Normal intermediate subfactors

By Tamotsu Teruya

(Received Nov. 16, 1995)
(Revised May 27, 1996)

1. Introduction.

The index theory for type II_{1} factors was initiated by V . Jones [11] and the classification of subfactors has been studied by many people ([4], [8], [9], [10], [12], [13], [15], [16], [17, 18], [24], etc.). A. Ocneanu [22] introduced the concept of a paragroup to classify subfactors. By using the so-called standard invariants equivalent to the paragroups, S. Popa [27], [26] classified subfactors under more general conditions. The paragroups or the standard invariants for an inclusion of type II_{1} factors with finite Jones index is a group like object which generalizes finite groups. So the theory of finite groups may be considered as part of the index theory for an inclusion of type II_{1} factors with finite Jones index. It is well known that if $\alpha: G \rightarrow \operatorname{Aut}(N)$ is an outer action of a finite group G on a type II_{1} factor N and K is an intermediate subfactor for $N \subset N \rtimes_{\alpha} G$, then there is a subgroup H of G such that $K=N \rtimes_{\alpha} H$ (see for instance [21]). On the other hand, Y. Watatani [33] showed that there exist only finitely many intermediate subfactors for an irreducible inclusion with finite index. So it is natural to consider intermediate subfactors as "quantized subgroups" in the index theory for an inclusion of type II_{1} factors. The notion of normality for subgroups plays an important role in the theory of finite groups. In this paper we introduce the notion of normality for intermediate subfactors of irreducible inclusions.
D. Bisch [1] and A. Ocneanu [23] gave a nice characterization of intermediate subfactors of a given irreducible inclusion $N \subset M$ in terms of Jones projections and Ocneanu's Fourier transform $\mathscr{F}: N^{\prime} \cap M_{1} \rightarrow M^{\prime} \cap M_{2}$. We define normal intermediate subfactors as follows:

Definition. Let $N \subset M$ be an irreducible inclusion of type II_{1} factors with finite index and K an intermediate subfactor of the inclusion $N \subset M$. Then K is a normal intermediate subfactor of the inclusion $N \subset M$ if $e_{K} \in \mathscr{Z}\left(N^{\prime} \cap M_{1}\right)$ and $\mathscr{F}\left(e_{K}\right) \in$ $\mathscr{Z}\left(M^{\prime} \cap M_{2}\right)$, where e_{K} is the Jones projection for the inclusion $K \subset M$.

Every finite dimensional Hopf C^{*}-algebra (Kac algebra) gives rise to an irreducible inclusion of AFD II_{1} factors, which is characterized by depth 2 (see for example [23], [30], [31], [36]). Let M be the crossed product algebra $N \rtimes \mathbf{H}$ of N by an outer action

[^0]of a finite dimensional Hopf C^{*}-algebra H. Unfortunately, there is no one-to-one correspondence between the intermediate subfactors of $N \subset M$ and the subHopf C^{*} algebras of \mathbf{H} in general. But we get the next result:

Theorem. Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors with finite index, i.e., M is described as the crossed product algebra $N \rtimes \mathbf{H}$ of N by an outer action of a finite dimensional Hopf C^{*}-algebra \mathbf{H}. Let K be an intermediate subfactor of $N \subset M$ and e_{K} is the Jones projection for $K \subset M$. Then K is described as the crossed product algebra $N \rtimes \mathbf{K}$ of N by an outer action of a subHopf C^{*} algebra \mathbf{K} of \mathbf{H} if and only if e_{K} is an element of the center of the relative commutant algebra $N^{\prime} \cap M_{1}$ where M_{1} is the basic extension for $N \subset M$.

Let $N \subset M$ be an irreducible inclusion of type II_{1} factors with finite index and M_{1} the basic extension for $N \subset M$. Let K be an intermediate subfactor of $N \subset M$ and K_{1} the basic extension for $K \subset M$. Then K_{1} is an intermediate subfactor of $M \subset M_{1}$. For the Jones projections e_{K} and $e_{K_{1}}$ for the inclusions $K \subset M$ and $K_{1} \subset M_{1}$, respectively, since $\mathscr{F}\left(e_{K}\right)=\lambda e_{K_{1}}$ for some scalar λ, we get the next theorem:

Theorem. If the depth of a given irreducible inclusion $N \subset M$ is 2, then an intermediate subfactor K of $N \subset M$ is normal in $N \subset M$ if and only if the depths of $N \subset K$ and $K \subset M$ are both 2 .

The author [32] showed that if M is the crossed product $N \rtimes G$ of type II_{1} factor N by a finite group G and K is given by $N \rtimes H$, then H is a normal subgroup of G if and only if $(K \subset M) \simeq(K \subset K \rtimes F)$ for some finite group F, i.e., the depth of $K \subset M$ is 2 . Hence we see by the previous theorem that H is a normal subgroup of G if and only if K is a normal intermediate subfactor of $N \subset M$. Therefore our notion of normality for intermediate subfactors is an extension of that in the theory of finite groups.

We show that if the depth of $N \subset M$ is 2 , then the set of all normal intermediate subfactors of $N \subset M$ is a sublattice of intermediate subfactor lattice for $N \subset M$ and we have the Jordan-Dedekind chain condition holding in normal intermediate subfactor lattices.

Acknowledgments. I should like to express my gratitude to Professor Hideki Kosaki for helpful advice and suggestion about examples of normal intermediate subfactors and non normal ones (group type inclusion, strongly outer action, etc.). And I should like to thank Professor Yasuo Watatani for fruitful discussions, may useful comments and constant encouragement. I also thank Professor Yoshihiro Sekine and Professor Takehiko Yamanouchi for useful comments.

2. Preliminaries.

2.1. Intermediate subfactors.

We recall here some results for intermediate subfactors. Let $N \subset M$ be a pair of type II_{1} factors. We denote by $\mathscr{L}(N \subset M)$ the set of all intermediate von Neumann
subalgebras of $N \subset M$. The set $\mathscr{L}(N \subset M)$ forms a lattice under the two operations \vee and \wedge defined by

$$
K_{1} \vee K_{2}=\left(K_{1} \cup K_{2}\right)^{\prime \prime} \text { and } K_{1} \wedge K_{2}=K_{1} \cap K_{2} .
$$

If the relative commutant algebra $N^{\prime} \cap M$ is trivial, then $\mathscr{L}(N \subset M)$ is exactly the lattice of intermediate subfactors for $N \subset M$. In fact for any $K \in \mathscr{L}(N \subset M)$, $\mathscr{Z}(K)=$ $K^{\prime} \cap K \subset N^{\prime} \cap M=C$. If M is the crossed product $N \rtimes_{\alpha} G$ for an outer action α of a finite group G, then it is well known that the intermediate subfactor lattice $\mathscr{L}(N \subset M)$ is isomorphic to the subgroup lattice $\mathscr{L}(G)$ (see [20], [21]). In [33] Y. Watatani proved the next theorem.

Theorem (Watatani). Let $N \subset M$ be a pair of type II_{1} factors. If $[M: N]<\infty$ and $N^{\prime} \cap M=C$, then $\mathscr{L}(N \subset M)$ is a finite lattice.

This theorem was also shown by S. Popa implicitly [25].
From now on we assume that $[M: N]<\infty$ and $N^{\prime} \cap M=C$. Let $N \subset M \subset$ $M_{1} \subset M_{2}$ be the Jones tower of $N \subset M$ obtained by iterating the basic extension. Let $e_{N} \in M_{1}$ and $e_{M} \in M_{2}$ be the Jones projections for $N \subset M$ and $M \subset M_{1}$, respectively. We denote by \mathscr{F}, Ocneanu's Fourier transform from $N^{\prime} \cap M_{1}$ onto $M^{\prime} \cap M_{2}$ i.e.,

$$
\mathscr{F}(x)=[M: N]^{-3 / 2} E_{M^{\prime}}^{N^{\prime}}\left(x e_{M} e_{N}\right), \quad x \in N^{\prime} \cap M_{1},
$$

where $E_{M^{\prime}}^{N^{\prime}}$ is the conditional expectation from N^{\prime} onto M^{\prime}. For $K \in \mathscr{L}(N \subset M)$, if e_{K} is the Jones projection for $K \subset M$, then e_{K} is an element of $N^{\prime} \cap M_{1}$. In fact $K_{1}=\left\langle M, e_{K}\right\rangle=J_{M} K^{\prime} J_{M} \subset J_{M} N^{\prime} J_{M}=M_{1}$ and hence $e_{K} \in K^{\prime} \cap K_{1} \subset N^{\prime} \cap M_{1}$.
D. Bisch [1] and A. Ocneanu [23] gave the next characterization of intermediate subfactors in terms of Jones projections in $N^{\prime} \cap M_{1}$.

Theorem (Bisch-Ocneanu). Let p be a projection in $N^{\prime} \cap M_{1}$. There exists an intermediate subfactor $K \in \mathscr{L}(N \subset M)$ such that $p=e_{K}$ if and only if
(1) $p \geq e_{N}$,
(2) $\mathscr{F}(p)=\lambda q$ for some $\lambda \in C$ and some projection $q \in M^{\prime} \cap M_{2}$. In this case, q is the Jones projection $e_{K_{1}}$ for $K_{1} \subset M_{1}$.

For the convenience, we prove the next lemmas (see for example [1], [29]).
Lemma 2.1. With the above notations, we have

$$
e_{K}=[K: N][M: N] E_{M_{1}}^{M_{2}}\left(e_{M} e_{N} e_{K_{1}}\right),
$$

where $E_{M_{1}}^{M_{2}}$ is the trace preserving conditional expectation from M_{2} onto M_{1}.
Proof. Since $e_{M} \leq e_{K_{1}}$, we have $e_{M} e_{N} e_{K_{1}}=e_{M} e_{K_{1}} e_{N} e_{K_{1}}=e_{M} E_{K_{1}}^{M_{1}}\left(e_{N}\right)$. Since $E_{K_{1}}^{M_{1}}\left(e_{N}\right) e_{K}=E_{K_{1}}^{M_{1}}\left(e_{N} e_{K}\right)=E_{K_{1}}^{M_{1}}\left(e_{N}\right)$, we have by [24]

$$
\begin{aligned}
E_{K_{1}}^{M_{1}}\left(e_{N}\right) & =[M: K] E_{M}^{K_{1}}\left(E_{K_{1}}^{M_{1}}\left(e_{N}\right) e_{K}\right) e_{K} \\
& =[M: K] E_{M}^{M_{1}}\left(e_{N}\right) e_{K}=\frac{[M: K]}{[M: N]} e_{K} \\
& =\frac{1}{[K: N]} e_{K} .
\end{aligned}
$$

Therefore we have $e_{M} e_{N} e_{K_{1}}=(1 /[K: N]) e_{M} e_{K}$. And hence we have

$$
E_{M_{1}}^{M_{2}}\left(e_{M} e_{N} e_{K_{1}}\right)=\frac{1}{[K: N]} E_{M_{1}}^{M_{2}}\left(e_{M}\right) e_{K}=\frac{1}{[K: N][M: N]} e_{K} .
$$

We get the result.
Lemma 2.2. Let K be an intermediate subfactor for $N \subset M$. Let $K \subset M \subset$ $K_{1} \subset K_{2}$ and $N \subset M \subset M_{1} \subset M_{2}$ be the Jones towers for $K \subset M$ and $N \subset M$, respectively. If $e_{K_{1}}$ is the Jones projection for $K_{1} \subset M_{1}$, then there exists a *-isomorphism φ of K_{2} onto $e_{K_{1}} M_{2} e_{K_{1}}$ such that $\varphi(x)=x e_{K_{1}}$ for $x \in K_{1}$ and $\varphi\left(e_{M}^{K_{1}}\right)=e_{M}$, where $e_{M}^{K_{1}}$ and e_{M} are the Jones projections for $M \subset K_{1}$ and $M \subset M_{1}$, respectively.

