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§1. Introduction.

In this paper we study C*-Goursat problem for the following L:
(1.1) L = 8,0, + a(t, x) + b(t, x)d, + c(t, %),
where 0, = 0/0t, 0 = 0/0x, d, = 0/0y, for

(t,x,y) €[0,00) x R* or (t,x,y)e (—00,0]x R

The coefficients a(t, x), b(¢,x) and c(¢,x) are real valued C®-functions, which are inde-
pendent of y. For given C*-functions f(¢,x,y), g(x,y) and h(t,y) with the compati-
bility condition g(0,y) = A(0,y), the Goursat problem is to find a function u(z,x,y)
which satisfies

Lu=f(t,x,y) € C}

(P) H(O, x7y) = g(x’y) € Ca,y))
u(t,0,y) = h(t,y) € Cyy), fortz0ort=<0.

x,y)?

We say that the Goursat problem (P) is &-wellposed for # = 0 (resp. for ¢ £ 0) if for
any data {f,g,h} € &) X (x,) X &4,) there exists a unique solution u(¢,x,y) of (P)
belonging to &, with £ 20 (resp.  £0). In this case we also say that the Goursat
problem for L is &-wellposed for ¢ = 0 (resp. for t £ 0). If (P) is &-wellposed for 1 = 0
(resp. for # < 0) then it follows from Banach’s closed graph theorem that the linear
mapping {f,g,h} — u(t,x,y) is continuous from &, ) X &) X &) to &y, for
t =0 (resp. for t < 0).

The C*-Goursat problem with constant coefficients has been treated by several
authors, for instance [4], [5], [6], and [8]. When the coefficients @, b and ¢ are constant,
we know that the necessary and sufficient condition for (P) to be &-wellposed for both
t=0and t<0,is a=b=0. In the case of variable coefficients what is the necessary
condition for (P) to be &-wellposed? It is the main problem that we study in this paper.
On the other hand Nishitani [9] and Mandai [7] had also studied C®-Goursat problem
for general operators with variable coefficients. However our operator is excluded from
their concern.
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§2. Results.

In this section, we show our main results in this paper; proof is carried out in the
following sections.

By using the Taylor expansion of coefficients a(z, x), b(¢,x) (the size of N is fixed
later):

2.1) a(t,x) = > apt/x*/jlk! + Ay(t,x),
j+k<N

(2.2) b(t,x) = > but/x*/jik! + By(t,x),
j+k<N

we introduce the following conditions:

(C-1) There exists (jo,ko) such that a; #0 and ap =0 for (j,k)eQ, where
Q={(,k);j+k<jot+k}U{(j,k);j+k=jo+kH and j>max{jo,ko}}U{(J,k);
J+k =jo+ ko and k > max{jo,ko}}.

(C-2) by =0 for 2j +2k <jo+ko— 1.
Our main result is the following theorem.

THEOREM 2.1.  Assume that the condition (C-1) and (C-2) hold. If aj, x, > 0, then (P)
is not &-wellposed for t = 0.

If jo + ko < 1, then (C-2) is free. Hence we get the following corollary:

CoROLLARY 2.1. If (P) is &-wellposed both for t 20 and for t £0, then ag =
ayo = ag = 0.

In fact, when jpky is even, by making the change of variables X' = —x or ¢/ = —¢, this
case can be reduced to that of aj, x, > 0.

Now we consider the case both jo and kp are odd and a;, 4, < 0. A simple example
is the following:

(2.3) Ly = 0,0 — atxd;, a>0.
Let us consider the following Goursat problem:

{L]u =f € C(O;D,x,y)’

) u(0,x,y) = u(t,0,y) = 0.

THEOREM 2.2. The Goursat problem (Py) has a unique solution u € C® of the follow-
ing form:

t x ol f(r,&y+ 212 2_52
(2.4) u(t,x,y) = Jo Jo J_l Silid U\ng_t;; ) )) dodédr.

We can generalize Theorem 2.2 as follows. Let us consider the Goursat problem
(Py):
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0:05u — at”x"é‘iu =f(t,x,y) e C*,

where a > 0, and p and ¢ are odd numbers.

THEOREM 2.2'. The Goursat problem (P|) has a unique solution u € C* of the form:

t rx ol
(2.4) u(t, %,y) = JO L L f(z, &,y +00)/(nV1 = 0?) do dé dr

0 = 24/a(tpr! — oo+l (xa+1 — E7H1) /(p + 1)(g + 1).
Next we study the role of lower order terms. Let L, be an operator of the form:
(2.5) Ly = 0,05 — bt'x°0,,

where b is nonzero real constant, and r and s are nonnegative integers. We notice that
the operator L, dose not include the term 6§. Let us consider the Goursat problem:

L2u =f € C?tix,y)?
(P2) u(0,x,y) = g(x,y) € C3 ),

u(t,0,y) = h(t,y) € Cyy,  9(0,y) = h(0,y).

THEOREM 2.3. The Goursat problem (P,) is not &-wellposed for t 2 0 nor t < 0.

Finally we consider the following operator L3 and the classical Goursat problem
(P3).

