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0. Introduction.

Let X%(t,x) (t=0,xe R% &> 0) be the solution of the following stochastic differ-
ential equation:

dX*(t,x) = b(X?(t,x)) dt + &2 a(X*(t, x)) dW (2),

(0.1)
X4(0,x) = x,

where b(-) = (b'(-))ZL,: R¥—R? is Lipschitz continuous, where o(-) = (o¥ ()):1 =1
R4 My(R) is bounded, Lipschitz continuous, and uniformly nondegenerate, and where
W(-) is a d-dimensional Wiener process (see [11]). X*(z,x) can be considered as the
small random perturbations of X°(¢,x) for small ¢ (see [8]).

Let D( = R?) be a bounded domain which contains the origin o, with C2-boundary
0D, and suppose that b(x) = o if and only if x =0. The asymptotic behavior of the

first exit time 75 (x) of X*(¢,x) from D defined by
(0.2) 75(x) = inf{z > 0; X*(¢,x) ¢ D}

has been studied by many authors.
The first result on the asymptotic behavior of 74 (x) as ¢ — 0 was given by M. L
Freidlin and A. D. Wentzell (see (5], [7], (8], [18]).

THEOREM 0.1 ([8], p. 127, Theorem 4.2 and [19], Lemma 1). Suppose that X°(t, x)
€D (t>0) and lim,_, X°(t,x) =0 for all xe D. Then the following holds; for any
xeD and 6 > 0,

li_r'% P(exp((Vp —9)/e) < 15(x) < exp((Vp +3)/¢)) = 1,
(0.3)
}:i_l_g elog E[t5(x)] = Vb,

where we put

04) Vp= inf{j; lo(p(s)) ™ (do(s) /ds — b(p(s)))I” ds/2; 9(0) = o, () € oD,

{p(s);0<s<t} = D,t> 0}.
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In the case where the origin o is not asymptotically stable, the asymptotic behavior
of 75(x) as ¢ — 0 was first studied by Y. Kifer (see [12]). To explain his result, let us
give some notation. Put 4; = {x € D; there exists s = s(x) <0 such that X°(¢,x) ¢ D
for t < s and such that X°(t,x) e D for t >5. X°(¢,x) » o0 as t — 0}; 4, = {xe D;
there exists s = s(x) > 0 such that X%(¢,x) ¢ D for ¢ > s and such that X°(¢,x) € D for
t<s. X%t,x) > o0 as t— —w}; A3 = {xe D; there exist s; = 51(x) >0 > 55 = 5,(x)
such that X°(¢,x)¢ D for te(—o0,s)U(s;,0), and such that X°(¢,x)eD for
H<t< Sl}.

The following is the assumption in [12].

(A.D). D has C?-boundary dD. D= {0}UA;UA;UA3 and 4,U A3 is not empty.
b(-) is differentiable at 0. The eigenvalues of (6b*(0)/ 6xj)f j=1 have non-zero real parts.

Denote by A the maximum of the real parts of the eigenvalues of (9b'(0) /axj)f =1

which is positive under (A.D). Then the following is known.

THEOREM 0.2 ([12], Theorems 2.1 and 2.2). Suppose that (A.D) holds. Then for
any 6 >0 and xe A U{o}\0D,
lim P(|z&(x)/log(e /@) — 1] <d) =1,
(0.5) 20
lim E[z}(x)]/log(e™ /@) =1,
£—
and for any 6 >0 and x € AU A3\0D,

lim P(|h(x)/2h(x) ~ 1] <&) = 1,

(0.6) ' i
lim E[z(x)] = th(x).

The reader can find the large deviations results for 7% (x)/log(e"1/?4) in [16], and
the central limit theorem for 75 (x) — log(e™/?Y) in [4].

The condition that D = {o}UA; UA,U 43 is a topological one, and it does not
imply that the eigenvalues of (8b'(0)/ ax,-)j.f j=1 have non-zero real parts. In Theorem
0.1, (ab'(0)/ 6xj)?j j=1 can be a zero matrix, in which case the origin is not exponentially
stable (see [10]). For example, the assumption in Theorem 0.1 is satisfied in case d = 1,
D=(-1,1) and b(x) =—x> for |x| <1. In this case db(0o)/dx =0 and X°(t,x) =
x(1 +26x2)712,

Therefore the following problem comes out naturally; study the asymptotic behavior
of 78(x) as ¢—0 when D={o}U4;UA4UA; with 4,UA3 # &, and when
(ab"(o)/(?xj):{jzl is a zero matrix.

In this paper we study the asymptotic behavior of 74 (x) when D = {o}UA4;, in
which case the origin o is a repulsive equilibrium point, and when (8b(0) /6xj)g j=1 182
zero matrix.

In section 1, we state our result. In section 2, we give lemmas which are necessary
for the proof of our result. In section 3, we prove our result. In section 4, we consider
the special class of the case D = {0} UA;UA,U A3 as an application of the results in

section 1.
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1. Main result.

In this section we give our main result.
Let us first introduce our assumptions.
(A.0) D(< R% is a bounded domain which contains 0. b(x) = o if and only if

x =o.
(A.1) There exist positive constants / and C; such that for x e D

(1.1) [6(x)| < Calx|™*.

(A.2) D= {0}UA4,, and there exist positive constants &,,7 and C, such that for x
with |x| < d,,
(1.2) (x,b(x)) = Colx|*2.

The following is our first result.

