The Sylvester's law of inertia in simple graded Lie algebras

Dedicated to Professor Ichiro Satake on the occasion of his seventieth anniversary birthday

By Soji Kaneyuki

(Received Aug. 15, 1996)

Introduction.

Let $H_n(R)$ be the vector space of $n \times n$ real symmetric matrices. The group $GL(n, R)^0$ (= the identity component of $GL(n, R)$) acts on $H_n(R)$ by the rule: $X \mapsto AXA^t$, $X \in H_n(R)$, $A \in GL(n, R)^0$. The Sylvester's law of inertia asserts that, by this action of $GL(n, R)^0$, X is transformed into the canonical form diag$(1, \ldots, 1, -1, \ldots, -1, 0, \ldots, 0)$, which is uniquely determined by X. The simple Lie algebra $sp(n, R)$ has a unique gradation $sp(n, R) = g_{-1} + g_0 + g_1$, where $g_{-1} = H_n(R)$ and $g_0 \simeq gl(n, R)$. The $GL(n, R)^0$-module $H_n(R)$ is imbedded in $sp(n, R)$ as the G_0^0-module g_{-1}, where G_0^0 is the analytic subgroup of Aut g generated by g_0. The Sylvester's law of inertia for $H_n(R)$ is no other than obtaining the complete representatives of G_0^0-orbits in g_{-1}. As a generalization of this situation, one can pose:

Problem. Let $g = \sum_{k=-v}^{v} g_k$ be a real simple graded Lie algebra, G_0 the group of grade-preserving automorphisms of g and let G_0^0 be the identity component of G_0. Find the G_0^0-orbit decomposition and the G_0-orbit decomposition of g_{-1}.

When $v = 1$, this problem is equivalent to the problem of finding the orbits in a compact simple Jordan triple system under the structure group or the identity component of the structure group. Also it is equivalent to finding the orbit decomposition of a tangent space by the linear isotropy group for a symmetric R-space.

The purpose of this paper is to settle the above problem for the case $v = 1$ by a unified method. Partial answers have been obtained by Satake [22, 23], Kaneyuki [9, 10] and Takeuchi [27] in the following we shall describe briefly how to get the two kinds of orbit decompositions of g_{-1}. The sections 1 and 2 are preliminary sections. We give a quick review for the followings: classification and construction of gradations in semisimple Lie algebras [13, 12], the root theory in simple graded Lie algebras $g = g_{-1} + g_0 + g_1$ ([13]), the Jordan triple system \mathcal{B} on g_{-1} (Loos [18]) and the root-theoretic version of a frame (= a maximal system of pairwise orthogonal idempotents) $\{e_1, \ldots, e_r\}$ in g_{-1}, and the Jordan algebra structure \mathfrak{U}_{p} $(0 \leq p \leq r)$ in g_{-1}. In §3, applying a result of Matsumoto [19], we get a set of good representatives of G_0 mod G_0^0, which allows us to get the G_0-orbit decomposition from the G_0^0-orbit decomposition. We consider the root system Δ^\ast corresponding to a certain symmetric real flag domain M^\ast. It turns out that the Weyl group $\mathcal{W}(\Delta^\ast)$ of Δ^\ast, viewed as a subgroup of G_0^0, acts on the frame $\{e_1, \ldots, e_r\}$ as signed permutations. Then we can choose the candidates $o_{p,q}$ $(0 \leq p, q \leq r, p + q \leq r)$ of representatives of the G_0^0-orbits, which are defined in
terms of the frame. Let \(V_k \) (\(0 \leq k \leq r \)) be the union of the \(G_0 \)-orbits through the points \(o_{p,q} \) with \(p + q = k \). The sets \(V_k \) were introduced by Takeuchi \[28\] in a different way. Theorem 3.3 (Gindikin-Kaneyuki \[6\]) shows that each \(V_k \) is \(G_0 \)-stable and that it consists of equi-dimensional \(G_0 \)-orbits. Therefore, in order to find the orbit decomposition, we have only to separate the \(G_0 \)-orbits in \(V_k \) (\(0 \leq k \leq r \)). In the sections 4 and 5, we carry out this procedure, by using the action of \(W(\Delta^\ast) \) and the reduced norm of the Jordan algebra \(\mathfrak{A} \). The main results are Theorems 4.1, 4.2, 5.1, 5.2 and 5.5–5.7. In §6, we give a list of all open \(G_0 \)-orbits whose ambient spaces \(g_{-1} \) are simple Jordan algebras. (Partial results have been obtained by D’Atri-Gindikin \[4\] and Kaneyuki \[9\].) This provides a classification of \(\omega \)-domains in the sense of Koecher \[16\] in simple Jordan algebras.

Acknowledgement. This work was partially done, while the author had been in the Departments of Mathematics, University of Massachusetts, Amherst and University of California, Berkeley during the spring semester and the summer, 1995. The author would like to express his hearty thanks to both institutions for their hospitality. The author is grateful to Professor Floyd L. Williams for stimulating conversations.

Notation and Convention: \(G^0 \) or \((G)^0 \) denotes the identity component of a Lie group \(G \). \(G_\theta \) or \((G)_\theta \) denotes the subgroup of a group \(G \) consisting of elements left fixed by an involutive automorphism \(\theta \). GLA (resp. JTS) is an abbreviation for “graded Lie algebra” (resp. Jordan triple system). \(E \) denotes a unit matrix.

§1. Semisimple graded Lie algebras.

Let

\[
g = \sum_{k=-v}^v g_k
\]

be a real semisimple GLA of the \(v \)-th kind (we are assuming that the subspace \(g_{-1} \) is not zero). We assume further that the gradation (1.1) is of type \(a_0 \), that is, \(g^- := \sum_{k<0} g_k \) is generated by \(g_{-1} \). Let \((g,Z,\tau)\) be the associated graded triple; more precisely, \(Z \in g \) is the characteristic element of the gradation (1.1), i.e., each subspace \(g_k \) is the eigenspace of \(\text{ad} Z \) for the eigenvalue \(k \), and \(\tau \) is a grade-reversing Cartan involution of \(g \). Let

\[
h = \sum_{k \text{ even}} g_k, \quad m = \sum_{k \text{ odd}} g_k.
\]

Then \(g \) is expressed as a \(Z_2 \)-GLA

\[
g = h + m,
\]

which is also the decomposition by the involution \(\sigma := \text{Ad} \exp \pi i Z \), in which case we have \(\sigma|_h = 1 \) and \(\sigma|_m = -1 \). Consider the Cartan decomposition by \(\tau \):

\[
g = f + p,
\]

where \(\tau|_f = 1 \) and \(\tau|_p = -1 \). Since \(\sigma \) and \(\tau \) commute, we have the \((\sigma, \tau)\)-decomposition

\[
g = f_0 + m_\tau + p_0 + m_p,
\]

where \(f_0 = h \cap f, p_0 = h \cap p, m_\tau = m \cap f \) and \(m_p = m \cap p \). Note that \(Z \in p_0 \). Choose a
maximal abelian subspace a of p containing Z. Then a is contained in $g_0 \cap p \subset p_0$. Let A be the root system for the pair (g,a), which is called a root system of g compatible with the gradation. Let $(,)$ denote the Killing form of g. Then we have a partition of A:

\begin{equation}
A = \prod_{k=\nu}^{\nu} A_k,
\end{equation}

where $A_k = \{\alpha \in A : (\alpha, Z) = k\}$, and each graded subspace g_k can be written as

\begin{equation}
g_0 = c(a) + \sum_{\alpha \in \Delta_0} g^\alpha,
\end{equation}

\begin{equation}
g_k = \sum_{\alpha \in \Delta_k} g^\alpha, \quad k \neq 0,
\end{equation}

where $c(a)$ is the centralizer of a in g, and g^α denotes the root space for a root $\alpha \in A$. Choose a linear order in A in such a way that

\begin{equation}
\prod_{k=1}^{\nu} A_k \subset A^+ \subset \prod_{k=0}^{\nu} A_k,
\end{equation}

where A^+ denotes the set of positive roots with respect to this order. Let Π be the fundamental system for A. Since the gradation is of type α_0, it is known [13] that $\Pi_k := \Pi \cap A_k = \emptyset$ for $k \geq 2$, and hence we have a partition of Π:

\begin{equation}
\Pi = \Pi_0 \prod \Pi_1, \quad \Pi_1 \neq \emptyset.
\end{equation}

Let us consider the reverse process. Let g be a semisimple Lie algebra and a be a maximal R-split abelian subalgebra of g, and let $\Pi = \{\alpha_1, \ldots, \alpha_r\}$ be a fundamental system of the root system A for the pair (g,a). A root $\alpha \in A$ can be written as

\begin{equation}
\alpha = \sum_{i=1}^{r} m_i(\alpha) \alpha_i.
\end{equation}

Suppose that we are given a partition $\Pi = \Pi_0 \prod \Pi_1$ with $\Pi_1 \neq \emptyset$. For a root $\alpha \in A$, we define the height $h_{\Pi_1}(\alpha)$ of α relative to Π_1 by putting

\begin{equation}
h_{\Pi_1}(\alpha) = \sum_{\alpha_i \in \Pi_1} m_i(\alpha).
\end{equation}

If we put

\begin{equation}
\Delta_k = \{\alpha \in A : h_{\Pi_1}(\alpha) = k\},
\end{equation}

then we have a partition $A = \bigsqcup_{k=\nu}^{\nu} A_k$, where ν is equal to the the height $h_{\Pi_1}(\mathcal{G})$ of the highest root $\mathcal{G} \in A$. Let us define the subspaces $(g_k)_{-\nu \leq k \leq \nu}$ by the equalities (1.7). Then we have a GLA $g = \sum_{k=\nu}^{\nu} g_k$ of type α_0 (cf. [13]).

Theorem 1.1 [13]. *Let g be a real semisimple Lie algebra, and Δ be a restricted root system of g. Let Π be a fundamental system of Δ and \mathcal{G} be the highest root of Δ. Then there exists a bijection between the set of gradations of the v-th kind of type α_0 in*
g and the set of subsets Π_{1} of Π satisfying $h_{\Pi_{1}}(g) = \nu$. The bijection is compatible with the respective isomorphisms.

A gradation of the first kind in g is trivially of type α_{0}; any gradation of the second kind in g is of type α_{0}, provided that g is simple (Tanaka [28]).

