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Introductio.

An $n$-manifold $X$ is geometric in the sense of Thurston if its universal covering space
$\tilde{X}$ admits a complete homogeneous Riemannian metric, $\pi_{1}(X)$ acts isometrically on $\tilde{X}$

and $X=\pi_{1}(X)\backslash \tilde{X}$ has finite volume. Every closed 1- or 2-manifold is geometric.
Much current research on 3-manifolds is guided by Thurston’s Geometrization Con-
jecture, that every closed irreducible 3-manifold admits a finite decomposition into
geometric pieces [Th82]. There are 19 maximal 4-dimensional geometries; one of these
is in fact an infinite family of closely related geometries and one is not realized by any
closed 4-manifold [F]. Our first result (in \S 1) shall illustrate the limitations of geometry
in higher dimensions by showing that a closed 4-manifold which admits a finite
decomposition into geometric pieces is usually either geometric or aspherical. The
geometric viewpoint is nevertheless of considerable interest in connection with complex
surfaces [Ue90,91, W185,86]. We show also that except for the geometries $S^{2}\cross H^{2}$ ,
$H^{2}\cross H^{2},$ $H^{2}\cross E^{2}$ and perhaps $\tilde{S}L\cross E^{1}$ no closed geometric manifold has a proper
geometric decomposition. In the rest of the paper we investigate connections between
geometric decompositions and fibrations. In \S 2 we characterize algebraically the
homotopy types of (orientable) Seifert fibred 4-manifolds. This class of 4-manifolds
includes all but three of the 4-dimensional infrasolvmanifolds with one of the geometries
$E^{4}$ , Nil4 Nil $3\cross E^{1}$ or $Sol^{3}\cross E^{1}$ and all the manifolds with geometry $S^{3}\cross E^{1},$ $S^{2}\cross E^{2}$ ,
$H^{2}\cross E^{2}$ or $\tilde{S}L\cross E^{1}$ , but also has infinitely many nongeometric members. We give
examples of such manifolds which have geometric decompositions but are not geometric,
and also examples which do not have geometric decompositions. In \S 3 we give criteria
for a closed 4-manifold to be (homotopy equivalent to one which is) finitely covered by
a cartesian product of closed hyperbolic surfaces. The final section determines when
a 4-manifold which fibres over an aspherical closed surface with fibre a hyper-
bolic surface admits a geometry or a proper geometric decomposition. (Our result is
incomplete in that we give only a necessary condition for such a manifold to admit
one of the geometries $H^{4}$ or $H^{2}(C)$ . There are no known examples of such bundle
spaces).
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\S 1. Geometric decompositions.

We shall say that an $n$-manifold $M$ is geometric if it is geometric in the sense of
Thurston, and more generally that it admits a geometric decomposition if it may be split
along a finite collection of disjoint 2-sided hypersurfaces $S$ such that each component of
$M-\cup S$ is geometric. We shall call the hypersurfaces $S$ cusps and the components of
$M-\cup S$ pieces of $M$ . The decomposition is proper if the set of cusps is nonempty.
We shall also say that a manifold virtually has some property if it has a finite covering
space with that property.

THEOREM 1. If a closed 4-manifold $M$ admits a geometric decomposition then either
(i) $M$ is geometric; $or$

(ii) $M$ has a 2-fold cover which is an $S^{2}\cross H^{2}$ -manifold; $or$

(iii) the components of $M-\cup S$ have geometry $H^{4},$ $H^{3}\cross E^{1},$ $H^{2}\cross E^{2}$ or $\tilde{S}L\cross E^{1}$ ;
$or$

(iv) the components of $M-\cup S$ have geometry $H^{2}(C)$ or $F^{4}$ ; or
(v) the components of $M-\cup S$ all have geometry $H^{2}\cross H^{2}$ .
In cases (iii), (iv) or (v) $\chi(M)\geq 0$ and in cases (iii) or (iv) $M$ is aspherical.

PROOF. The proof consists in considering the possible ends (cusps) of complete
geometric 4-manifolds of finite volume. The hypersurfaces bounding a component of
$M-\cup S$ correspond to the ends of its interior. If the geometry is of solvable or
compact type then there are no ends, since every lattice is then cocompact [Rg]. Thus
we may concentrate on the eight geometries $S^{2}\cross H^{2},$ $H^{2}\cross E^{2},$ $H^{2}\cross H^{2},\tilde{S}L\cross E^{1}$ ,
$H^{3}\cross E^{1},$ $H^{4},$ $H^{2}(C)$ and $F^{4}$ . The ends of a geometry of constant negative curvature
$H^{n}$ are flat [Eb80]; since any lattice in a Lie group must meet the radical in a lattice it
follows easily that the ends are also flat in the mixed euclidean cases $H^{3}\cross E^{1},$ $H^{2}\cross E^{2}$

and $\tilde{S}L\cross E^{1}$ . Similarly, the ends of $S^{2}\cross H^{2}$-manifolds are $S^{2}\cross E^{1}$ -manifolds. Since
the elements of $PSL(2, C)$ corresponding to the cusps of finite area hyperbolic surfaces
are parabolic, the ends of $F^{4}$-manifolds are Nil3-manifolds. The ends of $H^{2}(C)-$

manifolds are also Nil3-manifolds [Ep87], while the ends of $H^{2}\cross H^{2}$-manifolds are $Sol^{3_{-}}$

manifolds, in the irreducible cases [Sh63], and graph manifolds whose fundamental
groups contain nonabelian free subgroups otherwise. Clearly if two pieces are con-
tiguous their common cusps must be homeomorphic. In all cases except when a piece is
finitely covered by a product of two punctured hyperbolic surfaces the inclusion of a
cusp into the closure of a piece induces a monomorphism on fundamental group.

If $M$ is a closed 4-manifold with a geometric decomposition of type (ii) the
inclusions of the cusps into the closures of the pieces induce isomorphisms on $\pi_{2}$ , and a
Mayer-Vietoris argument in the universal covering space $\tilde{M}$ shows that $\tilde{M}$ is homotopy
equivalent to $S^{2}$ . Let $\kappa$ be the subgroup of $\pi_{1}(M)$ which acts trivially on $\pi_{2}(M)\cong Z$ .
Then $[\pi_{1}(M):\kappa]\leq 2$ , and the cusps of the corresponding covering space $M_{\kappa}$ are copies
of $S^{2}\cross S^{1}$ . Since the bundle projection to $S^{1}$ is unique up to isotopy and change of
orientation of $S^{1}$ it follows that $M_{\kappa}$ admits a natural codimension-2 foliation with leaves
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$S^{2}$ . Since the leaves $S^{2}$ are compact and 1-connected the projection to the leaf space
is a submersion and $M_{\kappa}$ is the total space of an $S^{2}$ -bundle over a hyperbolic sur-
face. Hence $M_{\kappa}$ is an $S^{2}\cross H^{2}$-manifold [CH96].

If at least one piece has an aspherical geometry other than $H^{2}\cross H^{2}$ then all do and
$M$ is aspherical. Since all the pieces of type $H^{4},$ $H^{2}(C)$ or $H^{2}\cross H^{2}$ have strictly
positive Euler characteristic while those of type $H^{3}\cross E^{1},$ $H^{2}\cross E^{2},\tilde{S}L\cross E^{1}$ or $F^{4}$ have
Euler characteristic $0$ we must have $\chi(M)\geq 0$ in cases (iii), (iv) or (v). //

In particular, if an aspherical closed 4-manifold has a nontrivial geometric
decomposition with no pieces of type $H^{2}\cross H^{2}$ then its fundamental group contains
nilpotent subgroups of Hirsch length 3, corresponding to the cusps. (The Hirsch length
of a solvable group is the sum of the ranks of the abelian subquotients in a composition
series for the group).

If a closed 4-manifold admits a geometric decomposition, is there an essentially
unique minimal decomposition? Since hyperbolic surfaces are connected sums of tori,
and a punctured torus also admits a complete hyperbolic geometry of finite area, we
cannot expect that there is an unique decomposition, even in dimension 2. Any $PD_{n^{-}}$

group satisfying max-c (the maximal condition on centralizers) has an essentially unique
minimal finite splitting along virtually poly-Z subgroups of Hirsch length $n-1$ , by
Theorem A2 of [Kr90]. Do all fundamental groups of manifolds with geometric
decompositions have max-c? Scott has announced an analogue of the 3-dimensional
Characteristic Variety Theorem of Jaco, Shalen and Johanssen for higher-dimensional
manifolds with metrics of non-positive sectional curvature [Sc92]. Do all closed 4-
manifolds of types (iii-v) admit such metrics?

