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1. Introduction

Let 2 be a smooth bounded domain in R” with n >3 and p = (n+2)/(n — 2) (the
Sobolev exponent). Consider the problem

—Adu=1w¥*in Q,
(1.1) u>0inQ,
ulon =0,

where ¢>0. It is well-known that when &> 0, problem (1.1) has at least one
solution. On the other hand, when ¢ = 0, problem (1.1) becomes delicate. Pohozaev
[12] derived the so-called “Pohozaev identity” for (1.1) and showed the nonexistence of
solutions to (1.1) when Q is star-shaped. In other cases, Bahri and Coron [2] showed
that there exists a solution for equation (1.1) when @ has a nontrivial topology, while
Ding [D] constructed a solution to (1.1) when Q is contractible. Here arises an
interesting question: what happens to the solutions of (1.1) as ¢ » 0? The first result
was due to Atkinson and Peletier in [1]. They studied the radial case and characterized
the asymptotic behavior of radial solutions. Later, Brezis and Peletier [3] used PDE
methods to give another proof of the same result in spherical domains. Finally, Z.
Han [9] (independently by O. Rey [13]) proved the same result in the general case,
namely:

THEOREM A. Let u, be a solution of problem (1.1) and assume

2

——fQIZ—VFi—=S+0(1) ase— 0,

||ue||u+1—e(g)

where S is the best Sobolev constant in R" : S = nn(n — 2)(I’ (n/2)"/ 2/I(n)). Suppose u,
assumes its maximum at x,. Then we have (after passing to a subsequence):

1. There exists xo € 2 such that as ¢ — 0, x; — xo, u — 0 in CL_(2\{x0}) and

|Vu,,:|2 — (n(n — 2))_("“2)/ 45x° in the sense of distribution, where Jy, is the Dirac function

at point Xx.
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2. The xo above is a critical point of ¢, i.e. Vp(xy) = 0, where ¢(x) = g(x,x), x € Q
and g(x,y) is the regular part of the Green’s function G(x,y), i.e.

1
(n = 2)an)x — y""%’

g(xay) = G(xay) -

where o, is the area of the unit sphere in R".
3. lim,_ g e||u£||iw(g) = 202(n(n — 2))""1S"2|p(x0)|, where xo is the same as in (1).

In this paper, we return to problem (1.1). We are concerned with a particular
family of solutions to problem (1.1), namely, the least energy solution u#, to problem
(1.1). The purpose of this paper is to further locate the blow up point xy and to give a
precise asymptotic expansion of the least energy solutions.

Before we state our result, we first give some definitions.

Define

V 2
(1.2) J, = inf fﬂl_“':ue W, (2),u#0}.
||u||u+1—e(g)

It is well known that J, is attained by a solution u, to problem (1.1). Furthermore,
J: = S+ o(1) (Throughout this paper, 4 = o(a) means 4/a — 0 as ¢ — 0 and 4 = O(a)
means that |4/a| < C). Let u, assume its maximum at some point x.. If some
sequence {x;} converges to some point xp, then by Theorem A, u.(x) blows up and
concentrates at xo. Moreover, xo is a critical point of ¢(x). Intuitively, one would
conjecture that xo should be a global maximum point of ¢(x). In this paper, we shall
confirm this conjecture. More precisely, we shall prove the following:

THEOREM 1.1. Suppose n > 3. Let u, and x, be defined as above. Then ¢(x,;) —
maxye ¢(x) as € — 0.

To prove Theorem 1.1, we adopt the method developed by Ni and Takagi [11] and
Wang [16]. In particular in [16], he proved that the maximum points of least energy
solutions to the problem

(1.3) Adu—k(x)u+w*=0, u>0, xeRY

approach a global minimum point of k(x) as ¢ — 0.

The basic idea in proving Theorem 1.1 is to get an asymptotic formula for J, as
& — 0 (Propositions 2.1 and 3.4). In order to have this asymptotic expansion, we first
rescale u,. Define g, by p; 7?7170 = 4]l po()- Lt e(y) = 1Py (uy + x,).

