is said to be a domain with 2-dimensional
edges. (cf. (2.16) of [2]). Then we have

THEOREM 2.1 (Linear case). Suppose (2.4) and that $b(x, u)$ is independent of $u,$ $i.e.$ ,
$b(x, u)=f(x)$ for some smooth function $f(x)$ . Moreover, assume that

(2.5) every formal power series solution $w$ of the equation $L(O;\partial_{1}, \partial_{2}, O)w=0$ with the
boundary condition (1.2) is unique.

Suppose that $(2.1)-(2.2)$ has a formal power series solution $v(x)=x_{1}x_{2} \sum_{\eta}v_{\eta}(x’’)x^{J\eta}$ .
Then, there exist a neighborhood $V$ of the origin and a $C^{\infty}$ function $u(x)$ in $V$ which
satisfies (2.2) and (2.1) in $V\cap\Omega$ such that

(2.6)
$u(x)-x_{1}x_{2} \sum_{|\eta|\leq n}v_{\eta}(x’’)x^{\prime\eta}=O(|x’|^{n})$

, $n=1,2,$ $\ldots$

when $|x|arrow 0$ .

THEOREM 2.2 (Semilinear case). Suppose that the conditions (2.4), (2.5) and

(2.7) $a_{0}(0)>0$

are satisfied. Moreover, assume that $(2.1)-(2.2)$ has a formal power series solution
$v(x)=x_{1}x_{2} \sum_{\eta}v_{\eta}(x’’)x^{\prime\eta}$ . Then, there exist a neighborhood $V$ of the origin and a smooth
function $u(x)$ which satisfies (2.1) and (2.2) in $V\cap\Omega$ such that (2.6) $\dot{i}$ satisfied.

REMARKS 2.1. a) The condition (2.5) corresponds to a nonresonant condition of
the Goursat problem $(2.1)-(2.2)$ .

b) Theorem 2.2 holds, if we replace (2.2) with nonzero boundary conditions on two
regular normally crossing hypersurfaces.

We shall apply Theorem 2.1 to $(G)$ when $\epsilon\in[-2,2]$ . Following Leray [3] (see also
[4] and [11] $)$ , our problem is reduced to a division problem by the quantity $\rho$ defined by

$\rho=\lim_{narrow}\inf_{\infty}|\sin n\pi t|^{1/n}$ , $\epsilon=2\cos\pi t$ , $0\leq t\leq 1$ .

Namely, if $\rho>0,$ $(G)$ has a unique analytic (local) solution for any analytic $f$ If $\rho=0$

then two cases occur, i) $t$ is an irrational number, ii) $t$ is a rational number. In the case
i), $(G)$ has a unique formal solution for any analytic $f$ which is not necessarily
convergent. In the case ii), $(G)$ has a formal solution if and only if $f$ satisfies an infinite
number of compatibility conditions. Moreover, formal solutions are not unique, and
they do not necessarily converge because of infinite dimensional kemel. (cf. [3] and
[11] $)$ . We note that the latter case corresponds to a resonant one. Hence we are
interested in the case i). For small $\delta>0$ , we set $\Omega_{0}=\{x=(x_{1}, x_{2});x_{1}\geq 0,$ $x_{2}\geq 0$ ,
$|x|<\delta\}$ , where as in Theorem 2.1 we may assume that the boundary of $\Omega_{0}$ is smooth
except for the origin $x=0$ . Then we have
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COROLLARY 2.3. Suppose that $\rho=0$ and $t$ is irrational. Then every formal power
series solution of $(G)$ is an asymptotic expansion of some smooth solution of $(G)$ in $\Omega_{0}$ .

The following altemative shows rather simple structure of $(G)$ in $\Omega$ despite the non
wellposedness of $(G)$ (cf. [3], [9]).

THEOREM 2.4. Suppose that $\epsilon\in[-2,2]$ . Then, for every given function $f$ being
smooth in some neighborhood of the origin the following alternative holds; either $(G)$ does
not have a smooth solution in any neighborhood of the origin of $\Omega_{0}$ or the solution is not
unique.