Each of the four $S^{2}\cross E^{1}$ -manifolds inherits a natural codimension-l foliation with
compact leaves. It can be shown that these foliations are unique up to isotopy, and
therefore every closed 4-manifold with a geometric decomposition of type (ii) admits
a codimension-2 foliation with leaves $S^{2}$ or $RP^{2}$ . If all the leaves are $RP^{2}$ such a
manifold is the total space of an $RP^{2}$ -bundle over a hyperbolic surface, and hence is
geometric [CH]. Otherwise it is the total space of an orbifold bundle over a hyperbolic
2-orbifold, with general fibre $S^{2}$ . Are these also geometric?

Closed $H^{4_{-}}$ or $H^{2}(C)$ -manifolds admit no proper geometric decompositions, since
their fundamental groups have no noncyclic abelian subgroups [Pr43]. A similar
argument shows that closed $H^{3}\cross E^{1}$ -manifolds admit no proper decompositions, since
they are finitely covered by cartesian products of $H^{3}$ -manifolds with $S^{1}$ . Thus closed 4-
manifolds with a proper geometric decomposition involving pieces of types other than
$S^{2}\cross H^{2},$ $H^{2}\cross H^{2},$ $H^{2}\cross E^{2}$ or $\tilde{S}L\cross E^{1}$ are never geometric.

Many $S^{2}\cross H^{2},$ $H^{2}\cross H^{2}$ and $H^{2}\cross E^{2}$ -manifolds do admit proper geometric
decompositions. (What is the case for $\tilde{S}L\cross E^{1}$ -manifolds?) On the other hand, a
manifold with a geometric decomposition into pieces of type $H^{2}\cross E^{2}$ need not be
geometric. For instance, let $G=\langle u, v, x,y|[u, v]=[x,y]\rangle$ be the fundamental group of
$\tau UT$ , the closed orientable surface of genus 2, and let $\theta:Garrow SL(2, Z)$ be the epi-



418 J. A. HILLMAN

morphism determined by $\theta(u)=(\begin{array}{l}0-l0l\end{array}),$ $\theta(x)=(\begin{array}{ll}0 l-ll \end{array})$ and $\theta(v)=\theta(y)=I$ . Then the
semidirect product $\pi=Z^{2}\cross_{\theta}G$ is the fundamental group of a torus bundle over $T\# T$

which has a geometric decomposition into two pieces of type $H^{2}\cross E^{2}$ , but is not
geometric, since $\pi$ does not have a subgroup of finite index with centre isomorphic to $Z^{2}$ .

Similarly, a manifold with a geometric decomposition into pieces of type $H^{2}\cross H^{2}$

need be neither geometric nor aspherical. For instance, let $M$ be the double of $T_{o}\cross T_{o}$ ,
where $T_{o}=T$ –int $D^{2}$ is the once-punctured torus. Since $T_{o}$ admits a complete
hyperbolic geometry of finite area $M$ admits a geometric decomposition into two pieces
of type $H^{2}\cross H^{2}$ . However the homomorphism of fundamental groups induced by the
inclusion of the cusp into $T_{o}\cross T_{o}$ has nontrivial kemel, and $M$ is not aspherical.

It is easily seen that each $S^{2}\cross E^{1}$ -manifold may be realized as the end of a complete
$S^{2}\cross H^{2}$ -manifold with finite volume and a single end. (However, if the manifold is
orientable the ends must be orientable, and if it is complex analytic then they must be
$S^{2}\cross S^{1})$ . Every flat 3-manifold is a cusp of some complete $H^{4}$-manifold with finite
volume [Ni95]. However the fundamental group of a cusp of an $\tilde{S}L\cross E^{1}$ -manifold
must have a chain of abelian normal subgroups $Z<Z^{2}<Z^{3}$ , and so the only orientable
flat 3-manifolds that can arise in this way are the 3-torus, the “half-tum” manifold
and the Hantzsche-Wendt manifold (with fundamental groups $Z^{3},$ $Z^{2}\cross_{-I}Z$ and
$\langle x,y|xy^{2}x^{-l}=y^{-2},yx^{2}y^{-1}=x^{-2}\rangle$ , respectively). The ends of complete, complex
analytic $H^{2}\cross H^{2}$-manifolds with finite volume are orientable $Sol^{3}$ -manifolds which are
mapping tori, and all such may be realized in this way [Sh63].

\S 2. Seifert fibrations.

A closed 4-manifold is Seifert fibred if it is the total space of an orbifold bundle with
base a 2-orbifold and general fibre a torus or Klein bottle. (In [Zi85], [Ue90,91] it is
required that the general fibre be a torus. This is always so if the manifold is ori-
entable). The fundamental group $\pi$ of such a 4-manifold has a rank two free abelian
normal subgroup $A$ such that $\pi/A$ is virtually a surface group. Every Seifert fibred 4-
manifold is finitely covered by the total space of a torus bundle over a closed sur-
face. (This is clear if the base orbifold is good, and follows from Theorem A of [Ue91]

in the remaining cases). The results of this section imply that (with two exceptions
which are flat 4-manifolds) orientable quotients of torus bundles over aspherical surfaces
by finite groups are at least homotopy equivalent to Seifert Pbred manifolds.

THEOREM 2. Let $M$ be a closed 4-manifold with fundamental group $\pi$. Then $M$ is
simple homotopy equivalent to the total space of a torus or Klein bottle bundle over an
aspherical closed surface $\iota f$ and only if $\pi$ has a normal subgroup $A\cong Z^{2}$ or $Z\cross\sim Z$ such
that $\pi/A$ is torsion free and has infinite abelianization and $\chi(M)=0$.

PROOF. The conditions are clearly necessary. Suppose that they hold. Then $M$

is aspherical, so $\pi$ is a $PD_{4}$-group. It follows from the LHS spectral sequence that
$H^{2}(\pi/A;R[\pi/A])\cong H^{4}(\pi;R[\pi])\cong R$ for $R=Z$ or a field. Since $\pi/A$ is torsion free and
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has infinite abelianization it has cohomological dimension $\leq 3$ , by Corollary 2.3 of
[Fa74], and so is a $PD_{2}$-group [Fa75]. Thus $M$ is homotopy equivalent to the total
space of a $K(A, 1)$ -bundle over $K(\pi/A, 1)$ . The homotopy equivalence is simple by
Lemma V.2 of [H]. //

Every Seifert fibred 4-manif ld with base an euclidean orbifold has Euler char-
acteristic $0$ and fundamental group solvable of Hirsch length 4, and so is homeomorphic
to an infrasolvmanifold, by Theorem VI.2 of [H]. It is easily seen that no group of type
$Sol_{0}^{4},$ $Sol_{1}^{4}$ or $Sol_{m,n}^{4}$ (with $m\neq n$ ) has a rank two free abelian normal subgroup. Hence
the manifold must have one of the geometries $E^{4},$ $Nil\cross E^{1},$ $Sol\cross E^{1}$ or Nil4. Con-
versely, excepting only three flat 4-manifolds, such manifolds are Seifert fibred. The
fundamental group of a closed Nil $3\cross E^{1_{-}}$ or Nil4-manifold has a rank two free abelian
normal subgroup, by Theorem VI.3 of [H]. If $\pi$ is the fundamental group of a
$Sol^{3}\cross E^{1}$ -manifold then the commutator subgroup of the intersection of all index 4
subgroups is such a subgroup. (In the Nil4 and $Sol^{3}\cross E^{1}$ cases there is an unique
maximal such subgroup). Case-by-case inspection of the 74 flat 4-manifold groups
shows that all but three have such subgroups [Hi95]. (Ue actually shows that in
the orientable cases such Seifert fibred 4-manifolds are diffeomorphic to such infra-
solvmanifolds, and the Seifert fibration is unique up to diffeomorphism, which may be
assumed fibre-preserving in the Nil4 and $Sol^{3}\cross E^{1}$ cases. There is a minor oversight in
[Ue90]; in fact there are two orientable flat four-manifolds which are mapping tori of
homeomorphisms of the Hantszche-Wendt flat 3-manifold and which are not Seifert
fibred.