THEOREM 1.1.
(I)  Suppose that (A.0)—(A.1) hold. Then for any T € (0,1),

(1.3) lim{ sup  P(t5(y) < s'T’/(”Z))} = 0.

e—0 Iyl <gl/(¢+2)

(IT) Suppose that (A.0)—(A.2) hold. Then for any T > 1,

(1.4) lim{inf P(t5(y) < 8_”/(”2))} =1.
e—0 | yeD

(ILI) Suppose that D = {0} U A,. Then for any x € D\{o} and 6 > 0,
(L1.5) liné P(|75(x) — 19(x)| < 6) = 1.

The following corollary can be easily obtained from Theorem 1.1.

COROLLARY 1.2. Suppose that (A.0)—(A.2) hold. Then for any 6 > 0,

(16) ll_l_;% P(g—(l—é)l/((+2) < T%(O) < 8—(1-!—6)[/([-{—2)) -1.

RemArk 1.1. Corollary 1.2 implies that X*(¢,0) leaves D at time of order
¢ ?/¢+2) This is a big difference between the case ¢ = 0 (see Theorem 0.2) and the case
£>0. 15(0) is, as ¢ —> 0, of order log(l/¢) when £ =0, but it is, as ¢ — 0, of
polynomial order of ¢! when # > 0. Moreover the asymptotic behavior of 7% (o) as
¢ — 0 depends on the first derivatives of » when ¢ = 0, but it does not depend on the
derivatives of » when ¢ > 0.

We also have the following result.
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THEOREM 1.3.
(I) Suppose that (A.0)—(A.1) hold. Then for any ¢ > 0,

(1.7) 1iminf{e<1—5>f/<f+2) inf E[r}“')(y)]}zl.

e—0 |yl <gl/(t+2)

(II) Suppose that (A.0)—(A.2) hold. Then for any 6 > 0,

(1.8) lim sup{a“”)f/(ﬂz) sup E[Tf)(y)]} <1l
e—0 yeD
(II) Suppose that (A.0)—(A.2) hold. Then for any x € D\{o},
(1.9) lim E[zh ()] = 7 (x).

From Theorem 1.3, (I) and (II), we get the following corollary.

COROLLARY 1.4. Suppose that (A.0)—(A.2) hold. Then
(1.10) liné{log E[t%(0)]}/log(e™/“*P) = 1.

If a(x) =o(x)o(x)*, b(x) and 0D are sufficiently smooth, then u%(z,x)=
P(t%(x) < 1) e CY?3((0,0) x D; R) and v*(x) = E[t%(x)] € C?(D; R) satisfy the following,
respectively (see [6]);

ou’(t,x)/0t = 8{ Sd_: a¥ (x) 0% (e, x)/@x,-@xj}/Z
ij=1

(1.11) +ibi(x)8u£(t,x)/6x,~ (t>0,xe D),
i=1

u¥(0,x) =0 (xeD),
w(t,x)=1 (¢=0,xedD).

d d
s{ Z aij(x)azus(x)/(?xi(?xj}/Z + Z b (x)0v*(x)/ox; = =1 (x e D),
(1.12) P

i,j=1
¥(x) =0 (xedD).
Put (¢, x) = u?(e"%/“+2) x). Then Corollary 1.2 can be rewritten as follows.
COROLLARY 1.5. Suppose that (A.0)—(A.2) hold. Then
. 0 ift<1
1.13 it = ’
(1.13) lim @ (t,0) {1 if 1> 1.
2. Lemmas.

In this section, we give lemmas which are necessary for the proof of our results.
The following lemma plays a crucial role in this paper.
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LeMMA 2.1. Let f(t) and g(t) (t = 0) be positive continuous functions.
(I)  Suppose that there exists a positive constant C such that the following holds for
all t > 0;

2.1) 7(1) < exp (c J; £(5) ds) o(0).
Then
22) r<a0/(1-c [ oo w)

as far as 1> C | g(s)ds.
(I1)  Suppose that there exists a positive constant C such that the following holds for
all t>0;

(2.3) £(0) = exp(é JO 7(s) ds> 4(0).
Then for all t >0,

1>C J; g(s)ds,
(2.4) ,
£(0) = g0 / (1 -¢ | a9 ds).

Proor. We first prove (I). From (2.1),

(2.5) —d[exp(—C J; 1) ds)] / dt < Cq(1).

Integrating both sides of (2.5) in ¢, we get for ¢ > 0,

(2.6) 1-C J:) g(s)ds < exp<—C J; f(s) ds),

from which we get (2.2).
Let us prove (II). In the same way as in (2.6), we get for ¢z > 0,

(2.7) 1-C J; g(s)ds > exp(—é J; f(s) ds) > 0,

which implies (2.4). Q.E.D.
The following lemma is given the proof for the sake of completeness.

LemMa 2.2 (see [10]). Let f(¢),u(t),g(¢), and v(t) (t = 0) be positive continuous
functions.

(I) Suppose that there exists a positive constant C such that the following holds for
all t > 0;

(2.8) ) <C+ J; u(s)f (s) ds.
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Then for all t >0,
t
(2.9) f(t) < Cexp (J u(s) ds).
0
(II)  Suppose that there exists a positive constant C such that the following holds for
all t>0;

(2.10) f()=C+ J; v(s)f (s) ds.
Then for all t > 0,
(2.11) f(t) = Cexp (L v(s) ds).

Proor. Since (I) and (II) can be proved similarly, we only prove (I).
From (2.8), for all t >0

(2.12) dU; u(s)f (s) dsexp(—J; u(s) ds)] / dt < Cd[*exp<— J; u(s) ds)] / dt.

From (2.12), we get (2.9) easily. Q.E.D.
The following lemma will play a crucial role in the proof of Theorem 1.1, (I).

LemMMmA 2.3, Suppose that (A.0)—(A.1) hold. Then for any T > 0, there exists gy > 0
such that for € < g,

(2.13)
P(TSD(X) < 8—Tt’/(t’+2))
< P(lee—T{’/((+2)((|x|2 +82/(/+2))1/2
+ sup el/?