\section{Jordan triple systems on g_{-1}}

We retain the notation in § 1. Let

\begin{equation}
\begin{aligned}
g = g_{-1} + g_{0} + g_{1}
\end{aligned}
\end{equation}

be a simple GLA (of the first kind), and (g, Z, τ) be the associated graded triple. Let Δ be a root system of g compatible with the gradation. As a special case of (1.6), we have a partition $\Delta = \Delta_{-1} \coprod \Delta_{0} \coprod \Delta_{1}$. Choose a linear order in Δ satisfying (1.8). As is known in Takeuchi [26], one can choose a maximal system of strongly orthogonal roots $\Gamma = \{\beta_{1}, \ldots, \beta_{r}\}$ in Δ_{1} in such a way that $(\beta_{1}, \beta_{1}) = \cdots = (\beta_{r}, \beta_{r})$. The number r is equal to the split rank of the symmetric triple (g, g_{0}, σ). Choose a root vector $E_{i} \in g^{\beta_{i}} \subset g_{1} \ (1 \leq i \leq r)$ in such a way that

\begin{equation}
\begin{aligned}
[E_{i}, E_{-i}] = \hat{\beta}_{i} = \frac{2}{(\beta_{i}, \beta_{i})} \beta_{i},
\end{aligned}
\end{equation}

where $E_{-i} = -\tau E_{i} \in g^{-\beta_{i}} \subset g_{-1}$. Let

\begin{equation}
\begin{aligned}
X_{i} = E_{i} + E_{-i} \in m_{p}.
\end{aligned}
\end{equation}

Then the real span c of X_{1}, \ldots, X_{r} is a maximal abelian subspace of m_{p}. The root system $\Delta(g, c)$ for the pair (g, c) is the split root system for the symmetric triple (g, g_{0}, σ). It is known (Oshima-Sekiguchi [20]) that $\Delta(g, c)$ is either of type C or of type BC. Let α_{0} be the subspace of a spanned by $\beta_{1}, \ldots, \beta_{r}$, and ϖ be the orthogonal projection of a onto α_{0} with respect to $(\ , \)$. Then, by considering the inverse Cayley transformation ([8]) of c onto α_{0} and by taking the inner products with Z, we have

\begin{equation}
\begin{aligned}
\varpi((\Delta_{0})^{+}) - (0) = & \left\{ \frac{1}{2}(\beta_{i} - \beta_{j}) : 1 \leq i < j \leq r \right\}, \\
\varpi(\Delta_{1}) = & \left\{ \frac{1}{2}(\beta_{i} + \beta_{j}) : 1 \leq i < j \leq r \right\},
\end{aligned}
\end{equation}

provided that $\Delta(g, c)$ is of type C, or

\begin{equation}
\begin{aligned}
\varpi((\Delta_{0})^{+}) - (0) = & \left\{ \frac{1}{2}(\beta_{i} - \beta_{j}) (1 \leq i < j \leq r); \frac{1}{2} \beta_{i} (1 \leq i \leq r) \right\}, \\
\varpi(\Delta_{1}) = & \left\{ \frac{1}{2}(\beta_{i} + \beta_{j}) (1 \leq i \leq j \leq r); \frac{1}{2} \beta_{i} (1 \leq i \leq r) \right\},
\end{aligned}
\end{equation}

provided that $\Delta(g, c)$ is of type BC, where $(\Delta_{0})^{+} = \Delta_{0} \cap \Delta^{+}$. We put

\begin{equation}
\begin{aligned}
a_{ij} = & \sum_{\alpha \in \Delta_{1}} g^{-\alpha} \quad i \leq j, \\
\varpi(\alpha) = & \frac{1}{2}(\beta_{i} + \beta_{j}), \\
c_{i} = & \sum_{\alpha \in \Delta_{1}} g^{-\alpha} \quad \varpi(\alpha) = \frac{1}{2} \beta_{i},
\end{aligned}
\end{equation}
Then \(g_{-1} \) can be expressed as
\[
(2.7) \quad g = \sum_{1 \leq i < j \leq r} a_{ij} + \sum_{1 \leq i \leq r} c_{i}.
\]
If \(\mathcal{A}(g, c) \) is of type \(C \), then the second term of the right-hand side of (2.7) does not appear. The dimensions \(\dim a_{ij} (i < j) \), \(\dim a_{ii} \) and \(\dim c_{i} \) do not depend on the choice of \(i \) and \(j \) ([7]).

Let us consider a triple product \(B_{\tau} \) on \(g_{-1} \):
\[
(2.8) \quad B_{\tau}(X, Y, U) = \frac{1}{2} \{ \tau Y, X \}, \quad X, Y, U \in g_{-1}.
\]
It is known (Loos [17], Satake [21]) that the pair \(\mathfrak{B} = (g_{-1}, B_{\tau}) \) is a compact simple JTS and that \(g \) is isomorphic to the Kantor-Tits-Koecher construction for \(\mathfrak{B} \) (These two facts can be obtained in more general setting of a simple GLA of the second kind and the corresponding compact generalized JTS; see [1, 13]). For simplicity we write \(e_{i} \) for \(E_{-i}(1 \leq i \leq r) \) and \((X Y U) \) for \(B_{\tau}(X, Y, U) \). As usual, we define the linear operator \(L(X, Y) \) on \(g_{-1} \) by
\[
(2.9) \quad L(X, Y) U = (XYU), \quad U \in g_{-1}.
\]
Let
\[
(2.10) \quad o_{p,q} = \sum_{i=1}^{p} e_{i} - \sum_{j=p+1}^{p+q} e_{j}, \quad 0 \leq p, q \leq r, \quad p + q \leq r.
\]
By using the facts [6] that \(e_{i} (1 \leq i \leq r) \) is an idempotent of the JTS \(\mathfrak{B} \) and that \(L(e_{i}, e_{j}) = 0 (i \neq j) \), we see that \(o_{p,q} \) is an idempotent of \(\mathfrak{B} \) and that
\[
(2.11) \quad L(o_{p,r-p}, o_{p,r-p}) = L(o_{r,0}, o_{r,0}), \quad 0 \leq p \leq r.
\]

Lemma 2.1. Let \(g_{-1}(\lambda) \) be the eigenspace of \(L(o_{r,0}, o_{r,0}) \) corresponding to the eigenvalue \(\lambda \). Then we have \(g_{-1} = g_{-1}(1) + g_{-1}(\frac{1}{2}) \), and
\[
(2.12) \quad g_{-1}(1) = \sum_{1 \leq i < j \leq r} a_{ij},
\]
\[
(2.13) \quad g_{-1}(\frac{1}{2}) = \sum_{1 \leq i \leq r} c_{i}.
\]

Proof. Consider the Peirce decomposition (Satake [21]) of \(g_{-1} \) with respect to the operator \(L(o_{r-\rho}, o_{r-\rho}) = L(o_{r,0}, o_{r,0}) \):
\[
(2.14) \quad g_{-1} = g_{-1}(1) + g_{-1}(\frac{1}{2}) + g_{-1}(0).
\]
Choose a root \(\alpha \in A_{1} \) such that \(\varpi(\alpha) = \frac{1}{2}(\beta_{i} + \beta_{j}), \quad i \leq j \). We have \(\sum_{k=1}^{r} (\beta_{k}, \alpha) = \frac{1}{2} \sum_{k=1}^{r} (\beta_{k}, \beta_{i} + \beta_{j}) = 2 \). Let \(X \in g^{-\alpha} \). Then it follows that
\[
L(o_{r,0}, o_{r,0})(X) = B_{\tau}(o_{r,0}, o_{r,0}, X) = \frac{1}{2}[[\tau(o_{r,0}), o_{r,0}], X]
\]
\[
= \frac{1}{2} \sum_{k=1}^{r} [-E_{k}, E_{-k}], X] = -\frac{1}{2} \sum_{k=1}^{r} [-\hat{\beta}_{k}, X] = \frac{1}{2} \left(\sum_{k=1}^{r} (\hat{\beta}_{k}, \alpha) \right) X = X,
\]
which implies that the right-hand side of (2.12) is contained in $g_{-1}(1)$. Similarly we have that the right-hand side of (2.13) is contained in $g_{-1}(\frac{1}{2})$. Consequently the lemma follows from (2.14) and (2.7).

We introduce a multiplication \square_p in g_{-1}:

\begin{equation}
(2.15) \quad X \square_p Y = B_t(X, o_{p,r-p}, Y), \quad X, Y \in g_{-1}, \quad 0 \leq p \leq r.
\end{equation}

As a property of the Peirce decomposition of a JTS ([21]), we know that $g_{-1}(1)$ become a Jordan algebra with unit element $o_{p,r-p}$ with respect to the multiplication \square_p.

Proposition 2.2. Let $g = g_{-1} + g_0 + g_1$ be a real simple GLA. Then the pair $(g_{-1}, \square_p), 0 \leq p \leq r$, is a Jordan algebra with $o_{p,r-p}$ as unit element, if and only if the split root system $\Delta(g, c)$ is of type C. In this case the Jordan algebra (g_{-1}, \square_p) is simple.

Proof. Suppose first that $\Delta(g, c)$ is of type C. Then we have (2.4). Therefore there are no roots $\alpha \in \Delta$ such that $\varpi(\alpha) = \frac{1}{2} \beta_i$ $(1 \leq i \leq r)$, and so we have $g_{-1}(\frac{1}{2}) = \{0\}$. By Lemma 2.1, we have $g_{-1}(1) = g_{-1}$. Conversely, suppose that (g_{-1}, \square_p) is a Jordan algebra with unit element $o_{p,r-p}$. Then, for any $X \in g_{-1}$, we have $X = o_{p,r-p} \square_p X = B_t(o_{p,r-p}, o_{p,r-p}, X) = L(o_{p,0}, o_{r,0})X$, which implies that $g_{-1}(1) = g_{-1}$ and $g_{-1}(\frac{1}{2}) = \{0\}$. Consequently $\Delta(g, c)$ is of type C, by (2.4) and (2.5). To prove the second assertion, consider the involution * of the Jordan algebra $g_{-1} = g_{-1}(1)$:

\begin{equation}
(2.16) \quad X^* = B_t(o_{p,r-p}, X, o_{p,r-p}), \quad X \in g_{-1}.
\end{equation}

Then B_t can be reconstructed as follows ([21]):

\begin{equation}
(2.17) \quad B_t(X, Y, U) = (X \square_p Y^*) \square_p U + X \square_p (Y^* \square_p U) - Y^* \square_p (X \square_p U).
\end{equation}

Let W be an ideal of the Jordan algebra g_{-1}. Then, by using (2.17), we have that $B_t(W, g_{-1}, g_{-1}) + B_t(g_{-1}, g_{-1}, W) \subset W$. This means that W is a K-ideal (cf. [13]) of the JTS \clubsuit. \clubsuit is compact simple, and hence by a result of [1], it is K-simple. Therefore $W = \{0\}$ or $W = g_{-1}$. Thus the Jordan algebra g_{-1} is simple. □

The simple Jordan algebra (g_{-1}, \square_p) is denoted by \mathcal{Y}_p.