Orientable Seifert fibred 4-manifolds with base a spherical or bad orbifold admit one
of the geometries $S^{2}\cross E^{2}$ or $S^{3}\cross E^{1}$ , and conversely every such geometric 4-manifold is
Seifert fibred over such a base, although in general it may admit many distinct Seifert
fibrations [Ue91]. (See also [Oh90] for some of the nonorientable cases). The
homotopy type of a $S^{2}\cross E^{2}$ -manifold is determined up to finite ambiguity by the
fundamental group (which must be virtually $Z^{2}$ ), Euler characteristic (which must be $0$)

and Stiefel-Whitney classes. There are just nine possible fundamental groups. Six of
these have infinite abelianization, and the above invariants determine the homotopy type
in these cases. (See Chapter VII of [H]). The homotopy type of a $S^{3}\cross E^{1}$ -manifold is
determined by the fundamental group (which must be virtually Z), Euler characteristic
(which must be $0$), orientation character $w_{1}$ and first $k$-invariant in $H^{4}(\pi;\pi_{3})$ . (See

Chapter VIII of H).

If $\pi<O(4)\cross E(1)$ is the fundamental group of an $S^{3}\cross E^{1}$ -manifold then $F=$

$\pi\cap SO(4)\cross\{1\}$ is the maximal finite normal subgroup of $\pi$ and acts freely on $S^{3}$ , and
$\pi/F\cong Z$ or $D=(Z/2Z)*(Z/2Z)$ . In the first case $\pi$ is a semidirect product $F\cross_{\theta}Z$ ,

where $\theta$ is an automorphism of $F$ induced by an isometry of $S^{3}/F$ and in the second
case $\pi\cong G*_{F}H$ , where the projections of $G$ and $H$ to $O(4)$ are injective, with images
acting freely on $S^{3}$ , and $[G:F]=[H:F]=2$ . In particular, the double covers of the
spherical space forms $G\backslash S^{3}$ and $H\backslash S^{3}$ corresponding to the subgroup $F$ must be
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homeomorphic. Conversely, if $G$ and $H$ act freely and linearly on $S^{3}$ and have
subgroups of index 2 isomorphic to $F$ and if either $G$ or $H$ is cyclic or $F$ is not cyclic
then $G*_{F}H$ is the fundamental group of an $S^{3}\cross E^{1}$ -manifold.

EXAMPLE. The groups $G=Q(40)$ and $H=Q(8)\cross Z/5Z$ correspond to spherical
space forms doubly covered by the lens spaces $L(20,1)$ and $L(20,9)$ , respectively, which
are homotopy equivalent but not homeomorphic. Thus $G*_{F}H$ is realized by the union
of two twisted $I$-bundles via a homotopy equivalence, which is a finite (but possibly
nonsimple?) $PD_{4}$-complex with $\chi=0$ . If $\pi$ is realized by a finite simple $PD_{4}$-complex
with $\chi=0$ must it be geometric? The groups $G=Q(24)$ and $H=Q(8)\cross Z/3Z$

correspond to spherical space forms doubly covered by $L(12,1)$ and $L(12,5)$ , respec-
tively, which are not even homotopy equivalent.

A manifold with geometry $H^{2}\cross E^{2}$ or $\tilde{S}L\cross E^{1}$ is Seifert fibred with base a
hyperbolic orbifold. However not all such Seifert fibred 4-manifolds are geometric.
An orientable Seifert fibred 4-manifold over an orientable hyperbolic base is geometric if
and only if it is an elliptic surf ce; the relevant geometries are then $H^{2}\cross E^{2}$ and
$\tilde{S}L\cross E^{1}$ [Ue90,91].

If $\pi$ is a group $\pi’,$ $\zeta\pi$ and $\sqrt{\pi}$ are its commutator subgroup, centre and Hirsch-
Plotkin radical, respectively. If $G\leq\pi$ is a subgroup then $N_{\pi}(G)$ and $C_{\pi}(G)$ are the
normalizer and centralizer of $G$ in $\pi$ , respectively.

THEOREM 3. Let $M$ be a closed orientable 4-mamfold with fundamental group
$\pi$. Then $M$ is homotopy equivalent to a mamfold which is Seifert fibred over a hyperbolic

orbifold if and only if $\sqrt{\pi}\cong Z^{2},$ $G=\pi/\sqrt{\pi}$ has a subgroup offinite index which is torsion

free and has infinite abelianization and $\chi(M)=0$ .

PROOF. The conditions are clearly necessary. Suppose that they hold. Then $M$

is aspherical, so $\pi$ is a $PD_{4}$-group. It follows as in Theorem 2 that $H^{2}(G;Z[G])\cong Z$

and hence that $G$ is virtually a $PD_{2}$ -group. If $F$ is a finite normal subgroup of $G$

then the preimage of $F$ in $\pi$ is torsion free and virtually abelian. Since $M$ is orientable
this preimage must be abelian and so $G$ has no nontrivial finite normal subgroup.
Moreover $G$ is not virtually abelian, for otherwise $\pi$ would be virtually solvable and
hence $h(\sqrt{\pi})\geq 3$ . Therefore $G$ acts effectively and properly discontinuously on $H^{2}$ , by
the solution to the Nielsen realization problem for surfaces [Ke83]. Since $\pi$ is torsion
free it is the fundamental group of a closed aspherical 4-manifold $M(\pi)$ which is Seifert
fibred over $G\backslash H^{2}$ [CR72]. //

In particular, if $\sqrt{\pi}$ is central $(\zeta\pi\cong Z^{2})$ then the corresponding Seifert fibered
manifold $M(\pi)$ admits an effective torus action with finite isotropy subgroups. The
LHS spectral sequence for homology gives an exact sequence $H_{2}(\pi/\zeta\pi;Q)arrow$

$H_{1}(\zeta\pi;Q)arrow H_{1}(\pi;Q)$ . Since $H_{2}(\pi/\zeta\pi;Q)\cong Q$ or $0$ it follows that $\zeta\pi/\zeta\pi\cap\pi’$ has rank
at least 1. Hence $M(\pi)$ fibres over $S^{1}$ with monodromy of finite order. In these cases
we have $Wh(\pi)=0$ [NS85]. Is $Ms$-cobordant to $M(\pi)$ ?
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COROLLARY. Let $M$ be a closed orientable 4-mamfold with fundamental group
$\pi$. Then $M$ is homotopy equivalent to a $\tilde{S}L\cross E^{1}$ -manifold or an $H^{2}\cross E^{2}$ -manifold if and
only if $\sqrt{\pi}\cong Z^{2},$ $\pi/\sqrt{\pi}$ has a subgroup offinite index which is torsion free and has infinite
abelianization, $[\pi:C_{\pi}(\sqrt{\pi})]<\infty$ and $\chi(M)=0$.

PROOF. The necessity of the conditions is proven in Theorem VI.13 of [H].

Suppose that they hold. Then $M$ is homotopy equivalent to a manifold $M(\pi)$ which is
Seifert fibred over a hyperbolic base orbifold, and the image of $\pi$ in $Aut(\sqrt{\pi})\cong GL(2, Z)$

is a finite group. The result follows as in Theorem $B$ of \S 5 of [Ue91]. //

The $H^{2}\cross E^{2}$ case may be distinguished as follows.

THEOREM 4. Let $M$ be a closed orientable 4-manifold with fundamental group
$\pi$. Then $M$ is homotopy equivalent to a closed $H^{2}\cross E^{2}$ -manifold if and only if $\pi$ has
a finitely generated subgroup $\rho$ such that $p/\rho’$ is infinite, $\sqrt{\rho}=1,$ $[\pi : N_{\pi}(\rho)]<\infty$ ,
$\zeta C_{\pi}(\rho)\cong Z^{2}$ and $\chi(M)=0$ .