0 SSSE—TI/(1+2)

J;axa(s, R + D)2 x5, x), o(X*(5,2)) dW ()

e~ T¢/(¢+2)

o J Tracela(X*(s, x))](| X% (s, x)|* + /D)2 ds/2)! > 1)2),
for all x e D. ’
ProoF. By the Ito formula (see [11]), for t e [0, min(t%(x),e T¢/(+2))],
(2.14)  (|X%(t, x)|* + /4212
(|12 +32/(’+2))1/2

+ J;(X (5, X), b(X°(5, x))) (| X2 (s, %) |* + &2/ +D)~1/2 gs

+e JO[Trace[a(Xs(s, x))] — (a(X?(s, x)) X°(s, x), X?(s, X))

[(1X%(s, %) + &/ CDN(1X* (s, x)P + D)2 ds/2
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< (|xP + /2 4 Oiugt el/?
Su<

Ju(,Xe(S, x)IZ +82/({+2))*1/2
0

x (X°(s, x),0(X°(s, x)) dW(s))

t
te J Tracela(X*(s, x))](1X*(s, %) 2 -+ &/ ¢+2Y"2 gg 2
0

!
* J C11X (s, %) (| X3(s, x)|* + ¥/ €+D)1/2 g
0

from (A.1).
From (2.14) and Lemma 2.2, for t e [0, min(t$(x),e T¢/¢+2)),

(2.15)  (1X°(2, x))* + /D12

< ((xP+HMN2 4L sup 2

OSMSS-T(/(1+2)

U
JO(IXE(s, x)[? + &)1

x (X%(s, x), 6o(X*(s, X)) AW (s))

o~TE/(¢+2)

+e J Tracela(X* (s, x))](|X%(s, x)|* + /C+2)71/2 g5 /2)
0

X eXp (Jl Ci1X%(s, x)| ds)

0

= F(e) exp( r C1| X%(s, x)|’ds).

0

From (2.15), we get

(2.16) |X2(e, %)) < F(e)* exp(/Cl J; | X2 (s, x))fds).
Suppose that

(2.17) Cite TR < 1)2.

Then from Lemma 2.1, for ¢ e [0, min(z%(x), e~ T¢/¢+2)],

(2.18) |X?(t,x)] < 2YCF(e) < (C£) e+,

which means that t§(x) > ¢~ T¢/+2)_if ¢ is sufficiently small, depending on D.

Q.E.D.

Put

(2.19) 2 (x) = inf{r > 0; | X°(t,x)| = 8,}

(see (A.2) for notation). Then the following lemma will be used in the proof of
Theorem 3.1.
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LeMMA 2.4. Suppose that (A.0) and (A.2) hold. Then for any « >0 and T > 1,
there exists ¢y > 0 such that for ¢ < &,

(220)  P(gy(y) > e/D)3)

< P(sup

0<t<e?D)3 n> 1} > Iyl/z),

o L(|X€(s, WE+1/m) 77X (5,9),0(X5(s,7)) dW (s)) |

for any y for which |y| > g/(¢+D-«(T-1),

Proor.

(2.21) P((y) > e74/(+23)

< P(supf

a(X*(s,y)) AW (s))

O [0+ 1) ),

0<t<e?D/3 n> 1} > |y|/2)
+PE) > e OD 3 (X (1) + 1/0) 2 2 (y + 1/m)
~bI/2+ [ (X B X + 1) s
foralln > 1,1 € [0,6/“*+D/3)),

since for n > 1 and te [0, min(z(y),e~*/+2)/3)], by the Ito formula (see [11] and
(2.14)),

(2.22)
(X 2) +1/m)2 = (b + 1/m)'

/2 J0(|X8(s,y)|2'+ l/n)_1/2<X6(S,y),O'(XS(SLY))dW(S)>

t
i J0<X8(s, »)BXE (s, ) (X (s, ) + 1/m) ™' s
Let us show that the second probability on the right hand side of (2.21) is zero for
sufficiently small &. Suppose that t%(y) > ¢~¢/(*+?) /3 and that the following holds for all
n>1 and te[0,e/¢+2)/3];

223) (X)) + /)" = Iy + 1/n)' > = |y|/2

+ J;<X£(S’J")vb(/\’e(s,)))))(IX‘E(S,)/)I2 +1/n)" 2 ds.
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Then we get for e [0,67%/(¢+2) /3]

t
(2.24) X2t )] = l/2 + L ColX*(s, )| ds
from (A.2), and henceforth
t
(2.25) x> blex( [ cilxla) /2

from Lemma 2.2.
From (2.25), we get for te [0,e7¢/(¢+2)/3],

(2.26) X1, )|” = (191/2) exp <fC2 L |X6(s,y)|‘ds),

and from Lemma 2.1, for y(|y| > e!/(¢+2)-«T-1))

(2.27) 1> /Cz[g—f/(f+2)/3](|y|/2)f _ [fcz/zf]é,—a{(T-l)/?,‘
This does not hold if ¢ is sufficiently small, depending on 7> 1 and « > 0. Q.E.D.

d a2\ 2 2 ~1 ,
Put |ja(x)|| = (Zi,j:l a’(x) ) and C = (Ci)"sup, e |la(x)""||. The following

lemma will be used in the proof of Theorem 3.1.