§ 3. Generalities on the orbit decomposition of g_{-1}.

We retain the notation in the previous sections. We will consider exclusively a simple GLA (2.1) : $g = g_{-1} + g_0 + g_1$. We denote by $\text{Aut} g$ the automorphism group of the Lie algebra g, and denote by G^0 the identity component of $\text{Aut} g$. Let G_0 be the subgroup of $\text{Aut} g$ consisting of all grade-preserving automorphisms of the GLA g. We need the following subgroups of $\text{Aut} g$:

$G := G_0 G^0$, which is an open subgroup of $\text{Aut} g$,

G' the Zariski connected component of $\text{Aut} g$, which is a subgroup of G,

$G'_0 := G_0 \cap G'$, which is the Zariski connected component of G_0,

G'_0 the (topological) identity component of G_0.

$K := \{g \in G : g \tau = \tau g\}$, which is the maximal compact subgroup of G with Lie $K = I$.

$K_0 = G_0 \cap K$,

K'_0 the identity component of K_0.

Let Δ be a root system of \mathfrak{g} compatible with the gradation and $\Pi = \{ \alpha_1, \ldots, \alpha_\ell \}$ be a fundamental system of Δ with respect to an order satisfying (1.8). Let $\{Z_1, \ldots, Z_\ell\}$ be the basis of a dual to Π with respect to (\cdot, \cdot). Consider the involutive automorphisms of \mathfrak{g}:

$$
\epsilon_k = \text{Ad} \exp \pi i Z_k, \quad 1 \leq k \leq \ell.
$$

Lemma 3.1 (Matsumoto [19]). Let Q_1 be the free abelian subgroup of $\text{Aut} \mathfrak{g}$ generated by e_1, \ldots, e_ℓ, and let $Q_0 := Q_1 \cap G^0$. Then Q_1 is a subgroup of G', and

$$
G'/G^0 \simeq Q_1/Q_0,
$$

in particular,

$$
G' = Q_1G^0.
$$

Since ϵ_k is $+1$ or -1 on each root space $\mathfrak{g}^\alpha, \alpha \in \Delta \cup \{0\}$, it follows from (1.7) that ϵ_k is grade-preserving for any gradation of \mathfrak{g}. This implies, in particular, that Q_1 is a subgroup of G_0, and hence we have

$$
Q_1G_0^0 \subset G'.
$$

Look at the (σ, τ)-decomposition (1.5) for the GLA $\mathfrak{g} = \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1$. It is easy to see that $\mathfrak{g}^* := \mathfrak{f}_0 + \mathfrak{m}_p$ is a reductive subalgebra of \mathfrak{g}. The center of \mathfrak{g}^* is at most one-dimensional and the semisimple part of \mathfrak{g}^* is simple ([7]). The triple $(\mathfrak{g}^*, \mathfrak{f}_0, \sigma)$ is a Riemannian symmetric triple, the noncompact dual of $(\mathfrak{f}, \mathfrak{f}_0, \sigma)$. Let G^* be the connected Lie subgroup of G corresponding to \mathfrak{g}^*. Then K^0_0 is a maximal compact subgroup of G^*. $M^* = G^*/K^0_0$ is the symmetric space corresponding to $(\mathfrak{g}^*, \mathfrak{f}_0, \tau)$. We have the Cartan decomposition

$$
G^* = K^0_0 \exp \mathfrak{m}_p.
$$

Since \mathfrak{c} is a maximal abelian subspace of \mathfrak{m}_p, one can consider the root system Δ^* for the pair $(\mathfrak{g}^*, \mathfrak{c})$ (or for the symmetric space M^*). In Table I, we give a list of real simple GLA’s of the first kind and the corresponding subset Π_1 of Π ([13, 12, 14, 18]). In Table II, we give the root systems $\Delta(\mathfrak{g}, \mathfrak{c})$ and Δ^* for each simple GLA’s of the first kind ([20, 25, 18]). The following notations are used in Table I: H the quaternion algebra over \mathbf{R}, \mathbf{O} (resp. \mathbf{O}') the Cayley (resp. the split Cayley) algebra over \mathbf{R}, and $O^C = O \otimes_R C$. $M_{p,q}(K)$ the vector space of $p \times q$ matrices with entries in K, where $K = R, C, H, O, O'$ or O^C; $H_n(K)$ the vector space of hermitian matrices of degree n with entries in K; $SH_n(H)$ the vector space of skew-hermitian quaternion matrices of degree n; $\text{Alt}_n(K)$ the vector space of skew-symmetric matrices of degree n with entries in K; $\text{Sym}_n(C)$ the vector space of complex symmetric matrices of degree n. We employ the numbering of simple roots used in Bourbaki [2].

By the property $[\mathfrak{f}_0, \mathfrak{m}] \subset [\mathfrak{g}_0, \mathfrak{m}] \subset \mathfrak{m}$, the group K^0_0 acts on \mathfrak{m} by the adjoint representation. Moreover, since $[\mathfrak{f}_0, \mathfrak{m}_p] \subset \mathfrak{m}_p$ and $[\mathfrak{f}_0, \mathfrak{g}_{-1}] \subset \mathfrak{g}_{-1}$, it follows that this K^0_0-action on \mathfrak{m} leaves both \mathfrak{m}_p and \mathfrak{g}_{-1} stable.
Table I

<table>
<thead>
<tr>
<th>g,g_0,g_{-1}</th>
<th>Π</th>
<th>Π_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 $\langle\mathfrak{sl}(n,R),\mathfrak{sl}(p,R)+\mathfrak{sl}(n-p,R)+R,M_{p,n-p}(R)\rangle$, $n \geq 3, 1 \leq p \leq [n/2]$</td>
<td>A_{n-1}</td>
<td>${s_p}$</td>
</tr>
<tr>
<td>12 $\langle\mathfrak{sl}(n,H),\mathfrak{sl}(p,H)+\mathfrak{sl}(n-p,H)+R, M_{p,n-p}(H)\rangle$, $n \geq 3, 1 \leq p \leq [n/2]$</td>
<td>A_{n-1}</td>
<td>${s_p}$</td>
</tr>
<tr>
<td>13 $\langle\mathfrak{su}(n,n),\mathfrak{sl}(n,C)+R,H_n(C)\rangle$, $n \geq 3$</td>
<td>C_n</td>
<td>${s_n}$</td>
</tr>
<tr>
<td>14 $\langle\mathfrak{sp}(n,R),\mathfrak{sl}(n,R)+R,H_n(R)\rangle$, $n \geq 3$</td>
<td>C_n</td>
<td>${s_n}$</td>
</tr>
<tr>
<td>15 $\langle\mathfrak{sp}(n,n),\mathfrak{sl}(n,H)+R,SH_n(H)\rangle$, $n \geq 2$</td>
<td>C_n</td>
<td>${s_n}$</td>
</tr>
<tr>
<td>16 $\langle\mathfrak{so}(p+1,q+1),\mathfrak{so}(p,q)+R,M_{p,q}(R)\rangle$, $0 \leq p < q$ or $3 \leq p = q$</td>
<td>$B_{p+1}(p < q)$</td>
<td>${a}$</td>
</tr>
<tr>
<td>\quad</td>
<td>$D_{p+1}(p = q)$</td>
<td>${a}$</td>
</tr>
<tr>
<td>17 $\langle\mathfrak{so}(4n),\mathfrak{sl}(n,H)+R,H_n(H)\rangle$, $n \geq 3$</td>
<td>C_n</td>
<td>${s_n}$</td>
</tr>
<tr>
<td>18 $\langle\mathfrak{so}(n,n),\mathfrak{sl}(n,R)+R,\mathfrak{Alt}_n(R)\rangle$, $n \geq 4$</td>
<td>D_n</td>
<td>${s_n}$</td>
</tr>
<tr>
<td>19 $\langle\mathfrak{E}6(6),\mathfrak{so}(5,5)+R,M{1,2}(O')\rangle$</td>
<td>E_6</td>
<td>${a}$</td>
</tr>
<tr>
<td>20 $\langle\mathfrak{E}6(-26),\mathfrak{so}(1,9)+R,M{1,2}(O)\rangle$</td>
<td>A_2</td>
<td>${a}$</td>
</tr>
<tr>
<td>21 $\langle\mathfrak{E}_7(-25),\mathfrak{E}_6(-26)+R,H_3(O)\rangle$</td>
<td>E_7</td>
<td>${a}$</td>
</tr>
<tr>
<td>22 $\langle\mathfrak{E}_7(7),\mathfrak{E}_6(6)+R,H_3(O')\rangle$</td>
<td>C_3</td>
<td>${a}$</td>
</tr>
<tr>
<td>23 $\langle\mathfrak{E}_8(8),\mathfrak{so}(3,1)+R,H_3(J)\rangle$</td>
<td>C_3</td>
<td>${a}$</td>
</tr>
<tr>
<td>24 $\langle\mathfrak{E}7(n),\mathfrak{so}(n-p,C)+C,M{p,n-p}(C)\rangle$, $n \geq 3, 1 \leq p \leq [n/2]$</td>
<td>A_{n-1}</td>
<td>${s_p}$</td>
</tr>
<tr>
<td>25 $\langle\mathfrak{sp}(n,C),\mathfrak{sl}(n,C)+C,\mathfrak{Sym}_n(C)\rangle$, $n \geq 3$</td>
<td>C_n</td>
<td>${s_n}$</td>
</tr>
<tr>
<td>26 $\langle\mathfrak{so}(n+2,C),\mathfrak{so}(n,C)+C,M_{1,1}(C)\rangle$, $n \geq 3, n \neq 4$</td>
<td>$B_{(n+2)/2}$</td>
<td>${a}$</td>
</tr>
<tr>
<td>\quad</td>
<td>$D_{(n+2)/2}$</td>
<td>${a}$</td>
</tr>
<tr>
<td>27 $\langle\mathfrak{so}(2n,C),\mathfrak{sl}(n,C)+C,\mathfrak{Alt}_n(C)\rangle$, $n \geq 4$</td>
<td>D_n</td>
<td>${s_n}$</td>
</tr>
<tr>
<td>28 $\langle\mathfrak{E}7^c,\mathfrak{so}(10,C)+C,M{1,2}(O^c)\rangle$</td>
<td>E_8</td>
<td>${a}$</td>
</tr>
<tr>
<td>29 $\langle\mathfrak{E}_8^c,\mathfrak{E}_6^c+C,H_3(O^c)\rangle$</td>
<td>E_7</td>
<td>${a}$</td>
</tr>
</tbody>
</table>

Lemma 3.2. Let us define a linear endomorphism φ on m by

$$\varphi(X) = \frac{1}{2}(X - IX), \quad X \in m,$$

where $I = \text{ad}_m Z$. Then φ is a K_0^0-isomorphism of m_p onto g_{-1}.