PROOF. The necessity of the conditions follows from Theorem VI.13 of [H].
Suppose that they hold. Then $M$ is aspherical and so $\pi$ is a $PD_{4}$-group. Let
$C=C_{\pi}(\rho)$ . Then $C$ is also normal in $v=N_{\pi}(\rho)$ , and $C\cap\rho=1$ , since $\sqrt{p}=1$ . Hence
$\rho\cross C\cong p.C\leq\pi$ . NOW $\rho$ is nontrivial. If $\rho$ were free then an argument using the LHS
spectral sequence for $H^{*}(\pi;Q[\pi])$ would imply that $\rho$ has two ends, and hence that
$\sqrt{\rho}=\rho\cong Z$ . Hence c.d.p $\geq 2$ . $SincemoreoverZ^{2}\leq Cwemusthavec.d.\rho=c.d.C=$

$2$ and $[\pi:\rho.C]<\infty$ . Hence $p$ is a $PD_{2}$ -group of hyperbolic type.
Since $\zeta v\cong Z^{2}$ it follows easily that $\sqrt{\pi}\cong Z^{2}$ and that $[\pi : C_{\pi}(\sqrt{\pi})]<\infty$ . The

image of $\rho$ in $\pi/\sqrt{\pi}$ is torsion free and of finite index. Hence the conditions of the
above Corollary hold. Since $\pi$ is virtually a product it must be of type $H^{2}\cross E^{2}$ . //

IS it possible to give a more self-contained argument for this case? It is not hard to
see that $\pi/\sqrt{\pi}$ acts isometrically and properly discontinuously on $H^{2}$ . However it is
more difficult to construct a suitable homomorphism rom $\pi$ to Isom $(E^{2})$ .

The closed 4-manifold obtained by surgery on a twist spun torus knot in general
admits the geometry $\tilde{S}L\cross E^{1}$ . (See Chapter X of H). Every orientable $H^{2}\cross E^{2_{-}}$

manifold is double covered by a K\"ahler surface [W186]. Since the unique double cover
of a 2-knot manifold $M(K)$ has first Betti number 1, no such manifold can be an
$H^{2}\cross E^{2}$-manifold. Can such a knot manifold be Seifert fibred but not geometric?

EXAMPLES. If $M$ is a compact manifold with boundary whose interior is an $F^{4_{-}}$

manifold of finite volume then $\pi l(M)$ is a semidirect product $Z^{2}\cross_{\theta}F$ where $\theta:Farrow$

$GL(2, Z)$ is a monomorphism with image of finite index. The double $DM=M \bigcup_{\partial}M$

is Seifert fibred over a hyperbolic base but is not geometric, since $\sqrt{\pi}\cong Z^{2}$ but
$[\pi:C_{\pi}(\sqrt{\pi})]$ is infinite. The orientable surface of genus 2 can be represented as a
double in two distinct ways; we shall give corresponding examples of nongeometric torus
bundles which admit geometric decompositions of type $F^{4}$ . (Note that $F^{4}$-manifolds
are Seifert fibred with base a punctured hyperbolic orbifold).
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1. Let $F(2)$ be the free group of rank two and let $\gamma:F(2)arrow SL(2, Z)$ have image
the commutator subgroup $SL(2, Z)’$ , which is freely generated by $A=(\begin{array}{l}0-l31\end{array})$ and
$B=(i_{2}^{1})$ . The natural surjection from $SL(2, Z)$ to $PSL(2, Z)$ induces an isomorphism
of commutator subgroups, and the parabolic subgroup $PSL(2, Z)’\cap Stab(O)$ is generated
by the image of $AB^{-1}A^{-1}B=(\begin{array}{ll}-] 0-6-[ \end{array})$ . Hence [Stab(0) : $PSL(2,$ $Z)’\cap Stab(O)$ ] $=6=$
$[PSL(2, Z) : PSL(2, Z)’]$ , and so $PSL(2, Z)’$ has a single cusp at $0$ . The quotient space
$PSL(2, Z)’\backslash H^{2}$ is the once-punctured torus. Let $N\subset PSL(2, Z)’\backslash H^{2}$ be the comple-
ment of an open horocyclic neighbourhood of the cusp. The double $DN$ is the closed
orientable surface of genus 2. The semidirect product $\Gamma=Z^{2}\cross_{\gamma}F(2)$ is a lattice in
Isom $(F^{4})$ , and the double of the bounded manifold with interior $\Gamma\backslash F^{4}$ is a torus bundle
over $DN$ .

2. Let $\delta:F(2)arrow SL(2, Z)$ have image the subgroup which is freely generated by
$U=(\begin{array}{l}102l\end{array})$ and $V=(\begin{array}{l}1201\end{array})$ . Let 6: $F(2)arrow PSL(2, Z)$ be the composed map. Then $\overline{\delta}$ is
injective and $[PSL(2, Z) : \overline{\delta}(F(2))]=6$ . (Note that $\delta(F(2))$ and -I together generate
the level 2 congruence subgroup). Moreover [Stab(0) : $\overline{\delta}(F(2))\cap$ Stab(O)] $=2$ . Hence
$\overline{\delta}(F(2))$ has three cusps, at $0,$ $\infty$ and 1, and $\overline{\delta}(F(2))\backslash H^{2}$ is the thrice-punctured
sphere. The corresponding parabolic subgroups are generated by $U,$ $V$ and $VU^{-1}$ ,
respectively. Doubling the complement $N$ of disjoint horocyclic neighbourhoods of
the cusps in $\overline{\delta}(F(2))\backslash H^{2}$ again gives a closed orientable surface of genus 2. (The

presentation for $\pi_{1}(DN)$ derived from this construction is $\langle$ $U,$ $V,$ $U_{1},$ $V_{1},$ $s,$ $t|s^{-1}$ $Us=$

$U_{1}$ , $t$ $Vt=V_{1},$ $VU^{-1}=V_{1}U_{\overline{1}^{1}}\rangle$ , which is equivalent to the usual presentation
$\langle U, V,s, t|s^{-1}V^{-1}sV=t^{-1}U^{-1}tU\rangle)$ . $Thesemidirectproduct\Delta=Z^{2}\cross_{\delta}F(2)isalattice$

in Isom $(F^{4})$ , and the double of the bounded manifold with interior $\Delta\backslash F^{4}$ is again a torus
bundle over $DN$ .

3. If $G$ is an orientable $PD_{2}$-group which is not virtually $Z^{2}$ and A : $Garrow SL(2, Z)$

is a homomorphism whose image is infinite cyclic then $\pi=Z^{2}\cross_{\lambda}G$ is the fundamental
group of a closed orientable 4-manifold which is Seifert fibred over an orientable
hyperbolic surface but which has no geometric decomposition at all. (The only possible
geometries are $F^{4},$ $H^{2}\cross E^{2}$ and $\tilde{S}L\cross E^{1}$ . We may exclude pieces of type $F^{4}$ as Im(A)
has infinite index in $SL(2, Z)$ , and we may exclude pieces of type $H^{2}\cross E^{2}$ or $\tilde{S}L\cross E^{1}$ as
${\rm Im}(\lambda)\cong Z$ is not generated by finite subgroups).

\S 3. Virtual products.

In this section we give criteria for a closed 4-manifold to be (homotopy equivalent
to one which is) virtually a cartesian product of closed hyperbolic surfaces. Such
products are clearly geometric.

Let $P=PSL(2, R)$ be the group of orientation preserving isometries of $H^{2}$ . Then
Isom $(H^{2}\cross H^{2})$ contains $P\cross P$ as a norm 1 subgroup of index 8.

THEOREM 5. Let $M$ be a closed 4-mamfold with fundamental group $\pi$. Then the
following are equivalent:
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(i) $M$ is virtually homotopy equivalent to a cartesian product of two hyperbolic
surfaces;
(ii) $\pi_{2}(M)=0,$ $\chi(M)\neq 0$ and $\pi=\pi_{1}(M)$ has a subnormal subgroup $G$ which is $FP_{2}$,

has one end and such that $C_{\pi}(G)$ is not a free group;
(iii) $\pi_{2}(M)=0,$ $\chi(M)\neq 0$ and $\pi$ has a subgroup $G$ which is a $PD_{2}$ -group such that
$[\pi : N_{\pi}(G)]\leq 2$ and $C_{\pi}(G)$ is not a free group;
(iv) $M$ is homotopy equivalent to an $H^{2}\cross H^{2}$-mamfold with a 2-fold covering space
which is the total space of an orbifold bundle over a hyperbolic base 2-orbifold and
with general fibre a hyperbolic surface;
(v) $\pi$ has a subgroup $p$ offinite index which is isomorphic to a product of two $PD_{2^{-}}$

groups and $\chi(M)[\pi:\rho]=\chi(\rho)\neq 0$;
(vi) $\pi$ is virtually a $PD_{4}$-group, $\sqrt{\pi}=1$ and $\pi$ has a torsion free normal subgroup of
finite index which is isomorphic to a nontrivial product $\sigma\cross\tau$ where $\chi(M)[\pi:\sigma\cross\tau]=$

$(2-\beta_{1}(\sigma))(2-\beta_{1}(\tau))$ .