3. Proof of theorems.

3.1. PRELIMINARY LEMMAS. In order to prove Theorem 2.1 we recall two lemmas
of [2]. Let $\Omega$ be the domain given in Theorem 2.1. For $s\geq 0,$ $H^{s}(\Omega)$ and $C_{0}^{\infty}(\Omega)$

denote the Sobolev space in $\Omega$ and the set of smooth functions with compact supports
in $\Omega$ , respectively. We note that the space $H^{0}(\Omega)(=L^{2}(\Omega))$ denotes the set of square
integrable functions on $\Omega$ . The space $H_{0}^{s}(\Omega)$ denotes the closure of the set $C_{0}^{\infty}(\Omega)$ in
$H^{s}(\Omega)$ .

Let $L$ be given by (2.1). Then according to [2] we say that $L$ has a regularity
property if $uEH0(\Omega)$ and $Lu\in H_{0}^{s-1}(\Omega)$ imply $u\in H^{s+1}(\Omega)$ for every $s$ . We say that
the operator $L:H_{0}^{1}(\Omega)\cap H^{s+1}(\Omega)arrow H^{s-1}(\Omega)$ is a Fredholm operator, if the kemel of $L$

is finite dimensional, the range Rang $L$ of $L$ is closed and the codimension of Rang $L$ is
finite.

Let $A$ be the edge of $\Omega,$ $A=\{x\in\Omega;x_{1}=x_{2}=0\}$ . We set $x=(z,y)$ where $z=$

$(x_{1}, x_{2}),$ $y=(x_{3}, \ldots, x_{d})$ . For each $X=(0, X_{y})\in A,$ $X_{y}=(x_{3}, \ldots, x_{d})$ we denote by
$\Gamma_{X}$ , the cone $\{z\in R^{2}; (z, X_{y})\in\Omega\}$ .

We denote by $\tilde{L}_{X}(D_{y}, D_{z})$ the operator $L$ frozen at $X$, namely, the one obtained by
putting $x=X$ in $L$ . We define the operator $\tilde{L}_{X}(0, D_{z})$ by setting $D_{y}=0$ in $\tilde{L}_{X}(D_{y}, D_{z})$ .
The operator $L_{X}(D_{Z})$ denotes the principal part of $\tilde{L}_{X}(0, D_{Z})$ . We take the polar
coordinate $(r, \theta)$ in the $z$-plane with center at $X$. We define the class of functions
$S^{\lambda}(\Gamma_{X})$ by

(3.1) $S^{\lambda}( \Gamma_{X})=\{u;u=r^{\lambda}\sum_{q=0}^{Q}u_{q}(\theta)(\log r)^{q}$ , $u_{q}\in H_{0}^{1}((0, \pi/2))\}$ .

Following [2] we say that $L_{X}$ is injective modulo polynomials on $S^{\lambda}(\Gamma_{X})$ , if $u\in S^{\lambda}(\Gamma_{X})$

and $L_{X}u\equiv 0$ modulo polynomials imply that $u\equiv 0$ modulo polynomials. Then we have

LEMMA 3.1 ([2, Theorem 1.6]). Let $s>0,$ $s\neq 1/2$ , and assume that $L$ is strongly
elliptic. Then the operator, $L:H_{0}^{1}(\Omega)\cap H^{s+1}(\Omega)arrow H^{s-1}(\Omega)$ is a Fredholm operator $\iota f$

and only if the following condition is satisfied.
(3.2) For any $X\in A$ and any VA, ${\rm Re}\lambda\in[0, s],$ $L_{X}$ is injective modulo polynomials on

$S^{\lambda}(\Gamma_{X})$ .

LEMMA 3.2 ([2, Theorem 1.6]). Let $s>0,$ $s\neq 1/2$ . Then $L$ has a regularity
property if and only if (3.2) is satisfied. Moreover, if we assume (3.2) and the injectivity
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of $L$ we have the estimate

$\exists c>0,$ $\forall u\in H^{s+1}(\Omega)\cap H_{0}^{1}(\Omega),$ $||u||_{s+1,\Omega}\leq c||Lu||_{s-1,\Omega}$ for every $s\geq 1$ .

The constant $c$ in the above estimate is independent of $\delta$ with $0<\delta<\delta_{0}$ for some $\delta_{0}>0$ ,
where $\delta$ is a parameter in the definition of $\Omega$ .