LemMMA 2.5. Suppose that (A.0)-(A.2) hold. Then for any o >0 and B >0 for
which B> a(¢ +2), and any T e (1,1 + {a(¢ +2)}™"), there exists gy > 0 such that for
e < &,

8—T(/((+2)/3

(2.28) P(J (a(X%(s, x)) " b(X*(s, x)), b(X?(s, x)))ds > &' PT- /2,
0

sup ‘Xe(t, x)l < 81/(I+2)—(T—1)az>

0<1<eTe/+2) /3

e~ T/(¢+2) /3
< P(C J 1X(s, %) [PV ds > ! -AT-1 2,

0
& T+ 13
RV JO (|1X%(s, %)/ X°(s, x), 0 (X%(s, x)) AW (5))
e‘T//(l+2)/3 2l4l
<G, J 1X%(s, x) P ds2 |,
0

for all x e D.
PrOOF. Suppose that the following holds;

(229) sup |X€(t, x)l < 81/(/+2)—(T‘1)°‘,

0<r<e T/(0+2) /3

(a(X%(s, %)) " b(X%(s, X)), B(X?(s, x)))ds = e FT-D /2,

e~ T¢/(¢+2) /3
(2.30) J
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Then from (A.1) and (2.30), we get

e T¢/(e+2) /3

(2.31) C J | X% (s, %) 2D ds > T /2,
0

Suppose also that the following holds;

e~ T¢/(e+2) /3

(2.32) /2 JO (1X°(s, )| X2(s, x), a(X°(s, %)) AW (s)

r—n/mz) /3

>-C, 1 X% (s, x) 2D ds/2.

Then we get the following contradiction if ¢ is sufficiently small. From (2.29), 75,(x) >
e~ T¢/¢+2) /3 for sufficiently small ¢ > 0, depending on D, since 1/(¢ +2) > (T — 1)a.
By the Ito formula (see [11] and (2.14)), putting yiyj|y|/_2 =0ify=0 (i,j=1,...,d),

(2.33) g =UAT-Na(p 4 9)
> |Xe(e7T) 13,02 /(¢ + 2)

&~ T7/(¢+2) /3
> j 1002 (s, %)1F (X*(5, %), B(X*(s, %)) ds
0

+ e26(X%(s,x)) dW (5))

e T¢I+ /3 e~ T¢/¢+D) /3

> j G| X%(s, x)12<‘+1>ds+J | X%(s, x)|*
0 0

x (X*(s,x),&20(X(s,x)) dW(s)) (from(A.2))

e—T(/(/+2)/3

> j G| X (s, x)|2({+1) ds/2 (from(2.32)).
0

From (2.31) and (2.33),
(2.34) 81—(5+2)(T—1)a/(/+2) > (C2/(4C))e!AT-D),

which does not hold for sufficiently small ¢, since f§ > a(¢ + 2). Q.E.D.

3. Proof of main resulit.

In this section we prove Theorems 1.1 and 1.3. Since (III) in Theorem 1.1 is an
easy consequence of Freidlin-Wentzell theory (see [8]), we omit the proof.
Let us first prove (I) in Theorem 1.1.

y 1/2
ProOF OF (I) IN THEOREM 1.1. Put C(0) = sup, g (Zf j=1 07 (x)z) . Then from
Lemma 2.3, by the time change (see [11], Chap. 4, section 4), there exists a one
dimensional Wiener process W such that the following holds; for 7 € (0,1) there exists
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& > 0 such that for ¢ < g and x(|x| < 81/(f+2))’

(3.1)
P(rf)(x) < 8—T£’/((+2))

< P(c]/‘g—T(/({-}-Z){281/(/-{-2) + sup 81/2

OSSSE—T//((+2)

t
J et 4 sy

X (X°(s,x),0(X°%(s, x)) dW (s))

o~ T¢/0+2)

¢
+¢ J Tracela(X*(s, x))] (| X%(s, x)|* + &/ ¢+2)71/2 ds/Z} > 1/2)
0

< P<C1/8—T[/([+2){281/((-0-2) + C(a.)g[(l—T)f+2]/[2((+2)] sup ,W(S)I

0<s<1

4
+ C(o)%l0-T+11/(e42) /2} >1 /2)

0<s<

< P(C(a)g<1-T>/2 sup |W(s)| = (2clz)"/’/2),

which converges to 0 as ¢ — 0 (see [8], Chap. 3, sections 2, 3). Q.E.D.
Next we prove (II) in Theorem 1.1.
ProoF oF (IT) IN THEOREM 1.1. Take y >0 and T, > 0 so that

(3.2) inf {sup{dist(X°(¢,x),D);0 < t < T,};|x| = J,} = y,

which is possible from (A.2).
Since we only have to prove Theorem 1.1, (II), for T > 1 such that T —1 is

sufficiently small, we assume that T < (¢ +3)*/[¢/(¢/+2)]+ 1. Then for sufficiently
small &€ > 0, we have the following (see (2.19) for notation);

(3.3)  P(5(x) < g T/(¢+2))

0<t<eT¢/(¢+2) /3

> P( sup |X€(t, x)l > 81/(/+2)—(T—1)t’/(/+3)2,Tz(x) < 28_T(/({+2)/3,

sup | X°(¢, X*(i(x),x)) — Xo(t, X4(té(x), x))| < y) (from(A.2))

0<t<T,

> inf{P( sup | X(2, y)| = 81/(¢’+2)—(T—1)//(/+3)2> :

0<t<eT0/(+2) /3

ly| < 81/(/+2)—(T—1)//({+3)2}
x inf {P(rf;(y) <& T2 13) 1y > 81/(z+2)_(r_1)z/(/+3)2}

X inf{P( sup |X%(t,y) — X°(t,»)| < y); Iyl = 6o,y GD},

0<t<T,

uniformly in x € D, by the strong Markov property of X* (see [11]).
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Since the last probability in the last part of (3.3) converges to 1 as ¢ — 0, which is a
fundamental fact in Freidlin-Wentzell theory (see [8], Chap. 3, sections 2, 3), we only
have to prove the following theorem to complete the proof. Q.E.D.