Proof. Since $e_{K_{1}} \in K_{1}^{\prime} \subset M^{\prime}$ on $L^{2}\left(M_{1}\right)$, it is obvious that $\left(M \subset K_{1}\right) \simeq\left(M e_{K_{1}} \subset\right.$ $K_{1} e_{K_{1}}$). Therefore it is enough to show that $e_{K_{1}} M_{2} e_{K_{1}}$ is the basic extension for $M e_{K_{1}} \subset$ $K_{1} e_{K_{1}}$ with the Jones projection e_{M}. By the fact that $e_{M}=e_{K_{1}} e_{M} e_{K_{1}}, e_{M}$ is an element of $e_{K_{1}} M_{2} e_{K_{1}}$. Let $\tilde{K_{2}}$ be the basic extension for $K_{1} \subset M_{1}$. Since $e_{K_{1}} \tilde{K}_{2} e_{K_{1}}=K_{1} e_{K_{1}}$, we get by the proof of Lemma 2.1,

$$
\begin{aligned}
E_{K_{1} e_{K_{1}}}^{e_{K_{1}} M_{2} e_{K_{1}}}\left(e_{M}\right) & =E_{e_{K_{1}} \tilde{K}_{2} e_{K_{1}}}^{e_{K_{1}} M_{2} e_{K_{1}}}\left(e_{M}\right) e_{K_{1}} E_{\tilde{K}_{2}}^{M_{2}}\left(e_{M}\right) e_{K_{1}} \\
& =E_{\tilde{K}_{2}}^{M_{2}}\left(e_{M}\right)=\frac{1}{[M: K]} e_{K_{1}} .
\end{aligned}
$$

We can see that $M e_{K_{1}}=\left(K_{1} \cap\left\{e_{M}\right\}^{\prime}\right) e_{K_{1}}=K_{1} e_{K_{1}} \cap\left\{e_{M}\right\}^{\prime}$. Therefore $e_{K_{1}} M_{2} e_{K_{1}}$ is the basic extension for $M e_{K_{1}} \subset K_{1} e_{K_{1}}$ by [24].

2.2. Finite dimensional Hopf C^{*}-algebras.

In this subsection we recall some facts about finite dimensional Hopf C^{*}-algebras.
Let \mathbf{H} be a finite dimensional Hopf C^{*}-algebra with a comultiplication $\triangle_{\mathbf{H}}$ and an anti-pode $S_{\mathbf{H}}$. Let \mathbf{K} be a subHopf C^{*}-algebra of \mathbf{H}, i.e., \mathbf{K} is a ${ }^{*}$-subalgebra of \mathbf{H}, $S_{\mathbf{H}}(\mathbf{K}) \subset \mathbf{K}$ and $\triangle_{\mathbf{H}}(\mathbf{K}) \subset \mathbf{K} \otimes \mathbf{K}$.

Lemma 2.3. Define the subset \mathbf{K}^{\perp} of \mathbf{H}^{*} by

$$
\mathbf{K}^{\perp}=\left\{f \in \mathbf{H}^{*} \mid(f, k)=0, \forall k \in \mathbf{K}\right\},
$$

where $():, \mathbf{H}^{*} \times \mathbf{H} \rightarrow \boldsymbol{C}$ is the dual pairing defined by $(f, h)=f(h), f \in \mathbf{H}^{*}, h \in \mathbf{H}$. Then \mathbf{K}^{\perp} is an ideal of \mathbf{H}^{*}.

Proof. Let g be an element of \mathbf{K}^{\perp} and f an element of \mathbf{H}^{*}. Then the element $g f$ of \mathbf{H}^{*} is determined by the equation

$$
(g f, h)=\left(g \otimes f, \triangle_{\mathbf{H}}(h)\right), \quad \forall h \in \mathbf{H} .
$$

By virtue of $\Delta_{\mathbf{H}}(\mathbf{K}) \subset \mathbf{K} \otimes \mathbf{K}$, we get

$$
(g f, k)=\left(g \otimes f, \triangle_{\mathbf{H}}(k)\right)=0, \quad \forall k \in \mathbf{K}
$$

Therefore $g f$ is an element of \mathbf{K}^{\perp}. Similarly, $f g \in \mathbf{K}^{\perp}$.
By the above lemma, there exists a central projection $p \in \mathbf{H}^{*}$ such that $\mathbf{K}^{\perp}=p \mathbf{H}^{*}$. We put $e_{\mathbf{K}}=1-p$.

Proposition 2.4. With the above notation, the reduced algebra $e_{\mathbf{K}} \mathbf{H}^{*}$ is the dual Hopf C^{*}-algebra of \mathbf{K}.

Proof. Suppose that $k \in \mathbf{K}$ and $(y, k)=0, \forall y \in e_{\mathbf{K}} \mathbf{H}^{*}$. Then

$$
(f, k)=\left(e_{\mathbf{K}} f, k\right)+(p f, k)=\left(e_{\mathbf{K}} f, k\right)=0, \quad \forall f \in \mathbf{H}^{*}
$$

Therefore $k=0$. Conversely, suppose that $y \in e_{\mathbf{K}} \mathbf{H}^{*}$ and $(y, k)=0, \forall k \in \mathbf{K}$. Then $y \in \mathbf{K}^{\perp} \cap e_{\mathbf{K}} \mathbf{H}^{*}=\{0\}$. Hence the form $\left.()\right|_{,e_{\mathbf{K}} \mathbf{H}^{*} \times \mathbf{K}}$ establishes a duality between \mathbf{K} and $e_{\mathbf{K}} \mathbf{H}^{*}$. So we can identify $e_{\mathbf{K}} \mathbf{H}^{*}$ with \mathbf{K}^{*}. Then for $y \in \mathbf{K}^{*}$ and $k_{1}, k_{2} \in \mathbf{K}$, we have

$$
\left(y, k_{1} k_{2}\right)=\left(\triangle_{\mathbf{H}^{*}}(y), k_{1} \otimes k_{2}\right)=\left(\triangle_{\mathbf{H}^{*}}(y)\left(e_{\mathbf{K}} \otimes e_{\mathbf{K}}\right), k_{1} \otimes k_{2}\right)
$$

Hence $\triangle_{\mathbf{K}^{*}}(y)=\triangle_{\mathbf{H}^{*}}(y)\left(e_{\mathbf{K}} \otimes e_{\mathbf{K}}\right)$. Similarly, we have $S_{\mathbf{K}^{*}}=S_{\mathbf{H}^{*} \mid \mathbf{K}^{*}}$ by the fact that

$$
\overline{\left(y^{*}, k^{*}\right)}=\left(S_{\mathbf{H}^{*}}(y), k\right), \quad \forall y \in \mathbf{K}^{*}, \quad \forall k \in \mathbf{K} .
$$

Therefore $e_{\mathbf{K}} \mathbf{H}^{*}$ is again a Hopf C^{*}-algebra with the dual algebra \mathbf{K}.
Theorem 2.5. Let \mathbf{H} be a finite dimensional Hopf C^{*}-algebra. The number of subHopf C^{*}-algebras of \mathbf{H} is finite.

Proof. By the above proposition, the map $\mathbf{K} \mapsto e_{\mathbf{K}}$ from the set of subHopf C^{*} algebras of \mathbf{H} to central projections of \mathbf{H}^{*} is injective. Since the number of central projections of \mathbf{H}^{*} is finite, so is that of subHopf C^{*} algebras of \mathbf{H}.

Remark. Since every finite dimensional Hopf C^{*}-algebra (Kac algebra) admits an "outer" action on the AFD II_{1} factor [36], the above theorem immediately follows from [33, Theorem 2.2].

Definition. Let \mathbf{H} be a Hopf algebra.
(1) The left adjoint action of \mathbf{H} on itself is given by

$$
\left(a d_{l} h\right)(k)=\sum_{(h)} h_{1} k\left(S_{\mathbf{H}}\left(h_{2}\right)\right), \quad \text { for all } h, k \in \mathbf{H}
$$

(2) The right adjoint action of \mathbf{H} on itself is given by

$$
\left(a d_{r} h\right)(k)=\sum_{(h)}\left(S_{\mathbf{H}}\left(h_{1}\right)\right) k h_{2}, \quad \text { for all } h, k \in \mathbf{H} .
$$

(3) A subHopf algebra \mathbf{K} of \mathbf{H} is called normal if both $\left(\operatorname{ad}_{l} \mathbf{H}\right)(\mathbf{K}) \subset \mathbf{K}$ and $\left(a d_{r} \mathbf{H}\right)(\mathbf{K}) \subset \mathbf{K}$ hold. (See [19, pp. 33].)

The next proposition will be useful later.
Proposition 2.6. Let \mathbf{H} be a finite dimensional Hopf algebra with a counit $\varepsilon_{\mathbf{H}}$ and \mathbf{K} a subHopf algebra of \mathbf{H}. Then \mathbf{K} is normal if and only if $\mathbf{H K}^{+}=\mathbf{K}^{+} \mathbf{H}$, where $\mathbf{K}^{+}=\mathbf{K} \cap \operatorname{ker} \varepsilon_{\mathbf{H}}$.

See for a proof [19, pp. 35].

2.3. Bimodules.

In this subsection we recall some facts about the bimodule calculus associated with an inclusion of type II_{1} factors (see for example [23], [34]).

Let A, B, C be type II_{1} factors and let $\alpha={ }_{A} H_{B}, \beta={ }_{A} K_{B}, \gamma={ }_{B} L_{C}$ be $A-B, A-B$ and $B-C$ Hilbert bimodules, respectively. We write $\alpha \gamma$ for the $A-C$ Hilbert bimodule ${ }_{A} H_{B} \otimes_{B B} L_{C}$. We denote by $\langle\alpha, \beta\rangle$ the dimension of the space of $A-B$ intertwiners from ${ }_{A} H_{B}$ to ${ }_{A} K_{B}$. The conjugate Hilbert space H^{*} of ${ }_{A} H_{B}$ is naturally a $B-A$ bimodule with $B-A$ actions defined by

$$
b \cdot \xi^{*} \cdot a=\left(a^{*} \xi b^{*}\right)^{*} \quad \text { for } a \in A \text { and } b \in B,
$$

where $\xi^{*}=\langle\cdot, \xi\rangle_{H} \in H^{*}$ for $\xi \in{ }_{A} H_{B}$. We denote by $\bar{\alpha}$ the conjugate $B-A$ Hilbert bimodule associated with α.

Proposition 2.7 (Frobenius reciprocity). Let A, B, C be type II_{1} factors, and $\alpha={ }_{A} H_{B}, \beta={ }_{B} K_{C}$ and $\gamma={ }_{A} L_{C}$ be Hilbert bimodules. Then

$$
\langle\alpha \beta, \gamma\rangle=\langle\alpha, \gamma \bar{\beta}\rangle=\langle\beta, \bar{\alpha} \gamma\rangle .
$$

See for a proof [23], [34].
Example 2.8. Let M be a type II_{1} factor with the normalized trace τ_{M}. As usual we let $L^{2}(M)$ be the Hilbert space obtained by completing M in the norm $\|x\|_{2}=\sqrt{\tau_{M}\left(x^{*} x\right)}, x \in M$. Let $\eta: M \rightarrow L^{2}(M)$ be the canonical implementation. Let $J: L^{2}(M) \rightarrow L^{2}(M)$ be the modular conjugation defined by $J \eta(x)=\eta\left(x^{*}\right), x \in M$. For $\theta \in \operatorname{Aut}(M)$, we define ${ }_{M}\left(L^{2}(M)_{\theta}\right)_{M}$, the $M-M$ Hilbert bimodule, by
(1) $M_{M}\left(L^{2}(M)_{\theta}\right)_{M}=L^{2}(M)$ as a Hilbert space,
(2) $x \cdot \xi \cdot y=x J \theta(y)^{*} J \xi, x, y \in M, \xi \in L^{2}(M)$.