The latter half of Lemma 3.2 follows from Peetre’s lemma. (cf. Lemma 5.0 of [2]
(5.2) of [2] $)$ . We can easily see that the constant $c$ is independent of $\delta,$ $0<\delta<\delta_{0}$ for
some $\delta_{0}>0$ , in view of the proofs of the theorems. (cf. Chapter 3 of [2]).

3.2. PROOF OF THEOREM 2.1. We divide the proof into three steps.
Step 1. We take $u_{1}\in C_{0}^{\infty}$ such that, the partial Taylor expansions of $u_{1}$ with respect

to $x_{1}$ and $x_{2}$ are equal to the formal solution $v$ , and that $f-Lu_{1}=O(|x’|^{n})$

$(n=1,2, \ldots)$ as $|x’|arrow 0,$ $x’=(x_{1}, x_{2})$ . By multiplying $g\equiv f-Lu_{1}$ by a suitable cutoff
function we may suppose that $g$ is a smooth function on $R^{d}$ .

We shall choose an $h\in C_{0}^{\infty}(\Omega)$ such that the support of $h$ does not contain the
origin, and that the Dirichlet problem

(3.3) $Lu=g+h$ in $\Omega$ , $u\in H_{0}^{1}(\Omega)$

has a smooth solution in $\Omega$ . We shall check the condition (3.2) for $s\geq 0$ . By
definition $L_{X}(D_{z})$ is a homogeneous constant-coefficients second order operator with two
independent variables, $L_{X}(D_{z})=a\partial_{1}^{2}+2b\partial_{1}\partial_{2}+c\partial_{2}^{2}$ for some real constants $a,$

$b$ and $c$ .
By a scale change of variables we may assume that $a=c=-1$ . Moreover, by another
scale change of variables and a rotation of the coordinates we may assume that $b=0$ ,
that is $L_{X}(D_{z})=-\partial_{1}^{2}-\partial_{2}^{2}$ . We introduce the polar coordinate $(r, \theta)$ centered at $X$.
Then we have

(3.4) $r^{2}L_{X}(D_{z})=-(r\partial_{r})^{2}-\partial_{\theta}^{2}$

where $\theta$ moves on some interval $\Omega_{X}=\{\theta;\theta_{0}\leq\theta\leq\theta_{0}+\pi/2\}$ for some $\theta_{0}$ depending
on $a,$

$b$ and $c$ .
By comparing the powers of $\log r$ in the equation, $r^{2}L_{X}(D_{z})u=0$

$(u=r^{\lambda} \sum_{0\leq q\leq Q}u_{q}(\theta)(\log r)^{q}, u_{q}\in H_{0}^{1}(\Omega_{X}))$ we have the recurrence relations

(3.5) $(q+1)(q+2)u_{q+2}(\theta)+2\lambda(q+1)u_{q+1}(\theta)+\lambda^{2}u_{q}(\theta)+\partial_{\theta}^{2}u_{q}(\theta)=0,$ $q=0,1,$
$\ldots,$

$Q$ .

By setting $q=Q$ in (3.5) we have

(3.6) $\partial_{\theta}^{2}u_{Q}(\theta)+\lambda^{2}u_{Q}(\theta)=0$ , $u_{Q}\in H_{0}^{1}(\Omega_{X})$ .

The eigenvalues and the eigenfunctions of (3.6) are given by $\lambda=2k$ and $\sin 2(\theta-\theta_{0})k$

$(k=1,2, \ldots)$ , respectively. We set $q=Q-1$ in (3.5). Then we have

(3.7) $\partial_{\theta}^{2}u_{Q-1}(\theta)+\lambda^{2}u_{Q-1}(\theta)=-2\lambda Qu_{Q}(\theta)$ , $u_{Q-1}\in H_{0}^{1}(\Omega_{X})$ .

If A is not an eigenvalue of (3.6), then it follows from (3.6) and (3.7) that $u_{Q}=$

$u_{Q-1}=0$ . Similarly, we have $u_{q}=0(q=0,1, \ldots, Q)$ . Hence $L_{X}$ is injective. On the
other hand, if $\lambda=2k$ and $u_{Q}=\sin 2(\theta-\theta_{0})k$ then (3.7) does not have a solution.
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Therefore, we have $Q=0$ . It follows that $u=r^{2k}\sin 2(\theta-\theta_{0})k$ . Hence $u$ is a poly-
nomial of $x_{1}$ and $x_{2}$ . This proves (3.2).