TueorREM 3.1. Suppose that (A.0)—(A.2) hold. Then for any Te(l,1+
(¢ +3)/[¢(2 +2)),

: e — (T 2
(34)  lmup{P((y) > & T 3); y] 2 DT — g,
(3.5) lim | sup P( sup |X'3(z,y)’<81/(5’1“2)—(T—1)5’/(f+3)2 :
=0 \0<t<eTe+2) /3

Iyl < sl/<f+2>—<r—1>f/<f+3>2}> =0.

ProOF. Let us first prove (3.4). Put a =7/(¢+3)>. Then for any y for which
|y| > 81/((+2)—a(T—1),

(3.6)  P(zj(y) > /23

< P(supf

0<t<e /30> 1} 2 IJ’I/2>,

O [[1X P 1)), 00X (53 )

provided that ¢ > 0 is sufficiently small (from Lemma 2.4).

The probability on the right hand side of (3.6) converges to 0, as ¢ — 0, uniformly
in y(|y| = /*+2-«T-1)) " This can be proved, by the time change (see [11], Chap. 4,
section 4), in the same way as in (3.1).

Next we prove (3.5). Put f=a((/+2)>+1/2)/(/+2), then for y for which
(ly| < 61/({+2)—(T—1)f/(/+3)2)

0<t<eT0/+2) /3

(3.7) P( sup |X4(t,y)| < 81/(”2)'“”_1))

< P( sup |X£(t,y)1 < 81/([+2)—(T—1)a,

0<t<eT¢/(¢+2) /3

e T4/ /3

JO (a(X*(s, y))-lb(Xs(S,y)), dX*(s, y)) < gl—ﬂ(T—l))

+P sup |X£(l,y)l < 81/(I+2)—(T—1)a,
0<t<eT¢/(¢+2) /3

& T//(/+2)/3

| e b, dx ) > e“'“T‘”) .
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Let us show that the first probability on the right hand side of (3.7) converges to 0,
as ¢ — 0, uniformly in y(|y| < &!/¢+2-+(T-1),

Let Y%(t,x) (t>0,xe R? ¢ > 0) be the solution of the following stochastic differ-
ential equation:

dY*(1,x) = e2a(Y*(1, X)) dW (1),

G38) Y%(0,x) = x.

Then by Maruyama-Girsanov formula (see [11]),

(3.9) P( sup IX2(t, )| < /€2~ (T=Da

O0<t<eT¢/(+2) /3

e~ T¢/¢+2) /3
[ e e (s ), X, < s"”‘T—l))

=E

e TC/¢+2) /3
exp{ UO (a(Y*(5,9)) ' B(Y*(s,7)),dY"(s,))

e Te/e42) /3
| o Yﬂ(s,y»“b(Yﬁ(s,y»lzds/z] / }

sup IYE(t,y)‘ < 61/(/+2)—(T—1)a,

0<t<eT4/6+2) /3

JS—TI/(/+2)/3

(s, ) B (5,0)), dY (5, )) < g—ﬂ”‘”}

< exp(s-W-”)P( sup | ¥e(1,y)| < al/““)-”-““),

0<t<eT¢/(¢4D) /3

and by the time change (see [11], Chap. 4, section 4), there exists a one dimensional
Wiener process W and a positive constant C; such that for y(|y| < e!/¢+2—(T-1x),

(3.10) p( sup |Y2(t,y)| < 81/({’+2)—(T—1)a)

0<t<eT¢/(e+2) /3

< P( sup | Y2(t,y) — pt| < &/EFDT-De lyll>

OStSE~T(/(I+2)/3

p -1/2
< P( sup |W(1)| <232 (inf{z o' (2)%z e Rd})

0<t<l ot
X E(T—1)a(((+2)2+1)/[2(z+2)])
< exp(—C3g-(T-l)a((t’+2)2+1)/(z+2))

for sufficiently small ¢ >0 (see [11], Chap 6, section 9). Here we used that o =
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2/(¢+3)%. (3.9)—(3.10) completes the proof, since

(3.11) B<a((£+2)°+1)/(¢+2),

from the construction (see above (3.7)).
Next we show that the second probability on the right hand side of (3.7) converges

to 0, as ¢ — 0, uniformly in y(|y| < !/(+2)-«(T-1)),

(3.12) P( sup |X£(t,y)| < 81/((+2)~(T~1)<x,
OSISS'"/(’“)/:}
e~ T¢/(6+2) /3

J 0
e T¢/(¢+2) /3

< P(JO <a(X£(S,y))“1b(Xs(s, y)), b(Xe(s, y)))ds < 81~ﬂ(T~1)/2,

(a(X*(s,)) " b(X%(s,)),dX*(s,y)) > sl_ﬂ(T_l))

g T+2) 3

/2 J
0

+P( sup IXe(t’y)l < 81/(/+2)—(T—1)a’

0<t<eT¢/(¢42) /3

(0(X(5,)) " 'B(X*(s,)),dW (s)) = e PT1)/ 2)

e T2/(E+2) /3

L (@(X*(5, )" B(X*(5,7)), B(X*(s,y)))ds = s‘-ﬂ”-”/z).

The first probability on the right hand side of (3.12) can be shown to converge to 0,
as ¢ — 0, uniformly in y(|y| < &'/¢+2-«(T-1)) This can be proved by the time change
(see [11], Chap. 4, section 4), since 7> 1 and § > 0.