PROOF. If (i) holds then $M$ is aspherical so $\pi_{2}(M)=0$ , and $\pi$ has a subgroup of
finite index which is a direct product $\alpha$ . $\cong\alpha\cross\beta$, where $\alpha$ and $\beta$ are $PD_{2}$ -groups
and $\alpha\cap\beta=\zeta\alpha=1$ . Since $\chi(M)=\chi(\pi)$ divides $\chi(\alpha)\chi(\beta)$ it is nonzero. Let $N$ be the
intersection of the conjugates of $\alpha.\beta$ in $\pi$ . Then $G=N\cap\alpha$ is subnormal in $\pi$ and
$[\alpha:G]\leq[\pi:N]<\infty$ . Hence $G$ is the fundamental group of a hyperbolic surface and
so is $FP_{2}$ and one-ended. Moreover $\beta\leq C_{\pi}(G)$ and so $c.d.C_{\pi}(G)\geq 2$ . Thus (i) implies
(ii).

Suppose now that (ii) holds. Then $\pi$ has one end, by an iterated LHS spectral
sequence argument, since $G$ does. Hence $M$ is aspherical and $\pi$ is a $PD_{4}$-group, since
$\pi_{2}(M)=0$ . Since $\chi(M)\neq 0$ we must have $\sqrt{\pi}=1$ , by the corollary to Theorem II.6
of [H]. In particular, every subnormal subgroup of $\pi$ has trivial centre. Therefore
$G\cap C_{\pi}(G)=\zeta G=1$ and so $G\cross C_{\pi}(G)\cong\rho=G.C_{\pi}(G)\leq\pi$ . Hence $c.d.C_{\pi}(G)\leq 2$ .
Since $C_{\pi}(G)$ is not free $c.d.G\cross C_{\pi}(G)=4$ and so $\rho$ has finite index in $\pi$ . (In particular,
$[C_{\pi}(C_{\pi}(G)) : G]$ is finite). Hence $\rho$ is a $PD_{4}$-group and $G$ and $C_{\pi}(G)$ are $PD_{2}$ -groups.
Let $\sigma$ be the intersection of the conjugates of $\rho$ . Then $\sigma$ is normal in $\pi$ and
$[\pi:\sigma]<\infty$ . Hence $K=G\cap\sigma$ and $L=C_{\pi}(G)\cap\sigma$ are also $PD_{2}$ -groups. They are
normal in $\sigma$, and the quotients $\sigma/K$ and $\sigma/L$ are virtually $PD_{2}$-groups. Let $\hat{K}$ and $\hat{L}$ be
the preimages in $\sigma$ of the maximal finite normal subgroups of $\sigma/K$ and $\sigma/L$,
respectively. Then $\hat{K}$ and $\hat{L}$ are also $PD_{2}$-groups with trivial centre, and $\hat{K}\cap\hat{L}=1$ .
Hence $\hat{K}.\hat{L}\cong\hat{K}\cross\hat{L}$ .

Suppose that $N$ is another normal subgroup of $\sigma$ which is a $PD_{2}$-subgroup and such
that $\sigma/N$ is virtually a $PD_{2}$ -group and has no nontrivial finite normal subgroup. Let
$H=N\cap(\hat{K}.\hat{L})$ . Since $H$ is normal in $\sigma$ it contains the subgroups $[H,\hat{K}]$ and $[H,\hat{L}]$

and hence their product $[H,\hat{K}].[H,\hat{L}]$ . Since $H$ is a $PD_{2}$-group with trivial centre one
of these factors must be trivial. If $[H,\hat{K}]=1$ then $H\leq\hat{L}$ and so $N$ is commensurate
with $\hat{L}$ ; since neither $\sigma/\hat{L}$ nor $\sigma/N$ have nontrivial finite normal subgroups it follows
that $N=\hat{L}$ . (This argument to show that $N=\hat{K}$ or $\hat{L}$ is based on the proof of
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Theorem $B$ of [Jo94] $)$ . Since conjugation by an element of $\pi$ carries $\hat{K}$ onto another
such subgroup it follows that $[\pi:N_{\pi}(\hat{K})]\leq 2$ . (Similarly, $\hat{K}.\hat{L}$ is normal in $\pi$). Thus
(ii) implies (iii). (Note that (iii) clearly implies (iii)).

Suppose now that (iii) holds, and let $v=N_{\pi}(G)$ . We may assume that $v/G$ has no
nontrivial finite normal subgroup. If $G$ is normal in $\pi$ then so is $C_{\pi}(G)$ , and the action
of $\pi/C_{\pi}(G)$ by conjugation on $G$ has finite image in Out $(G)$ . Therefore $\pi/C_{\pi}(G)$

embeds as a discrete cocompact subgroup of Isom $(H^{2})$ , by the Nielsen conjecture
[Ke83]. Since $[C_{\pi}(C_{\pi}(G)):G]$ is finite it follows that $C_{\pi}(C_{\pi}(G))=G$, and so $\pi/G=$

$\pi/C_{\pi}(C_{\pi}(G))$ also embeds as a discrete cocompact subgroup of Isom $(H^{2})$ . Together
these homomorphisms give a homomorphism from $\pi$ to a discrete cocompact subgroup
of Isom $(H^{2}\cross H^{2})$ .

If $[\pi:v]=2$ let $t$ be an element of $\pi-v$ , and let $j:v/Garrow Isom(H^{2})$ be an
embedding onto a discrete cocompact subgroup $S$ . Then $tGt^{-1}=C_{\pi}(G)$ and $t$ induces
an isomorphism $f$ : $v/Garrow v/C_{\pi}(G)$ . Together $j$ and $j\circ f^{-1}$ determine an embedding
$J:varrow Isom(H^{2}\cross H^{2})$ onto a discrete cocompact subgroup of finite index in $S\cross S$ .
NOW $t^{2}\in v$ and $J(t^{2})=(s,s)$ , where $s=j(t^{2}G)$ . We may extend $J$ to an embedding of
$\pi$ in Isom $(H^{2}\cross H^{2})$ by defining $J(t)$ to be the isometry sending $(x,y)$ to $(y, s.x)$ . Thus
$\pi$ acts isometrically and properly discontinuously on $H^{2}\cross H^{2}$ . Since $\pi$ is torsion free
the action is free, and so $M$ is homotopy equivalent to the quotient manifold
$\pi\backslash (H^{2}\cross H^{2})$ . Thus (iii) implies (iv).

An irreducible lattice in $P\cross P$ cannot have any nontrivial normal subgroups of
infinite index, by Theorem IX.6.14 of [M]. Hence an $H^{2}\cross H^{2}$ -manifold which is
finitely covered by the total space of a surface bundle is virtually a cartesian product and
so (iv) implies (i).

It is clear that (i) implies (v), and (v) implies (vi). (Note that we may assume there
is a normal subgroup of this form, by the argument above). Suppose that (vi) holds.
On replacing $\pi$ by a subgroup of finite index, if necessary, we may assume that
$\pi\cong\sigma\cross\tau$ . Since $\sqrt{\pi}=1$ neither factor can be infinite cyclic, and so $\sigma$ and $\tau$ are
each $PD_{2}$ -groups. Since $\sqrt{}\overline{\sigma}=\sqrt{\tau}=1$ , these groups are fundamental groups of
closed orientable $H^{2}$-manifolds, $F_{\sigma}$ and $F_{\tau}$ , say. It now follows from Theorem II.5
of [H] that $M$ is homotopy equivalent to $F_{\sigma}\cross F_{\tau}$ , which is clearly an $H^{2}\cross H^{2_{-}}$

manifold. //

The asphericity of $M$ could be ensured by assuming that $\pi$ be $PD_{4}$ and
$\chi(M)=\chi(\pi)$ , instead of assuming that $\pi_{2}(M)=0$ .