Step 2. By Lemma 3.1 and Step 1 the operator $L:H_{0}^{1}(\Omega)\cap H^{2}(\Omega)arrow L^{2}(\Omega)$ is a
Fredholm operator. Let $\varphi_{1},$

$\ldots,$
$\varphi_{N}$ be an orthnormal basis of the orthogonal com-

plement of the image of $L$ in $L^{2}(\Omega)$ . We want to choose $h\in C_{0}^{\infty}(\Omega)$ such that
$\langle g+h, \varphi_{j}\rangle=0$ for $j=1,$

$\ldots,$
$N$ , where $\langle$ , $\rangle$ denotes the usual inner product in $L^{2}(\Omega)$ .

Since $\varphi_{1},$

$\ldots,$
$\varphi_{N}$ are linearly independent, there exist points $t_{1},$

$\ldots,$
$t_{N}\in\Omega$ such that

(3.8) $|\begin{array}{ll}\varphi_{1}(t_{l}) \varphi_{1}(t_{N})| |\varphi_{N}(t_{l}) \varphi_{N}(t_{N})\end{array}|\neq 0$ .

Indeed, if otherwise then the vector ${}^{t}(\varphi_{1}(t), \ldots, \varphi_{N}(t))$ lies in a plane for all $t$ . This
contradicts the linearly independentness of $\varphi_{j}(j=1, \ldots, N)$ . We note that we can take
the points $t_{1},$

$\ldots,$
$t_{N}$ from the interior of $\Omega$ .

On the other hand, $\varphi_{j}$ is smooth in the interior of $\Omega$ , because $L^{*}\varphi_{j}=0$ in the interior
of $\Omega$ , where $L^{*}$ is a formal adjoint of $L$ . Hence we can choose $\psi_{k}\in C_{0}^{\infty}(\Omega)$

$(k=1, \ldots, N)$ with supports contained in a small neighborhood of $t_{k}$ such that $\langle\varphi_{j}, \psi_{k}\rangle-$

$\varphi_{j}(t_{k})$ are sufficiently small for $j,$ $k=1,$
$\ldots,$

$N$ . Hence we have $\det(\langle\varphi_{j}, \psi_{k}\rangle)_{j,k}\neq 0$ .
We set $h= \sum_{k=1}c_{k}\psi_{k}$ . Then the equations $\langle g+h, \varphi_{j}, \rangle=0(j=1, \ldots, N)$ give rise to
the equations $\langle g, \varphi_{j}\rangle=-\sum_{k}c_{k}\langle\varphi_{j}, \psi_{k}\rangle(j=1, \ldots, N)$ , which uniquely determine $c_{k}$ .
We note that $g+h\equiv g$ in some neighborh$0$od of the origin by the definition of $t_{k}$ .
The equation (3.3) has a solution $u\in H_{0}^{1}(\Omega)\cap H^{2}(\Omega)$ . It follows from Lemma 3.2 and
Step 2 that $u\in H^{\infty}(\Omega)$ . Hence, by Sobolev embedding theorem $u$ is smooth up to the
boundary of $\Omega$ .

Step 3. We shall show that all derivatives of $u$ with respect to $x’$ vanish at the
origin. Let $u= \sum_{\eta}u_{\eta}(x’’)x^{\prime\eta}$ be a Taylor expansion of $u$ at the origin. We substitute $u$

into (3.3) and (2.2), and we compare the coefficients of $x^{;\eta}$ . Because all derivatives of
$g+h$ with respect to $x_{1}$ and $x_{2}$ vanish on $x_{1}=x_{2}=0$ , we have

(3.9) $A_{k}(x’’)U_{k}(x’’)+(\cdots)=0$ , $k=1,2,$ $\ldots$ ,

where $A_{k}(x’’)$ is a Toeplitz matrix given by

$A_{k}(x’’)=(c_{iarrow})_{i,j}$ ,

$c_{-1}=a_{(2,0;0)(x’’),c_{0}}=a_{(1,1;0)(x’’),c_{1}}=0_{(0,2;0)(x’’),c_{n}}=0$ (otherwise),

with $a_{\alpha}(x)$ being given by (2.1). The vector $U_{k}(x’)$ is defined by an appropriate
ordering of $u_{\eta}(x’’)$ for $|\eta|=k+2$ . Here the dots in (3.9) denote the terms determined
by $u_{\eta}(x’’),$ $|\eta|\leq k+1$ . By the assumption (2.5) we see that $\det A_{k}(0)\neq 0$ for all $k$ .
Hence, by indection on $k$ every $U_{k}(x’’)$ vanishes in some neighborhood of the origin.
In view of the definition of $u_{1},$ $u+u_{1}$ gives the desired solution. $\blacksquare$