Proof. The inclusion $\varphi(m_p) \subset g_{-1}$ follows from the fact $I^2 = 1$. Since I interchanges m_p with m_1, φ sends m_p to g_{-1} isomorphically. Since K_0^0 acts on g as grade-preserving automorphisms, the element Z is left fixed by K_0^0. Hence we have $[\text{Ad}_m K^0_0, I] = 0$, which implies that φ commutes with the K^0_0-action. \hfill \square

Let $a_{-1} := \varphi(c) \subset g_{-1}$. Then a_{-1} is spanned by e_1, \ldots, e_r, since $\varphi(X_i) = e_i$. Let $W(A^*)$ be the Weyl group for the root system A^* (or, for the symmetric space M^*). Then we have

$$W(A^*) \cong N_{K_0^0}(c)/C_{K_0^0}(c),$$

where $N_{K_0^0}(c)$ (resp. $C_{K_0^0}(c)$) is the normalizer (resp. centralizer) of c in K_0^0. $W(A^*)$ acts on c as signed permutations:

$$X_i \mapsto \pm X_{\rho(i)}, \quad \rho \in \Sigma_r,$$

where Σ_r is the permutation group of $\{1, \ldots, r\}$. By Lemma 3.2, this action of $W(A^*)$ is transferred onto a_{-1} via φ as the signed permutations:

$$e_i \mapsto \pm e_{\rho(i)}, \quad \rho \in \Sigma_r.$$
Recall the quadratic representation P of the compact simple JTS $\mathfrak{B} = (g_{-1}, B_{\tau})$:

\[(3.10) \quad P(X)Y = (XYX), \quad X, Y \in g_{-1}.\]

The structure group $\text{Str} \mathfrak{B}$ of the JTS \mathfrak{B} is, by definition, the totality of the elements $g \in \text{GL}(g_{-1})$ satisfying the condition:

\[(3.11) \quad g(XYU) = ((gX)(g^{-1}Y)(gU)), \quad X, Y, U \in g_{-1},\]

where g^* is the adjoint operator of g with respect to the trace form of \mathfrak{B}. A computation shows that

\[(3.12) \quad \text{Str} \mathfrak{B} = \{ g \in \text{GL}(g_{-1}) : P(gX) = gP(X)g^*, X \in g_{-1} \}.\]

Noting that the GLA g is isomorphic to the Kantor-Tits-Koecher construction for B_{τ}, we conclude from Satake [21] that the group G_0 is isomorphic to $\text{Str} \mathfrak{B}$ and that this isomorphism is given by taking the restriction of the G_0-action on g to g_{-1}. As a result, the rank of the operator $P(X)$ is constant on each G_0-orbit in g_{-1}, when X varies through that orbit. Let V_k ($0 \leq k \leq r$) be the union of G_0-orbits through the points $o_{p,q}$.
with \(p + q = k \), that is,

\[
V_k = \bigcup_{p+q=k} G_0^0 \cdot 0_{pq} \subset \mathfrak{g}_{-1}, \quad 0 \leq k \leq r.
\]

Theorem 3.3 (Gindikin-Kaneyuki [6]). Let \(\mathfrak{g} = \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1 \) be a real simple GLA and \(r \) be the split rank of the symmetric pair \(\mathfrak{g}_r, \mathfrak{g}_0 \). Then (1) \(V_k \) is expressed as

\[
V_k = \{ X \in \mathfrak{g}_{-1} : \text{rk} P(X) = i_k \}, \quad 0 \leq k \leq r,
\]

where \(\text{rk} \) denotes the rank and \(i_k = \text{rk} P(0_{k,0}) \). The closure \(\overline{V}_k \) of \(V_k \) is given by

\[
\overline{V}_k = \{ X \in \mathfrak{g}_{-1} : \text{rk} P(X) \leq i_k \}, \quad 0 \leq k \leq r.
\]

(2) Each \(V_k \) is \(G_0 \)-stable and

\[
\mathfrak{g}_{-1} = V_0 \prod V_1 \prod \cdots \prod V_r.
\]

(3) An orbit \(G_0^0 \cdot 0_{p,q} \) is open if and only if it is contained in \(V_r \), or equivalently, \(p + q = r \).

The assertion (2) was obtained also by Takeuchi [27] by a different method.

Lemma 3.4. Let \(\text{Aut} \mathfrak{B} \) denote the automorphism group of the JTS \(\mathfrak{B} \). Then

\[
\text{Aut} \mathfrak{B} = K_0.
\]

Proof. The trace form \(\gamma_{\mathfrak{B}} \) of \(\mathfrak{B} \) is positive definite, since \(\mathfrak{B} \) is compact. \(\text{Aut} \mathfrak{B} \) is, by definition, the subgroup of \(\text{Str} \mathfrak{B} = G_0 \) consisting of all elements \(g \in \text{Str} \mathfrak{B} \) satisfying the condition

\[
\gamma_{\mathfrak{B}}(gX, gY) = \gamma_{\mathfrak{B}}(X, Y), \quad X, Y \in \mathfrak{g}_{-1}.
\]

On the other hand, we have (cf. [1] and Lemma 3.10 [13])

\[
\gamma_{\mathfrak{B}}(X, Y) = -\frac{1}{2}(X, \tau Y), \quad X, Y \in \mathfrak{g}_{-1}.
\]

Now let \(g \in K_0 \). Then, since \(g \) commutes with \(\tau \), we have that \(g \) satisfies (3.18), which implies that \(K_0 \subset \text{Aut} \mathfrak{B} \). By the definition, \(\text{Aut} \mathfrak{B} \) is a compact subgroup of \(\text{Str} \mathfrak{B} \). But \(K_0 \) is a maximal compact subgroup of \(G_0 \). Hence we have that \(K_0 = \text{Aut} \mathfrak{B} \). \(\square \)

§ 4. The orbit decompositions of \(\mathfrak{g}_{-1} \).

Theorem 4.1. Let \(\mathfrak{g} = \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1 \) be a real simple GLA, and \(r \) be the split rank of the symmetric pair \(\mathfrak{g}_r, \mathfrak{g}_0 \). Suppose that \(\Delta^* \) is of type \(A \). Then the orbit decompositions of \(\mathfrak{g}_{-1} \) under the groups \(G_0^0 \) and \(G_0 \) are given by

\[
\mathfrak{g}_{-1} = \bigcup_{p+q=r} G_0^0 \cdot 0_{p,q} = \bigcup_{p+q=r} G_0 \cdot 0_{p,q}.
\]

Proof. Since \(\Delta^* \) is of type \(A \), it follows (Tables I and II) that \(\mathfrak{U}_r = (\mathfrak{g}_{-1}, \square_r) \) is a compact simple Jordan algebra. In this case, the JTS \(\mathfrak{B} \) comes from the Jordan algebra \(\mathfrak{U}_r \). As a result, \(G_0 \), identified with the structure group \(\text{Str} \mathfrak{B} \), coincides with the struc-
tude group of \mathfrak{U}_r. Therefore the first equality in (4.1) is the one proved by Kaneyuki [9, 10] and Satake [23]. Since \mathfrak{U}_r is compact simple, it is known (Koecher [15], Vinberg [29]) that $V_{r,0} := G_0^0 \cdot o_{r,0}$ is a homogeneous irreducible self-dual convex cone in \mathfrak{g}_{-1}. Let $G(V_{r,0})$ be the automorphism group of the cone $V_{r,0}$. By Satake [21], we have

\begin{equation}
G_0|_{\mathfrak{g}_{-1}} = \text{Str} \mathfrak{B} = G(V_{r,0}) \times \{ \pm 1 \}.
\end{equation}

As was shown in [10], any $G(V_{r,0})$-orbit in \mathfrak{g}_{-1} coincides with a G_0^0-orbit in \mathfrak{g}_{-1}. Therefore the second equality in (4.1) follows from (4.2).

Now let

\begin{equation}
\Gamma_k = \left\{ \sum_{i=1}^k \delta_{i_1} e_{i_1} \in \mathfrak{a}_{-1} : \delta_{i_1}, \ldots, \delta_{i_k} = \pm 1, \ 1 \leq i_1, \ldots, i_k \leq r \right\}, \quad 1 \leq k \leq r,
\end{equation}

\begin{equation}
\Gamma_0 = \{0\}.
\end{equation}

Then the Weyl group $W(\Delta^*)$ acts on Γ_k by (3.9) and we have

\begin{equation}
\Gamma_k = \bigcup_{p+q=k} W(\Delta^*) \cdot o_{p,q}, \quad 0 \leq k \leq r.
\end{equation}

Therefore it follows from (3.7) and (3.13) that

\begin{equation}
V_k = G_0^0 \Gamma_k, \quad 0 \leq k \leq r.
\end{equation}

Theorem 4.2. Let $\mathfrak{g} = \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1$ and r be the same as in Theorem 4.1. Suppose that Δ^* is of type B, BC or C. Then the orbit decompositions of \mathfrak{g}_{-1} under G_0^0 and G_0 are given by

\begin{equation}
\mathfrak{g}_{-1} = \prod_{k=0}^r G_0^0 \cdot o_{k,0} = \prod_{k=0}^r G_0 \cdot o_{k,0}.
\end{equation}

In particular, there is a single open orbit $G_0^0 \cdot o_{r,0} = G_0 \cdot o_{r,0}$.

Proof. In view of (3.16), it suffices to show that

\begin{equation}
V_k = G_0^0 \cdot o_{k,0} = G_0 \cdot o_{k,0}, \quad 0 \leq k \leq r.
\end{equation}

By the assumption for Δ^*, the Weyl group $W(\Delta^*)$ consists of all signed permutations of the form (3.9). Consequently, $W(\Delta^*)$ acts on Γ_k transitively, i.e., $\Gamma_k = W(\Delta^*) \cdot o_{k,0}$. Hence (4.5) implies the first equality in (4.7). The second equality in (4.7) follows from the fact that V_k is G_0-stable (Theorem 3.3).

Remark. The second equality in (4.7) was obtained also by Takeuchi [27].

In the following we will be concerned exclusively with the case where Δ^* is of type D.