Putting R = C,/(2C(0)’), the second probability on the right hand side of (3.12)
can be shown to converge to 0, as ¢ — 0, uniformly in y(|y| < e//(+2-4T=1)) a5 follows;
for sufficiently small ¢ > 0,

e—T2/(t+2)
(3.13) P (J /3<a(X£(s,y))_lb(X€(s,y)), b(X:(s,y)))ds > gl—ﬁ(T—l)/Z,
0

sup lXa(t,y)l < 81/((+2)—(T—1)¢x)
OSISE—T//(I+2)/3

&~ T¢/(¢+2) /3
P(C L | X%(s, y) ) ds > ! FT-D /2,

e T¢/e+D) /3

§\2 L X (5, 7)1 X¥(5, %), 6(X*(s, 7)) dW (5))

IA

e T¢/(+2) /3

< —CZJ | X% (s, y)|2(f+1) ds/2> (from Lemma 2.5)
0
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T+ /3

<E eXP{—Rel/" JO (1X°(s,»)| X°(5,¥), 6(X*(s, ) dW (s))

e TC/(¢42) 3

— RC, j 1 X%(s, )P ds/z};

0

e TC/(+2) 3

o J | X%(5, )P ds > g! AT /2]
0

T+ /3

exp{—R81/2 JO (X5, 0)"X*(5, ), 5 (X*(s,)) dW (s))

e~ T¢/(642) /3

R jo o(X(5,)) Xo(s, ) | X¥(5, ) [¥ ds 2

=F

e T2/(6+2) /3

T R% jo 1o (X*(5,))" X*(5, ) 2 |1X* (5, ) ds 2

e TC/(+2) /3

-RG, XG5, )Y ds/z};
0
e—T/(¢+2) /3
C J |X%(5, )PV ds > gD /2]
0

8—T(/(!+2)/3

<E eXp{—Rﬁl/2 JO (1X°(s, 2| X%(5, ), 0 (X°(s, 7)) dW (5))

e T¢/(642) /3
* ye 2 £ 2/
_ R% JO (X (s, ) X (s, )P |X°(s, ) ¥ ds 2

e~ T¢/(¢+2) /3

+ L 1X%(s, )2tV ds(R*C(0)%€ — RC,) /2};
e—T?/(¢+2) /3

C L |Xe(s,y)|2({+1) ds > sl_ﬂ(T_l)/2

< exp([—(C2)*/ (BC(o)%6)}e' P71/ 20))

¢~ T¢/(+2) /3

x E |exp (—Ral/ ? L (1X*(5, 7)1 X*(5,),0(X*(5,)) dW (s))

e Te/42) 13

~R% JO |o(X*(s,2))" X (s, 9)I* | X*(s, )| dS/2>]

< exp(—(C)* P71 /(16C(5)*C)) (see [11] for exponential martingales)
—0 ase—0. Q.E.D.

RemARk 3.1. It turns out that there exists a positive constant C’ such that the rate
of convergence in Theorem 1.1 is less than exp(—&~C!7~1l) for T for which |T — 1] is
sufficiently small. This is also a big difference between the case £/ = 0 and that £ > 0
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(see [16]). In fact when # =0, in Theorem 0.2, (0.5), there exists C” > 0 such that
(3.14) P(15(0) > (1 4+ d)log(e™V/)) > &
(see [16]).
Let us prove Theorem 1.3.
PrOOF OF THEOREM 1.3, (I). For y for which |y| <¢&/“*2 and ¢ > 0,
(3.15) E[th(0)] = E[ty(); th(y) = & (17072
> g1/ p(z€ (3) > g~(1-0)¢/(¢+2)y

> 8—(]—5)//(/-{—2) inf P(‘L'ED(Z) > 8—(1—(5)//(!4—2))'
|z| <el/(e+2)

(3.15) and Theorem 1.1, (I) completes the proof. Q.ED.
Next we prove Theorem 1.3, (II).

Proor oF THEOREM 1.3, (II). For ye D and J > 0,
-1
(3.16) Elty()] < 6‘(”‘”””’”){32% P(zy(z) < & 19/ “”))} ,

which completes the proof from Theorem 1.1, (II).
Let us show that (3.16) is true.

0
E[Tf)(y)] < 2 8—(1+6)£’/(/+2)(k+ 1)
k=0

x P(E—(IM)(/(Z—G-Z)k < TED(y) < 87(1+§){/(l+2)(k+ 1)),
and for each n > 0,

n

8—(1+5)f/(/+2)(k+ 1)
k=0
x P(E—(IM)Z/(/+2)k < TE()’) < 8—(1+5)t’/({+2)(k+ 1))

_ Z g~ (1H0)/(642) p(=(H9)E/ 42 | < 28 (1))
k=0
— (D) (g 4 )P (14 1) < 2 (0));

and for each k£ > 0, by the Markov property of X*(¢,x)
P(e= I (k1) < 25(»))
— P(g—(1+(5){’/(/+2)k < T;)(y),g—(l+5)//({+2) < T;‘)(Xe(s—(l+6){/(l+2)k,y)))

< P(g—(1+5)//((+2)k < T;)(y)) sup P(g—(1+¢5)t’/((+2)) < ‘L'E)(Z))
zeD

k+1
< {sup P(e~(1+9)/1042) < rg(z))} ,
zeD

inductively in k. Q.E.D.
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Finally we prove Theorem 1.3, (III).