Then 0 < v, <1, v,(0)=1 and

(1.4) { Av,(y) +27%(y) =0 inQ,,

ve | o, =0,

where Q, = {y|p,y + x. € 2}.
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Then, by the elliptic interior estimates and the uniqueness result of [4] or [5], we
have
(1.5) ve— U in C}(R"),

where U(y) = 1/(1 + (|y*/n(n — 2)))""2/? is the unique positive solution of
(1.6) du+1 =0, yeR', u(0)=1

By using a nice test function, we get an upper bound for J.. To get a lower bound, we
expand v, in y,. More precisely, the following asymptotic expansion of u, up to the
second order is established.

THEOREM 1.2. Suppose n > 3. Let u, and x, be defined as above. Then, as ¢ — 0,

(1.7)  0(y) = w7 Oy (x, + p,y) = U(y) + s 2(H (%, X0 + 1,9) + w(p) + 0(1))

where H(x,y) = —(n —2)[n(n — 2)]("_2)/20,,g(x,y), and w is the unique solution of (3.3);
moreover, the term o(1) is uniform in the ball |y| < K/u, with K depending only on Q.

To prove Theorem 1.2, we note that the first approximation of v, should be
U. However, since v, € W()I’Z(Qﬂe), we write v, = ,ug"_z)/ 2PaU + W2¢,, where PqU is
the projection of U from W'2(Q) to W,?(R2) (see (2.3). We shall show that ¢, — w in
L®(B(k/u,)(x0)) where Big(xo) =2 and w is the unique solution of some elliptic
equation involving the operator L = 4 + pU?~!. To this end, we need some regularity
estimates and some properties of the operator L established in Wang [16].

This paper is organized as follows: in Section 2, we obtain an upper bound for J,
(Proposition 2.1). In Section 3, we use Proposition 3.3 to get a lower bound for J,
(Proposition 3.4) and show that Theorem 1.1 follows immediately from Propositions 2.1
and 3.4. Finally in Section 4, we prove Proposition 3.3. Theorem 1.2 follows easily.

ACKNOWLEDGEMENT. 1 am very grateful to Professor Wei-Ming Ni for his constant
support. I wish to thank Professor Safanov for pointing out some ideas in the proof of
Lemma 4.2, Professor Xuefeng Wang for sending me the preprint [16] and several useful
discussions and the referee for his/her enormous work on reading the manuscript and
many constructive comments and suggestions.

2. An upper bound for J,

The goal of this section is to choose a good test function to get an upper bound for
Je.. That is:

PrROPOSITION 2.1. Ifn >3 and x, — xo as ¢ — 0, then for any point x) € 2, we have:
prAel 1= g < 5 u:‘z{H(xl,xl)S(z-"W J U? (y) dy
Rn

n—2
n

@.1) 222 C(n, xg) S j P+ () log U(y) dy
Rn

. n
(p+1)

5 C(n, x0)Slog S} + o172,
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where H(x,y) = —(n—2)(n(n — 2))" 2 6,g9(x,y) and C(n,xo)= 262(n(n—2))""
S7"p(xo)I-

Before we prove it, we need some preparations.
We first recall that y;/?~""® = ||u,||,.. By Theorem A, we have

(2.2) e = C(n, o) + o(£?).
Let Uyz(x) = A" /(1 4 (2%|x — a*/n(n — 2)))"2/* and a € Q. We define PoU,, to

be the unique solution of
Aw+ U, , =0,

(2.3) w>0, xeQ,
w=0 ondQ.
We recall the following important lemma in Rey [14].

LEMMA 2.2. Let A=, then
Ug, (x) = Pg Ug i (x) +/‘£n_2)/2H(a’ x) + fu,

where f, (x) = O("%) and of, Jox; = O(u"? /d(x, 00)).
We are ready to prove Proposition 2.1.

PROOF OF PROPOSITION 2.1:  Let x; € 2 and u(x) = PoU,, ,1(x). Set .= {y|x1+
Uy € 2}. Then

Jg Vulde = | PPaU, (1)

D

_ j P (x)PaUs o (x) dx
Q

— . U)[Z:;;l(x) dx — ﬂgn—2)/2 JQ Uxh#_l(x) (xl,x) dx —J x1, #_1( )f';l (x) dx

o

| vt - | o) n ) @
Ja, 2

+ O(urD1? JQ Ur (%) dx

&€

= J i Ut (y)dy — i L) UP(y)H (x1,%1 + p.y) dy + O(u1y)