Then for $\theta, \theta_{1}, \theta_{2} \in \operatorname{Aut}(M)$ we have

$$
\begin{gathered}
\overline{M\left(L^{2}(M)_{\theta}\right)_{M}} \simeq{ }_{M}\left(L^{2}(M)_{\theta^{-1}}\right)_{M} \\
M\left(L^{2}(M)_{\theta_{1}}\right)_{M} \bigotimes_{M} \bigotimes_{M}\left(L^{2}(M)_{\theta_{2}}\right)_{M} \simeq{ }_{M}\left(L^{2}(M)_{\theta_{1} \theta_{2}}\right)_{M} .
\end{gathered}
$$

A bimodule $\alpha={ }_{A} H_{B}$ is called irreducible if $\langle\alpha, \alpha\rangle=1$, i.e., $\operatorname{End}_{A-B}\left({ }_{A} H_{B}\right) \simeq C$. If $\langle\alpha, \alpha\rangle<\infty, \alpha={ }_{A} H_{B}$, then we can get an $A-B$ irreducible bimodule by cutting ${ }_{A} H_{B}$ by a minimal projection in $\operatorname{End}_{A-B}\left({ }_{A} H_{B}\right)$.

Example 2.9. Let $N \subset M$ be an inclusion of type II_{1} factors. We define the $N-M$ bimodule ${ }_{N} L^{2}(M)_{M}$ by actions $x \cdot \xi \cdot y=x J y^{*} J \xi, \xi \in L^{2}(M), x \in N, y \in M$. Then we can see that $\operatorname{End}\left({ }_{N} L^{2}(M)_{M}\right) \simeq N^{\prime} \cap M$. In particular, if $N^{\prime} \cap M=C$, then ${ }_{N} L^{2}(M)_{M}$ is an irreducible $N-M$ bimodule.

The next lemma is well known.
Lemma 2.10. Let $N \subset M$ be a pair of type II_{1} factors with finite index and M_{1} the basic extension for the inclusion $N \subset M$. For $\theta \in \operatorname{Aut}(N),{ }_{N}\left(L^{2}(M)_{\theta}\right)_{N} \simeq{ }_{N} L^{2}(M)_{N}$ if and only if there exists a unitary $u \in M_{1}$ such that $u x u^{*}=\theta(x)$, for all $x \in N$, where ${ }_{N}\left(L^{2}(M)_{\theta}\right)_{N}\left(=L^{2}(M)\right.$ as a Hilbert space) is defined as in Example 2.8.

Example 2.11. Let $\gamma: G \rightarrow \operatorname{Aut}(N)$ be an outer action of a finite group G on a type II_{1} factor N. Let $M=N \rtimes_{\gamma} G$ be the crossed product and ρ the $N-M$ bimodule ${ }_{N} L^{2}(M)_{M}$ defined as in Example 2.9. If $\left\{\lambda_{g} \mid g \in G\right\}$ is a unitary implementation for the crossed product, then each element $x \in M$ is written in the form $x=\sum_{g \in G} x_{g} \lambda_{g}, x_{g} \in N$. This implies that the irreducible decomposition of $\rho \bar{\rho}={ }_{N} L^{2}(M)_{N}$ is

$$
\bigoplus_{g \in G} N\left(\overline{N \lambda_{g}}{ }^{\|\cdot\|_{2}}\right)_{N} \simeq \bigoplus_{g \in G} N\left(L^{2}(N)_{\gamma_{g}}\right)_{N},
$$

where ${ }_{N}\left(L^{2}(N)_{\gamma_{g}}\right)_{N}$ is the $N-N$ bimodule as in Example 2.8.

3. Definition of normal intermediate subfactors.

In this section, we shall introduce the notion of normality for intermediate subfactors and study its properties.

Let $N \subset M$ be a pair of type II_{1} factors with $[M: N]<\infty$. Let $N \subset M \subset$ $M_{1} \subset M_{2}$ be the Jones tower of $N \subset M$, obtained by iterating the basic extensions. We denote by \mathscr{F}, Ocneanu's Fourier transform from $N^{\prime} \cap M_{1}$ onto $M^{\prime} \cap M_{2}$, i.e.,

$$
\mathscr{F}(x)=[M: N]^{-3 / 2} E_{M^{\prime}}^{N^{\prime}}\left(x e_{M} e_{N}\right), \quad x \in N^{\prime} \cap M_{1},
$$

where $E_{M^{\prime}}^{N^{\prime}}$ is the conditional expectation from N^{\prime} onto M^{\prime}.
Definition 3.1. Let K be an intermediate subfactor of $N \subset M$ and e_{K} the Jones projection for the inclusion $K \subset M$. Then we call that K is normal in $N \subset M$ if e_{K} and $\mathscr{F}\left(e_{K}\right)$ are elements of the centers of $N^{\prime} \cap M_{1}$ and $M^{\prime} \cap M_{2}$, respectively.

Lemma 3.2. Let K be an intermediate subfactor for an irreducible inclusion $N \subset M$ of type II_{1} factors with finite index. Let K_{1} and M_{1} be the basic extensions for $K \subset M$ and $N \subset M$, respectively. Then K is normal in $N \subset M$ if and only if K_{1} is normal in $M \subset M_{1}$.

Proof. Since $\mathscr{F}\left(e_{K}\right)=\lambda e_{K_{1}}$ for some $\lambda \in \boldsymbol{C}$, it is obvious by the definition.
Proposition 3.3. Let $\alpha: G \rightarrow \operatorname{Aut}(P)$ be an outer action of a finite group G on a type II_{1} factor P and H a subgroup of G. Let M be the fixed point algebra $P^{(H, \alpha)}$ and N the fixed point algebra $P^{(G, \alpha)}$. For $K \in \mathscr{L}(N \subset M)$, there is a subgroup A of G such that $H \subset A \subset G$ and $K=P^{(A, \alpha)}$. Then K is a normal intermediate subfactor of $N \subset M$ if and only if $\mathrm{AgH}=H g A$ for $\forall g \in G$. In particular, K is normal in $N \subset P$ if and only if A is a normal subgroup of G.

Proof. Let $\left\{u_{g} \mid g \in G\right\}$ be unitary operators on $L^{2}(P)$ defined by $u_{g} \eta(x)=\eta\left(\alpha_{g}(x)\right)$, $x \in P$, where $L^{2}(P)$ and η are defined as in Example 2.8. Let P_{1} be the basic extension for $N \subset P$. Then $N^{\prime} \cap P_{1}=\left\{\sum_{g \in G} x_{g} u_{g} \mid x_{g} \in C\right\} \simeq C G$. Let e_{M}^{P} be the Jones projection for $M \subset P$. Then $e_{M}^{P}=\left(1 /{ }^{\#} H\right) \sum_{h \in H} u_{h}$. Let M_{1} be the basic extension for $N \subset M$. Then by Lemma 2.2,

$$
N^{\prime} \cap M_{1} \simeq e_{M}^{P}\left(N^{\prime} \cap P_{1}\right) e_{M}^{P}=\left\{\sum_{g \in G} \sum_{h, k \in H} x_{g} u_{h g k} \mid x_{g} \in C\right\}
$$

Therefore

$$
\begin{aligned}
e_{K}^{M} \in \mathscr{Z}\left(N^{\prime} \cap M_{1}\right) & \Leftrightarrow e_{M}^{P} e_{K}^{P} e_{M}^{P}\left(=e_{K}^{P}=\frac{1}{{ }^{\#}} \sum_{a \in A} u_{a}\right) \in \mathscr{Z}\left(e_{M}^{P}\left(N^{\prime} \cap P_{1}\right) e_{M}^{P}\right) \\
& \Leftrightarrow \sum_{a \in A} \sum_{h, k \in H} u_{a h g k}=\sum_{a \in A} \sum_{h, k \in H} u_{h g k a} \text { for } \forall g \in G \\
& \Leftrightarrow A g H=H g A \text { for } \forall g \in G .
\end{aligned}
$$

Since $M^{\prime} \cap M_{2}$ is a commutative algebra, we get the the result.
We obviously have the dual version of this proposition by Lemma 3.2.
In [33] Y. Watatani introduced the notion of quasi-normal intermediate subfactors to study the modular identity for intermediate subfactor lattices.

Definition. Let $N \subset M$ be an inclusion of type II_{1} factors with finite index and K an intermediate subfactor of $N \subset M$. Then K is quasi-normal (or doubly commuting) if for any $L \in \mathscr{L}(N \subset M)$,

$$
\begin{array}{ccc}
K & \subset & K \vee L \\
\cup & & \cup \\
K \wedge L & \subset & L
\end{array}
$$

and

$$
\begin{array}{ccc}
K_{1} & \subset & K_{1} \vee L_{1} \\
\cup & & \cup \\
K_{1} \wedge L_{1} & \subset & L_{1}
\end{array}
$$

are commuting squares (see for example [5]), where K_{1} and L_{1} are the basic extensions for $K \subset M$ and $L \subset M$, respectively.

Proposition 3.4. Let $N \subset M$ be an irreducible inclusion of type II_{1} factors with finite index. If K is a normal intermediate subfactor of $N \subset M$ then K is quasi-normal in $N \subset M$

Proof. Suppose that the Jones projection e_{K} for $K \subset M$ is an element of the center of $N^{\prime} \cap M_{1}$. Then for any intermediate subfactor L of $N \subset M$, since the Jones projection $e_{K}^{K \vee L}$ for $K \subset(K \vee L)$ is also a central projection in $K^{\prime} \cap(K \vee L)_{1}$, we have

$$
\begin{array}{ccc}
K & \subset & K \vee L \\
\cup & & \cup \\
K \wedge L & \subset & L
\end{array}
$$

is a commuting square. Similarly, if $\mathscr{F}\left(e_{K}\right)$ is an element of the center of $M^{\prime} \cap M_{2}$, then

$$
\begin{array}{ccc}
K_{1} & \subset & K_{1} \vee L_{1} \\
\cup & & \cup \\
K_{1} \wedge L_{1} & \subset & L_{1}
\end{array}
$$

is a commuting square. Therefore if K is normal in $N \subset M$, then K is quasi-normal.

We have a characterization of normal intermediate subfactors in terms of bimodules. Let K be an intermediate subfactor of an irreducible inclusion $N \subset M$ of type II_{1} factors with finite index. We note that e_{K} is in the center of $N^{\prime} \cap M_{1}$ if and only if for any $T \in \operatorname{End}\left({ }_{N} L^{2}(M)_{N}\right), T L^{2}(K) \subset L^{2}(K)$.