In general, we cannot assume that $M$ is itself fibred over a 2-orbifold. Let $G$ be
a $PD_{2}$ -group with $\zeta G=1$ and let $x$ be a nontrivial element of $G$ . A uniform free
action of $G$ on $H^{2}$ determines a uniform free action of $\pi=\langle G\cross G,$ $t|t(g_{1},g_{2})t^{-1}=$

$(xg_{2}x^{-1},g_{1})\forall(g_{1}, g_{2})\in G\cross G,$ $t^{2}=(x,x)\rangle$ on $H^{2}\cross H^{2}$ , by $(g_{1}, g_{2}).(h_{1},h_{2})=(g_{1}.h_{1,g_{2}}.h_{2})$

and $t.(h_{1},h_{2})=(x.h_{2}, h_{1})$ , for all $(g_{1}, g_{2})\in G\cross G$ and $(h_{1}, h_{2})\in H^{2}\cross H^{2}$ . The group $\pi$

has no normal subgroup which is a $PD_{2}$-group. (Note also that if $G$ is orientable
$\pi\backslash (H^{2}\cross H^{2})$ is a compact complex surface).
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COROLLARY. If $M$ is an aspherical closed 4-manifold which is virtually geometric
then $M$ is homotopy equivalent to a geometric 4-manifold. If the geometry is $H^{2}\cross E^{2}$ or
$\tilde{S}L\cross E^{1}$ we should assume also that $M$ is orientable.

PROOF. The result is clear for infrasolvmanifolds, and follows from the charac-
terizations in Theorems 3 and 4 above for closed orientable $H^{2}\cross E^{2_{-}}$ and $\tilde{S}L\cross E^{1_{-}}$

manifolds. If $\pi$ is virtually the group of an $H^{3}\cross E^{1}$ -manifold then $\pi/\sqrt{\pi}$ is virtually the
group of an $H^{3}$ -manifold, and therefore acts isometrically on $H^{3}$ by Mostow rigidity.
We may also find $\lambda:\piarrow Z$ or $D$ such that $\lambda(\sqrt{\pi})$ is nontrivial. Thus $\pi$ acts freely,
cocompactly and isometrically on $H^{3}\cross E^{1}$ . Theorem 5 shows that the result is true if
$M$ is finitely covered by the product of two closed hyperbolic surfaces. For the other
closed $H^{2}\cross H^{2}$-manifolds (with fundamental group an irreducible lattice) and for the
geometries $H^{4}$ and $H^{2}(C)$ the result holds by Mostow rigidity. //

The corollary holds also for the geometries $S^{4}$ and $CP^{2}$ , but is not yet clear for
manifolds covered by $S^{2}\cross S^{2},$ $S^{2}\cross R^{2}$ or $S^{3}\cross R$ . In particular, there is a closed
nonorientable 4-manifold which is doubly covered by $S^{2}\cross S^{2}$ but is not geometric.
(See Chapter IX of H). However orientability is surely unnecessary for the geometries
$H^{2}\cross E^{2}$ and $\tilde{S}L\cross E^{1}$ .

For $H^{2}\cross H^{2}$ -manifolds we can give more precise criteria for virtual products.

THEOREM 6. Let $M$ be a closed $H^{2}\cross H^{2}$ -manifold with fundamental group $\pi$ . Then
the following are equivalent:

(i) $\pi$ has a subgroup of finite index which is a nontrivial direct product;
(ii) $Z^{2}<\pi$ ;
(iii) $\pi$ has a nontrivial element with nonabelian centralizer;
(iv) $\pi\cap(\{1\}\cross P)\neq 1$ ;
(v) $\pi\cap(Px\{1\})\neq 1$ ;
(vi) $M$ is finitely covered by the cartesian product of two hyperbolic surfaces.

PROOF. Since $\pi$ is torsion free each of the above conditions is invariant under
passage to subgroups of finite index, and so we may assume without loss of generality
that $\pi\leq P\cross P$ . Suppose that $\sigma$ is a subgroup of finite index in $\pi$ which is a nontrivial
direct product. Since $\chi(\sigma)\neq 0$ neither factor can be infinite cyclic, and so the factors
must be $PD_{2}$ -groups. In particular, $Z^{2}<\sigma$ and the centralizer of any element of either
direct factor is nonabelian. Thus (i) implies (ii) and (iii).

Suppose that $(a,b)$ and $(a’, b’)$ generate a subgroup of $\pi$ isomorphic to $Z^{2}$ . Since
centralizers of nontrivial elements of infinite order in $P$ are cyclic the subgroup of $P$

generated by $\{a,a’\}$ is infinite cyclic or is finite. Hence we may assume without loss of
generality that $d=1$ , and so (ii) implies (iv). Similarly, (ii) implies (v).

Let $g=(g_{1}, g_{2})\in P\cross P$ be nontrivial. Since $C_{PxP}(\langle g\rangle)=C_{P}(\langle g_{1}\rangle)\cross C_{P}(\langle g_{2}\rangle)$

and centralizers of nontrivial elements of infinite order in $P$ are infinite cyclic it follows
that if $C_{\pi}(\langle g\rangle)$ is nonabelian then either $g_{1}$ or $g_{2}$ has finite order. Thus (iii) implies (iv)

or (v).
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Let $K_{1}=\pi\cap(\{1\}\cross P)$ and $K_{2}=\pi\cap(P\cross\{1\})$ . Then $K_{i}$ is normal in $\pi$, and there
are exact sequences $1arrow K_{i}arrow\piarrow L_{i}arrow 1$ , where $L_{i}=pr_{i}(\pi)$ is the image of $\pi$ under
projection to the $i^{th}$ factor of $P\cross P$, for $i=1$ and 2. Moreover $K_{i}$ is normalized by
$L_{3-i}$ , for $i=1$ and 2. Suppose that $K_{1}\neq 1$ . Then $K_{1}$ is nonabelian, since it is normal
in $\pi$ and $\chi(\pi)\neq 0$ . If $L_{2}$ were not discrete then elements of $L_{2}$ sufficiently close to the
identity would centralize $K_{1}$ . As centralizers of nonidentity elements of $P$ are abelian,
this would imply that $K_{1}$ is abelian. Hence $L_{2}$ is discrete. Now $L_{2}\backslash H^{2}$ is a quotient
of $\pi\backslash H\cross H$ and so is compact. Therefore $L_{2}$ is virtually a $PD_{2}$ -group. Now
$c.d.K_{2}+v.c.d.L_{2}\geq c.d.\pi=4$, so $c.d.K_{2}\geq 2$ . In particular, $K_{2}\neq 1$ and so a similar
argument now shows that $c.d.K_{1}\geq 2$ . Hence $c.d.K_{1}\cross K_{2}\geq 4$ . Since $K_{1}\cross K_{2}\cong$

$K_{1}.K_{2}\leq\pi$ it follows that $\pi$ is virtually a product, and $M$ is finitely covered by
$(K_{1}\backslash H^{2})\cross(K_{2}\backslash H^{2})$ . Thus (iv) and (v) are equivalent, and imply (vi).

Clearly (vi) implies (i). //

The idea used in showing that (iv) implies (v) and (vi) derives from one used in the
proof of Theorem 6.3 of [W185].

\S 4. Surface bundles and geometries.

Let $p:Earrow B$ be a bundle with base $B$ and fibre $F$ aspherical closed surfaces.
Then $p$ is determined up to bundle isomorphism by the group $\pi=\pi_{1}(E)$ . The cases
with $\chi(F)=0$ are among the Seifert fibred 4-manifolds considered in \S 2, and so we
shall assume that $F$ is hyperbolic, i.e. that $\chi(F)<0$ . Then $\zeta\pi_{1}(F)=1$ and so $\pi$

is determined up to isomorphism by the characteristic homomorphism $\theta$ : $\pi_{1}(B)arrow$

$Out(\pi_{1}(F))$ . (See Theorem IV.1 of [H]). In this section we consider when an
aspherical 4-manifold which is finitely covered by such a bundle space is geometric or
admits a geometric decomposition. If the base and fibre are hyperbolic the only known
examples are virtually products.