= S — JQ UP(y)H (x1, %1 + #:y) dy + O(5).
But, e

J UP(y)H (x1, x1 + p,y) dy
gs

ZJ(mﬁWWJHWM—HmJM®+HWJOLCWW@

£ &

=HmwOJlﬂw@+0%)

n

For, [p UP(y)|yldy < co.
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Thus we have:
[ iVuizdxzs”/z—ﬂZ_ZH(xl,JQ)J U (y) dy + o ().
Q R

On the other hand, we have:

2/(p+1-¢)
el (13 [ J (PaUy, i)™ dx]
0

i 2/(p+1-¢)
= 0 (U - /IZ—ZH()C],XI + tuey) - /’te(en—Z)/zfl.lg)p+l—£ dy:l

L+ &

[ r

[ vrreay— o+ 1) J UPH (x1, %) dy + o(2)
Rﬂ

2/(p+1-¢)
LJ R® :l

=/, Ut dy — C(n, xo) 12 JR UPtllog U dy

2/(p+1-¢)
~ (o4 DHG U | U0+ o)

= U Ut dy — C(n, xo)u" 2 J UPtllog Udy
n Rr

2/(p+1)
~ (p+ DG [ 00 dy+ ol

2 il 2/(p+1) p+1 n—2 n—2
T L”U dy log{ | UP™dy Ju;™" +o(1;™)

2/(p+1) ) 2/(p+1)-1
(o) () e onv

+ C(na xO)

+Hp+ DGR [ v dy}

n

’ 2/(p+1) 1 , ,
+ C(n, xo) TR (J ! urt! dy) log (JR,, urt dy),u;'_ +o(17°).

Hence:

2/(p+1—¢)
ﬂEZ—n)E/(p+1—e) [JQ (Pg le,,us—l )p+l—e dx:l

- (Sn/Z)Z/(PH) — 1 2C(n, xO)p_i_l(Sn/Zf/(PH)—l J U log U dy

2
+u2C(n, x, S22/ (1) 1 (J
M ( 0)(P+ 1)2( ) g
2

+ (p + l)ﬂ:_zH(xhxl) J v? dy;:—l- (Sn/Z)Z/(p-H)—l + O(ﬂ:_z).

Up+1 dy)

n
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Straightforward computations show that,
Jo Vul* dx
[p = o] 77

Sn/2 _2 Jrn UP(y)dy
N (S7/2) 2@+ + [H(x"xl) (S7/2)2@+D

'ugn—Z)e/(p+l—a)Je < Au‘£1r1—2)~e/(p+1—e)

+ C(n,xo)p—iI(S”/z)_z/(p“) J Ut log U dy

n

~ C(n,x0) (87/2)!7/#+D 1og (J vt dy)] +o(ur?)
Rn

2

(+1)

=S+ u:—2{H(x1,x1)S<2-">/2 J UP(y) dy
Rn

n—2

Cn, x0)S@2 j P+ (y) log U(y) dy
Rn

(p+1)

5 C(n,x)Slog S} +o(W?). O

3. Proofs of Theorems 1.1 and 1.2

In this section, we shall prove Theorem 1.1. To this end, we recall that

v(y) = ug/("_l_s)us(ﬂgy + x;). Then v, satisfies:
Av(y) + 187 5(y) =0 inQ,,
(3.1) 0 > 0 inQ,,
Ve |6Q”€ = Oa

where Q, = {y|uy + x; € 2}.
We are in need of the following lemma in Han [9]:

LeMMA 3.1. w(x) < AU 1, that is: v(y) < AU(p), for some A.

Let v.(y) = ,ug"_z)/ 2Po Uy, 1 (%) + 12724, (p), where x = p,y + x,. Then ¢, satisfies:

4¢.(y) +pUP~'4, + F(4,) =0, inQ,,
¢8(y) |69,48 =0,

where F(¢,(y)) = [0 — UP — il 2pUP~' ,] / (1 2).
We now give the following estimate for F(g,(y)).