Proposition 3.5. Let K be an intermediate subfactor for an irreducible inclusion $N \subset M$ of type II_{1} factors with finite index. Let α be the $N-K$ bimodule ${ }_{N} L^{2}(K)_{K}$ and β the $K-M$ bimodule ${ }_{K} L^{2}(M)_{M}$. If ρ is the $N-M$ bimodule $\alpha \beta={ }_{N} L^{2}(M)_{M}$, then K is normal in $N \subset M$ if and only if
(1) $\langle\alpha \bar{\alpha}, \rho \bar{\rho}\rangle=\langle\alpha \bar{\alpha}, \alpha \bar{\alpha}\rangle$,
(2) $\langle\bar{\beta} \beta, \bar{\rho} \rho\rangle=\langle\bar{\beta} \beta, \bar{\beta} \beta\rangle$.

Proof. Since $\operatorname{End}\left({ }_{N} L^{2}(K)_{N}\right)=N^{\prime} \cap\left\langle N, e_{N}^{K}\right\rangle \simeq e_{K}\left(N^{\prime} \cap M_{1}\right) e_{K}$ by Lemma 2.2, if e_{K} is an element of the center of $N^{\prime} \cap M_{1}$, then for any irreducible $N-N$ bimodule σ contained in $\alpha \bar{\alpha}$, the multiplicity of σ in $\alpha \bar{\alpha}$ is equal to the multiplicity of σ in $\rho \bar{\rho}$. Therefore we have $\langle\alpha \bar{\alpha}, \rho \bar{\rho}\rangle=\langle\alpha \bar{\alpha}, \alpha \bar{\alpha}\rangle$. Conversely, suppose that e_{K} is not an element of the center of $N^{\prime} \cap M_{1}$. Then there exist minimal projections $p \sim q$ in $\left(N^{\prime} \cap M_{1}\right)$ such that $p \in e_{K}\left(N^{\prime} \cap M_{1}\right) e_{K}$ and $q \notin e_{K}\left(N^{\prime} \cap M_{1}\right) e_{K}$. Therefore we have $\langle\alpha \bar{\alpha}, \rho \bar{\rho}\rangle \neq\langle\alpha \bar{\alpha}, \alpha \bar{\alpha}\rangle$. And hence e_{K} is an element of the center of $\left(N^{\prime} \cap M_{1}\right)$ if and only if $\langle\alpha \bar{\alpha}, \rho \bar{\rho}\rangle=$ $\langle\alpha \bar{\alpha}, \alpha \bar{\alpha}\rangle$. Similarly, we can see that $e_{K_{1}}$ is an element of the center of ($M^{\prime} \cap M_{2}$) if and only if $\langle\bar{\beta} \beta, \bar{\rho} \rho\rangle=\langle\bar{\beta} \beta, \bar{\beta} \beta\rangle$. Since $\mathscr{F}\left(e_{K}\right)=\lambda e_{K_{1}}$ for some $\lambda \in C$, we get the result.

Theorem 3.6. Let K be an intermediate subfactor for an irreducible inclusion $N \subset M$ of type II_{1} factors with finite index. If the depths of $N \subset K$ and $K \subset M$ are both 2, then K is normal in $N \subset M$.

Proof. Let α be the $N-K$ bimodule ${ }_{N} L^{2}(K)_{K}$ and β the $K-M$ bimodule ${ }_{K} L^{2}(M)_{M}$. By the assumption, we have

$$
\alpha \bar{\alpha} \alpha \simeq \underbrace{\alpha \oplus \alpha \oplus \cdots \oplus \alpha}_{[K: N] \text { times }}
$$

and

$$
\bar{\beta} \beta \bar{\beta} \simeq \underbrace{\bar{\beta} \oplus \bar{\beta} \oplus \cdots \oplus \bar{\beta}}_{[M: K] \text { times }} .
$$

And hence $\langle\alpha \bar{\alpha}, \alpha \bar{\alpha}\rangle=\langle\alpha \bar{\alpha} \alpha, \alpha\rangle=[K: N]$ and $\langle\bar{\beta} \beta, \bar{\beta} \beta\rangle=\langle\bar{\beta} \beta \bar{\beta}, \bar{\beta}\rangle=[M: K]$ by Frobenius reciprocity. Since $N \subset M$ is irreducible, if ρ is the $N-M$ bimodule ${ }_{N} L^{2}(M)_{M}(=\alpha \beta)$, then $1=\langle\rho, \rho\rangle=\langle\alpha \beta, \alpha \beta\rangle=\langle\bar{\alpha} \alpha, \beta \bar{\beta}\rangle$. And hence we have

$$
\begin{aligned}
\langle\alpha \bar{\alpha}, \rho \bar{\rho}\rangle & =\langle\alpha \bar{\alpha}, \alpha \beta \bar{\beta} \bar{\alpha}\rangle=\langle\alpha \bar{\alpha} \alpha, \alpha \beta \bar{\beta}\rangle \\
& =[K: N]\langle\alpha, \alpha \beta \bar{\beta}\rangle=[K: N]\langle\bar{\alpha} \alpha, \beta \bar{\beta}\rangle=[K: N],
\end{aligned}
$$

i.e., $\langle\alpha \bar{\alpha}, \rho \bar{\rho}\rangle=\langle\alpha \bar{\alpha}, \alpha \bar{\alpha}\rangle$. Similarly, we have $\langle\bar{\beta} \beta, \bar{\rho} \rho\rangle=\langle\bar{\beta} \beta, \bar{\beta} \beta\rangle$. So we get the result by Proposition 3.5.

Proposition 3.7. Let M_{0}, N_{0}, K be intermediate subfactors for an irreducible inclusion $N \subset M$ of type II_{1} factors with finite index such that $N \subset N_{0} \subset K \subset M_{0} \subset M$. If K is normal in $N \subset M$, then K is also normal in $N_{0} \subset M_{0}$.

Proof. Let $\alpha={ }_{N} L^{2}(K)_{K}, \quad \alpha_{0}={ }_{N_{0}} L^{2}(K)_{K}, \quad \beta={ }_{K} L^{2}(M)_{M}$ and $\beta_{0}={ }_{K} L^{2}\left(M_{0}\right)_{M_{0}}$. Since

$$
\alpha \bar{\alpha}={ }_{N} L^{2}(K)_{K} \otimes_{K} K^{2} L^{2}(K)_{N}={ }_{N} L^{2}(K)_{K} \otimes_{K} L^{2}(K)_{K} \otimes_{K} K L^{2}(K)_{N},
$$

we have $\langle\alpha \bar{\alpha}, \alpha \bar{\alpha}\rangle=\left\langle\bar{\alpha} \alpha \bar{\alpha} \alpha,{ }_{K} L^{2}(K)_{K}\right\rangle$ by Frobenius reciprocity. Since $\langle\alpha \bar{\alpha}, \alpha \beta \bar{\beta} \bar{\alpha}\rangle=$ $\langle\alpha \bar{\alpha}, \alpha \bar{\alpha}\rangle$ by the assumption, we have $\langle\bar{\alpha} \alpha \bar{\alpha} \alpha, \beta \bar{\beta}\rangle=\left\langle\bar{\alpha} \alpha \bar{\alpha} \alpha,{ }_{K} L^{2}(K)_{K}\right\rangle$, i.e., the irreducible $K-K$ sub-bimodules of $\bar{\alpha} \alpha \bar{\alpha} \alpha$ contained in $\beta \bar{\beta}$ is only ${ }_{K} L^{2}(K)_{K}$. Since $\bar{\alpha}_{0} \alpha_{0}$ is contained in $\bar{\alpha} \alpha$ and $\beta_{0} \bar{\beta}_{0}$ is contained in $\beta \bar{\beta}$, we have $\left\langle\bar{\alpha}_{0} \alpha_{0} \bar{\alpha}_{0} \alpha_{0}, \beta_{0} \bar{\beta}_{0}\right\rangle=\left\langle\bar{\alpha}_{0} \alpha_{0} \bar{\alpha}_{0} \alpha_{0}{ }_{K} L^{2}(K)_{K}\right\rangle$, i.e., $\left\langle\alpha_{0} \bar{\alpha}_{0}, \alpha_{0} \beta_{0} \bar{\beta}_{0} \bar{\alpha}_{0}\right\rangle=\left\langle\alpha_{0} \bar{\alpha}_{0}, \alpha_{0} \bar{\alpha}_{0}\right\rangle$. By the same argument, we have $\left\langle\bar{\beta}_{0} \beta_{0}, \bar{\beta}_{0} \bar{\alpha}_{0} \alpha_{0} \beta_{0}\right\rangle=$ $\left\langle\bar{\beta}_{0} \beta_{0}, \bar{\beta}_{0} \beta_{0}\right\rangle$. We have thus proved the proposition.

4. Normal intermediate subfactors for depth $\mathbf{2}$ inclusions.

It is well-known that the crossed product of a finite dimensional Hopf C^{*} algebra (Kac algebra) is characterized by the depth 2 condition. In this section we study normal intermediate subfactors for depth 2 inclusions.
4.1. The action of $K^{\prime} \cap K_{1}$ on M.

Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors with finite index. Let $N \subset M \subset M_{1} \subset M_{2}$ be the Jones tower for $N \subset M$. We put $A=N^{\prime} \cap M_{1}$ and $B=M^{\prime} \cap M_{2}$. Then A and B are a dual pair of Hopf C^{*}-algebras with pairing

$$
(a, b)=[M: N]^{2} \tau\left(a e_{M} e_{N} b\right), \quad \text { for } a \in A \text { and } b \in B
$$

where e_{N} and e_{M} are the Jones projections for $N \subset M$ and $M \subset M_{1}$, respectively. Define a bilinear map $A \times M \rightarrow M$ (denoted by $a \odot x$) by setting

$$
a \odot x=[M: N] E_{M}^{M_{1}}\left(\operatorname{axe}_{N}\right),
$$

for $x \in M$ and $a \in A$. This map is a left action of Hopf C^{*} algebra A and

$$
N=M^{A}=\{x \in M \mid a \odot x=\varepsilon(a) x, \forall a \in A\}
$$

where $\varepsilon: A \rightarrow C$ is the counit determined by $a e_{N}=\varepsilon(a) e_{N}$ (see [31]).
Proposition 4.1. Let K be an intermediate subfactor of $N \subset M$ and K_{1} the basic extension for $K \subset M$. We put $H=K^{\prime} \cap K_{1}$. If a is an element of H, then

$$
[M: K] E_{M}^{K_{1}}\left(a x e_{K}\right)=[M: N] E_{M}^{M_{1}}\left(\text { axe }_{N}\right), \quad \forall x \in M
$$

This implies $K=M^{H}=\{x \in M \mid a \odot x=\varepsilon(a) x, \forall a \in H\}$.
Proof. Since $e_{K}=([M: N] /[M: K]) E_{K_{1}}^{M_{1}}\left(e_{N}\right)$ by [29], we have

$$
\begin{aligned}
{[M: K] E_{M}^{K_{1}}\left(\text { axe }_{K}\right) } & =[M: K] E_{M}^{K_{1}}\left(a x \frac{[M: N]}{[M: K]} E_{K_{1}}^{M_{1}}\left(e_{N}\right)\right) \\
& =[M: N] E_{M}^{K_{1}}\left(E_{K_{1}}^{M_{1}}\left(\text { axe }_{N}\right)\right) \\
& =[M: N] E_{M}^{M_{1}}\left(\text { axe }_{N}\right)
\end{aligned}
$$

for $\forall a \in H$ and $\forall x \in M$.

4.2. Hopf algebra structures on $K^{\prime} \cap K_{1}$.

Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors with finite index and K an intermediate subfactor of $N \subset M$. Then the depth of $K \subset M$ is not 2 in general. In this subsection we shall prove that if the depth of $K \subset M$ is 2 , then $H=K^{\prime} \cap K_{1}$ is a subHopf C^{*} algebra of $A=N^{\prime} \cap M_{1}$.