(2.6) L3 = 0,05 — c(t,x,y),
where (¢, x,y) is complex valued C*-function,
(P \ L3u =f(t,x,y) € Cax,y)?
3
' u(t,0,y) =u(0,x,y) =0, (t,x,y) e R} x R* or (t,x,y) € R. x R%.
THEOREM 2.4. The Goursat problem (P3) has a unique solution u € C*.

In particular when c(¢, x,y) is constant A4, the solution u of (P3) has the following
expression which will be used in §4.

THEOREM 2.4" (cf. Hadamard [2]). The Goursat problem

0:0,u — Au = f(t,x,y) € C®,
(P3)
u(t7 O)y) = u((),x’y) = 07

has a unique solution which has the following integral representation:

(2.7) u= Jo J: [, )Pt —1,x — &) dE dr,
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where ¥ is the solution of the following Goursat problem:

0,0,V =AY,
(2.8)

¥(0,x) = ¥(1,0) = 1.

REMARK 2.1. The solution ¥ of (2.8) is expressed as ¥ = Iy(2v/ Atx) with modified
Bessel function of order zero, namely

©_ 1,2 k X
2.9 Iy(z) = — 4)
29) o= (%) 1

§3. Proof of Theorem 2.1.
We prove this theorem by contradiction. We assume (P) to be &-wellposed for
t=0.
First we consider the Goursat problem with oscillatory data:
0:0xu + a(t, x)00u + b(t, x)dyu + c(t, x)u = ¥f (1, x),
(3.1) u(0,x,y) = e”"g(x),
u(t,0,y) = e”"h(1), g(0) = h(0).

PROPOSITION 3.1. If we assume that (P) is &-wellposed, then the solution u of (3.1)
has the form;

(3.2) u=e"uv(t,x;n).
Proor. We set

(3.3) u=e"(t, x).

Then v is the solution of the following problem:
0:0xv — A(t, x,in)v = f(¢,x),
v(0, x) = g(x),
v(,0) = h(z), ¢(0) = h(0),
where A(t, x, in) = —{a(t, x)(in)* + b(t, x)in + c(t, x)}.

(3.1')

By Theorem 2.4, (3.1’) has a unique solution v € C(O?,x)’ and u defined by (3.3) is a solu-
tion of (3.1). By the assumption of &-wellposedness, this u is the unique solution of
(3.1). q.ed.

Second, we consider the domain of dependence of (3.1’). The following Proposition
is obvious.

PROPOSITION 3.2. Let us consider the Goursat problem (3.1'). The domain of depen-
dence of (ty, xo) is included in D(ty, xo) defined by
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D(t(),X()) = {(t,X);O é t é to, 0 =x é xO} for X0 2 01
D(ty,x0) = {(t,x);0 =t = ty, 0 = x = xp} forxp <O.

More precisely, let v be a solution of (3.1'), and assume that f(t,x) = 0 (¢,x) € D(to, x0),
g(x) =0 x e D(0,xp) and h(t) =0 t € D(%,0). Then v(ty,xp) = 0.

Now we consider the following Goursat problem.

{ 0:0xv = A(t, x,in)v,

(34) v(0,x) = v(2,0) = 1.

Let us consider the Taylor expansion of A(¢,x,in). For simplicity, we use the notations;

2
(3.5) A(t,x,in) = Z " am(t, x),
m=0
(3.6) am(t,%) = D amrst’X + Bun(1,%),
r+s<N
(3.7) Bun= Y ('x/r's)0;dam(61,0'x), 0<6,0 <1.
r+s=N+1

By (3.4), (3.5) and (3.6) we have

2 2
(3.8) 0050 = Y Hampst" v+ D> "B (t,x)0
m=0 r+s<N m=0
= Lyv+ Ryv.

Therefore (3.4) becomes
0:0xv = Lyv + Ryv,

(3.9)
v(0,x) = v(2,0) = 1.

We recall the assumption of Theorem 2.1 and (C-1). We single out the term
n%ay j kot*x*v in the right-hand side of (3.8) and consider the following Goursat

problem:
(3.10) { 0idxp = an’thx¢, (a>0),

¢(0,x) = ¢(¢,0) = 1.

PROPOSITION 3.3. The solution of the Goursat problem (3.10) is expressed as

(3.11) Bty xim) = 3 @ e B+ /(o + 1) (ko + 1))/ (1)

n=0

Proor. For simplicity we denote jo = p and ko = ¢q. Then (3.10) becomes

{ 0,0x¢ = an*t’x1¢,

(3.12)
$(0,x) = ¢(1,0) = 1.
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We set the solution of (3.12) to be
(3.13) p=>_ dut'xk/jlk!.
I

Putting (3.13) into (3.12), and comparing the coefficients of t/x*, we obtain the formula

(3.14) is1ps1 = {an’jk!/ (= Pk ~ @)Yy se—gy JZ0, k2 0.

It follows from the Goursat data that

(3.15) boo=1 60=0, @ir=0, jk=1l

By using (3.14) and (3.15), ¢; ; are determined as the following.

(3.16) { Buipiynigrny) = @P) {0+ Dr}{(g + Dn})/(p + 1)"(g + 1)"(n!)’,
$ix =0 for (k) # (n(p+1),n(g+1)), n20.