(3.2)

LemMMA 3.2. If n> 5, then we have
IF(#,)] < C(UP"*(llog U| +1) + |4 o — UP '+ i + [U7~-7).
If n <5, then we have

IF(g)] < C(UP~(llog U| + 1) + UP~2-41g,| [o, — U] + 2 + |UP1-%))
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Proor: First, by Lemma 2.1, we have

,ugn-Z)/zp-Q Uxe,;te“ (x)=U(y) - 2H(xe7 Xe + K:Y) + o(ﬂn 2)
= U(y) — "2 H (x0, X0 + pt,y) + o(uf ™).
Using this, we obtain
| 2F(¢,)| = 1875 — UP — i *pUP~' 4|

< |2 — w2 (p — &) UP™' (¢, — H (X0, X0 + p,y) + o( %)) — UP™|
+ |UP~* — UP|
+1 72 pUP g, — (p — &) UP™' (8, — H (X0, X0 + ) + 0(4%))|

=hL+hL+5h,

where I}, 1,15 are defined by the last equality.
We estimate I, 5 as follows:

|L| < Cu-2UP*|log U,
|I3| < Cﬂg“z(ﬂg—2|¢E|UP—l~e(|log Ul + 1) + Up—l—e)‘

For I}, by using the following inequality (that is where we need to treat the two cases
n>5 and n <5 separately):

I(14¢), —1—«| < ClEff
for 1 <¢t<2 and
(148, —1 -2 < Clef
for t > 2, we have
| < Cutt?|g, — H(xo0,x0 + py) + o(uH)P~*
< I3 (|g )P ~° + |HIP?)

< CULP1B,1(48f + os = UPT'70) + 4]

for n>5 and
Ih| < CUP~2202|g, — H(xo, %0 + 1,y) + o)
< CoP @D (g, + |HP)
— CUp-s—z[”Z-2|¢£| |ve U| +ﬂ2(n 2)]
forn<5. O

PROPOSITION 3.3. Assume that n>3 and that B3x(xo) = Q for some positive
constant K >0. Then ¢, —w in L*(Bg;,(0)) as € — 0, where w is a bounded
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solution of
(3.3) Aw + pUP~'w — C(n, x0) UP log U — pH (x0, %) UP' =0, in R
and we W>*(R") for s > n/3.
Assuming Proposition 3.3 now, we show that
PROPOSITION 3.4. Let J. be defined by (1.2), then
'uf(:n-—Z)e/(p+l—s)J‘E =S+ ,UZ—Z{H(XO, xo)S(Z—n)/Z JR Up(y) dy

n—2
n

+

C(n, x0) SO j 0P+ () log U(y) dy
Rll

(p+1)

5 C(n, x0)S log s} + o(u'?).

ProoF: We begin with:
ﬂgn_z)e/(pﬂ—e).]e _ 'ugn—Z)s/(PH—S)Js(uE)

Jo V| dx

[fg 2+ dx] 2/(p+1-e)

— ﬂgn—Z)s/(p+l—e)

RS

1-2/(p+1-¢)
l(gn—2)s/(p+l—£) [J ug+1—e dx]
Q

1-2/(p+1-¢)
vg—{—l—s d)’)

l~2/(p+1—8)
vt gy + 0(/4'))

uQﬂ

€

BK /He

Il
— TN TN

, U+ #.72(¢ — H(x0, %0 + 4,7))
Y BK /ug

o(u )Y+ dy +o(up?)

+

}1 -2/(p+1-¢)

—

JR Urtl=tdy + (p+ 1) L W2 UP (¢, — H(xo, X0 + 4,y)) dy
n K/ug
} (p—1-¢)/(p+1-e)

+o(u?) +o(ur?)

= {J U=t dy — C(n, xo)u" > J UPlog U dy
R Rn
HoH1) | UG o0+ )
K/pg
} (p—1-¢)/(p+1-e)

+o(u;?) +o(4;7?)
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= {j U dy — C(n, xo) ™2 J UrtllogUdy + (p+1) J K2 UPwdy
n Rn

R’l
5 (p—1-¢)/(p+1—¢)
—(p+1) JRn W= UPH(x9,x0) dy + o(ug’*z)} + o(,u;’_z).

But, by equation (3.3), we have

J Ulwdy = 1 (C(n,xo) J UP*log U dy + pH(x0, xo) J U? dy).
R® P — 1 R? R"

Hence,
ﬂgn—z)a/(pﬂ—e) J, = (J UPl dy + C(n, xo) 2 2 J UPtlog U dy

&

ptl1
p—1

2 5 C(n,xo),uZ‘ZJ P! dylog(] Urtl dy) +o(u'?)
(p+1) R R

= Right hand side of Proposition 3.4.