By Lemma 2.2, there exists an isomorphism φ of K_{2} onto $e_{K_{1}} M_{2} e_{K_{1}}$ such that $\varphi(x)=x e_{K_{1}}$ for $x \in K_{1}$ and $\varphi\left(e_{M}^{K_{1}}\right)=e_{M}$, where $K \subset M \subset K_{1} \subset K_{2}$ is the Jones tower for the inclusion $K \subset M$ and $e_{M}^{K_{1}}$ is the Jones projection for $M \subset K_{1}$.

Lemma 4.2. With the above notation, we have

$$
[M: K]^{2} \tau\left(h e_{M}^{K_{1}} e_{K} k\right)=[M: N]^{2} \tau\left(h e_{M} e_{N} \varphi(k)\right)
$$

for $\forall h \in H=K^{\prime} \cap K_{1}$ and $\forall k \in M^{\prime} \cap K_{2}$.

Proof. By the fact that $e_{K_{1}} e_{N} e_{K_{1}}=E_{K_{1}}^{M_{1}}\left(e_{N}\right) e_{K_{1}}=([M: K] /[M: N]) e_{K} e_{K_{1}}$, we have $\varphi\left(e_{K}\right)=e_{K} e_{K_{1}}=([M: N] /[M: K]) e_{K_{1}} e_{N} e_{K_{1}}$. Therefore

$$
\begin{aligned}
{[M: K]^{2} \tau\left(h e_{M}^{K_{1}} e_{K} k\right) } & =[M: K]^{2}[K: N] \tau\left(\varphi\left(h e_{M}^{K_{1}} e_{K} k\right)\right) \\
& =[M: K]^{2}[K: N] \frac{[M: N]}{[M: K]} \tau\left(\varphi(h) e_{M} e_{K_{1}} e_{N} e_{K_{1}} \varphi(k)\right) \\
& =[M: N]^{2} \tau\left(h e_{M} e_{N} \varphi(k)\right) .
\end{aligned}
$$

Lemma 4.3. Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors with finite index and K an intermediate subfactor for $N \subset M$. Let $N \subset M \subset M_{1} \subset M_{2}$ and $K \subset M \subset K_{1} \subset K_{2}$ be the Jones towers for $N \subset M$ and $K \subset M$, respectively. If the depth of $K \subset M$ is 2 , then for any $b \in M^{\prime} \cap M_{2}$, there exist elements $\left\{x_{i}\right\},\left\{y_{i}\right\}$ of $N^{\prime} \cap M_{1}$ such that

$$
b=\sum_{i} x_{i} e_{M} y_{i}
$$

and

$$
\sum_{i} E_{K_{1}}^{M_{1}}\left(x_{i}\right) e_{M} E_{K_{1}}^{M_{1}}\left(y_{i}\right) \in\left(K^{\prime} \cap K_{1}\right) e_{M}\left(K^{\prime} \cap K_{1}\right)
$$

where $E_{K_{1}}^{M_{1}}$ is the trace preserving conditional expectation from M_{1} onto K_{1}.
Proof. Since the depth of $N \subset M$ is 2 ,

$$
\left(N^{\prime} \cap M_{1}\right) e_{M}\left(N^{\prime} \cap M_{1}\right)=N^{\prime} \cap M_{2} .
$$

And hence any element $b \in M^{\prime} \cap M_{2}$ is written in the form

$$
b=\sum_{i} x_{i} e_{M} y_{i}, \quad x_{i}, y_{i} \in N^{\prime} \cap M_{1} .
$$

Since the depth of $K \subset M$ is 2 ,

$$
\left(K^{\prime} \cap K_{1}\right) e_{M}^{K_{1}}\left(K^{\prime} \cap K_{1}\right)=K^{\prime} \cap K_{2},
$$

where $e_{M}^{K_{1}}$ is the Jones projection for $M \subset K_{1}$. By Lemma 2.2, we have

$$
\left(K^{\prime} \cap K_{1}\right) e_{M}\left(K^{\prime} \cap K_{1}\right)=e_{K_{1}}\left(K^{\prime} \cap M_{2}\right) e_{K_{1}} .
$$

Therefore we have

$$
\begin{aligned}
e_{K_{1}} b e_{K_{1}} & =e_{K_{1}}\left(\sum_{i} x_{i} e_{M} y_{i}\right) e_{K_{1}} \\
& =\sum_{i} E_{K_{1}}^{M_{1}}\left(x_{i}\right) e_{M} E_{K_{1}}^{M_{1}}\left(y_{i}\right) \in\left(K^{\prime} \cap K_{1}\right) e_{M}\left(K^{\prime} \cap K_{1}\right) .
\end{aligned}
$$

We have thus proved the lemma.

Proposition 4.4. Suppose that $N \subset M$ is irreducible and the depth of $N \subset M$ is 2. Let K be an intermediate subfactor for $N \subset M$ and K_{1} the basic extension for $K \subset M$. If the depth of $K \subset M$ is 2 , then $H=K^{\prime} \cap K_{1}$ is a subHopf algebra of $A=N^{\prime} \cap M_{1}$.

Proof. Let S_{A} be an antipode of A, i.e., $S_{A}: A \rightarrow A$ is an anti-algebra morphism determined by

$$
\left(S_{A}(a), b\right)=\overline{\left(a^{*}, b^{*}\right)} \text { for } \quad \forall a \in A \text { and } \forall b \in B=M^{\prime} \cap M_{2} .
$$

Since $B e_{N} B=N^{\prime} \cap M_{2}$ by the assumption, for any $a \in A$ there exist $x_{i}, y_{i} \in B$ such that $a=\sum_{i} x_{i} e_{N} y_{i}$. Then $S_{A}(a)=\sum_{i} y_{i} e_{N} x_{i}$ (see for example [31]). By the assumption and Lemma 4.2, H and $B_{e_{K_{1}}}=e_{K_{1}} B e_{K_{1}}$ are a dual pair of Hopf algebras with pairing

$$
(h, k)=[M: N]^{2} \tau\left(h e_{M} e_{N} k\right) \text { for } \forall h \in H \text { and } \forall k \in B_{e_{k_{1}}}
$$

By the fact that $\varphi\left(e_{K}\right)=([M: N] /[M: K]) e_{K_{1}} e_{N} e_{K_{1}}$, for $h \in H$ there exist $s_{n}, t_{n} \in B_{e_{K_{1}}}$ such that $h e_{K_{1}}=\varphi(h)=\sum_{n} s_{n} e_{N} t_{n}$, where φ is defined in Lemma 2.2. Then for $\forall b \in B$, we have

$$
\begin{aligned}
\left(S_{A}(h), b\right) & =\overline{\left(h^{*}, b^{*}\right)}=[M: N]^{2} \tau\left(b e_{N} e_{M} h\right) \\
& =[M: N]^{2} \sum_{n} \tau\left(b e_{N} e_{M} s_{n} e_{N} t_{n}\right) \\
& =[M: N]^{2} \sum_{n} \tau\left(b E_{M_{1}^{\prime}}^{M^{\prime}}\left(e_{M} s_{n}\right) e_{N} t_{n}\right) \\
& =[M: N]^{2} \sum_{n} \tau\left(e_{M} s_{n}\right) \tau\left(b e_{N} t_{n}\right) \\
& =[M: N] \sum_{n} \tau\left(e_{M} s_{n}\right) \tau\left(b t_{n}\right) .
\end{aligned}
$$

Since $S_{H}(h) e_{K_{1}}=S_{H_{e_{K_{1}}}}\left(h e_{K_{1}}\right)=\sum_{n} t_{n} e_{N} s_{n}$ by the fact that $e_{K_{1}} \in H^{\prime}$, we have, for $\forall b \in B$,

$$
\begin{aligned}
\left(S_{H}(h), b\right) & =[M: N]^{2} \tau\left(S_{H_{K_{K_{1}}}}\left(h_{K_{1}}\right) e_{M} e_{N} b\right) \\
& =[M: N]^{2} \sum_{n} \tau\left(t_{n} e_{N} s_{n} e_{M} e_{N} b\right) \\
& =[M: N] \sum_{n} \tau\left(s_{n} e_{M}\right) \tau\left(t_{n} b\right) .
\end{aligned}
$$

Therefore we have $S_{A}(h)=S_{H}(h) \in H$, i.e., $S_{A}(H) \subset H$.
Let Δ_{A} be the comultiplication of A, i.e., $\Delta_{A}: A \rightarrow A \otimes A$ is determined by

$$
\left(a, b_{1} b_{2}\right)=\left(\Delta_{A}(a), b_{1} \otimes b_{2}\right) \text { for } \forall b_{1}, b_{2} \in B
$$

For $h \in H$, we denote $\Delta_{A}(h)$ by $\sum_{(h)} h_{(1)} \otimes h_{(2)}$. Since $e_{M}=e_{K_{1}} e_{M}$ and $e_{K_{1}} h=h e_{K_{1}}$, we have

$$
\begin{align*}
(h, b) & =[M: N]^{2} \tau\left(h e_{K_{1}} e_{M} e_{N} b\right) \\
& =[M: N]^{2} \tau\left(h e_{M} e_{N} b e_{K_{1}}\right) \tag{4.1}\\
& =\left(h, b e_{K_{1}}\right) \text { for } \forall h \in H \text { and } \forall b \in B .
\end{align*}
$$

Since $e_{K_{1}}$ is an element of the center of B by the proof of Theorem 3.6, we have

$$
\begin{aligned}
\left(h, b_{1} b_{2}\right) & =\left(h, b_{1} e_{K_{1}} b_{2} e_{K_{1}}\right)=\left(\Delta_{A}(h), b_{1} e_{K_{1}} \otimes b_{2} e_{K_{1}}\right) \\
& =\sum_{(h)}\left(h_{(1)}, b_{1} e_{K_{1}}\right)\left(h_{(2)}, b_{2} e_{K_{1}}\right) \\
& =\sum_{(h)}[M: N]^{2} \tau\left(e_{K_{1}} h_{(1)} e_{M} e_{N} b_{1}\right)[M: N]^{2} \tau\left(e_{K_{1}} h_{(2)} e_{M} e_{N} b_{2}\right) \\
& =\sum_{(h)}\left(E_{K_{1}}^{M_{1}}\left(h_{(1)}\right), b_{1}\right)\left(E_{K_{1}}^{M_{1}}\left(h_{(2)}\right), b_{2}\right), \text { for } \forall b_{1}, b_{2} \in B .
\end{aligned}
$$

Since $\sum_{(h)} S_{A}\left(h_{(1)}\right) e_{M} h_{(2)} \in B$ by [31], we have $\Delta_{A}(H) \subset H \otimes H$ by Lemma 4.3. We have thus proved the proposition.

Theorem 4.5. Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors with finite index and K an intermediate subfactor for $N \subset M$. Let $N \subset M \subset M_{1} \subset M_{2}$ and $K \subset M \subset K_{1} \subset K_{2}$ be the Jones towers for $N \subset M$ and $K \subset M$, respectively. Then the depth of $K \subset M$ is 2 if and only if $e_{K_{1}}$ is an element of the center of $M^{\prime} \cap M_{2}$, where $e_{K_{1}}$ is the Jones projection for $K_{1} \subset M_{1}$.

Proof. Suppose that the depth of $K \subset M$ is 2 . Then by the proof of Theorem 3.6, $e_{K_{1}}$ is an element of the center of $M^{\prime} \cap M_{2}$.