PROOF OF THEOREM 2.4. By substituting the formal power series expansions of $u$

into (1.1) we can easily prove: If $t$ is a rational number, then the problem $(G)$ has a
smooth solution only if the Taylor coefficients of $f$ at the origin satisfy infinite number
of compatibility conditions. Moreover, in view of the recurrence relations for the
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partial Taylor expansions of the solution similar to (3.9) we see that there is a nontrivial
kemel of $(G)$ . This shows that the theorem is true for rational $t$ .

In case $t$ is irrational, there exists a formal solution to $(G)$ . Hence $(G)$ has a
smooth solution in some $\Omega_{0}$ by Theorem 2.1. In view of the proof of Theorem 2.1 a
smooth solution is not unique by the arbitrariness of $h$ in (3.3). We note that these
solutions have the same Taylor coefficients at the origin. $\blacksquare$

In order to prove Theorem 2.2 we first prepare a lemma.

LEMMA 3.3 ([7, Theorem 7.1]). Let $\Omega$ be a domain as in Theorem 2.2 and let $l$

and $s$ be integers such that $l\geq 1$ and $s>d/2$ . Assume that $u_{1},$
$\ldots,$

$u_{l}\in H^{s}(\Omega)$ . Then, if
$v_{1},$

$\ldots,$

$v_{l}\in N^{d}$ and $\sum_{j=1}^{l}|v_{j}|\leq s$ it holds that

$\partial^{v_{1}}u_{1}\partial^{v_{2}}u_{2}\cdots\partial^{v_{l}}u_{l}\in L^{2}(\Omega)$

and we have the estimate

$|| \partial^{v_{1}}u_{1}\partial^{v_{2}}u_{2}\cdots\partial^{v_{l}}u_{l}||_{L^{2}}\leq C\prod_{j=1}^{l}||u_{j}||_{s}$ ,

where the constant $C>0$ depends only on $d,$ $v_{1},$
$\ldots,$

$v_{l}$ and does not depend on $u_{1},$
$\ldots,$

$u_{l}$ .

PROOF. Because $s$ is an integer such that $s>d/2$ it follows that $k:=$

$s-[d/2]-1\geq 0$ , where $[d/2]$ denotes the largest integer which does not exceed $d/2$ .
We set $\tilde{v}_{j}=v_{j}-k(1\leq j\leq l)$ . If $\tilde{v}_{j}<0$ , it follows that $v_{j}<k$ and $\partial^{v_{j}}u_{j}\in H^{s-k}=$

$H^{[d/2]+1}$ . Hence, the Sobolev embedding theorem implies that $\partial^{v_{J}}u_{j}$ is continuous, and
its supremum norm is bounded by $||u_{j}||_{s}$ . Therefore, $\partial^{v_{j}}u_{j}$ can be omitted from the
beginning. By the same reason, we may assume that $v_{j}\geq 1$ .

Because $\sum_{j=1}^{l}|v_{j}|\leq s$, it follows that

$\sum_{j=1}^{l}|\tilde{v}_{j}|\leq s-kl\leq s-k=[d/2]+1$ ,

and $\partial^{v_{j}}u_{j}=\partial^{\overline{v}_{j}}\partial^{k}u_{j},$ $\partial^{k}u_{j}\in H^{s-k}=H^{[d/2]+1}$ . Therefore, by replacing $u_{j}$ with $\partial^{k}u_{j}$ if
necessary we may assume that $s=[d/2]+1$ . Moreover, the lemma is clear in case
$l=1$ . Under these conditions, our lemma is reduced to Theorem 7.1 of [7]. For the
sake of completeness, we will give the proof.