Therefore we obtain

PO (@) n(p + D} (g + D)
#63) =2 ot D@+ DI+ 17 + )7

B tPHxatgn? "
- z,,:{(p+ g+ 1)} /)’

The right-hand side of (3.17) converge uniformly on every compact set. Thus (3.17) is
the solution of (3.10). q.e.d.

(3.17)

Furthermore, we have the following estimate for ¢(, x).

ProrosITION 3.4. Let

(3.18) =1"%, X, =72

If a> 0 and

(3.19) 20=2—(jo+ 1)e1 — (ho + 1)e2 > 0

holds then there exist positive constant Cy and C, such that

(3.20) P(ty, xp3m) > Crexp(Can®).
PrROOF. Putting

(3.21) A an? ) (p+1)(g + 1) = 2/4,

then

(3.22) ¢(t,x;m) = Io(2),

where

(3.23) Io(z) = Z(%)z" /().
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When z is real, we have

(3.24) Io(z) > %{exp(%) + exp(— %) }

By (3.21), we have

(3.25) z = 2my/tr+1xa+1a/ (p+ 1) (g + 1).

Hence

2(ty, %3 1) = {2v/a/(p + 1)(g + 1)}y 81 (P+D/2-alatD/2
=2Cn* a>0.

We have from (3.24)
1
#(ty, Xg3m) > 3 exp(Con®),

G =+a/(p+1)(g+1).

Thus we complete the proof of Proposition 3.4.
Without loss of generality we can assume jo = kp. Let us consider the following
Goursat problem:

(3.26)

6,5,; =L y
(3.27) { v ="Lnd

¥(0,x) =¥(1,0) =1,

where Ly = Ly(t,x;9) = Z;zn=o 2orissN M lmr st X

By virtue of Theorem 2.4, (3.27) has a unique solution ¥(#,x;#). The value of
Y (ty, xy;n) is approximated by ¢(z,, x,;7) in the following sense.

PROPOSITION 3.5. Let  be a solution of (3.27). If we define

(328) & = (4k0 + 4)/1, & = (4k0 + 6)}.,
A = 2{jo(4ko + 4) + ko(4jo + 6) + 8ky + 11},
then we have

(3.29) Y(ty, xy; 1) = $(ty, Xp;m)(1 + 0(n)) +0(n), n— +0,

where ty =n™%,  x, =n"%.

Since the proof of Proposition 3.5 is rather complicated, we prove this later in §6.
Lastly we consider the following Goursat problem:

0:0xv — Lyv — Ryv = — Ry,
(3.30) { t N N NY

v(0,x) =v(2,0) = 1.
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By (3.27), ¢ is the solution of (3.30). Rewriting (3.30), we have

0,0xu — A(t, x,8,)u = — Ry exp(iyn),
(3.31) {t ( y) N (iyn)

u(0,x,y) = u(t,0,y) = exp(iyn).

Obviously u = y exp(iyn) is the solution of (3.31). Because of the continuity from data
to solutions and the existence of the dependence domain, there exists positive number A
such that the absolute value of u(t,, x,,7) (= |¥(t,, %4;7)|) is estimated by the value of
S (= —Ryy exp(iyn)), exp(iyn) and their a-th derivatives (|a| < &) at D(¢,,x,). Putting

(3.32) max || = M(n),

(#,x) € D(ty,%y)
we have the following estimates:
PROPOSITION 3.6.
(333)  |OhaRa) (Rw(t, x;m)e”)| S CM () sNHDH2hithath)+2,
for (t,x) € D(ty,x,), h1+hy+h3 <h, where min{e, e} =c.

We prove this Proposition in §7. Now, we choose N (which appeared in (2.1) and
(2.2)) so that the following inequality holds;

(3.34) —eN+1)+2h+2=-p<0.

Then we have

(3.35) |u] = [¥| £ Cr" + CM(n)n™”, where C does not depend on 7.
Therefore

M(n) £ Cn* + CM(n)n?,
M(n)(1 - Cn ) £ Cr".

Since

I'p(tm xr/;’l)l < M(ﬂ)
then
(3.36) W (ty, xg5m)| = Cl”h-

On the other hand, by Proposition 3.4 and Proposition 3.5, ¥ (t,,x,;#n) increase with
exponential order as # — 400, which cannot be compatible to (3.36). Thus we complete
the proof of Theorem 2.1.

§4. Proof of Theorem 2.2.

Let us consider the following equation.

(4.1) 8,0xu — atxdu = f(t,x,y) € C°, a>0.



C®-Goursat problem 647

By setting

(4.2) 2/2=T, xX*2=X,

(4.1) becomes

(4.3) drdxu — adlu = f(V2T,V2X,y)/2VTX.

Now we set aai = A, Theorem 2.4’ suggests that the solution of (4.3) is expressed as a
formal integral:

W= j: [: LoV/AT =X = 8) (VI V) 2/ de dr.

Using the formula

(4.4) Iy(z) = ff(z2 14/ (k1)? = Jil & nV1 — i do,

k=0

we have

1
45)  IQVAT -0 (X = 8) = L exp{201/a(T — 1) (X — &)0,}/nV1 — o2 do.