THEOREM 7. A closed 4-manifold $M$ is finitely covered by a manifold homotopy
equivalent to one which fibres over an aspherical closed surface with fibre a hyperbolic

surface if and only if $\pi_{1}(M)$ has a normal subgroup $G$ which is a $PD_{2}$ -group with trivial
centre and $\pi_{2}(M)=0$.

PROOF. The conditions are clearly necessary. Conversely, if they hold then $\pi$ has
one end. Hence $M$ is aspherical and $\pi=\pi_{1}(M)$ is a $PD_{4}$-group, since $\pi_{2}(M)=0$ .
Conjugation in $\pi$ determines an embedding of $\pi/G.C_{\pi}(G)$ into Out $(G)$ , which is vir-
tually of finite cohomological dimension. Since $G\cap C_{\pi}(G)=\zeta G=1$ the quotient
$\pi/G$ is an extension of $\pi/G.C_{\pi}(G)$ by $C_{\pi}(G)$ , and so $v.c.d.\pi/G\leq c.d.C_{\pi}(G)+$

$v.c.d.\pi/G.C_{\pi}(G)<\infty$ . Hence $\pi/G$ has a subgroup $p$ of finite index such that
c.d.p $<\infty$ . It now follows from Theorem 9.11 of [B] that $\rho$ is a $PD_{2}$-group. Therefore
the cover of $M$ corresponding to the preimage of $\rho$ in $\pi$ is homotopy equivalent to the
total space of an $F$-bundle over $B$, where $B$ and $F$ are aspherical surfaces with $\pi_{1}(B)0\rho$

and $\pi_{1}(F)\cong G$ . //
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Note that G. $C_{\pi}(G)$ cr $G\cross C_{\pi}(G)$ and so either $\pi$ is virtually a product or $C_{\pi}(G)$ is a
free group. If $C_{\pi}(G)\cong Z$ then G. $C_{\pi}(G)$ is a $PD_{3}$ -group and so $\pi/G.C_{\pi}(G)$ is virtually
Z. Hence $\pi$ is virtually $H\cross Z$ , where $H$ is an extension of $Z$ by $G$ .

IS a manifold satisfying the hypotheses of Theorem 7 homotopy equivalent to a
quotient of a bundle space?

THEOREM 8. Let $B$ and $F$ be closed surfaces with $\chi(B)=0$ and $\chi(F)<0$. Let $E$ be
the total space of the $F$-bundle over $B$ corresponding to a homomorphism $\theta:\pi_{1}(B)arrow$

$Out(\pi_{1}(F))$ . Then $E$ virtually has a geometric decomposition if and only if $Ker\theta\neq 1$ .
Moreover

(i) $E$ admits the geometry $H^{2}\cross E^{2}$ if and only if $\theta$ has finite image;
(ii) $E$ admits the geometry $H^{3}\cross E^{1}$ if and only if $Ker\theta 0Z$ and ${\rm Im}\theta$ contains the
class of a pseudo-Anasov dffeomorphism of $F$ ;
(iii) otherwise $E$ is not geometric.

PROOF. Let $\pi=\pi_{1}(E)$ . Since $E$ is aspherical, $\chi(E)=0$ and $\pi$ is not solvable
the only possible geometries are $H^{2}\cross E^{2},$ $H^{3}\cross E^{1}$ and $\tilde{S}L\cross E^{1}$ . If $E$ has a proper
geometric decomposition the pieces must all have $\chi=0$ , and the only other geometry
that may arise is $F^{4}$ . In all cases the fundamental group of each piece has a nontrivial
abelian normal subgroup.

If $Ker\theta\neq 1$ then $E$ is virtually a cartesian product $N\cross S^{1}$ , where $N$ is the mapping
torus of a self diffeomorphism ut of $F$ whose isotopy class in $\pi_{0}(Diff(F))\cong Out(\pi_{1}(F))$

generates a subgroup of finite index in ${\rm Im}\theta$ . Since $N$ is a Haken 3-manifold it has
a geometric decomposition and hence so does $E$ . The mapping torus $N$ is an $H^{3_{-}}$

manifold if and only if $\psi$ is pseudo-Anasov. In that case the action of $\pi_{1}(N)\cong$

$\pi_{1}(F)\cross_{\psi}Z$ on $H^{3}$ extends to an embedding $p:\pi/\sqrt{\pi}arrow Isom(H^{3})$ , by Mostow rigidity.
Since $\sqrt{\pi}\neq 1$ we may also find a homomorphism $\lambda$ : $\piarrow D<Isom(E^{1})$ such that
$\lambda(\sqrt{\pi})\cong$ Z. Then $Ker\lambda$ is an extension of $Z$ by $F$ and is commensurate with $\pi_{1}(N)$ , so
is the fundamental group of a Haken $H^{3}$ -manifold, $\hat{N}$ say. Together these homo-
morphisms determine a free cocompact action of $\pi$ on $H^{3}\cross E^{1}$ . If $\lambda(\pi)\cong Z$ then
$M=\pi\backslash (H^{3}\cross E^{1})$ is the mapping torus of a self homeomorphism of $\hat{N}$ ; otherwise it
is the union of two twisted $I$-bundles over $\hat{N}$ . In either case it follows from standard
3-manifold theory that since $E$ has a similar structure $E$ and $M$ are diffeomorphic.

If $\theta$ has finite image then we may construct an $H^{2}\cross E^{2}$-manifold with group $\pi$ and
which fibres over $B$ as in Theorem 5 above. Since such bundles are determined up to
diffeomorphism by their fundamental groups $E$ admits this geometry.

Conversely, if a finite cover of $E$ has a geometric decomposition then we may
assume that the cover is itself the total space of a surface bundle over the torus, and
so we may assume that $E$ has a geometric decomposition and that $B\cong S^{1}\cross S^{1}$ . Let
$\emptyset=\pi_{1}(F)$ . Suppose first that $E$ has a proper geometric decomposition. Then $\pi=$

$\pi_{1}(E)\cong A*_{C}B$ or $A*_{C}$ , where $C$ is solvable and of Hirsch length 3, and where $A$ is the
fundamental group of one of the pieces of $E$ . Note that $\sqrt{A}\neq 1$ . Let $\overline{A}=A/A\cap\emptyset$,
$\overline{B}=B/B\cap\emptyset$ and $\overline{C}=C/C\cap\emptyset$ . Then it $=\pi/\emptyset\cong Z^{2}$ has a similar decomposition as
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$\overline{A}*_{\overline{C}}\overline{B}$ or $\overline{A}*_{C}$ . Now $C\cap\emptyset=1$ or $Z$, since $\chi(F)<0$ . Hence $\overline{C}\cong Z^{2}$ and so $\overline{A}=$

$\overline{C}=\overline{B}$ . In particular, ${\rm Im}\theta=\theta(A)$ . But as $\sqrt{A}\cap\emptyset\leq\sqrt{\emptyset}=1$ and $\sqrt{A}$ and $A\cap\emptyset$ are
normal subgroups of $A$ it follows that $\sqrt{A}$ and $A\cap\emptyset$ commute. Hence $\theta(A)$ is a
quotient of $A/A.(A\cap\phi)$ , which is abelian of rank at most 1, and so $Ker\theta\neq 1$ .

If $E$ admits the geometry $H^{2}\cross E^{2}$ then $\sqrt{\pi}=\pi\cap Rad(Isom(H^{2}\cross E^{2}))=\pi\cap$

$(\{1\}\cross R^{2})\cong Z^{2}$ , by Proposition 8.27 of [Rg]. Hence $\theta$ has finite image.
If $E$ admits the geometry $H^{3}\cross E^{1}$ then $\sqrt{\pi}=\pi\cap(\{1\}\cross R)\cong Z$, by Proposition

8.27 of [Rg]. Hence $Ker\theta\cong Z$ and $E$ is finitely covered a cartesian product $N\cross S^{1}$ ,

where $N$ is a hyperbolic 3-manifold which is also an $F$-bundle over $S^{1}$ . The geometric
monodromy of the latter bundle is a pseudo-Anasov diffeomorphism of $F$ whose isotopy
class is in ${\rm Im}\theta$ .