By Sobolev’s embedding theorem and the boundedness of the domain, we see that
$\partial^{v_{j}}u_{j}\in L^{p_{j}}(1\leq j\leq l)$ , where $p_{j}$ is any number satisfying

$\frac{|v_{j}|}{d}-\frac{1}{d}<\frac{1}{p_{j}}\leq\frac{1}{2}$ and $\frac{1}{p_{j}}\neq 0$ if $d$ is even,

$\frac{|v_{j}|}{d}-\frac{1}{2d}\leq\frac{1}{p_{j}}\leq\frac{1}{2}$ if $d$ is odd.

We have, if $d$ is even,

$\sum_{j=1}^{l}(\frac{|v_{j}|}{d}-\frac{1}{d})\leq\frac{1}{d}(\frac{d}{2}+1-l)=\frac{1}{2}+\frac{1-l}{d}\leq\frac{1}{2}-\frac{1}{d}<\frac{1}{2}$ ,
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since $l\geq 2$ . Similarly, if $d$ is odd we have $\sum_{j=1}^{l}(|v_{j}|/d-1/(2d))\leq 1/2-1/(2d)$ .
Therefore, one can choose $p_{j}>1$ satisfying the above inequality and $\sum_{j=1}^{l}1/p_{j}=1/2$ .
By H\"older’s inequality, we have

$\int|\partial^{v_{1}}u_{1}\cdots\partial^{v_{l}}u_{l}|^{2}dx\leq\prod_{j}(\int|\partial^{v_{j}}u_{j}|^{2p_{j}/2}dx)^{2/p_{J}}$

$= \prod_{j}||\partial^{v_{J}}u_{j}||_{L^{p_{j}}}^{2}\leq C\prod_{j}||u_{j}||_{[d/2]+1}^{2}$
,

for some $C>0$ independent of $j$. This ends the proof of the lemma. $\blacksquare$

3.3. PROOF OF THEOREM 2.2. We devide the proof into 5 steps.
Step 1. We take the domain $\Omega$ in Theorem 2.2 so small that $a_{0}(x)>0$ in $\Omega$ . Let

$k$ be an integer and let $v(x)=x_{1}x_{2} \sum_{\eta}v_{\eta}(x’’)x^{\prime\eta}$ be a formal solution of $(2.1)-(2.2)$ .
We set $v_{k}(x)=x_{1}x_{2} \sum_{|\eta|\leq k}v_{\eta}(x’’)x^{J\eta}$ . We take a $C^{\infty}$ function $u_{0}$ whose partial Taylor
expansion with respect to $x’=(x_{1}, x_{2})$ at $x’=0$ is equal to $v(x)$ . Then we have

(3.10) $Lu_{0}-b(x, u_{0})=(Lv_{k}-b(x, v_{k}))+L(u_{0}-v_{k})+(b(x, v_{k})-b(x, u_{0}))$ .

By the definition of the formal solution, the first term in the right-hand side of (3.10)
is $O(|x’|^{k-2})$ . The second term is $O(|x’|^{k-1})$ because $u_{0}-v_{k}$ is $O(|x’|^{k+1})$ and $L$ is a
second order operator. In view of the assumption (2.3) the third term is $O(|x’|^{k+1})$ .
Since $k$ is arbitrary we see that $Lu_{0}-b(x, u_{0})$ is flat at $x’=0$ .

Step 2. We set $u=u_{0}+w$ . Then (2.1) is equivalent to

(3.11) $Lw=b(x, u_{0})-Lu_{0}+b(x, u_{0}+w)-b(x, u_{0})=F(w)$ .

We shall solve (3.11) with the boundary condition $w=O(x_{1}x_{2})$ by iteration. We set
$W_{-1}=0$ and we want to determine $w_{n}(n=0,1,2\ldots)$ by the relations $w_{n}=O(x_{1}x_{2})$ and

(3.12) $Lw_{0}=F(0),$ $Lw_{n+1}=F(W_{n})-F(W_{n-1}),$ $W_{n}=w_{0}+\cdots+w_{n},$ $n=1,2,$ $\ldots$

Step 3. Let $s>d/2\geq 1$ be an integer and let $t>0$ be a small number chosen
later. We want to show that $w_{n}(n=0,1,2, \ldots)$ are well-defined as smooth functions in
some neighborhood of the origin of $\Omega$ , and they satisfy for some $C>0$ independent of
$n$ and $t$ that $||w_{n}||_{s}\leq Ct^{1+n/2}$ for $n=0,1,2,$ $\ldots$ .