If g(T, X, y) is analytic function with respect to y, then

exp(eay)g(Ta X’y) = g(T’ X’y+ 0),
(4.6)

0 = 20+/a(T — 7)(x - &).
Therefore

(4.7) W= JT JX Jl f(V2t,3/2E,y + 0)] 2r\/7E V1 — 62) do dé& dr.
0 Jo J-1

By (4.2) we obtain

(48) Y= J:, J: L f(@,.&y +06)/(aV1 = o?) dadé dr,

0 = y/a(2 - 2)(x* - &2).
Next proposition says that w is actually the solution of the problem (P;).

PROPOSITION 4.1. Let an operator K be

1

x ol
&) = [ [ [ 1wer+000/aVT=) dodcas

(49) 0J0O

0 = \Ja(2-2)2 &), feCly,
Then Kf € C* and Kf satisfies (P;).
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PROOF.
(4.10)  Li(Kf) —f = (8,9, — atxd2)(Kf) — f(t,x,¥)

_ _ J‘t r Jl atx(1 — oz)fyy(r, Ey+ 001)/m/1 —a?dodEdr
-1

0Jo

t prx ol
+J J J atxafy(t, &,y + 06h)/nV'1 — 626, do dé dr.
-1

0Jo
Since
(4.11) 0:15(1, &,y + abh) = 01/,
we have

t px pl
412)  Li(Kf)—f=— JO L L atxy[(1 = 6)3, (2, &, y + 00,/ (n0)) do d& de
+ Jt Jx Jl atxafy(t, &,y + a61)/(nV1 — 626,) do d& dx.
-1 ,

0 Jo
Using the integration by parts, we find that

(4.13) Jilv1—026aﬁ,dozjil af,/V1 — a2 do.

Thus by (4.12) and (4.13) we conclude

(4.14) Li(Kf)—-f =0. q.e.d.

Next we will show the uniqueness.
PROPOSITION 4.2. If Liu = 0 and u(0, x,y) = u(2,0,y) =0, then u = 0.
Proor. If Liju =0, then

t rx rl

(4.15) 0=K(Lu) =J J J (Liu)(z,&,y+ 061)/nV1 — 6*dodE dr.
0 Jo J

For simplicity, here we introduce new notations,

T(t,7) = V2 —12, X(x,&)=y/x2 - &,
hence 6) = \/aTX. (cf. (4.8))
By simple computations,
(4.16) ou(t, &,y + aby)
= u (7, &,y +001) + uy(1, &,y + 661)(—10v/aX (x, &) /T (1, 7)),
(4.17)  0g0u(t, &,y + 001) = un(t, &,y + 0b1) + uyytéa’a + uyoté/a/T(t,7) X (x, &)

— Uy (1, &,y + 66))tav/aX (x, &)/ T(t,7)
- uyt(T’ &y+ ael)faﬁT(ta T)/X(xa f),
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(4.18) Oty = uyx — uyylar/aT(t, 1)/ X (x,&).
Hence
(4.19) Uy — atréuy, = 0r0.u + (0¢uy)(tov/aX /T)
+ (8:uy) (é0+/aT | X) — uyyréa(l — o?)
= 0:0,u+ Q.

We will show [i [ [' 0/nV1—o0?dodédr=0. Since u(t,0,y)=0, we have
uy(2,0,y) = 0. Then it follows that

(4.20) [[@an)xx, e de = [ aw/xinoa
0 0
In the same way

(4.21) J:(@,uy)T(t, o) dt = J; v,/ T(1,7) dr.

Notice that

(4.22) Doty = /aT (t,7) X (x,E)uy,.

By (4.20), (4.21) and (4.22) we have
t pex ol

(4.23) J J J Q/nV1 —etdadédr =0.
0 Jo J

Therefore we conclude

x ¢l
(4.24) 0=K(Lju) = r J J 1 0.0:u/nvV1 — o?dodédt = u.

0JO

Thus we complete the proof of Proposition 4.2.
By Proposition 4.1 and Proposition 4.2 we obtain Theorem 2.2.
We can prove Theorem 2.2’ in the same way as the above proof.

§5. Proof of Theorem 2.3.

We prove the theorem by contradiction. Recall that
(2.5) L, = 0,0 — bt'x°d,, b#0, real
Let u = {exp(iny)}v(t,x). Lou = 0 becomes
(5.1) 0,00 = At'x’v, A = inb.

Let us consider the following Goursat data:

(5.2) v(0,x) = v(2,0) = 1.
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Let the formal solution of (5.1)-(5.2) be (5.3).