Conversely, suppose that $e_{K_{1}}$ is an element of the center of $M^{\prime} \cap M_{2}$. Then for any $h \in H=K^{\prime} \cap K_{1}$, we have

$$
\begin{aligned}
\left(S_{A}(h), b\right) & =\overline{\left(h^{*}, b^{*}\right)}=[M: N]^{2} \tau\left(b e_{N} e_{M} h\right) \\
& =[M: N]^{2} \tau\left(e_{K_{1}} b e_{K_{1}} e_{N} e_{M} h\right) \\
& =\left(S_{A}(h), e_{K_{1}} b e_{K_{1}}\right) \quad \text { for } \forall b \in B=M^{\prime} \cap M_{2}
\end{aligned}
$$

and hence $S_{A}(H) \subset H$. Similarly, for any $h \in H$, we have

$$
\begin{aligned}
\left(\Delta_{A}(h), x \otimes y\right) & =(h, x y)=\left(h, e_{K_{1}} x e_{K_{1}} y e_{K_{1}}\right) \\
& =\left(\Delta_{A}(h), e_{K_{1}} x e_{K_{1}} \otimes e_{K_{1}} y e_{K_{1}}\right) \quad \text { for } \forall x, y \in M^{\prime} \cap M_{2},
\end{aligned}
$$

and hence $\Delta_{A}(H) \subset H \otimes H$. Therefore H is a subHopf algebra of $N^{\prime} \cap M_{1}$. By Proposition 4.1, we have $K=M^{H}$. So the depth of $K \subset M$ is 2 .

We obviously have the dual version by Lemma 3.2.
Remark. Later we noted by the referee that this theorem follows from the next characterization of depth 2 inclusions by bimodules: Let $N \subset M$ be an irreducible inclusion of type II_{1} factors with finite index and ρ the $N-M$ bimodule ${ }_{N} L^{2}(M)_{M}$. Then the depth of $N \subset M$ is 2 if and only if for any irreducible bimodule ${ }_{N} X_{N} \prec \rho \bar{\rho}$, $\operatorname{dim}_{N} X=\langle X, \rho \bar{\rho}\rangle$.

Theorem 4.6. Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors with finite index and K an intermediate subfactor for $N \subset M$. Then K is a normal intermediate subfactor of $N \subset M$ if and only if the depths of $N \subset K$ and $K \subset M$ are both 2 .

Proof. This immediately follows from Theorem 4.5 and Lemma 3.2.
Theorem 4.7. Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors with finite index and K an intermediate subfactor for $N \subset M$. Then K is a normal intermediate subfactor of $N \subset M$ if and only if $K^{\prime} \cap K_{1}$ is a normal subHopf algebra of $N^{\prime} \cap M_{1}$, where K_{1} and M_{1} are the basic extensions for $N \subset M$ and $K \subset M$, respectively.

Proof. Suppose that K is a normal intermediate subfactor of $N \subset M$. Then $H=K^{\prime} \cap K_{1}$ is a subHopf algebra of $A=N^{\prime} \cap M_{1}$ by Proposition 4.4. Let ε_{H} is a counit of H. Then $x e_{K}=\varepsilon_{H}(x) e_{K}$ for $x \in H$. Therefore $H^{+}=H \cap \operatorname{ker} \varepsilon_{H}=H\left(1-e_{K}\right)$. Since $\left(1-e_{K}\right)$ is an element of the center of A by the assumption, we have $H^{+} A=A H^{+}$. Hence H is a normal subHopf algebra of A by Proposition 2.6. Conversely, we suppose that H is a normal subHopf algebra of A. Then by Proposition 4.4 and Theorem 4.5, $e_{K_{1}}$ is element of the center of $M^{\prime} \cap M_{2}$. Since $H^{+}=H\left(1-e_{K}\right)$, we have $\left(1-e_{k}\right) A=$ $A\left(1-e_{K}\right)$ by Proposition 2.6. This implies e_{K} is an element of the center of $N^{\prime} \cap M_{1}$ and hence K is a normal intermediate subfactor of $N \subset M$.

4.3. Lattices of normal intermediate subfactors.

Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors with finite index. In this subsection we shall prove that the set of all normal intermediate subfactors of the inclusion $N \subset M$, denoted by $\mathscr{N}(N \subset M)$, is a sublattice of $\mathscr{L}(N \subset M)$. Moreover, $\mathscr{N}(N \subset M)$ is a modular lattice.

Lemma 4.8. Let L and K be intermediate subfactors of $N \subset M$ and L_{1} and K_{1} the basic extensions for $L \subset M$ and $K \subset M$, respectively. Then the basic extension $(L \wedge K)_{1}$ for $(L \wedge K) \subset M$ is $L_{1} \vee K_{1}$ and the basic extension $(L \vee K)_{1}$ for $(L \vee K) \subset M$ is $L_{1} \wedge K_{1}$.

Proof. By the fact that $(L \cap K)^{\prime}=\left(L^{\prime} \cup K^{\prime}\right)^{\prime \prime}$, we have

$$
(L \wedge K)_{1}=J(L \wedge K)^{\prime} J=L_{1} \vee K_{1}
$$

Similarly, by the fact that $(L \cup K)^{\prime}=L^{\prime} \cap K^{\prime}$, we have

$$
(L \vee K)_{1}=J(L \cup K)^{\prime} J=L_{1} \wedge K_{1} .
$$

We note that if we denote by e_{A} the Jones projection for $A \subset M$, then for $L, K \in \mathscr{L}(N \subset M)$, we have $e_{L \wedge K}=e_{L} \wedge e_{K}$. But $e_{L \vee K} \neq e_{L} \vee e_{K}$ in general (see [29]).

Theorem 4.9. Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors with finite index. Then the set of all normal intermediate subfactors $\mathscr{N}(N \subset M)$ is a sublattice of $\mathscr{L}(N \subset M)$.

Proof. Let L and K be normal intermediate subfactors of $N \subset M$. Since e_{L} and e_{K} are elements of the center of $N^{\prime} \cap M_{1}$ by the assumption, we have $e_{L \wedge K}=e_{L} \wedge e_{K} \in$
$\mathscr{Z}\left(N^{\prime} \cap M_{1}\right)$ by the above argument. Observe that

$$
(L \vee K)^{\prime} \cap(L \vee K)_{1}=\left(L^{\prime} \cap L_{1}\right) \cap\left(K^{\prime} \cap K_{1}\right) .
$$

Since $L^{\prime} \cap L_{1}$ and $K^{\prime} \cap K_{1}$ are invariant under the left and right adjoint action of $N^{\prime} \cap M_{1}$ (see Definition in 2.2), so is $(L \vee K)^{\prime} \cap(L \vee K)_{1}$. Therefore we can see that $(L \vee K)^{\prime} \cap$ $(L \vee K)_{1}$ is a normal subHopf algebra $N^{\prime} \cap M_{1}$ by the definition. Since $L \vee K$ is a normal intermediate subfactor of $N \subset M$ by Theorem 4.7, we have $e_{L \vee K} \in \mathscr{Z}\left(N^{\prime} \cap M_{1}\right)$. Applying the same argument for the dual inclusion $M \subset M_{1}$, we conclude that $L \wedge K$ and $L \vee K$ are normal intermediate subfactors of $N \subset M$.

Corollary 4.10. Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors. Then $\mathscr{N}(N \subset M)$ is a modular lattice.

Proof. This immediately follows from Proposition 3.4, Theorem 4.9 and [33, Theorem 3.9].

We recall here Jordan-Dedekind chain condition. In a lattice L, a finite chain $x=x_{0} \supseteq x_{1} \supseteq \cdots \supseteq x_{d}=y$ is maximal if $x_{i} \supseteq x_{i+1}$ and $x_{i} \supseteq a \supseteq x_{i+1}$ implies $x_{i}=a$ or $x_{i+1}=a$ for $i=1,2, \ldots d-1$.

Jordan-Dedekind Chain Condition: All finite maximal chains between two elements have the same length.

Theorem 4.11. Let $N \subset M$ be an irreducible, depth 2 inclusion of type II_{1} factors with finite index. Then the normal intermediate subfactor lattice $\mathcal{N}(N \subset M)$ satisfies the Jordan-Dedekind chain condition.

Proof. Since we have the Jordan-Dedekind chain condition holding in modular lattices, this immediately follows from the previous corollary. (see for example [7].)

Example 4.12. We denote by S_{n} the symmetric group on n letters, $x_{1}, x_{2}, \ldots, x_{n}$ and $\sigma=(1,2,3, \ldots, n)$ the element of S_{n} with order n and $\langle\sigma\rangle$ the cyclic group generated by σ. Let $\gamma: S_{n} \rightarrow \operatorname{Aut}(P)$ be an outer action of $S_{n}(n>3)$ on a type II_{1} factor P and let $N=P^{\gamma_{\sigma}} \subset M=P \rtimes_{\gamma} S_{n-1}$. Then we can see that $S_{n}=S_{n-1}\langle\sigma\rangle=$ $\langle\sigma\rangle S_{n-1}$ and $S_{n-1} \cap\langle\sigma\rangle=\{e\}$. Therefore the depth of $N \subset M$ is 2 (see [28, 35]). We put $K=P \rtimes_{\gamma} A_{n-1}$, where A_{n-1} is the alternating group consists of the even permutations on $x_{1}, x_{2}, \ldots, x_{n-1}$. If $n(\geqq 5)$ is odd, then the length of $\mathscr{N}(N \subset M)$ is 3 and if $n(\geqq 4)$ is even, then that is 2 (we shall show this fact later in Example 5.4).

5. Some examples.

In this section we shall give some examples of normal intermediate subfactors and non normal ones.

5.1. Group type inclusions.

Let $\gamma: G \rightarrow \operatorname{Aut}(P)$ be an outer action of a discrete group G on a type II_{1} factor. Let A and B be finite subgroups of G such that $A \cap B=\{e\}$. Let N be the fixed
point algebra $P^{(A, \gamma)}$ and M the crossed product $P \rtimes_{\gamma} B$. Then $N \subset M$ is an irreducible inclusion by [2] and P is normal in $N \subset M$ by Theorem 3.6. In this subsection we consider inclusions of this type.

Proposition 5.1. With the above notation, let H be a subgroup of B and K the crossed product $P \rtimes H$. Then K is normal in $N \subset M$ if and only if H is a normal subgroup of B and $A H \cap B A=A H \cap H A$.