Proor oF THeoreM 1.3, (III). We first prove the following; for x € D\{o}
(3.17) lim inf E[z}(x)] 75 (x).
For 6 € (0,7%(x)), put

(3.18) inf{dist(X°(t,x), D);0 < t < 1% (x) — 8} = y(x,9),
which is positive from (A.2). Then

(3.19) E[t5(x)] = E|t5(x); sup |X%(t,x) — X°(t,x)| < y(x,é)]

0<r<d(x)—6

> (19(x) — 5)P< sup | X%(t,x) — X°(1,x)| < y(x,é)).
0<r<19(x)—d
The probability in the last part of (3.19) converges to 1 as ¢ — 0, which is a fundamental
fact in Freidlin-Wentzell theory (see [8], Chap. 3, sections 2, 3). Since d > 0 can be
arbitrary small, we get (3.17).
Next we prove the following; for x € D\{o}

(3.20) limsup E[z%(x)] < t9(x).
£—0
Put
(3.21) S(x) = {y e D) > B(x)}.
Take r > 0 so that
(3.22) U (o)NS(x) = &.
Then
(3.23) (1 — sup P(thH(y) > o y)) sup E[t5(»)]
yedS(x) yeoS(x)
< sup E[min(tp(y), 7y, ) (7))
yedS(x)
+ sup P(tp(y) > 106 (0)) sup E[t5, ()],
yedS(x)
since
(3.24) sup E[tp(y)] < sup E[min(th(y), 1y (o (V)]
yedS(x) yedS(x)
+ sup  E[tp(0) — 15,0 () 5 () > T 0 W]
yedS(x)
< sup E[mln(TED(y)7ral],(o)c(y))]
yedS(x)

+ sup P(tp(y) > 1y () sup E[zp(»)],
yedas(x) yl=r
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and since

(3.25) sup E[sp(0)] < sup E[t5y ()] + sup E[tp ()]

To complete the proof, let us prove the following;

(3.26) lin(l){ sup P(tp(y) > 7y )(y))} =0,
yedS(x)
(3.27) ling{ sup P(tp(y) > 7,5 (¥)) sup E[t, (y)]} =0,
EY\veds(x) yl=r
(3.28) lim sup{ sup  E[min(75(»), 7,0 (y))]} < 79 (x).
e—0 yedS(x)

Let us first prove (3.26). For ¢ > 0, put
(329) 1l =1n(x0))
= min(inf {sup{dist(X°(¢,y), D); 0 < t < 1% (x) + 6};y € 8S(x)},
inf {inf {dist(X°(t,y), U,(0));0 < t < % (x) +}; ¥ € 8S(x)}),

which is positive from (A.2). Then there exists C(x,d) > 0 such that for sufficiently
small ¢

(3.30)  sup P(tp(y) > 1, (1)) < sup P( sup IXs(t,y)—XO(t,y)IZn)
yedS(x) yeaS(x) 0<r<7d(x)+6

< exp(—C(x,0)/¢)

(see [8], Chap. 3, sections 2, 3), which shows that (3.26) is true.
Next we prove (3.27). From Theorem 1.3, (II), for sufficiently small e,

(3:31) sup E[t) ()] < sup E[r50)] < g7 2/D),
y|I=r ye

(3.30)—(3.31) shows that (3.27) is true.
Finally, let us prove (3.28). Put

(3.32) T(r) = sup{t%(2); |z| = r}(= sup{7%(2);|z| = r}),
and for J > 0, put
(3.33) 7 =#(x,0) = inf{sup{dist(X°(z,y),D);0 < t < T(r) + 6};y € D\U,(0)}
(= inf{sup{dist(X°(t,y),D);0 < t < T(r) +6}; |y| = r})
which is positive from (A.2). For any y e dS(x),
(3.34) E[min(t5(y), 75,0 0))]
= E[min(z},(y), 7y, oy (0)); min(zp (), 7,0 (0)) < T(r) + 9]
+ E[min(tp(y), Tu,(o)f(J’))len(TD(J’)a TU,(o)‘(J’)) > T(r) +9].



Asymptotic behavior of the first exit time 113

The first quantity on the right hand side of (3.34) can be considered as follows (see
(3.29) for notation);

(3.35)  E[min(t}(y), 7y, o (¥)); min(zh(y), Ty, o () < T(r) +9)]

< E|min(ch(»), 7,0 (0));  sup [ X(t,) — X°(1,y)] < ﬂ]
0<r<d(x)+0
+ E|min(zh(y), 75,0 (0));  sup | X°(t,y) = X°(t,)| = 7,
0<t<Th(x)+9

min(t(y), 1y, (7)) < T(r) +6

S(T%(X)Jré)l’( sup IX‘(t,y)—XO(t,y)l<n)

0<r<19(x)+6

+(T(r) +5)P( sup  |X°(,y) = X°(t,3)| = '7)
0<r<7d(x)+o

— 10 (x)+J ase—0,

uniformly in y € S(x) (see [8], Chap. 3, section 2, 3).
The second quantity on the right hand side of (3.34) can be shown to converge to 0,
as ¢ — 0, uniformly in y € 0S(x) as follows;

(3.36)  E[min(zp(y), 7y, o) (¥)); min(zp (), 7, o (V) = T(r) 4]

< i(T(r) +0)(k + 1)P((T(r) + 6k
k=1
< min(tp (), 73,0 ) < (T(r) +9)(k + 1))

o ¢]

<2(T(r)+6) > P((T(r) + )k < min[c},(»), 75, oy )])
k=1

k
< 2(T(r) +5)Z{ sup  P((T(r) +9) Smin[ffp(y),f%,(o)c(y)])}

yeDNU,(0)°

(in the same way as in (3.16))

=2(T(r) +9) S P((T(r) +06) < min[tp(y), 7y, (0)])

-1
X (1 — sup P(T(r)+06) < min[rZ(y),TZ,(o)c(J’)]))

yeDNU,(0)¢

—0 ase—0.
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This is true, since for y € DN U,(0)°

(3.37)  P((T(r) +9) < min(zp(y), 7y, (¥))) < P(o«iurr() " 1X2(t,y) = X°(1,)] = ﬁ)

—0 ase—0,

uniformly in y € DN U,(0)° (see [8], Chap. 3, sections 2, 3).
(3.35)—(3.36) completes the proof, since 4 > 0 can be taken arbitrary small.
Q.E.D.