(5.3) v=Y  vxt/x*/jlk!.
Jok
Putting (5.3) into (5.1), and comparing the coefficient of #/x*, we have
(5.4) Vil k+1 = JIkIAv s/ (J — )k — 5)!.
It follows from (5.2) that
(5.5) vwo=1 wvxr=0 1vo=0 jk2l
By (5.4) and (5.5), we have
(5.6) Dk yksr) = k(e + DYk (s + DIAS/{(r + 1)(s + DY (K1),
(5.7) vpg =0, (p,q)# (k(r+1),k(s+1)), k=0.
Therefore
(5.8) o= [ {he(r + 1}HECs + 1) Mokgra (s
k

=Yt/ (r + 1)(s + DY/ (k)
x

Here we recall the property of Bessel functions:

LemMA 5.1.  The Bessel function

(5.9) Jo(z) = ) (=7 /4)"/ (k!)*

k

has the following representation for large |z| with

-nf/2+d<argz<m/2-6, J>0,

(5.10) Jo(z) = {expi(z — n/4) + exp(—i(z — n/4))}/V2nrz + O(|z| /).
Putting 4 = inb in (5.8), we have
(5.11) v=Y {t"x*inb/(r+ 1)(s + 1)}*/(k!)%.
k
Let
(5.12) B=1t"1x"p/(r+ 1) (s + 1),
and
(5.13) 2?2 = —i4nB.

We define z in the following way;
z =+ —4Bnexp(in/4) when B < 0,
z = vV4Bnexp(—in/4) when B > 0.
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Then it follows that
—n/2+d<argz<m/2-6, >0,

and

Imz=+—4Bn/v2 when B <0,
Imz = —v4Bn/v2 when B> 0.
By the Lemma 5.1 we have
v=Jo(z) ~ {C1/n"*} exp(C2v/n), C1,Cy > 0.

Since the Goursat data are u(0, x) = u(t,0) = exp(iny), this shows that the mapping from
data to solutions is not continuous. q.e.d.

§6. Proof of Proposition 3.5.

In this section we assume ¢,x = 0. Recall the following (3.27), (3.17) and (3.18);

327 { Zfot) =L~ZZ: 0)=1.

(3.17) #(t,x) = Y {1 an (o + 1) (ko + 1)}/ (1),
’;vhere a=a k> 0.

(3.18) =17, x,=n"%

We will show that there exists a pair {¢;,&} which satisfies the following two conditions:
(i) (2, x,) grows up with exponential order of 7,
(ii) the value y(t,,x,) is approximated by ¢(t,, x,), more precisely (3.29) holds.

SKETCH OF THE PROOF. First we obtain the solution y of (3.17) by the successive
approximation. We define sequence of functions {y,} as follows;

Yo=1,
(6.1) x 1
b= | v & imdrag, nz
We have the following estimate;
LemMma 6.1.
(6.2) (8, x5m)| < MP"e"x"/(n))?,  n 20,

where |Ly(t,x;n)| < My? for 0 <t, x < 1.

Let ¢ denote

(63) Wt xn) = Ualt, x;m).

n=0
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By Lemma 6.1, this series iy converge uniformly on every compact subset, and this ¥ is
the solution of (3.27).
Let us divide the series ¥ into two parts;

(64) l/l = Z lpn + Z l//na

nsm; n>n;

where 7; = %, &3 is positive constant.
We divide the following proof into 3 parts;

ParT 1. In this part we will show the following:

If {&1, &, &3} satisfies some conditions, then it follows that

(6.5) > Uty xXyim) = {Z ¢n(tmxn;n)}{1 +o(n)}, n— +oo,

nsmn; nsn,

where
Bu(t,x;m) = {0k an? [ (jo + 1) (ko + 1)}/ ().

ParT 2. Here, we will show the following:

If {e;, &, &3} satisfies some conditions, then

3" Wty xpim) = o), 71— +oo.

n>n;

PART 3. We define {¢;, &,&3} which satisfies (3.19) and all conditions in Part 1 and
Part 2.

REMARK 6.1. Part 1 is the most important. Since the estimate is delicate, we divide
it into some cases.

REMARK 6.2. The condition (C-2) (in §2) is used in Part 2, but is not used in Part 1.

ParT 1. By (6.1), we have

(66) l//n = Z Z ‘oo Z Ay, Ay, -+ aa"”m1+m2+...+m"

o a2
ittt rtn Syt tsatn

x(r1+1)(r1+r2+2)---(r1+---+r,,+n)(s1+1)(s|+sz+2)---(s1+--~+s,,+n)

b

where a; = (m;, r;,5:), and ), is the summation with
0sm=<2 0Zri+s<N.
We denote above expression simply by

(6.7) U= U,(a),
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where a = (o1, a2, - -, y),

(6.8) (@) = (pH a%)nmwmﬁ.‘_m

=1
gritrte it S+t s tn

% (n+D)(r+rn+2)--(n+rn+ - +m+tn)s+ )G +s+2) - (s1+8+-+s.+n)
When o] =0y =" =0p= (Z,jo,ko) = &,

. . t"Uo+1) xn(ko+1)
(6.9) Vn(% & ..., 8) = a'n™ o

o+ 1)'(ko + 1)"(mt)?

where a = a3 j, x, = a;.