By (2.7) and the argument of Step 2 of Theorem 2.1 we can uniquely determine $w_{0}$

as a smooth function up to the boundary of $\Omega$ . It follows from Lemma 3.2 that

$|1w_{0}||_{s}\leq c||F(0)||_{s- 2}\leq c||F(0)||_{s}$ .

Because $F(O)$ is flat at the origin, for any $t<1/4$ we can take $\Omega$ such that $||F(0)||_{s}<t$ .
Hence we have 1 $w_{0}||_{s}\leq ct$ .

Step 4. Suppose now that $w_{k},$ $(0\leq k\leq n)$ are defined as smooth functions in some
neighborhood of the origin of $\Omega$ so that 1 $w_{k}||_{s}\leq Ct^{1+k/2}$ for $k=0,1,2,$ $\ldots,$

$n$ .
By Lemma 3.2 and (2.7) we have the estimate, for $n=1,2,$ $\ldots$ ,

(3.13) $||w_{n+l}||_{s}\leq c||F(W_{n})-F(W_{n-1})||_{s-2}=c||b(x, u_{0}+W_{n})-b(x, u_{0}+W_{n-1})||_{s-2}$

$=c||w_{n} \int_{0}^{1}b_{u}’(x, v)d\theta||_{s-2}$ ,



Small divisor problems 911

where $v=u_{0}+W_{n-1}+\theta w_{n}$ . Hence it is sufficient to estimate I $w_{n}b_{u}’(x, v)||_{s-2}$ , where
$0\leq\theta\leq 1$ .

Because $u_{0}=O(x_{1}x_{2})$ we take $\Omega$ so small that $||u_{0}||_{s}\leq t$ . By Sobolev embedding
theorem and $s>d/2$ , we have that

$|v|_{\infty}\leq(|u_{0}|_{\infty}+|W_{n-1}|_{\infty}+|w_{n}|_{\infty})\leq(t+Ct+\ldots+Ct^{1+n/2})$ .

Hence $b_{u}’(x, v)$ is well-defined for sufficiently small $t$ . Moreover, it follows from (2.3)
that $|b_{u}’(x, v)|_{\infty}\leq Mt$ for some $M>0$ independent of $t$ .

Because $s$ is an integer, it follows that

$||w_{n}b_{u}’(x, v)||_{s-2}^{2}= \sum_{|\alpha|\leq s-2}||D_{X}^{\alpha}(w_{n}b_{u}’(x, v))||_{L^{2}}^{2}$
.

On the other hand we have

$D_{X}^{\alpha}(w_{n}b_{u}’(x, v))= \sum_{k+j=\alpha}D^{k}w_{n}D_{X}^{j}(b_{u}’(x, v))(\begin{array}{l}\alpha k\end{array})$ ,

$D_{X}^{j}(b_{u}’(x, v))= \sum_{\gamma+\delta=j}(\begin{array}{l}j\gamma\end{array})D_{X}^{\delta}((D_{X}^{\gamma}b_{u}’)(\cdot, v))$ ,

where the differentiation $D_{X}^{\delta}$ applies to $F(x):=(D_{X}^{\gamma}b_{u}’)(\cdot, v(x))$ . By the repeated use of
the Leibniz rule, we have

$D_{X}^{\delta}((D_{X}^{\gamma}b_{u}’)(\cdot, v))=$

$\sum_{\delta=v_{1}\eta^{1}+\cdot+v_{l}\eta^{l},l\geq 1,v_{i}\in N,\eta^{j}\in N^{d}}c_{\eta^{1}\ldots\eta^{l},v,\delta(D_{X}^{\eta^{1}}v)^{v_{1}}\cdots(D_{X}^{\eta^{l}}v)^{v_{l}}}\cross D_{u}^{|v|}(D_{X}^{\gamma}b_{u}’)(\cdot, v)$

,

where $|v|=v_{1}+\cdots+v_{l},$ $v=(v_{1}, \cdots, v_{l})$ , and the constants $C_{\eta^{1}\cdots\eta^{l},v,\delta}$ can be bounded by
a constant depending only on $s$ and the dimension $d$. Therefore we have

$D_{X}^{j}(b_{u}’(x, v))= \sum_{\gamma+\delta=j}(\begin{array}{l}j\gamma\end{array})\sum C_{\eta^{1}\cdots\eta^{l},v,\delta}D_{u}^{|v|}(D_{X}^{\gamma}b_{u}’)(\cdot, v)(D_{X}^{\eta^{1}}v)^{v_{1}}\cdots(D_{\chi}^{\eta^{l}}v)^{v_{l}}$ .