4. Case D= {0}UA1UA2UA3.

In this section we consider the special class of the case D = {o}UA4;UA,U 43, as an
application of the results in section 1.

Let us first introduce the assumptions.

(H.1). o(x) is an identity matrix. There exist d; and d;, for which d; + d) = d,
and b : R4 R% and b, : R%— R% such that b(xl,xz) = (bl(xl),bz()Q)).

For x = (x1,x;) € R = R" x R%, let {X¥(t,x1)},5, and {X§(¢,x2)},5, be the
solutions to the following stochastic differential equations;

dXi(t,x1) = by(XE(t, x1)) dt + /2 dW (1),

(4.1)
X7(0,x1) = xy,

dX3(t,x2) = ba(X5(t, x2)) dt + /% dW) (1),

(4.2)
X5(0,x2) = x3,

where we put W(t) = (Wy(¢), Wa(t)) (see (0.1)). Then X°%(z,x) = (X(¢,x1), X5(2, x2)).

We also assume the following.

(H.2). There exist the domains D; < R%* and D, < R% such that D) =
{01} U {x1 € R%; there exists s = s(x;) <0 such that X?(¢,x;) ¢ D, for t <s and such
that X?(¢,x;) e Dy for t >s. X?(¢,x1) — 01 ast — oo} and that D, = {02} U {x; € R%;
there exists s = 5s(x;) > 0 such that XJ(¢,x;) ¢ D, for ¢ > s and such that X7(¢,x;) € D>
for t<s. X(t,x;) »oyast— —0}. D= Dy x Ds.

Under (H.2), 4 = {(x1,02);x1 € D1\{01}}, and A, = {(01,x2); x2 € D,\{0,2}}, and
A3 = D\({o}U 4, U 4,) (see section 0 for notation).

The following is the last assumption in this section.

(H.3). There exist positive constants ¢ and C; such that for x e 4,

(4.3) lb(x)| < Cilx|™,
and there exist positive constants 50 and C, such that for x € A4, for which |x| < 5,,,
(4.4) (x,b(x)) = Calx|*2.

Under (H.1)-(H.3), the following can be obtained from Theorems 0.1, 1.1, and 1.3.
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THEOREM 4.1. Suppose that (H.1)—(H.3) hold. Then the following holds.
(I).  For any 6 >0 and any x e A1U{o}\oD,

(4.5) EE% p(g—(l—é)f/(f+2) < 5 (x) < 8—(1+&)z/(z+z)) —1,

and

(4.6) limsup e/ CHDE[E (x)] < 1 < lim ié)f g1-90/C+D) g2 (x)].
e—0 £—

(IT). For any 6 >0 and any x e AU A3\0D,

(4.7) lim P(|zh(x) - eh(x)| <9) =1,

and

(4.8) lim Elh(x)] = 7h(x).

ProOOF. Put

(49) tp, (x1) = inf{z > 0; X7(#, x1) ¢ D1},
7p, (x2) = inf{t > 0; X3(1, x2) ¢ D2}

Then

(4.10) tp(x) = min(zp, (x1), 7p, (x2))-

(4.5) can be proved as follows; from (4.10), for x = (x1,0,) € A; U{o}\0D
(411) P(g—(l—é)(/(/-{-?.) < rf)(x) < 8-(1+§)//({’+2))
> P(S—(l—é)t’/(t’+2) < _L_eDz (02) < 8—(1+6){/(f+2),8—(1—5)//(t’+2) < Tle (xl))
—1 ase—0

from Theorem 0.1 and Corollary 1.2.
Next we prove (4.6). From (4.10), for x = (x),0,2) € A1 U{0}\0D,
(4.12) E[t},(02)] 2 E[r)(x)]
> E[t}(x); th(x) > ™17+
> 8—(1—6)//((+2)P(T8D(x) > 8——(1—5)//(/+2)),
which completes the proof from Theorems 0.1, 1.3 and Corollary 1.2.
Since (4.7) can be proved in the routine manner (see [8], Chap. 3, sections 2, 3), we

omit the proof and proceed to the proof of (4.8).
For x = (x1,x3) € A2 U 43\0D,

(4.13) limsup E[z}(x)] < limsup E[t}, (x2)] < 1%2 (x2) = 19 (x)

e—0 £—

from (4.10) and Theorem 1.3, (III).
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We also have the following;
(4.14) liIEILiglf E[t5(x)] = 13(x)(= 1, (x2))-

Let us prove (4.14). For 6 > 0, put

(4.15) inf {dist(X}(1,x2), D5); 0 < t < 1% (x2) — 6} = ¥(x2,0),

which is positive from (H.2). Then

(4.16)  E[tp(x)] 2 Eltp(x); th(x) > 7p,(x2) — ]

> E [15(x); sup | X5 (2, x2) — Xg(t, x2)| < y(x2,9),

OStST%z(xz)vé

th, (1) > 7, (x¥2) = 6

> (tp, (x2) —0)4 P sup | X3(t,x2) — X (8,%2)| < y(x2,9)

OSIST%Z (x2)—0

— P(1%, (x1) <) (x2) — ) ¢.

The first probability in the last part of (4.16) converges to 1 as ¢ — 0, which is a
fundamental fact in Freidlin-Wentzell theory (see [8], Chap. 3, sections 2, 3), and the
second probability in the last part of (4.16) converges to 0 as ¢ — 0 from Theorem 0.1,
which completes the proof, since 6 can be taken arbitrary small. Q.E.D.
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