(p—-1)/(p+1)
+ )

J U2 UP H (x0, X0) dy
R'l

We now in a position to prove Theorems 1.1 and 1.2. In fact, Theorem 1.2 follows
easily from Proposition 3.3. By Propositions 2.1 and 3.4, we immediately get
H(x0,x0) < H(x1,x1) for any x;e€. Hence ¢(x9) = maxseco@(x), which proves
Theorem 1.1 [

4. Proof of Proposition 3.3

The purpose of this section is to prove Proposition 3.3. To simplify our proof, we
assume that n > 5. By making minor modifications, one can see that the same proof
works for the case n < 5.

There are some prelimilaries to be done before we go into the proof. First of all,
we recall an important property of the linearized operator L = A4 + pUP~!,

LemMA 4.1 (Lemma 2.3 in Wang [16]). If the domain of L is W>'(R"), where
n/(n—2)<r<o, then Ker(Ly=X =span{e;,...,en,enr1} where e; = (0U/0x),
i=1,...,nand ey, =x-VU+ ((n—2)/2)U.

The following lemma plays a crucial role.

LemMmA 4.2 (1). Let u be the solution of

—du(y) =f(y), inQy,
.1 ¢
(4.1) {u loa,, = O-
Then:
(4.2) lullwera, ) < CUl e, + 1/, )

where C is a constant independent of u, and u, 1/q=1/r+2/n and r > 2.
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(2). Let k(x)e C*R,). Then we can extend it to a function K(x) € C}(R") in
such a way that

K w2egey < ClIEX) w20, )
where C is independent of k and u,, p > 1.

Proor: Without loss of generality, in the following proof, we may assume x, = 0
(since we can always make a translation which does not change the inequality).

(1). First of all, by the well-known regularity theorem (see, e.g. Corollary 9.10 of
[8]) and a simple scaling argument, we have

(4.3) |D%ull (g, < CIIf

Lr(R,,)

where C is independent of 4, and u.
Secondly, by integration by parts, we can prove that

[Vul

1/2 1/2
19, < CO)llul g, 1Dl (g, )
Thus, we have

(4.4) IV

r@,) < CO)([ulq,) + |'D2“||L'(g,,e))~
Combining (4.3) and (4.4), we get
(4.5) [l w2,y < Clul

where C is a constant independent of u, and u.

Finally, we extend f equal to 0 outside 2, and denote it by f;. Let u =
Jgo T(x — y)|fi(y)|dy, where I' is the fundamental solution of —4, then by Maximum
Principle, we have: |u| <u; on ,.

Therefore, [[ul.(o,) < il @, ) < Il &m-

By virtue of the Hardy-Littlewood-Sobolev inequality ([15]), we have

@, T Hf”L’(Q,‘e))

(4.6) ||u1

ey < C, @l fillry < C0, 9| fll Lo, )-
Thus, we obtain

(4.7) ||

lr@,) < €D fl,)-

Now from (4.5) and (4.7), we have (4.1).
(2). For each point Pe0f2, we can find a homeomorphism ¥, and a neigh-
borhood U, = Q such that Pe U, and ¥, : U, — B;. From {U,|pedQ}, we can

select a finite cover of 02 and denote it by {Uj,..., Uy}, we denote the corresponding
homomeophism as {¥y,...,¥Pn}. Let Uy =Q, then {Up, Uy,...,Ux} forms a finite
cover of Q. Let {y,,...,xy} be a partition of unity subordinate to the open cover

{Uy, Ui,...,Ux}. Hence we have ZZ{)V x; =1, for xeQ. It is easy to see that
{1 " Up, ;' Uy, ..., u; Uy} forms a finite cover of Q, and {x;(y/u,),i=1,...,N} isa
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partion of unity subordinate to this open cover. Then, (4.2) follows from the proof of
Lemma 5.2 of Friedman [7]. O

Now we explain the plan of the proof of Proposition 3.3. Following the strategy
of [11] and [16], we first prove that ||¢, r@,) is bounded for r>n. Then let
we = x(1,y)w(y) where yx(x) =1 when xeBg(x) < and yx(x)=0 when x¢
B3k (xp) = 2, we show that ||@, — w£|[W2,,(Qﬂe) = o(1), which, by Sobolev Imbedding
Theorem, proves Proposition 3.3.