Lemma 4.3. Suppose that Δ^* is of type D_r. Then

\begin{equation}
V_r = G_0^0 \cdot o_{r,0} \cup G_0^0 \cdot o_{r-1,1}.
\end{equation}

\begin{equation}
V_k = G_0^0 \cdot o_{k,0} = G_0 \cdot o_{k,0}, \quad 0 \leq k \leq r - 1.
\end{equation}
PROOF. In view of (4.5), it suffices to prove that
\[\Gamma_r = W(A^*) \cdot o_{r,0} \prod W(A^*) \cdot o_{r-1,1}, \]
(4.10)
\[\Gamma_k = W(A^*) \cdot o_{k,0}, \quad 0 \leq k \leq r - 1. \]

By the assumption for A^*, a signed permutation $e_i \mapsto \delta_i e_i$, $\delta_i = \pm 1$ ($1 \leq i \leq r$) lies in $W(A^*)$ if and only if $\prod_{i=1}^{r} \delta_i = 1$. Therefore $o_{p,q}$ with q even (resp. odd) is conjugate to $o_{r,0}$ (resp. $o_{r-1,1}$) under $W(A^*)$. Hence (4.10) follows from (4.4). Let us next consider $o_{p,q}$ with $p + q = k$, $0 \leq k \leq r - 1$. If q is even, then $o_{p,q}$ is conjugate to $o_{k,0}$ under $W(A^*)$. Suppose q is odd. Let μ be the signed permutation defined by $\mu(e \swarrow) = \delta_{l} e_{l}$ ($1 \leq l \leq r$), where $\delta_{l} = -1$ for $p + 1 \leq l \leq p + q + 1$, otherwise $\delta_{l} = 1$. Then μ belongs to $W(A^*)$ and $\mu(o_{p,q}) = o_{k,0}$. This implies (4.10)$_{2}$.

Back to the situation in §2, suppose that $A(g, c)$ is of type C, and consider the Jordan algebra $\mathfrak{U}_p = (\mathfrak{g}_{-1}, \Pi_p)$, $0 \leq p \leq r$. Let $P_p : \mathfrak{g}_{-1} \rightarrow \text{End} \mathfrak{g}_{-1}$ be the quadratic representation of \mathfrak{U}_p. Then we have

Lemma 4.4. Let $0 \leq p \leq r$. Then
\[P(X) = P_p(X)P(o_{p,r-p}), \quad X \in \mathfrak{g}_{-1}. \]

Moreover the operator $P(o_{p,r-p})$ is nondegenerate on \mathfrak{g}_{-1}.

Proof. Let $Y \in \mathfrak{g}_{-1}$. By using (2.16) and (2.17), we have
\[P(X)Y = (XYX) = (X \square_p Y^* \square_p X + X \square_p (Y^* \square_p X) - Y^* \square_p (X \square_p X)
= 2X \square_p (X \square_p Y^*) - (X \square_p X) \square_p Y^*
= P_p(X)Y^* = P_p(X)P(o_{p,r-p})Y. \]

Since $A(g, c)$ is of type C, we have that $\mathfrak{g}_{-1}(1) = \mathfrak{g}_{-1}$ (cf. §2). On the other hand, by Satake [21], ± 1 are the only eigenvalues of $P(o_{p,r-p})$ on $\mathfrak{g}_{-1}(1)$, which yields the second assertion.

Consider the JTS $(.)_p$ coming from \mathfrak{U}_p ($0 \leq p \leq r$):
\[(XYU)_p = (X \square_p Y) \square_p U + X \square_p (Y \square_p U) - Y \square_p (X \square_p U), \]
where $X, Y, U \in \mathfrak{g}_{-1}$, and define the linear operator $L_p(X, Y)$ by
\[L_p(X, Y)U = (XYU)_p. \]

Lemma 4.5. Let $X, Y \in \mathfrak{g}_{-1}$. Then
\[L_p(X, Y) = L(X, P(o_{p,r-p})Y). \]

Proof. For simplicity we write f_p for $o_{p,r-p}$. By the definition of a JTS, we have
\[L(X, P(f_p)Y)U = (X(f_p Yf_p)U)
= ((Yf_p X)f_p U) + (Xf_p (Yf_p U)) - (Yf_p (Xf_p U))
= (X \square_p Y) \square_p U + X \square_p (Y \square_p U) - Y \square_p (X \square_p U)
= (XYU)_p = L_p(X, Y)U. \]
Proposition 4.6. Suppose that $\Delta(g, c)$ is of type C. Let $(\text{Str} \mathfrak{U}_p)^0$ and $(\text{Str} \mathfrak{B})^0$ denote the identity components of the structure groups $\text{Str} \mathfrak{U}_p$ and $\text{Str} \mathfrak{B}$, respectively. Then we have

\begin{equation}
(\text{Str} \mathfrak{U}_p)^0 = (\text{Str} \mathfrak{B})^0 = G_0^0.
\end{equation}

Proof. Lie $\text{Str} \mathfrak{U}_p$ (resp. Lie $\text{Str} \mathfrak{B}$) is generated by $L_p(X, Y)$ (resp. $L(X, Y)$), when X and Y vary through \mathfrak{g}_{-1}. Therefore the proposition follows from Lemma 4.5 and the non-degeneracy of $P(o_{p, -p})$. \hfill \square

Table II tells us that if Δ^* is of type D_r, then $\Delta(g, c)$ is of type C. In this case one has the Jordan algebra $\mathfrak{U}_r = (\mathfrak{g}_{-1}, \coprod_{r})$ (Proposition 2.2).

Proposition 4.7. Let $g = \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1$ be a real simple GLA. Suppose that Δ^* is of type D_r. Let N be the reduced norm of the Jordan algebra $\mathfrak{U}_r = (\mathfrak{g}_{-1}, \coprod_{r})$. Suppose $N(o_{r,0})N(o_{r-1,1}) < 0$. Then

\begin{equation}
V_r = G_0^0 \cdot o_{r,0} \prod G_0^0 \cdot o_{r-1,1}.
\end{equation}

In particular, there are exactly two open G_0^0-orbits in \mathfrak{g}_{-1}.

Proof. By the assumption, $\Delta(g, c)$ is of type C. Therefore, by Corollary 2.11 [6], we have that $V_r = \{ X \in \mathfrak{g}_{-1} : \det P(X) \neq 0 \}$. Lemma 4.4 implies that $X \in V_r$ if and only if $\det P_r(X) \neq 0$ if and only if $N(X) \neq 0$. We have thus

\begin{equation}
V_r = \{ X \in \mathfrak{g}_{-1} : N(X) \neq 0 \}.
\end{equation}

Let V_r^+ (resp. V_r^-) be the totality of elements $X \in \mathfrak{g}_{-1}$ satisfying $N(X) > 0$ (resp. < 0). Then

\begin{equation}
V_r = V_r^+ \prod V_r^-.
\end{equation}

Suppose for simplicity that $N(o_{r,0}) > 0$. Then $N(o_{r-1,1}) < 0$. We have $o_{r,0} \in V_r^+$ and $o_{r-1,1} \in V_r^-$. The reduced norm N is a relative invariant polynomial on \mathfrak{g}_{-1}, that is,

\begin{equation}
N(gX) = \chi(g)N(X), \quad X \in \mathfrak{g}_{-1}, \quad g \in \text{Str} \mathfrak{U}_r,
\end{equation}

where χ is an R^*-valued character of $\text{Str} \mathfrak{U}_r$. Suppose now that $g \in G_0^0 = (\text{Str} \mathfrak{U}_r)^0$ (cf. Proposition 4.6). Then we have $N(go_{r,0}) = \chi(g)N(o_{r,0}) > 0$, and hence $G_0^0 \cdot o_{r,0} \subset V_r^+$. Similarly $G_0^0 \cdot o_{r-1,1} \subset V_r^-$. These two imply (4.18). \hfill \square

Corollary 4.8. Under the situation in Proposition 4.7, suppose that $N(o_{r,0}) > 0$ (resp. < 0) and $N(o_{r-1,1}) < 0$ (resp. > 0). Then

\begin{equation}
G_0^0 \cdot o_{r,0} = \{ X \in \mathfrak{g}_{-1} : N(X) > 0 \text{ (resp. } < 0) \},
\end{equation}

\begin{equation}
G_0^0 \cdot o_{r-1,1} = \{ X \in \mathfrak{g}_{-1} : N(X) < 0 \text{ (resp. } > 0) \}.
\end{equation}

§ 5. The orbit decompositions of \mathfrak{g}_{-1} (continued).

In this section we consider the case where Δ^* is of type D.
5.1.

Theorem 5.1. Let \((g, g_0, g_{-1}) = (\mathfrak{sl}(2p, \mathbb{R}), \mathfrak{sl}(p, \mathbb{R}) + \mathfrak{sl}(p, \mathbb{R}) + \mathbb{R}, M_p(\mathbb{R}))\). Then the orbit decompositions of \(g_{-1}\) under the groups \(G_0^0\) and \(G_0\) are given by

\[g_{-1} = \prod_{k=0}^{p-1} G_0^0 \cdot o_{k,0} \prod_{k=0}^{p} G_0 \cdot 0_{k,0} \]

(5.1)

\[g_{-1} = \prod_{k=0}^{p} G_0 \cdot o_{k,0}. \]

(5.2)

There are exactly two open orbits \(G_0^0 \cdot o_{p,0}\) and \(G_0^0 \cdot o_{p-1,1}\) which are mutually diffeomorphic.

Proof. In this case, \(\Delta\) is of type \(A_{2p-1}\) and is given by

\[\Delta = \{ \pm (\lambda_i - \lambda_j) : 1 \leq i < j \leq 2p \}. \]

(5.3)

The simple root system \(\Pi\) is given by

\[\Pi = \{ \alpha_i = \lambda_i - \lambda_i+1 : 1 \leq i \leq 2p - 1 \}. \]

(5.4)

Since \(\Pi_1 = \{ \alpha_p \}\) (cf. Table I), we have

\[\Delta_1 = \{ \lambda_i - \lambda_{p+i} : 1 \leq i,j \leq p \}. \]

(5.5)

The corresponding gradation of \(g = \mathfrak{sl}(2p, \mathbb{R})\) is

\[g = g_{-1} + g_0 + g_1 \]

(5.6)

\[\rightarrow p \rightarrow \]

\[\left\{ \begin{array}{c} (0 \; | \; 0) \uparrow \in \mathbb{R} \\ * \; | \; 0 \end{array} \right\} + \left\{ \begin{array}{c} * \; | \; 0 \\ 0 \; | \; * \end{array} \right\} + \left\{ \begin{array}{c} 0 \; | \; * \\ 0 \; | \; 0 \end{array} \right\}. \]

Let

\[\Gamma = \{ \beta_i = \lambda_i - \lambda_{p+i} : 1 \leq i \leq p \}. \]

(5.7)

Then \(\Gamma\) is a maximal system of strongly orthogonal roots in \(\Delta_1\). Let \(E_{ij} \in g_{-1} = M_p(\mathbb{R}) (1 \leq i,j \leq p)\) be the matrix whose \((k,\ell)\)-entry is \(\delta_{ik}\delta_{j\ell}\). It can be seen that the root vector \(E_{-i} \in g_{-\beta_i} (1 \leq i \leq p)\) is given by the matrix \(E_{ii} \in M_p(\mathbb{R}) = g_{-1}\). Therefore

\[o_{k,0} = \sum_{i=1}^{k} E_{ii} \in M_p(\mathbb{R}), \quad 1 \leq k \leq p, \]

(5.8)

\[o_{p-1,1} = \sum_{i=1}^{p-1} E_{ii} - E_{pp}. \]

The reduced norm \(N\) of the Jordan algebra \(\mathfrak{U}_p = M_p(\mathbb{R})\) is given by \(N(X) = \det X, X \in M_p(\mathbb{R})\). Hence \(N(o_{p,0}) = 1\) and \(N(o_{p-1,1}) = -1\). Consequently, by Proposition 4.7, we have that \(V_p = G_0^0 \cdot o_{p,0} \prod G_0 \cdot o_{p-1,1}\). Combining this with (4.9) and (3.16), we get (5.1).