We rewrite (6.7) as follows:

(6.10) U = ¢,,{1 + Z’wn<a>/¢,.},

where 5/ means the summation of the terms with o = (g, 00,...,0,) & = (m;,1i,8;)
satisfying 0 < m; <2, r; +5; S Nexcepta = (& &,.. ., &).
Hence we have

n

6.11)  §,(x)/d, = H{wa,,/a)

p=1
xn

To estimate (6.11), we use the following fact:

(Jjo + 1) (ko + 1)p? }
(n+rn+--+rp+tp)si+s2+---+s5+p)

m +mz+~-~+m,,—2ntrx +ry+-+ry—njo xS'] +82+++Sp —nko

LEMMA 6.2. Let A and B are real and non-negative numbers. If A+ B= A"+ B
and |A — B| > |A' — B'|, then AB< A'B'.

Now we devide the summation ). in (6.10) as follows;

(6.12) ;'=ZI+ZZ,O+'“+22,“+23’

where a = (o, 00,...,0,), & = (M, 1i,58:).
Y, means the summation of terms with m; =2 and r; +s; = jo + ko, (i =1,2,...,n).
22, means the summation of the terms with m; =2 (i=1,2,...,n), and the number of

elements of {i;r; +s; > jo + ko} is p.

>, means the summation of the remainder terms.

EsTIMATES OF ) ,. We will estimate (6.11). Without loss of generality we can
assume jo = ko. In this case r; + s; = jo + ko and by the condition (C-1), we have
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(6.13) ko < ri, 51 < Jjo.

Thus

(6.14) Zm 1>+Z(s,+1 =p(jo+1) +plko + 1),
(6.15) 'Z(r,+l Z(S,+l)‘<p Jo+1) = plko + 1).

Hence, by Lemma 6.2, we have
)4
(6.16) (Jo+1) ko—i—l)pz/{z }{Z(s, 1)} <1, forl<psn
i=1
We define w as follows;

(6.17) Z ~—nk0—— ri+no=w

i=1 i=1

In this case w 2 1, and the number of p with a,, # a is at most w. Therefore we have
n
(6.18) [V (@)/8al < [ ] s, /al(x/)” < (Kx/1)°,
p=1

where |a,,/a| < K.

The number of pairs {r;,s;} satisfying (6.17) is at most (nN)“. Thus we obtain

(6.19) Y Wa @)/l £ D (nNKx/1)®.

w21

So the value of (6.19) at (¢, x) = (t,,x,) for n < 5, is estimated as follows:

(6-20) D |Wn(@)/ ) (g, x0)| S D (NKyf1=27%)2.

w21

If we assume
(6.21) e —&+& <0,

then we have

(6.22) D 0 1Wn(@) /) (8, xy)| < C7°,

where C and o are positive constants independent of n and 5. Hereafter we assume
(6.21).

ESTIMATES OF 22,1. In this case there exists a unique «; with r; +s; > jo + ko. Let
(riysi) with r; + s; > jo + ko be (7,5). Let us consider the right-hand side of (6.11). It
follows that

p p
(6.23) {Z(r,-—{— 1)}{Z(s,-+ 1)} > {E’(r,- + 1)}{Zl(s,-+ 1)},
i=1 i=1
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where >’ is the sum of terms with r; +s; = jo + ko. The number of the terms with
ri+5i =jo+kois at least p— 1. So by Lemma 6.2, we have

624) AT+ DHEZ s+ D} > -1’20+ )ko+1) forpz2
(n+1)sm+1)>0 forp=1.
Therefore we have

(jo+1)(ko+1)P2/{Z(n }{5_’? s5i+1) }J
i=1

n

(6.25) 11

p=1 i=1
; 2 72 2
> (.’0 + l)l(ko + 1) %2__35 .. (n j 1)2 — ”2(j0 + 1>(k0 + 1)
Hence
(6.26) Wn(@)/¢a = {Hlaa,,/al}(ﬂ) + 1) (ko + )n?
p—

X ZZ (ri"’]O)xE (si—ko) tr—joxsvko_

Estimates of 5’ can be carried out in the same way as 3_,.
In this case (r1,51) = (7,5) or (r2,8) = (7,5) or --- or (rs,s,) = (%, 5). So we want to
show

(6.27) Cn3t;‘j°x,‘;"k° =o(n) n — +o0, forn <n;.

If (6.21) holds, then & >e¢. Therefore the most delicate case is 7=jo+ ko + 1,
§=0. Here we can estimate as follows;

(6.28) n3t;‘j°xf,‘k° < ;7363*81(f"jo)~82(5—k0)
< ”383"61(k0+1)+52k0.

Because of 7+ §=< N, the number of elements of {(#,5); 7F+5§< N} is at most
(N +1)%. Then we have

(6.29) >, Wn(@)/8,) 1y, %0)| < CNPpP=abat Dbk,
Therefore, if we assume
(6.30) 3e3 —e1(ko + 1) + &2kp < 0,

then we obtain

(6.31) D> o1 |Wn(@)/8) (g, x0)| < Cn 77,

where C and o are positive constants independent of # and n. Here after we assume
(6.30).
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ESTIMATES OF ) ,,. In this case we have

(6.32) {Xp:(ri+ 1)}{21):(&- + 1)}
i=1 1

= {Z’(r,- + D+ i+ 1)}{2'(&- + 1)+ (s + 1)}
2 {3 m+DH{> s+ 1},

where Y’ is the sum of terms with r; + s; = jo + ko, the number of terms in 5 is at least
p—2,and 3" is the sum of terms with r; +s; > jo + ko. In the same way as 22’1, we
have