LeMMA 43 Let n<r<oo. Then ||l q,) < C(r)

Proor: Suppose on the contrary, there exists a sequence of & — 0 such that
|I¢ej”L’(Qﬂ£j) — 0.
Let M; = ||¢ejHLr(g,‘£A), ¥; = ¢,/M;. We denote Quej as &, p, as y; and ¢, as
o 7
etc. Then ¥, satisfies

s {A%—(y) +pUP- 1%, + F($)/M; =0, in®,
. ql](y) laQ, = 0'
We divide our proof into the following steps:
Step 1: we show that || 2., is bounded.

Step 2: we extend ¥; to R" and prove that ¥; — 0 weakly in W2 (R").
Step 3: we prove that ||¥|| g = 0(1), which gives a contradiction (because

J?

||T L’(Q,) = 1)'
Now we begin to prove step 1. In fact, by (4.5), we just need to estimate
I1F())/ M| (-
But by Lemma 3.2,
IF (@)l gy < CUIUP=*(Jlog Ul + 1|1

—l—g; le—e:
+ g llvg, — UP™ |1, + II#?J, e HIU° : Nergp)
< C(1+ ¢l gy)-
This gives rise to
¥l () < C-

Next, from Lemma 4.2, we can extend ¥; to R” in such a way that
(4.9) 1l wr gy < Cl ¥l wara-

By Sobolev Imbedding Theorem, we have,
(4.10) 15| o ey < C-

Thus there exists a function z € W2'(R") such that ¥; — z weakly in W2"(R") and
¥, -z in CL_(R") along some subsequences.
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To finish the second step, we just need to show that z=0. To this end, we
estimate [|F(4,)/ M|~y By (4.10) and Lemma 3.2, it is easy to see that
1F(8:)/ Mjl| = (g;) — O (because ||v; — Ul| (o) — 0). Hence z is a weak (thus classical)
solution of the following equation:

@.11) {A W() +pUP () =0, inR"

YeW>(RY), n<r.

By Lemma 4.1, ze X. That is

n+l

zZ = E ae;
i=1

for some constants a;,i=1,2,...,n+ 1.
But note that by definition, ¥;(0) = H(xo,x0)/M;+ o(1), V¥;(C) =o(1) (since
v;(0) = 1 = max,c,v;). Thus, we have, ¥(0) =0, V¥(0) = 0. Therefore,

n+1
Z a,-ei(O) = 0,
i=1

n+1

Z aVe;(0) =0.
i=1
Observe that ¢;(0) =0U/0x;(0) =0,i=1,2,...,n, e1(0)=(n—-2)/2, Ve,r1(0) =0
and that Ve (0),...,Ve,(0) are linearly independent. Therefore, we get a; =0,
i=12,...,n+1.
Hence z =0 and ¥; — 0 weakly in W2’"(R"), which completes step 2.
We now show that |[¥}|y2, () = 0(1). By Lemma 4.2, we just need to estimate

12U~ %1000, 107~ ¥ 10, IF (8 10q a0 IF ()l We begin with

IF(#)]| 2oy < CUNUP 4 ([log U + 1) 1o(q
+ llg;lv; — Ulp_l_sj”Lq(gj) + u;‘,‘"/q + I Up_l—ej”Lq(Qj))

< C(1+|¢;

L'(Q,-)” |vj — U!p_l—gj”uﬂ(gj))
< C(1+ oMl

For, |||v; — UP~'™% 12y = 0(1), by Lebesgue’s Dominated Convergence Theorem and

q >n/3.

IF (8l < CUIUP' "% (llog Ul + 1)l g,
+ sl lor = UP ™ iy + g™+ 107 ()
< C(L+ ligll=@pll 15 = UP Il ay)

<C(l1+ 0(1)”¢j“L°°(n,~))'
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Hence
(4.12) 1F(8;)/ M| Loy + | F(8))/ M;

Now let f; =pUP~'¥;. Let R be a fixed number. Then

1/q l/q
15l Loy < (J U(p—l)q|y/j|q) +<J U(p—l)q|y/j|q)
2,1 Bx(0) QN B, (0)

2/n
UP“) 111y

L)) = 0(1)

(4.13)

< Cll¥ | a(gro)) + (J

ly|=R

Similarly, we have

(4.14) 15l @) < CIY¥;

1r(Br0)) T R L @))-

Note that by Step 2 ¥; — 0 weakly in W2'(R") and strongly in W'"(Bg(0)) for any
fixed R. By Lemma 4.3, (4.12), (4.13) and (4.14), letting j — o0 and R — o0, we get
||5”j”W2>r(R~) =o0(1). O