Let us next consider the \(G_0\)-orbit decomposition of \(g_{-1}\). For \(g = \mathfrak{sl}(2p, \mathbb{R})\), it is known (Matsumoto [19]) that \(Q_1 \text{ mod } Q_0\) is generated by \(\varepsilon_1\). Since \(\varepsilon_1\) is not in \(G_0^0\), we have \(\varepsilon_1 \in G_0 - G_0^0\) (cf. (3.4)). Choose the subset \(\Pi_1' = \{ \alpha_1 \}\) of \(\Pi\). Then
Sylvester's law of inertia

607

$h_{II}'(g) = 1$. Let

\[(5.9) \quad g = g_{-1}' + g_{0}' + g_{1}' \]

be the gradation of g corresponding to Π_1' (cf. §1), and let

\[(5.10) \quad \Delta = \bigsqcup_{k=-1}^{1} \Delta_k' \]

be the corresponding partition of Δ. Since $\beta_1 \in \Delta_1'$ and $\beta_k \in \Delta_0'$ for $k \geq 2$, we have that E_{-1} lies in g_{-1}' and E_{-k} (for $k \geq 2$) lies in g_{0}' (cf. (3.1), (1.7), (1.11), (1.12)). Hence ϵ_1 sends E_{-1} to $-E_{-1}$ and leaves E_{k} (for $k \geq 2$) fixed. Consequently $\epsilon_1(0_{p,0}) = -E_{-1} + \sum_{2}^{p} E_{-i}$.

Let $a \in W(\Delta^{*})$ be the element interchanging E_{-1} with E_{-p} and leaving all other E_{-k} (for $k \neq 1, p$) fixed. Then it follows that $a \epsilon_1(0_{p,0}) = 0_{p-1,1}$.

5.2. THEOREM 5.2. Let $(\mathfrak{g}, \mathfrak{g}_0, \mathfrak{g}_{-1}) = (\mathfrak{so}(2n, 2n), \mathfrak{gl}(2n, R), \text{Alt}_{2n}(R))$. Then the orbit decompositions of \mathfrak{g}_{-1} under the groups G_0^{0} and G_0 are given by (5.1) and (5.2) with p replaced by n.

PROOF. The Lie algebra $g = \mathfrak{so}(2n, 2n)$ is realized as

\[(5.11) \quad \mathfrak{so}(2n, 2n) = \{ A \in \mathfrak{gl}(4n, R) : AS + SA = 0 \} = \left\{ \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} : A_1 + A_4 = 0, \quad A_2, A_3 \in \text{Alt}_{2n}(R) \right\}, \]

where $S = \begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix}$. The root system Δ is of type D_{2n}.

\[\Delta = \{ \pm (\lambda_i \pm \lambda_j) : 1 \leq i < j \leq 2n \}, \]

\[\Pi = \{ x_i = \lambda_i - \lambda_{i+1} (1 \leq i \leq 2n - 1), x_{2n} = \lambda_{2n-1} + \lambda_{2n} \}. \]

Since $\Pi_1 = \{ x_{2n} \}$ (cf. Table I), we have

\[(5.13) \quad \Delta_1 = \{ \lambda_i + \lambda_j : 1 \leq i < j \leq 2n \}. \]

The gradation $g = g_{-1} + g_{0} + g_{1}$ corresponding to Π_1 is given by (5.6) with p replaced by $2n$.

Put

\[(5.14) \quad \Gamma = \{ \beta_i = \lambda_{2i-1} + \lambda_{2i} : 1 \leq i \leq n \}. \]

Then Γ is a maximal system of strongly orthogonal roots in Δ_1. It can be seen that the root vector $E_{-i} \in g^{-\beta_i}$ (for $1 \leq i \leq n$) is given by the matrix $-E_{2i-1,2i} + E_{2i,2i-1} \in \text{Alt}_{2n}(R) = g_{-1}$. If we denote by $\text{Pf}(X)$ the Pfaffian of an alternating matrix X, then the above matrix realization of E_{-i} shows that $\text{Pf}(o_{n,0}) = (-1)^n$ and $\text{Pf}(o_{n-1,1}) = (-1)^{n-1}$. Since the Pfaffian is the reduced norm of the Jordan algebra $\mathfrak{U}_n = \text{Alt}_{2n}(R)$, it follows from Proposition 4.7 that $V_n = G_0^{0} \cdot o_{n,0} \bigsqcup G_0^{0} \cdot o_{n-1,1}$. Therefore we get (5.1) with p replaced by n.
Let us next study the open G_0-orbits. For $g = \text{so}(2n, 2n)$, it is known (Matsumoto [19]) that e_1 is one of representatives of $Q_1 \mod Q_0$. Similarly as before, we have $e_1 \in G_0 - G_0^0$. Choose a subset $\Pi'_1 = \{\alpha_1\}$ of Π. Then $h_{\Pi'_1}(\partial) = 1$.

Consider the gradation (5.9) of $g = \text{so}(2n, 2n)$ corresponding to Π'_1 and the partition (5.10) of A. Since $h_{\Pi'_1}(\beta_i) = 1 \neq 0$ and $h_{\Pi'_1}(\beta_k) = 0$ for $k \geq 2$, we have that $E_{-1} \in g'_{-1}$ and $E_{-k} \in g'_0$ for $k \geq 2$. On the other hand $e_1 = 1$ on g'_0 and $= -1$ on $g'_{-1} + g'_1$. Hence e_1 sends E_{-1} to $-E_{-1}$ and leaves E_{-k} ($k \geq 2$) fixed. Let $a \in W(A^*)$ be the element interchanging E_{-1} with E_{-n} and leaving all other elements E_{-k} ($k \neq 1, n$) fixed. Then we have that $ae_1(o_{n,0}) = o_{n-1,1}$, and hence $G_0 \cdot o_{n-1,1} = G_0 \cdot o_{n,0}$, which proves (5.2) with p replaced by n. Since e_1 normalizes G_0^0, we see that $e_1(G_0^0 \cdot o_{n,0}) = G_0^0 \cdot o_{n-1,1}$. \hfill \square

5.3 Let us now consider the case $(g, g_0, g_{-1}) = (E_7(7), E_6(6) + R, H_3(O'))$. There is only one possibility of gradations of the first kind for $g = E_7(7)$. That gradation corresponds to $\Pi_1 = \{\alpha_7\}$. Let $\Gamma = \{\beta_1, \beta_2, \beta_3\}$, where

$$
\begin{align*}
\beta_1 &= 2\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6 + \alpha_7, \\
\beta_2 &= \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7, \\
\beta_3 &= \alpha_7.
\end{align*}
$$

(5.15)

It can be checked that Γ is a maximal system of strongly orthogonal roots in A_1. As was shown in [6], $\{e_1, e_2, e_3\}, e_i = E_{-i}$, is a frame (= a maximal system of orthogonal primitive idempotents) of B. In the present case, the triple product B_t of B comes from the natural Jordan algebra structure \mathfrak{A} of $g_{-1} = H_3(O')$ (cf. Loos [18]), that is,

$$
B_t(X, U, Y) = X \circ (U \circ Y) + (X \circ U) \circ Y - U \circ (X \circ Y),
$$

(5.16)

where \circ denotes the Jordan multiplication in \mathfrak{A}. Therefore the two structure groups coincide:

$$
\text{Str } \mathfrak{A} = \text{Str } B.
$$

(5.17)

Let e_{ii} ($i = 1, 2, 3$) be the diagonal matrix $\text{diag}(\delta_{ii}, \delta_{2i}, \delta_{3i}) \in H_3(O')$. Then $\{e_{11}, e_{22}, e_{33}\}$ is a frame in $H_3(O')$.

Lemma 5.3. $o_{3,0}$ is an invertible element in the Jordan algebra $\mathfrak{A} := H_3(O')$.

Proof. Let $P_{\mathfrak{A}}$ be the quadratic representation of \mathfrak{A}. Then (5.16) implies that $P_{\mathfrak{A}}(X) = P(X)$ for $X \in g_{-1} = H_3(O')$, and hence $P_{\mathfrak{A}}(o_{3,0}) = P(o_{3,0})$. The operator $P(o_{3,0})$ is nondegenerate, by Lemma 4.4. Therefore $o_{3,0}$ is an invertible element in \mathfrak{A}. \hfill \square

Recall the Jordan algebra $\mathfrak{A}_3 = (g_{-1}, \Box_3)$ in §2. By (5.16), \mathfrak{A}_3 is a mutant of \mathfrak{A} by the invertible element $o_{3,0}$.

Lemma 5.4. $N(o_{3,0})N(o_{2,1}) < 0$.