Proof. Let $\alpha={ }_{N} L^{2}(P)_{P}$ and $\beta={ }_{P} L^{2}(M)_{M}$. Let $\beta_{1}={ }_{P} L^{2}(K)_{K}$ and $\beta_{2}=$ ${ }_{K} L^{2}(M)_{M}$. Then we have

$$
\begin{aligned}
\bar{\alpha} \alpha & =\bigoplus_{a \in A} P\left(L^{2}(P)_{\gamma_{a}}\right)_{P} \\
\beta_{1} \bar{\beta}_{1} & =\bigoplus_{h \in H} P\left(L^{2}(P)_{\gamma_{h}}\right)_{P} \\
\beta \bar{\beta} & =\bigoplus_{b \in B} P\left(L^{2}(P)_{\gamma_{b}}\right)_{P},
\end{aligned}
$$

as in Example 2.11. Since $A \cap B=\{e\}$, we have

$$
\left(a b=a^{\prime} b^{\prime}, a, a^{\prime} \in A, b, b^{\prime} \in B\right) \Longleftrightarrow\left(a=a^{\prime} \text { and } b=b^{\prime}\right)
$$

Therefore if $\rho={ }_{N} L^{2}(M){ }_{M}(=\alpha \beta)$, then

$$
\begin{aligned}
\left\langle\alpha \beta_{1} \overline{\left(\alpha \beta_{1}\right)}, \rho \bar{\rho}\right\rangle & =\left\langle\alpha \beta_{1} \bar{\beta}_{1} \bar{\alpha}, \alpha \beta \bar{\beta} \bar{\alpha}\right\rangle=\left\langle\bar{\alpha} \alpha \beta_{1} \bar{\beta}_{1}, \beta \bar{\beta} \bar{\alpha} \alpha\right\rangle \\
& ={ }^{\#}(A H \cap B A)
\end{aligned}
$$

and $\left\langle\alpha \beta_{1} \overline{\left(\alpha \beta_{1}\right)}, \alpha \beta_{1} \overline{\left(\alpha \beta_{1}\right)}\right\rangle=\left\langle\bar{\alpha} \alpha \beta_{1} \bar{\beta}_{1}, \beta_{1} \bar{\beta}_{1} \bar{\alpha} \alpha\right\rangle={ }^{\#}(A H \cap H A)$. Hence $e_{K} \in \mathscr{Z}\left(N^{\prime} \cap M_{1}\right)$ if and only if $(A H \cap B A)=(A H \cap H A)$ by Proposition 3.5. Suppose K is normal in $N \subset M$. Then K is also normal in $P \subset M$ by Proposition 3.7. Therefore H is a normal subgroup of B by the dual version of Proposition 3.3. Conversely, if H is a normal subgroup of B, i.e., the depth of $K \subset M$ is 2, then we have

$$
\begin{aligned}
\left\langle\bar{\beta}_{2} \beta_{2}, \bar{\rho} \rho\right\rangle & =\left\langle\bar{\beta}_{2} \beta_{2}, \bar{\beta}_{2} \bar{\beta}_{1} \bar{\alpha} \alpha \beta_{1} \beta_{2}\right\rangle=\left\langle\beta_{2} \bar{\beta}_{2} \beta_{2} \bar{\beta}_{2}, \bar{\beta}_{1} \bar{\alpha} \alpha \beta_{1}\right\rangle \\
& =[B: H]\left\langle\beta_{2} \bar{\beta}_{2}, \bar{\beta}_{1} \bar{\alpha} \alpha \beta_{1}\right\rangle=[B: H]=\left\langle\bar{\beta}_{2} \beta_{2}, \bar{\beta}_{2} \beta_{2}\right\rangle .
\end{aligned}
$$

This proves the proposition.
Let G be a finite group with two subgroups A, B satisfying $G=A B$ and $A \cap B=$ $\{e\}$. By the uniqueness of the decomposition of an element in $G=A B=B A$, we can represent $a b$ for $a \in A, b \in B$ as $a b=\alpha_{a}(b) \beta_{b^{-1}}\left(a^{-1}\right)^{-1} \in B A$. Then the matched pair (A, B, α, β) appears (see for example [28]).

Proposition 5.2. Let (A, B, α, β) be the matched pair defined as above and let

$$
M=P \rtimes_{\gamma} B \supset N=P^{(A, \gamma)}=\left\{x \in P \mid \gamma_{a}(x)=x, \forall a \in A\right\}
$$

where γ is an outer action of G on II_{1} factor P. Then the depth of $N \subset M$ is 2 .
See for a proof [28, 35].

Theorem 5.3. Let G be a finite group with two subgroups A, B satisfying $G=A B$ and $A \cap B=\{e\}$ and (A, B, α, β) the associated matched pair. Let $\gamma: G \rightarrow \operatorname{Aut}(P)$ be an outer action of G on a type II_{1} factor P and let

$$
M=P \rtimes_{\gamma} B \supset N=P^{(A, \gamma)}=\left\{x \in P \mid \gamma_{a}(x)=x, \forall a \in A\right\}
$$

If H is a subgroup of B and $K=P \rtimes_{\gamma} H \in \mathscr{L}(N \subset M)$, then K is a normal intermediate subfactor for $N \subset M$ if and only if
(1) H is a normal subgroup of B,
(2) $\alpha_{a}(H)=H, \forall a \in A$, i.e., $A H=H A$

In particular, if G is a semi direct product $B \rtimes A$, then K is normal in $N \subset M$ if and only if H is a normal subgroup of G.

Proof. Since $B A=A B=G$, we have $(A H \cap B A)=A H$. By Proposition 5.1, we have K is a normal intermediate subfactor in $N \subset M$ if and only if H is a normal subgroup of B and $(A H \cap H A)=A H$, i.e., $A H=H A$ since ${ }^{\#} H A={ }^{\#} A H$.

Example 5.4. Let $N=P^{\gamma_{\sigma}} \subset M=P \rtimes_{\gamma} S_{n-1}(n>3)$ be the irreducible inclusion defined as in Example 4.12. The depth of $N \subset M$ is 2 by Proposition 5.2. We put $K=P \rtimes_{\gamma} A_{n-1}$. If n is odd, then σ is an even permutation and we can see that $A_{n}=A_{n-1}\langle\sigma\rangle=\langle\sigma\rangle A_{n-1}$. Therefore K is normal in $N \subset M$ by Theorem 5.3. If n is even, then σ is an odd permutation. Since the product of an even and odd permutation in either order is odd, and the product of two odd permutation is even, $A_{n-1}\langle\sigma\rangle$ is not a subgroup of S_{n} and hence $A_{n-1}\langle\sigma\rangle \neq\langle\sigma\rangle A_{n-1}$. Therefore K is not normal in $N \subset M$ by Theorem 5.3.

Since S_{n-1} is a maximal subgroup of S_{n}, we have if $\left\langle\sigma^{k}\right\rangle S_{n-1}=S_{n-1}\left\langle\sigma^{k}\right\rangle$, then $\left\langle\sigma^{k}\right\rangle=\langle\sigma\rangle$ or $k=0(\bmod n)$, i.e., there is no normal intermediate subfactor K of $N \subset M$ such that $N \varsubsetneqq K \varsubsetneqq P$ by Proposition 5.2.

Remark. By Example 5.4, we have completed the proof of Example 4.12.

5.2. Strongly outer actions and intermediate subfactors.

In this subsection we shall study relations between strongly outer actions introduced by Choda and Kosaki [3] and normal intermediate subfactors.

Let $N \subset M$ be a pair of type II_{1} factors, and we set

$$
\operatorname{Aut}(M, N)=\{\theta \in \operatorname{Aut}(M) \mid \theta(N)=N\}
$$

Let $N\left(=M_{-1}\right) \subset M\left(=M_{0}\right) \subset M_{1} \subset M_{2} \subset \cdots$ be the Jones tower of the pair $N \subset M$, and $e_{k}\left(\in M_{k}\right)$ the Jones projection for the pair $M_{k-2} \subset M_{k-1}$. Then each automorphism $\theta \in \operatorname{Aut}(M, N)$ is extended to all M_{n} subject to the condition $\theta\left(e_{i}\right)=e_{i}$.

Definition. An automorphism $\theta \in \operatorname{Aut}(M, N)$ is said to be strongly outer if the following condition is satisfied for all $k \geq-1$:

$$
a \in M_{k} \text { satisfies } a x=\theta(x) a \quad \text { for all } x \in N \Rightarrow a=0
$$

An action α of a group G into $\operatorname{Aut}(M, N)$ is said to be strongly outer if α_{g} is strongly outer for all $g \in G$ except for the identity e.

For $\theta \in \operatorname{Aut}(M, N)$, let ${ }_{N}\left(L^{2}(M)_{\theta}\right)_{N}$ be the $N-N$ bimodule as in Example 2.8. M. Choda and H. Kosaki [3] gave the next characterization of strongly outer automorphisms.

Theorem (Chode-Kosaki). For $\theta \in \operatorname{Aut}(M, N)$, if ${ }_{N}\left(L^{2}(M)_{\theta}\right)_{N}$ does not appear in the irreducible decomposition of $(\rho \bar{\rho})^{k}, k=1,2, \ldots$, then θ is strongly outer, where ρ is the N-M bimodule ${ }_{N} L^{2}(M)_{M}$.

The next lemma is well-known.
Lemma 5.5. Let $B \subset A$ be an irreducible pair of type II_{1} factors with finite index. Let $\gamma: G \rightarrow \operatorname{Aut}(A, B)$ be an outer action of a finite group G and $\alpha={ }_{B} L^{2}(A)_{A}$. If $\bar{\alpha} \alpha \nVdash_{A}\left(L^{2}(A)_{\gamma_{g}}\right)_{A}$ for all $g \in G$ except for the identity e, then $B^{\prime} \cap\left(A \rtimes_{\gamma} G\right)=C$. In particular, if γ is strongly outer, then $B \subset A \rtimes_{\gamma} G$ is irreducible.

Proposition 5.6. Let $B \subset A$ be an irreducible pair of type I_{1} factors with finite index. Let $\gamma: G \rightarrow \operatorname{Aut}(A, B)$ be an outer action of a finite group G and $\alpha={ }_{B} L^{2}(A)_{A}$. Then $B \subset A \rtimes_{\gamma} G$ is irreducible and A is normal in $B \subset A \rtimes_{\gamma} G$ if and only if $\bar{\alpha} \alpha \bar{\alpha} \alpha \not \rtimes_{A}\left(L^{2}(A)_{\gamma_{g}}\right)_{A}$ for all $g \in G$ except for the identity e.

Proof. Suppose that $\bar{\alpha} \alpha \bar{\alpha} \alpha \not ~_{A}\left(L^{2}(A)_{\gamma_{g}}\right)_{A}$ for all $g \in G$ except for the identity e. Since $\bar{\alpha} \alpha \prec \bar{\alpha} \alpha \bar{\alpha} \alpha, B \subset A \rtimes_{\gamma} G$ is irreducible by Lemma 5.5. Let $\beta={ }_{A} L^{2}\left(A \rtimes_{\gamma} G\right)_{A \rtimes_{\gamma} G}$ and $\rho={ }_{B} L^{2}\left(A \rtimes_{\gamma} G\right)_{A \rtimes_{\gamma} G}(=\alpha \beta)$. Since $\beta \bar{\beta} \simeq \bigoplus_{g \in G}{ }^{A}\left(L^{2}(A)_{\gamma_{g}}\right)_{A}$, we have

$$
\begin{aligned}
\langle\alpha \bar{\alpha}, \rho \bar{\rho}\rangle & =\langle\alpha \bar{\alpha}, \alpha \beta \bar{\beta} \bar{\alpha}\rangle=\langle\bar{\alpha} \alpha \bar{\alpha} \alpha, \beta \bar{\beta}\rangle \\
& =\left\langle\bar{\alpha} \alpha \bar{\alpha} \alpha,{ }_{A} L^{2}(A)_{A}\right\rangle=\langle\alpha \bar{\alpha}, \alpha \bar{\alpha}\rangle .
\end{aligned}
$$

Since $\langle\beta \bar{\beta}, \bar{\alpha} \alpha\rangle=1$ by Lemma 5.5 , we have

$$
\begin{aligned}
\langle\bar{\beta} \beta, \bar{\rho} \rho\rangle & =\langle\bar{\beta} \beta, \bar{\beta} \bar{\alpha} \alpha \beta\rangle=\langle\beta \bar{\beta} \beta, \bar{\alpha} \alpha \beta\rangle \\
& ={ }^{\#} G\langle\beta \bar{\beta}, \bar{\alpha} \alpha\rangle={ }^{\#} G=\langle\bar{\beta} \beta, \bar{\beta} \beta\rangle .
\end{aligned}
$$

Therefore A is normal in $B \subset A \rtimes_{\gamma} G$ by Lemma 3.5.
Conversely, suppose that $\bar{\alpha} \alpha \bar{\alpha} \alpha\rangle_{A}\left(L^{2}(A)_{\gamma_{g}}\right)_{A}$ for some $g(\neq e) \in G$. Then we have $\langle\alpha \bar{\alpha}, \rho \bar{\rho}\rangle=\langle\bar{\alpha} \alpha \bar{\alpha} \alpha, \beta \bar{\beta}\rangle \supsetneqq\left\langle\bar{\alpha} \alpha \bar{\alpha} \alpha,{ }_{A} L^{2}(A)_{A}\right\rangle=\langle\alpha \bar{\alpha}, \alpha \bar{\alpha}\rangle$. And hence A is not normal in $B \subset A \rtimes_{\gamma} G$.