(6.33) {i(r,——l—l)}{ Y (s,-+1)} > (p 2o+ 1)(ko + 1) forp = 3.
i=1 =1

I

Therefore
n 4
(6.34) H[(joJr 1)(ko+1)p2/{i:(ri+l)}{ (si+1)H
p=1 i=1 i=1
' 3242 ... 52
> (o + 1) (ko + 1)° 2y

= {n(n — 1)(jo + D (ko + 1)}/ (2)".
Hence we obtain

n

(6.35) V() /84l = {H Iaa,,/al}(Cn(n - 1)/21?

p=l1

s 120 o) 5 3 (ko) 3 (riio) 5 3 (si—ka)

The estimates of 5’ can be carried out in the same way as >_,. In )", the most deli-
cate term is 5; = 0, r; = jo + ko + 1. Considering the number of terms in 22’2, we have

(636) 22’2 |(¢n(a)/¢n)(tﬂ’ x”)l < [C”{koer‘(ko+l)81+383}]2.

ESTIMATES OF ) ,,. In a similar way as the estimates of ), ,, we have the follow-
ing;

(6.37) ZZ . |V () /8,) 2y, x5)| < [Cﬂ{koez—(ko+l)81+3sg}]k.
After all by (6.30), we have

(6.38) i Zz,k |(Wn () /8,) (89, X5)| < C™°,
k=1

where C and o are positive constants independent of # and n.
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ESTIMATES OF ) ;. ) ; means the sum of terms in which there exists a; with m; = 1
or 0. Here we divide the terms in ), as follows;

(6.39) 23 = 23,1 + 23,2 tooet Zln '

Where } 5 , means the summation of terms where the number of element of {i;m; < 1} is
p. First we consider ) ;. Recall the expression (6.11). Concerning the part of
m; = 2, we can treat in the same way as the preceding cases. The most delicate part is
m; =1, r;=s5;=0. Considering the number of terms in 23,1 and (6.26), we have the
following:

(640) Y [Wn(@)/8) (1 xn)] < Cn' e xfon’n
< C”-l —&1 jo—€2ko+3e3 forn < N = ’7-—83

Next we consider ) ; ,. We can obtain the following estimate in a similar way as the
above.

(6.41) ZM, [ (0)/B,) (g, Xg)| S [Cp~ ! ~erSomekot3e 1P
Therefore if we assume
(6.42) —1 — &1 jo — &2ko + 3e3 < 0,

then we have
(6.43) D [ Wn(@)/8,) (17, x0)| < Cn ™
Thus we complete the part 1.
PART 2. Recall the expression (6.7) and (6.8), the number of terms in ) _, is at most

(3N%)". Therefore we have

(6.44) (@)(t, x)| < Ki"(3N?)" 50 T0) x X () / (p1)2

where H(n) = >2i, mi, T(") =i (ri+ 1), X(m) =i (s + 1),
‘aapl < Kl.

Let us denote by ¢; the number of the terms in ), with m; = 1 and ¢, with m; = 0. By
Stirling’s formula

(6.45) nl = V2an 12012 0 < g <1,
we have
(6.46) (@) (g, %) | < "7,

Where C is constant and F(n) is deﬁned by

(6.47) F(n)=2n—q —2q» —el{zn:(ri+ 1)} ——82{ y (si + 1)} — 2ne;3.
1

i=1 1:
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Since

n

648) S0+ 1)=3Go+ 1) =3 Go—r) =nlo+1) = > o —r),
i=1 i=1 i=1

i=1

n

648)  S(+1) =D+ 1) =D ko —s) =nlho + 1) = 3 (ko - 5)
i=1 i=1 i=1

i=1

we have
(6.49) Fn)=n{2—-2e—¢e1(jo+1)—eko+ 1)} —q1 — 29
+ea Y (o—r)+e Y (ko—s)
i=1 i=1
= nfi + f>.

Terms f; and f, are defined by above.
First we assume that

(650) f]=2—283—81(j0+1)—82(k0+1)<0.

Next we consider f3;

(6:51) fo= 3 ero = )+ ealho = 5} — a1 = 2

i=1

Dividing the terms in Y7, of (6.51) into 4, we have
n
(6.52) f=3 fi-ai -2
i=1
= Z(l) Sai+ 2(2) Sri+ 2(3) S+ 2(4) fri —q1 — 292,

where £ ; = &1(jo — r:) + &2(ko — s1),

where Z(l) is the sum of terms with m; = 2 and r; + s; = ji + ko, 2(2) with m; = 2 and
ri + si > jo + ko, 2(3) with m; = 1, and 2(4) with m; = 0.

ESTIMATES OF } _ ).