Proof. Let $N_{\mathfrak{A}}$ be the reduced norm of \mathfrak{A}. Then we have (Braun-Koecher [3])

$$
N(X) = N_{\mathfrak{A}}(X)N_{\mathfrak{A}}(o_{3,0}), \quad X \in g_{-1}.
$$

(5.18)
Since \(o_{3,0}\) is invertible in \(\mathfrak{W}\), we have \(N_{\mathfrak{W}}(o_{3,0}) \neq 0\). Now consider the two frames \(\{e_{1}, e_{2}, e_{3}\}\) and \(\{e_{11}, e_{22}, e_{33}\}\) in \(\mathfrak{B}\). By Proposition 11.8 in Loos [18] and Lemma 3.4 here, there exists an element \(k \in K_{0}\) such that

\[
ke_{3,0} = \sum_{i=1}^{3} \delta_i e_{ii},
\]

where \(\delta_i = \pm 1\). \(N_{\mathfrak{W}}\) is a relative invariant polynomial for the group \(\text{Str} \mathfrak{W}\). Therefore there exists an \(R^{*}\)-valued character \(\chi\) of \(\text{Str} \mathfrak{W} = \text{Str} \mathfrak{B} = G_{0}\) such that

\[
N_{\mathfrak{W}}(gX) = \chi(g)N_{\mathfrak{W}}(X), \quad X \in g_{-1}, g \in G_{0}.
\]

Since \(K_{0}\) is contained in the commutator subgroup \([G_{0}, G_{0}]\), \(\chi(K_{0}) = 1\). Therefore we have

\[
N_{\mathfrak{W}}(o_{3,0}) = N_{\mathfrak{W}}(ko_{3,0}) = N_{\mathfrak{W}} \left(\sum_{i=1}^{3} \delta_i e_{ii} \right) = \delta_1 \delta_2 \delta_3.
\]

Similarly we have \(N_{\mathfrak{W}}(o_{2,1}) = -\delta_1 \delta_2 \delta_3\). Therefore, in view of (5.18), we have \(N(o_{3,0})N(o_{2,1}) < 0\).

Theorem 5.5. Let \((\mathfrak{g}, \mathfrak{g}_{0}, \mathfrak{g}_{-1}) = (E_{7(7)}, E_{6(6)} + R, H_{3}(O'))\). Then the orbit decompositions of \(\mathfrak{g}_{-1}\) under the groups \(G_{0}\) and \(G_{0}\) are given by

\[
g_{-1} = \prod_{k=0}^{2} G_{0} \cdot o_{k,0} \prod G_{0} \cdot o_{3,0} \prod G_{0} \cdot o_{2,1},
\]

(5.22)

\[
g_{-1} = \prod_{k=0}^{3} G_{0} \cdot o_{k,0}.
\]

(5.23)

There are exactly two open orbits \(G_{0} \cdot o_{3,0}\) and \(G_{0} \cdot o_{2,1}\) which are mutually diffeomorphic. There is a single open \(G_{0}\)-orbit in \(g_{-1}\).

Proof. (5.22) follows from Lemmas 4.3 and 5.4 and Proposition 4.7. Let us consider the \(G_{0}\)-orbit decomposition of \(g_{-1}\). In the present case \(g = E_{7(7)}, Q_{1} \mod Q_{0}\) is generated by \(e_{2}\) (Matsumoto [19]), and hence \(e_{2} \in G_{0} - G_{0}^{0}\). Consider the subset \(\Pi'_{1} = \{\alpha_{2}\}\) of \(\Pi_{1}\). Then \(h_{\Pi'_{1}}(g) = 2\). Let \(g = \sum_{k=-2}^{2} g_{k}'\) be the gradation of \(g\) corresponding to \(\Pi'_{1}\) and let \(A = \bigoplus_{k=-2}^{2} A_{k}'\) be the corresponding partition of \(\Delta\). By the same reason as for \(g = \text{sl}(2p, R)\), we have that \(e_{2} = 1\) on \(g_{-2} + g_{0}' + g_{2}'\) and \(e_{2} = -1\) on \(g_{-1}' + g_{1}'\). On the other hand, we have \(\beta_{1} \in A_{2}', \beta_{2} \in A_{1}'\) and \(\beta_{3} \in A_{0}'\) (cf. (5.15)). Consequently \(e_{2}(o_{3,0}) = e_{1} - e_{2} + e_{3}\). Let \(a \in W(A')\) be the element interchanging \(e_{2}\) with \(e_{3}\) and leaving \(e_{1}\) fixed. Then it follows that \(ae_{2}(o_{3,0}) = o_{2,1}\), which implies \(e_{2}(G_{0}^{0} \cdot o_{3,0}) = G_{0}^{0} \cdot o_{2,1}\). This proves (5.23).

5.4. Let us consider the final case \((\mathfrak{g}, \mathfrak{g}_{0}, \mathfrak{g}_{-1}) = (\text{so}(p+1, q+1), \text{so}(p, q) + R, R^{p+q}), 2 \leq p \leq q\), in which case \(r = 2\) (cf. Table II). The root system \(\Delta\) of \(\mathfrak{g}\) is of type \(B_{p+1}\) or \(D_{p+1}\) according as \(p < q\) or \(p = q\), respectively. \(\Delta\) is given by

\[
\Delta = \{ \pm (\lambda_{i} \pm \lambda_{j}) \mid 1 \leq i < j \leq p + 1; \lambda_{i} \mid 1 \leq i \leq p + 1\}, \quad p < q,
\]

(5.24)
The gradation of \(g \) corresponds to the subset \(\Pi_1 = \{ \alpha_1 = \lambda_1 - \lambda_2 \} \) of \(\Pi \). \(\Delta_1 \) is given by
\[
\Delta_1 = \{ \lambda_1 \pm \lambda_i (2 \leq i \leq p+1); \lambda_1 \},
\]
where \(\lambda_1 \) occurs only when \(p < q \). The subset of \(\Delta_1 \)
\[
\Gamma = \{ \beta_1 = \lambda_1 + \lambda_2, \beta_2 = \lambda_1 - \lambda_2 \}
\]
is a maximal system of strongly orthogonal roots in \(\Delta_1 \). In this situation we get the simple Jordan algebra \(\mathfrak{U}_2 = (\mathfrak{g}_{-1}, \coprod_{2}) \) of rank 2 with unit element \(e := 0_{2,0} \) (cf. \(\S \)). We need some results on simple Jordan algebras of rank 2 due to Braun-Koecher [3]: The reduced norm \(N \) of \(\mathfrak{U}_2 \) is of signature \((p, q) \), and the multiplication \(\Pi_2 \) can be expressed as
\[
N(e_1, e_1) = N(e_2, e_2) = 0, \quad N(e_1, e_2) = \frac{1}{2}.
\]
Theorem 5.6. Let \((\mathfrak{g}, \mathfrak{g}_0, \mathfrak{g}_{-1}) = (\mathfrak{so}(p+1, q+1), \mathfrak{so}(p, q) + \mathfrak{R}, \mathfrak{R}^{p+q}), \) \(2 \leq p \leq q \). Then the \(G_0 \)-orbit decomposition of \(\mathfrak{g}_{-1} \) is given by
\[
\mathfrak{g}_{-1} = \prod_{k=0}^{1} G_0 \cdot 0_{k,0} \prod G_0 \cdot 0_{2,0} \prod G_0 \cdot 0_{1,1}.
\]
Proof. By using (5.28), we see that \(N(0_{2,0}) = 1 \) and \(N(0_{1,1}) = -1 \). Therefore, from Lemma 4.3 and Proposition 4.7, the assertion follows. \(\square \)

Theorem 5.7. Under the same assumption as in Theorem 5.6, the \(G_0 \)-orbit decomposition of \(\mathfrak{g}_{-1} \) is given as follows:
\[
\mathfrak{g}_{-1} = \prod_{k=0}^{2} G_0 \cdot 0_{k,0} \quad \text{for } p = q,
\]
\[
\mathfrak{g}_{-1} = \prod_{k=0}^{1} G_0 \cdot 0_{k,0} \prod G_0 \cdot 0_{2,0} \prod G_0 \cdot 0_{1,1} \quad \text{for } p < q.
\]
Proof. Suppose first \(p = q \). In this case, one of generators of \(Q_1 \mod Q_0 \) is \(\epsilon_{p+1} \) (Matsumoto [19]). Note that \(\epsilon_{p+1} \in G_0 - G_0^0 \). Choose the subset \(\Pi_1' = \{ \alpha_{p+1} \} \) of \(\Pi \). Then \(h_{\Pi_1'}(\beta) = 1 \). Let \(g = \sum_{k=-1}^{1} g_k \) be the gradation of \(g \) corresponding to \(\Pi_1' \), and let \(A = \prod_{k=-1}^{1} A_k \) be the corresponding partition of \(\Delta \). We have \(\epsilon_{p+1} = 1 \) on \(g_0 \), and \(\epsilon_{p+1} = -1 \) on \(g_{-1} + g_1' \). We also have \(\beta_1 \in A_1 \) and \(\beta_2 \in A_0 \), since \(h_{\Pi_1'}(\beta_1) = 1 \) and \(h_{\Pi_1'}(\beta_2) = 0 \). As a result, \(\epsilon_{p+1}(\alpha_{2,0}) = -e_1 + e_2 \). Choose an element \(a \in W(\Delta^*) \) interchanging \(e_1 \) with \(e_2 \). Then \(a\epsilon_{p+1}(\alpha_{2,0}) = \alpha_{1,1} \), which implies that \(\epsilon_{p+1}(G_0 \cdot \alpha_{2,0}) = G_0 \cdot \alpha_{1,1} \). This, together with Lemma 4.3, proves (5.30).
Next consider the case $p < q$. Put $C_{pq}^+ = G_0^0 \cdot o_{2,0}$ and $C_{pq}^- = G_0^0 \cdot o_{1,1}$ for simplicity. Choose a coordinate system (x_i) in $\mathfrak{g}_{-1} = \mathbb{R}^{p+q}$ such that the reduced norm $N(X)$ is expressed as the canonical form $x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2$. Then

$$(5.32) \quad C_{pq}^\pm = \left\{ (x_i) \in \mathbb{R}^{p+q} : \sum_{i=1}^{p} x_i^2 - \sum_{j=p+1}^{p+q} x_j^2 \geq 0 \right\}.$$

Let S_{pq}^\pm be the level surfaces of N, that is,

$$(5.33) \quad S_{pq}^\pm = \left\{ (x_i) \in C_{pq}^\pm : N(X) = \pm 1 \right\}.$$

Then C_{pq}^\pm are diffeomorphic to $S_{pq}^\pm \times \mathbb{R}^+$, respectively. An easy argument shows that S_{pq}^+ (resp. S_{pq}^-) is diffeomorphic to $S^{p-1} \times \mathbb{R}^q$ (resp. $S^{q-1} \times \mathbb{R}^p$), where S^k denotes a k-sphere. Consider the i-th homology groups $H_i(C_{pq}^\pm, Z), 0 \leq i \leq p + q$. Then the above argument shows that $H_i(C_{pq}^+; Z) \simeq H_i(S^{p-1}, Z)$ and $H_i(C_{pq}^-; Z) \simeq H_i(S^{q-1}, Z)$. Suppose that C_{pq}^\pm are homeomorphic to each other. Then we have $H_i(S^{p-1}, Z) \simeq H_i(S^{q-1}, Z)$ for any $i, 0 \leq i \leq p + q$, which implies $p = q$. This contradicts the hypothesis $p < q$. Therefore C_{pq}^+ is not homeomorphic to C_{pq}^-. Suppose now that there exists only one open G_0^0-orbit in \mathfrak{g}_{-1}. Then there exists $a \in G_0 - G_0^0$ such that $ao_{2,0} = o_{1,1}$. We then have $a(C_{pq}^+) = C_{pq}^-$, and hence C_{pq}^+ is homeomorphic to C_{pq}^-, which is a contradiction. Therefore there are exactly two open G_0-orbits. \hfill \Box