Theorem 5.7. Let $B \subset A$ be an irreducible pair of type II_{1} factors with finite index. If $\gamma: G \rightarrow \operatorname{Aut}(A, B)$ is a strongly outer action of a finite group G, then A is a normal intermediate subfactor for the inclusion $B \subset A \rtimes_{\gamma} G$.

Proof. This immediately follows from the previous proposition.
Example 5.8. Let $B \subset A$ be an irreducible pair of type II_{1} factors whose principal graph is Dynkin diagram $A_{2 n-1}$. Let θ be a non-trivial automorphism such that the
corresponding $A-A$ bimodule ${ }_{A}\left(L^{2}(A)_{\theta}\right)_{A}$ appears in the endpoint of the principal graph. As discussed in Izumi [8], Kosaki [14], Goto [6], we can choose θ with $\theta(B)=B$ and $\theta^{2}=i d$. Let $\alpha={ }_{B} L^{2}(A)_{A}$. Then ${ }_{A}\left(L^{2}(A)_{\theta}\right)_{A}$ 大 $\bar{\alpha} \alpha \bar{\alpha} \alpha$ for $n=4,5,6, \cdots$. Therefore the intermediate subfactor A is normal in $B \subset A \rtimes_{\theta} Z / 2 Z$ by Proposition 5.6. If $n=3$, i.e., the principal graph is A_{5}, then ${ }_{A}\left(L^{2}(A)_{\theta}\right)_{A} \prec \bar{\alpha} \alpha \bar{\alpha} \alpha$. Hence A is not normal in $B \subset A \rtimes_{\theta} \boldsymbol{Z} / 2 \boldsymbol{Z}$. Similarly let $B \subset A$ be an inclusion of type II_{1} factors with the principal graph E_{6},

We can also choose $\theta \in \operatorname{Aut}(A, B)$ with $\theta^{2}=i d$ as above. By Proposition 5.6, A is not normal in $B \subset A \rtimes_{\theta} \boldsymbol{Z} / 2 \boldsymbol{Z}$.

Example 5.9. In the situation of Theorem 5.7, the other intermediate subfactor $B \rtimes_{\gamma} G$ is not normal in general. In fact let α be an outer action on the AFD II_{1} factor R of the symmetric group $S_{3}=\boldsymbol{Z} / 3 \boldsymbol{Z} \rtimes \boldsymbol{Z} / 2 \boldsymbol{Z}$ with the obvious generators $a=(1,2,3)$, $b=(1,2)$ for $\boldsymbol{Z} / 3 \boldsymbol{Z}, \boldsymbol{Z} / 2 \boldsymbol{Z}$ respectively. Let us consider the inclusion $B=R \subset A=$ $R \rtimes_{\alpha} \boldsymbol{Z} / 3 \boldsymbol{Z}$. Consider the period 2 automorphism γ on A defined by

$$
\gamma\left(\sum_{g \in \boldsymbol{Z} / 3 \boldsymbol{Z}} x_{g} \lambda_{g}\right)=\sum_{g \in \boldsymbol{Z} / 3 \boldsymbol{Z}} \alpha_{b}\left(x_{g}\right) \lambda_{b g b^{-1}} .
$$

The automorphism γ leaves B invariant globally, i.e., $\gamma \in \operatorname{Aut}(A, B)$. Since $\left.\gamma\right|_{B}=\alpha_{b}$, it is an outer automorphism of $B=R$. Notice that γ is also an outer automorphism for A. In fact let us assume that $x=\sum_{g \in \boldsymbol{Z} / 3 \boldsymbol{Z}} x_{g} \lambda_{g} \in A$ satisfies $y x=x \gamma(y)$ for each $y \in A$. By just choosing $y \in B$, we see $y x_{g}=x_{g} \alpha_{g b}(y), y \in B=R$ for each $g \in \boldsymbol{Z} / 3 \boldsymbol{Z}$. Since α is an outer action and $g b \neq e$, we get $x_{g}=0$ for each $g \in \boldsymbol{Z} / 3 \boldsymbol{Z}$, and hence $x=0$ as desired.

Let β be the dual action (on A) of $\left.\alpha\right|_{Z / 3 Z}$. Since $B=A^{\beta}$, we have a irreducible decomposition $A-A$ bimodule ${ }_{A} L^{2}\left(A_{1}\right)_{A} \simeq{ }_{A} L^{2}(A)_{A} \oplus_{A}\left(L^{2}(A)_{\beta_{a}}\right)_{A} \oplus_{A}\left(L^{2}(A)_{\beta_{a}^{2}}\right)_{A}$. Hence, the two non-trivial automorphisms have period 3. Since $\gamma \in \operatorname{Aut}(A, B)$ has period 2, $A_{A}\left(L^{2}(A)_{\gamma}\right)_{A}$ can not be in ${ }_{A} L^{2}\left(A_{1}\right)_{A}$ and hence it is strongly outer. It is plain to see

$$
\left(B \subset A \subset A \rtimes_{\gamma} Z / 2 Z\right) \simeq\left(R \subset R \rtimes_{\alpha} Z / 3 Z \subset R \rtimes_{\alpha} S_{3}\right) .
$$

Through this natural isomorphism, $B \rtimes_{\gamma} \boldsymbol{Z} / 2 \boldsymbol{Z}$ corresponds to $R \rtimes_{\alpha} \boldsymbol{Z} / 2 \boldsymbol{Z}$. However, this is not a normal intermediate subfactor in $R \rtimes_{\alpha} S_{3}$ since $Z / 2 Z=S_{2}$ is not a normal subgroup in S_{3}.

The same construction works for

$$
S_{n}=A_{n} \rtimes Z / 2 Z \supset S_{n-1}=A_{n-1} \rtimes Z / 2 Z .
$$

In this case, the above strong outerness is obvious since the alternating group $A_{n}(n \geq 5)$ is simple and does not admit a non-trivial character and hence ${ }_{A} L^{2}\left(A_{k}\right)_{A}$ does not contains a non-trivial one dimensional component (see [8]).

References

[1] D. Bisch, A note on intermediate subfactors, Pacific J. Math. 163 (1994), 201-216.
[2] D. Bisch and U. Haagerup, Composition of subfactors: new examples of infinite depth subfactors, preprint.
[3] M. Choda and H. Kosaki, Strongly outer actions for an inclusion of factors, J. Funct. Anal. 122 (1994), 315-332.
[4] D. Evans and Y. Kawahigashi, Orbifold subfactors from Hecke algebras, Comm. Math. Phys. 165 (1994), 445-484.
[5] F. Goodman, P. de la Harpe, and V. F. R. Jones, Coxeter graph and tower of algebras, vol. 14, MSRI Publ., Springer-Verlag, 1989.
[6] S. Goto, Orbifold construction fro non-afd subfactor, Internat. J. Math. 5 (1994), 725-746.
[7] M. Hall, Jr., The theory of groups, The Macmillan Company, New York, 1959.
[8] M. Izumi, Application of fusion rules to classification of subfactors, Publ. RIMS, Kyoto Univ. 27 (1991), 953-994.
[9] -, Goldman's type theorem for index 3, Publ. RIMS, Kyoto Univ. 28 (1992), 833-843.
[10] M. Izumi and Y. Kawahigashi, Classification of subfactors with the principal graph $D_{n}^{(1)}$, J. Funct. Anal. 112 (1993), 257-286.
[11] V. F. R. Jones, Index for subfactors, Invent.math. 72 (1983), 1-25.
[12] Y. Kawahigashi, On flatness of Ocneanu's connection on the dynkin diagrams and classification of subfactors, J. Funct. Anal. 127 (1995), 63-107.
[13] H. Kosaki, Characterization of crossed product (properly infinite case), Pacific J. Math. 137 (1989), 159-167.
[14] -, Automorphisms in the irreducible decomposition of sectors, Quantum and Non-Commutative Analysis, Kluwer Academic, 1993, pp. 305-316.
[15] H. Kosaki and R. Longo, A remark on the minimal index of subfactors, J. Funct. Anal. 107 (1992), 458-470.
[16] P. H. Loi, On the theory of index and type III factors, Ph.D. thesis, Pennsylvania State Univ., 1988.
[17] R. Longo, Index of subfactors and statistics of quantum fields I, Commun. Math. Phys. 126 (1989), 217-247.
[18] ——, Index of subfactors and statistics of quantum fields II, Commun. Math. Phys. 130 (1990), 285-390.
[19] S. Montgomery, Hopf algebras and their actions on rings, CBMS series number 82, 1992.
[20] M. Nakamura and Z. Takeda, On the fundamental theorem of the Galois theory for finite factors, Japan Acad. 36 (1960), 313-318.
[21] ——, A Galois theory for finite factors, Proc.Japan Acad. 36 (1960), 258-260.
[22] A. Ocneanu, Quantized groups, string algebras and galois theory for algebras, Operator Algebras and Applications, vol.2, London Math. Soc. Lecture Note Series Vol.136, Cambridge Univ. Press, 1988, pp. 119-172.
[23] -, Quantum symmetry, differential geometry of finite graphs, and classification of subfactors, 1991, Univ. of Tokyo Seminary Notes.
[24] P. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. Ecole Norm. Sup. 19 (1986), 57-106.
[25] S. Popa, Correspondences, preprint.
[26] -, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), 19-43.
[27] -, Classification of amenable subfactors of type II, Acta Math. 172 (1994), 163-255.
[28] T. Sano, Commuting co-commuting squares and finite dimensional Kac algebras, to appear in Pacific J. Math.
[29] T. Sano and Y. Watatani, Angles between two subfactors, J. Operator Theory 32 (1994), 209-242.
[30] Y. Sekine, Connections associated with finite-dimensional Kac algebra actions, Kyushu J. Math. 49 (1995), 253-269.
[31] W. Szymański, Finite index subfactors and Hopf algebra crossed products, Proc. Amer. Math. Soc. 120 (1994), 519-528.
[32] T. Teruya, A characterization of normal extensions for subfactors, Proc. Amer. Math. Soc. 120 (1994), 781-783.
[33] Y. Watatani, Lattices of intermediate subfactors, J. Funct. Anal., to appear.
[34] S. Yamagami, A note on Ocneanu's approach to Jones' index theory, Internat. J. of Math. 4 (1993), 859-871.
[35] ——, Vector bundles and bimodules, Quantum and Non-Commutative Analysis, Kluwer Academic, 1993, pp. 321-329.
[36] T. Yamanouchi, Construction of an outer action of a finite-dimensional Kac algebra on the AFD factor of type II_{1}, Inter. J. Math. 4 (1993), 1007-1045.

Tamotsu Teruya

Department of Mathematics, Hokkaido University, Sapporo 060 Japan E-mail address: t-teruya@math.hokudai.ac.jp

[^0]: Key words and phrases. subfactor, Jones index, normal, Hopf algebra, Kac algebra, strongly outer action, modular lattice.