From Lemma 4.4, we see that |4, ||, ) < C(r) for n <r <oco. Hence by (4.5),
we have ||4,[|y2-g, ) < C(r). By Lemma 4.2, we can extend ¢, to R", still denote it by
@., such that ||@,||p2r g < C(r) for n<r<oo. Now we fix r >n. For any sub-
sequence ¢;, we can take a further sequence, still denoted by ¢;, such that ¢, — w weakly
in W>'(R") and ¢, — w in C}, (R"). As before, from now on, we denote ¢, by ¢;,....

We first show that w is a bounded solution of equation (3.3). To this end, we need
to show that F(4;) — —C(n,x0)U?log U — pH (x0,%0)U?"" in L*(R"). In fact,

172 (F(¢;) + C(n,x0) U log U + pH (x0, X0) UP ")
< C(I ™ — (0 — ) U™ 9(d — H(xa, %o + pp)) — U™
+|UP~% — UP — C(n,xo)y]'.’_ZUp log U|
+ 72| pUP' ¢ — (p — &) UP™' 7% (8; — H(x0, X0 + 1)) — pH (x0,%0) UP "
=1L + I, + 1L,

where II;,II, and II; are defined at the last equality.
By using the fact that |@;|;. gy < C and |H(xo, X0 + p;y) — H(x0, Xo)| < Cpyly|, we
have that

1Ih| < Cui ¢, — H| < Cui+?
1| < o) 2UP~*[log U|?
L] < C 'y UP~! < .

So, we have that |Ij| ) — 0, I=1,2,3.
Hence w is a weak (thus classical) solution of equation (3.3).
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Let w; = x(u;y)w(y) where x(x) =1 when xe€ Bg(xo) = £ and x(x) =0 when
x ¢ Bik(xp) = 2. One can see that ¢, — w; satisfies the following equation

A(¢; — w)) +pUP™'(4; — w;) = —F(¢;) — C(n, x0) U” log U — pH (x0, x0) UP~"
+ (1 = x)C(n,x0) UP log U + p(1 — y)H (x0, x0) UP~!
=2V, xVw — dyxw
(4.15) =Ni+DL+J;

where Ji,J,,J3 are defined by the last equality.

To finish the proof of Proposition 3.3, we just need to show that
14; - Wj”WZr(Q,,j) =o(1).

Let us first estimate J,,J3. Observe that w satisfies equation (3.3). Let G(y) =
pUP~'w 4 C(n, xo) UP log U + pH(xo, x0)UP™!. It is easy to see that |G(y)| < Cly|™
for |[y| > 1. By Lemma 2.3 in Li and Ni [10], we have that |w| < C|y|_2 for |y| > 1.
Similarly, we see that [Vw| < Cly|™> for |y| > 1.

Hence we have that

(4.16) 2]l oy < Crig™™4 = o(1),
(4.17) 1921l () < Crig™™" = 0(1)
and that

(4.18) I3l @) < CrelWllwargny = o(1),
(4.19) 13 Loy < Cut™% = o(1).

For J;, we estimate as we did in Lemma 4.3 and we will get [Ji]lzq,)

+ N1l gy = o(1).
Similar to Lemma 4.3, we have

lpUP~" (8; — ) 2o

2/n
(4.20) < Cllg; — will (a0 + (J U‘D+l) (145 — will)))5

ly| =R

(4.21) lpUP~(¢; - Wil < Clid; — will L groy + R(|lg; — w; r@))-

Now (4.16)-(4.21) imply that ||@; — wjl|lp2. (o) = o(1). By Sobolev Imbedding
Theorem, we have ||¢; — WJ'HL“’(BK/,.S) = o(1).

Finally, if there are two sequences ¢ and ¢, such that ¢, — w and ¢e; —w, we
claim that w = w/. In fact, both w and w’ satisfy equation (3.3) and have the properties
that w(0) = w/(0) = H(xo,xp), and Vw(0) =Vw'(0) =0. Now let z/ =w —w', then
Z € X. By the same argument as we did in Lemma 4.4, we have z/ = 0. We conclude
that ¢, — w as ¢ » 0. Hence ¢, — w in L*(Bg/, (x0)) as e > 0. [
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