6. Open G_0^0-orbits

Let $\mathfrak{g} = \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1$ be a real simple GLA. Suppose that the split root system $\Delta(\mathfrak{g}, c)$ of the symmetric pair $(\mathfrak{g}, \mathfrak{g}_0)$ is of type C_r. Then we have the simple Jordan algebras $\mathfrak{U}_p = (\mathfrak{g}_{-1}, \Box_p)$ with unit element $o_{p,r-p}(0 \leq p \leq r)$ \hspace{1em} (cf. §2). For an element $g \in \text{Str} \mathfrak{U}_p$, we define

$$(6.1) \quad \theta(g) := (g^*)^{-1},$$

where g^* is the adjoint operator of g with respect to the trace form γ_p of \mathfrak{U}_p. Then θ is an involutive automorphism of Str \mathfrak{U}_p. We denote by $\text{Aut}_{\text{JTS}} \mathfrak{U}_p$ the automorphism group of the JTS (4.13) coming from the Jordan algebra \mathfrak{U}_p, and we denote by $(\text{Str} \mathfrak{U}_p)_{\theta}$ the subgroup of θ-fixed elements of Str \mathfrak{U}_p. Then, by the definition of $\text{Aut}_{\text{JTS}} \mathfrak{U}_p$, we have

$$(6.2) \quad (\text{Str} \mathfrak{U}_p)_{\theta} = \text{Aut}_{\text{JTS}} \mathfrak{U}_p,$$

\hspace{1em} \text{Proposition 6.1.} Suppose that the split root system $\Delta(\mathfrak{g}, c)$ of the symmetric pair $(\mathfrak{g}, \mathfrak{g}_0)$ is of type C_r. Then the open orbit $G_0^0 \cdot o_{p,r-p} \hspace{1em} (0 \leq p \leq r)$ is expressed as a symmetric coset space:

$$(6.3) \quad G_0^0 \cdot o_{p,r-p} = (\text{Str} \mathfrak{U}_p)^0 / (\text{Str} \mathfrak{U}_p)^0 \cap \text{Aut} \mathfrak{U}_p,$$

where $\text{Aut} \mathfrak{U}_p$ denotes the automorphism group of the Jordan algebra \mathfrak{U}_p. \hspace{1em} (Note that $G_0^0 = (\text{Str} \mathfrak{U}_p)^0$ by (4.17)).
\textbf{Proof.} \(\text{Aut} \mathfrak{U}_p\) is an open subgroup of \(\text{Aut}_{\text{JTS}} \mathfrak{U}_p\) (cf. Satake [21]). Consequently, noting (6.2), we have the inclusions
\begin{equation}
((\text{Str} \mathfrak{U}_p)_\theta)^0 \subset \text{Aut} \mathfrak{U}_p \subset (\text{Str} \mathfrak{U}_p)_\theta.
\end{equation}
By taking the intersection of each term in (6.4) with \((\text{Str} \mathfrak{U}_p)^0\), it follows that
\begin{equation}
(((\text{Str} \mathfrak{U}_p)^0)_\theta)^0 \subset (\text{Str} \mathfrak{U}_p)^0 \cap \text{Aut} \mathfrak{U}_p \subset (((\text{Str} \mathfrak{U}_p)^0)_\theta)^0,
\end{equation}
which implies that the coset space in the right-hand side of (6.3) is a symmetric coset space. Since \(\text{Aut} \mathfrak{U}_p\) is the isotropy subgroup of \(\text{Str} \mathfrak{U}_p\) at the unit element \(o_{p,r-p}\), \(G^0 \cdot o_{p,r-p}\) has the coset space expression (6.3).
\[\square\]

Every open orbit \(G^0 \cdot o_{p,r-p}\) is an \(\omega\)-domain in the sense of Koecher [16], since that orbit is a connected component of \(V_r\) (note that \(V_r\) coincides with the totality of invertible elements in \(\mathfrak{U}_p\), by Lemma 4.4). As a result, open \(G^0\)-orbits exhaust all \(\omega\)-domains in real simple Jordan algebras. The results similar to Proposition 6.1 were obtained also by Faraut-Gindikin [5] and Vinberg [29].

\textbf{Remark 6.2.} Assuming that \(\Delta(g, c)\) is of type \(C\), let us consider the quadratic representation \(P(X)\) of the JTS \(\mathfrak{B}\). Then \(P(X)\) is nondegenerate for \(X \in V_r\) \((6.6)\). \(\det P(X)\) has a constant sign on each connected component of \(V_r\). Put
\begin{equation}
\Phi(X) = \log|\det P(X)|, \quad X \in V_r.
\end{equation}
Then, by Koecher [16] together with Lemma 4.4, the Hessian \(\text{Hess}(\Phi(X))\) is non-degenerate on each \(G^0\)-orbit. Hence \(\text{Hess}(\Phi(X))\) is a \(G^0\)-invariant pseudo-riemannian metric on it. As a conclusion, an open \(G^0\)-orbit provides with an example of pseudo-Hessian symmetric space (For the definition of a Hessian symmetric space, see Shima [24]).

In the following, we give the explicit forms of open \(G^0\)-orbits and their coset space expression (6.3) for each simple \(\text{GLA}(g, g_0, g_{-1})\) with split root system of type \(C\). Partial results have been obtained by Kaneyuki [11] and d’Atri-Gindikin [4].

(I1) with \(p = n/2\),
\[\{X \in M_p(R) : \det X > 0\}, \quad \{X \in M_p(R) : \det X < 0\}.\]
Both are expressed as \(GL(p, R)^0 \times GL(p, R)^0/\text{diagonal}\).

(I2) with \(p = n/2\),
\[\{X \in M_p(H) : \det X \neq 0\} = GL(p, H) \times GL(p, H)/\text{diagonal}.\]

(I3) \(H_{n-i,i}(C) = GL(n, C)/U(n-i,i), \quad 0 \leq i \leq n\).

(I4) \(H_{n-i,i}(R) = GL(n, R)^0/\text{SO}(n-i,i), \quad 0 \leq i \leq n\).

(I5) \(\{X \in SH_n(H) : \det X \neq 0\} = GL(n, H)/\text{SO}^*(2n).\)

(I6) i) \(p = 0\),
\[\{(x_i) \in \mathbb{R}^q : x_1^2 + \cdots + x_q^2 \neq 0\} = \mathbb{R}^+ \times \text{SO}(q)/\text{SO}(q-1).\]
ii) $p = 1$,

\[
\{(x_i) \in \mathbb{R}^{q+1} : x_1^2 - x_2^2 - \cdots - x_{q+1}^2 > 0, x_1 > 0\},
\]

\[
\{(x_i) \in \mathbb{R}^{q+1} : x_1^2 - x_2^2 - \cdots - x_{q+1}^2 > 0, x_1 < 0\},
\]

\[
\{(x_i) \in \mathbb{R}^{q+1} : x_1^2 - x_2^2 - \cdots - x_{q+1}^2 < 0\},
\]

The first two are expressed as $\mathbb{R}^+ \times SO(1,q)^0 / SO(q)$. The third one is expressed as $\mathbb{R}^+ \times SO(1,q)^0 / SO(1,q-1)^0$.

iii) $p \geq 2$,

\[
\left\{ (x_i) \in \mathbb{R}^{q+p} : \sum_{i=1}^{p}x_i^2 - \sum_{j=p+1}^{p+q}x_j^2 > 0 \right\} = \mathbb{R}^+ \times SO(p,q)^0 / SO(p-1,q)^0,
\]

\[
\left\{ (x_i) \in \mathbb{R}^{q+p} : \sum_{i=1}^{p}x_i^2 - \sum_{j=p+1}^{p+q}x_j^2 < 0 \right\} = \mathbb{R}^+ \times SO(p,q)^0 / SO(p,q-1)^0.
\]

(I7) $H_{n-i,i}(H) = GL(n,H)/Sp(n-i,i), \quad 0 \leq i \leq n.$

(I8) $\{X \in \text{Alt}_{2n}(\mathbb{R}) : \text{Pff}(X) > 0\}, \quad \{X \in \text{Alt}_{2n}(\mathbb{R}) : \text{Pff}(X) < 0\}.$

Both are expressed as $GL(2n,\mathbb{R})^0 / Sp(n,\mathbb{R}).$

(I11) $\{X \in H_3(O') : N(X) > 0\}, \quad \{X \in H_3(O') : N(X) < 0\},$

where N denotes the reduced norm of $H_3(O')$. Both are expressed as $\mathbb{R}^+ \times E_{6(6)}/F_{4(4)}$.

(I12) $H_{3-i,i}(O), \quad i = 0,1,2,3.$

$H_{3,0}(O)$ and $H_{0,3}(O)$ are expressed as $\mathbb{R}^+ \times E_{6(-26)}/F_{4}.$

$H_{2,1}(O)$ and $H_{1,2}(O)$ are expressed as $\mathbb{R}^+ \times E_{6(-26)}/F_{4(-20)}.$

(I13) with $p = n/2$,

$\{X \in M_p(\mathbb{C}) : \det X \neq 0\} = GL(p,\mathbb{C}) \times GL(p,\mathbb{C})/\text{diagonal}.$

(I14) $\{X \in \text{Sym}_n(\mathbb{C}) : \det X \neq 0\} = GL(p,\mathbb{C})/SO(n,\mathbb{C}).$

(I15) $\{(z_i) \in \mathbb{C}^n : z_1^2 + \cdots + z_n^2 \neq 0\} = \mathbb{C}^* \times SO(n,\mathbb{C})/SO(n-1,\mathbb{C}).$

(I16) $\{X \in \text{Alt}_{2n}(\mathbb{C}) : \text{Pff}(X) \neq 0\} = GL(2n,\mathbb{C})/Sp(n,\mathbb{C}).$

(I18) $\{X \in H_3(O^C) : N(X) \neq 0\} = \mathbb{C}^* \times E_6^C / F_4^C,$

where N denotes the reduced norm of the Jordan algebra $H_3(O^C)$.

In the above list, $H_{n-i,i}(K)$ denotes the set of $n \times n K$-hermitian matrices of signature $(n - i, i)$, where $K = \mathbb{R}, \mathbb{C}, H, O$.

References