If $\rho$ is the group of an $\tilde{S}L\cross E^{1}$ -manifold then $\sqrt{\rho}\cong Z^{2}$ and $\sqrt{\rho}\cap K’\neq 1$ for all
subgroups $K$ of finite index, and so $E$ cannot admit this geometry. //

In particular, if $\chi(B)=0$ and $\theta$ is injective $E$ admits no geometric decomposition.
We shall assume henceforth that $B$ is also hyperbolic. Then $\chi(E)>0$ and $\pi_{1}(E)$

has no solvable subgroups of Hirsch length 3. Hence the only possible geometries on $E$

are $H^{2}\cross H^{2},$ $H^{4}$ and $H^{2}(C)$ . (These are the least well understood geometries, and
little is known about the possible fundamental groups of the corresponding 4-manifolds).

THEOREM 9. Let $B$ and $F$ be closed hyperbolic surfaces, and let $E$ be the total space
of the $F$-bundle over $B$ corresponding to a homomorphism $\theta$ : $\pi_{1}(B)arrow Out(\pi_{1}(F))$ . Then
the following are equivalent:

(i) $E$ admits the geometry $H^{2}\cross H^{2}$ ;
(ii) $E$ is finitely covered by a cartesian product;
(iii) $\theta$ has finite image.

If $Ker\theta\neq 1$ then $E$ does not admit either of the geometries $H^{4}$ or $H^{2}(C)$ .

PROOF. Let $\pi=\pi_{1}(E)$ and $\emptyset=\pi_{1}(F)$ . If $E$ admits the geometry $H^{2}\cross H^{2}$ it is
virtually a cartesian product, by Theorem 5, and so (i) implies (ii).

Suppose that $\pi$ has a subgroup $v$ of finite index which is a direct product $v=$

$\alpha.\beta\cong\alpha\cross\beta$, where $\alpha$ and $\beta$ are normal subgroups of $v$ and $\alpha\cap\beta=1$ . Let $G=\emptyset\cap v$ .
Then $\alpha,$

$\beta$ and $G$ are each $PD_{2}$-groups with trivial centre, and $G$ is normal in $v$ . Either
$G\cap\alpha=1$ or $G\cap\beta=1$ , for otherwise $Z^{2}\leq(G\cap\alpha)(G\cap\beta)\leq G$ . Suppose that
$G\cap\alpha=1$ . Then $aga^{-1}g^{-1}=1$ for all $a\in\alpha$ and $g\in G$ , since $\alpha$ and $G$ are each normal in
$v$ . Hence $\alpha\leq C_{\pi}(G)$ . An automorphism of $\emptyset$ which induces the identity on $G$ and on
$\emptyset/G$ must be the identity, since $\zeta G=1$ . Hence $C_{\pi}(\emptyset)\cap\alpha$ has finite index in $\alpha$ . Since
$\alpha\cap\emptyset=\alpha\cap G=1$ the projection of $\pi$ onto $\pi_{1}(B)=\pi/\emptyset$ maps $\alpha$ injectively, and since $\alpha$

and $\pi_{1}(B)$ are both $PD_{2}$-groups the image must have finite index. Therefore the image
of $\theta$ is finite and so (ii) implies (iii).

If $\theta$ has finite image then $Ker\theta\neq 1$ and $\pi/C_{\pi}(\emptyset)$ is a finite extension of $\emptyset$ . Hence
there is a homomorphism $p:\piarrow Isom(H^{2})$ with kemel $C_{\pi}(\phi)$ and with image a discrete
cocompact subgroup. Let $q:\piarrow\pi_{1}(B)<Isom(H^{2})$ . Then $(p, q)$ embeds $\pi$ as a
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discrete cocompact subgroup of Isom $(H^{2}\cross H^{2})$ , and the closed 4-manifold $M=$
$\pi\backslash (H^{2}\cross H^{2})$ clearly fibres over $B$ . Since such bundles are determined up to diffeo-
morphism by their fundamental groups $E$ admits the geometry $H^{2}\cross H^{2}$ . Hence (iii)

implies (i).

If $\theta$ is not injective $Z^{2}<\pi$ and so $E$ cannot admit either of the geometries $H^{4}$ or
$H^{2}(C)$ , by Theorem 9 of [Pr43]. //

In particular, if $\chi(B)\neq 0$ and $\theta$ is not injective but has infinite image then $E$ is not
geometric. Can such a bundle space have a geometric decomposition into pieces of
type $H^{2}\cross H^{2}$ ? The equivalence of (ii) and (iii) is Lemma 4 of [Jo94].

Are there any such bundle spaces $E$ which admit one of the geometries $H^{4}$ or
$H^{2}(C)$ ? Orientable manifolds with geometry $H^{4}$ have signature $0$ , whereas if $M$ is
a $H^{2}(C)$ -manifold $\chi(M)=3\sigma(M)>0$ . It is shown in [Me73] that if $B$ and $F$ are
orientable $\sigma(E)=-\theta^{*}\tau\cap[B]$ , where $\tau$ is a class in $H^{2}(Out(\pi_{1}(F));Z)$ induced from an
explicitly described class in $H^{2}(Sp_{2g}(Z);Z)$ via the natural representation of Out $(\pi_{1}(F))$

as symplectic isometries of the intersection form on $H_{1}(F;Z)\cong Z^{2g}$ . In particular, if $F$

has genus $g=2$ then $\sigma(E)=0$ and so $E$ does not admit the geometry $H^{2}(C)$ .
Every closed orientable $H^{2}\cross H^{2_{-}}$ or $H^{2}(C)$ -manifold has a 2-fold cover which is a

complex analytic surface, whereas no closed $H^{4}$-manifold admits a complex structure
[W186]. If $E$ is a complex surface it can be shown that $B$ is orientable and $p$ is
homotopic to a holomorphic map, for some complex structure on $B$ . Must $p$ be
isotopic to a holomorphic submersion? By a theorem of Parshin, for each $n>0$ there are
(up to deformation) only finitely many complex analytic surfaces $S$ with $\chi(S)=n$ which
admit holomorphic submersions onto a nonsingular complex curve. (See [Jo94]). If $E$

is a complex analytic surface and $h:Earrow B$ is a holomorphic fibre bundle then $E$ is
finitely covered by a cartesian product of complex curves. (See \S V.6 of [BPV]).
However there are such holomorphic submersions in which $\sigma(E)\neq 0$ and so which are
not virtually products. (See \S V.14 of [BPV]). The known examples are not quotients
of the unit ball in $C^{2}$ and so admit no geometry. Any holomorphic submersion with
base of genus at most 1 or fibre of genus at most 2 is a holomorphic fibre bundle [Ka68].

The final theorem strengthens a remark made in \S VI.7 of [H].

THEOREM 10. A closed 4-manifold $M$ with fundamental group $\pi$ is $s$-cobordant to an
$X$-manifold where $X=H^{2}\cross H^{2},$ $H^{4}$ or $H^{2}(C)lf$ and only if $\pi$ is torsion free and is
isomorphic to a discrete uniform subgroup of Isom(X) and $\chi(M)=\chi(\pi\backslash X)$ .

PROOF. The conditions are clearly necessary. Suppose that they hold. Then
$\chi(M)>0$ and $\pi$ is infinite and residually finite. Hence there is a subgroup $\sigma$ of finite
index such that the associated covering spaces $M_{\sigma}$ and $\sigma\backslash X$ are orientable and
$\chi(M)=\chi(\sigma\backslash X)>2$ . In particular, $H^{2}(M:Z)$ has elements of infinite order. Since the
classifying map $c_{M_{\sigma}}$ : $M_{\sigma}arrow\sigma\backslash X$ is 2-connected it induces an isomorphism on $H^{2}$ and
hence is a degree-l map, by Poincar\’e duality. Therefore it is a homotopy equivalence,
by Theorem II.3 of [H], and so $M$ is aspherical. Hence $c_{M}$ : $Marrow\pi\backslash X$ is a homotopy
equivalence.
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It now follows from the work of Farrell and Jones [FJ90] that $Wh(\pi)=$

$Wh(\pi\cross Z)=0$ and that $M\cross S^{1}$ is homeomorphic to $(\pi\backslash X)\cross S^{1}$ . Hence $M$ and $\pi\backslash X$

are $s$-cobordant. //
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