It follows that

$D_{X}^{\alpha}(w_{n}b_{u}’(x, v))= \sum_{k+j=\alpha}(\begin{array}{l}\alpha k\end{array})D^{k}w_{n}D_{\chi}^{j}(b_{u}’)(x, v)$

$= \sum_{k+j=\alpha}(\begin{array}{l}\alpha k\end{array})D_{X}^{k}w_{n}\sum_{\gamma+\delta=j}(\begin{array}{l}j\gamma\end{array})\sum C_{\eta^{1}\cdots\eta^{l},v,\delta}D_{u}^{|v|}(D_{X}^{\gamma}b_{u}’)(\cdot, v)(D_{X}^{\eta^{1}}v)^{v_{1}}\cdots(D_{\chi}^{\eta^{l}}v)^{v_{l}}$ .

In the above expression, the term which corresponds to $k=\alpha$ is $D_{X}^{\alpha}w_{n}b_{u}’(x, v)$ . This
term can be estimated in the following way;

$||D_{X}^{\alpha}w_{n}b_{u}’(x, v)||_{L^{2}}\leq||w_{n}||_{s-2}|b_{u}’(x, v)|_{\infty}\leq Mt||w_{n}||_{s-2}\leq MCt^{2+n/2}$ .

In order to estimate the general case $k\neq\alpha$ we shall estimate the term

$||(D_{X}^{k}w_{n})(D_{\chi}^{\eta^{1}}v)^{v_{1}}\cdots(D_{X}^{\eta^{l}}v)^{v_{l}}||_{L^{2}}$ ,
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because the term $|D_{u}^{|v|}(D_{X}^{\gamma}b_{u}’)(\cdot, v)|_{\infty}$ is bounded by some constant. By Lemma 3.3 and
the inductive assumption we have

$||(D_{X}^{k}w_{n}) \prod_{i=1}^{l}(D_{X}^{\eta^{i}}v)^{\sqrt{}}||_{L^{2}}\leq Ct^{1+n/2}\prod_{i=1}^{l}(Ct)^{v_{i}}$ .

Summing up the above estimates we obtain that

$||w_{n}b_{u}’(\cdot, v)||_{s-2}\leq C_{1}t^{1+(n+1)/2}t^{1/2}$ ,

for some $C_{1}>0$ independent of $n$ . We take $t$ sufficiently small that $C_{1}t^{1/2}\leq 1$ . Then
we have that

$||w_{n+1}||_{s}\leq c||w_{n}b_{u}’(\cdot, v)||_{s-2}\leq C_{3}t^{1+(n+1)/2}$ ,

for some $C_{3}>0$ independent of $n$ . This proves the desired estimates for $w_{n+1}$ . We
note that, by Lemma 3.2, these arguments also show that $w_{n}’ s(n=0,1,2, \ldots)$ are
defined as a smooth functions up to the boundary of $\Omega$ .

Step 5. By the estimates for $w_{k}$ we can easily see that the series $\sum_{n=0}^{\infty}w_{n}$ converges
to some $w$ in $H^{s}$ . The limit $w\in H_{0}^{1}\cap H^{s}$ is a solution of (3.11) such that $w=O(x_{1}x_{2})$ .
The regularity of $w$ is a standard argument if we note Lemma 3.2. Indeed, the above
arguments shows that $||F(w)||_{s}<\infty$ if $||w||_{s}<\infty$ because $s>d/2$ . By Lemma 3.2, we
see that $||w||_{s+2}<\infty$ , which implies that $w$ is smooth.

We shall show that $w$ is flat on $x_{1}=x_{2}=0$ . We follow the arguments of Step 3 of
the proof of Theorem 2.1. By the conditions (2.3) and $w=O(x_{1}x_{2}),$ $u_{0}=O(x_{l}x_{2})$ , the
contributions from the nonlinear terms of the equation (3.11) appear only in the dotted
part in (3.9), which proves the assertion or $w$ . This proves Theorem 2.2. $\blacksquare$
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