(6.53) Doy f2i =D (e —e1) (ko — s0).
In this case kg < s;. By (6.21) we have
(6.54) > oy i S0,

ESTIMATES OF Z(z)- In this case r; +5; = jo + ko + 1. Hence

(6.55) Z(z) Joy S Z(z){ﬁl (si — ko — 1) + &2(ko — 1)}
= k(e — 1) = si(e2a —&1) — &1}
§ z(z){ko(é‘z — 81) - 81}.
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If we assume
(6.56) k()(82 - 81) -6 <0,

then we have
(6.57) > 2 S0
ESTIMATES OF 2(3). Here we use condition (C-2) in §2. Then we have

(6.58) 2(3) hi—q= 2(3) (e1jo — e1ri + &2ko — &35, — 1)
= Z(s) [e1jo + e2ko — e1{(jo + ko) /2 — 1/2 — 5;} — &25; — 1]
=3 {e10 — ko + 1) + 22k — 2+ 2(e1 — e2)si} /2
<(1/2) 2(3){81(,'0 — ko + 1) + 262k — 2}

If we assume

(6.59) e1(jo — ko + 1) + 2e2ko — 2 < 0,

then we have

ESTIMATES OF }_ 4. It follows that

(6.61) 2(4) fi—2q = 2(4){81 (Jo = ri) + &2(ko — 5:) — 2}
= 2(4)(81]'0 + &2ko — 2).

If we assume

(6.62) &1 jo + e2ko —2 < 0,

then we have

(6.63) > oy S2i =202 0.

Thus we proved that if {¢;} satisfy (6.21), (6.50), (6.56), (6.59) and (6.62), then we
have the following:

(664) Z Z ‘/’n(a)(tﬂ’x’l) = 0(77), n — +0.

n>n; o

Finally we remark that if (6.50) holds, then we have

(6.65) YD u(@)(ty, xy) = 0(m), 71— +o0,

n>n; o«

where 8,(t,x) = {t"* 1ot an?/(jo + 1) (ko + 1)}/ (n!)%.



660 Y. HASEGAWA

PART 3. Until now we impose many assumptions on {¢j, &, &3}.
We will show that there exists {e;, &2, 3} which satisfies these assumptions.
LEMMA 6.3. Let
g1 = (dko +4)A, & = (dko+6)A, & =4,
A =2/{jo(4ko + 4) + ko(4ko + 6) + 8ko + 11},
then {e1,¢&, &3} satisfies (3.19), (6.21), (6.30), (6.42), (6.50), (6.56), (6.59) and (6.62).

Thus we complete the proof of Proposition 3.5.

§7. Proof of Proposition 3.6.

Recall that ¢ is the solution of the equation:

(3.27) b0 = Lty $(0,%) = y(1,0) = 1.
Hence
(7.1) 6 (6, ;) = jo L (1, &mu(t, & ) d.

Moreover Ly has the estimates

(7.2) 107 0 (L (t, x;m)| < n*A4,  for (¢,x) € D(ty, Xy), I + by < h,

where A4 is a constant independent of 7.
First we show the following:

LemMma 7.1.

(7.3) o < (24n™)" M(n),
JorO<h =h, (t,x)eD(ty,x,), n:large.

PrOOF. We prove this lemma by induction.
By (3.32), (7.3) holds for Ay = 0. Assume that (7.3) holds for 0 < #; < k. Since

(7.4) 0x05 1y = 8¥(0,0.9) = 3 (Lwy).

It follows that

(1, x517) = jo L (& W (1, & )} dé

_ J: I\;(D (/L) (37 9) dé.

Using the above expression, we estimate 6’,‘“:// in the following:
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k
05 sy (5)arean e
=0

k
< (dn’yHi2t Z(f) (2477)7 M ()
j=0
= (4?1241 + 1/24n°) M(n)
< QAP M), for large n with (1 +1/24r)" < 2.

This shows that (7.3) holds for Ay = k£ + 1. g.e.d.
In the same way, we can prove

Lemma 7.17.
(7.3) 02wl < 247%)" M (n)
for0<hy <h, (t,x)eD(ty,x,), n:large.
In a similar manner, we have
Lemma 7.2
(7.6) |7 %y < (24n?) M (n)
Jorhi +hy £h, h,h 21, (t,x)eD(t,,x,), n:large.

Now, let us prove Proposition 3.7. Recall the following;

2
(7.7) Ry =Y 7" Bmn(tx),
m=0
Bun= Y (U'%°/r's)o]8am(6t,x8"), 0<6,6' <I.
r+s=N+1

There exists a positive constant 4’ (independent of #) such that
(7.8) |01 92 Ry (8, x;m)] < ()" 1= Cie) g1,
for (t,x) € D(ty,x,), h1+hy=<h.

Therefore by Lemma 7.1, Lemma 7.1, Lemma 7.2 and (7.8), we estimate Ryy as
follows;

0702 (Rw)| =

5 30 (") () @rtmmersensa)

j=0 k=0

h h e Ny —(j
é Z Z(jl> (kZ) (’7 )N+1 (J+k)(2AII'72)h1+h (]+k)+1M(77)

J k
= (24" Y the eVl h\ (ha n2~e\~(j+k)
= camyra S () (7) ear)

= A" )Y M) (1+ 17247

where A" > A, 4.
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Then it follows that

(1.9)

|a¢l’ a};zailla (RNIPeiy")I < C(2A”7]2)h1+h2+1(ﬂ_s)N+lﬂh3M(ﬂ).

Thus we proved the Proposition 3.6.
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