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1. Introduction

Let X be a finite set and let R;(i=0,1,...,d) be relations on X, i.e., subsets of
XxX. ¥=(X,{R}g.;<q) Is a commutative association scheme of d classes if the
following conditions hold.

(1) Ro={(x,x)|xe X},

(2) XXX =RURiU---UR; and RRNR;=¢ if i #],

(3) 'Ry =Ry for some i’ €{0,1,...,d}, where 'R; = {(x,»)|(y, x) € R;},

(4) for i,j,ke{0,1,...,d}, the number of ze X such that (x,z)e R; and

(z,y) € R; is a constant p{-J‘. whenever (x,y) € Ry,

(5) pk=pk forall i, j, ke{0,1,...,d}.

The non-negative integers pf§ are called the intersection numbers of %.

An association scheme % is called imprimitive if some union of relations is an
equivalence relation distinct from Ry and X x X, and primitive otherwise.

For an imprimitive association scheme %, by rearranging the indices of the relations
of &, let | J;_, R; is an equivalence relation. For each equivalence class X’ of ( J;_, R,
we find an association scheme %' = (X’,{R}}¢.;<,), Where R;=R;N(X' x X’). We
write & 2 %’. Let ~ be the relation on {0,1,...,d} defined by i ~j if and only if
p}’a # 0 for some 0 <a <s. Then ~ is an equivalence relation. Let 7y = {0,1,...,s},
Ti,...,T, be the equivalence classes. Then % /%" = (X, {f{,-}o <i<r), Where X is the set
of the equivalence classes of Ufzo R; on X and R; = {(%,7)| for x € % and y € y we have
(x,y) € R, with a € T;}, is a primitive association scheme.

The reader is refered to [2] and [3] for the general theory of association schemes, and
other terminology.

Let G be a finite group. Let Cy = {1},Cy,...,C; be the conjugacy classes of G.
Define relations R;(i=0,1,...,d) on G by R; = {(x,y)|yx ' e C;}. Then Z(G)=
(G,{Ri}g<i<q) 1s a commutative association scheme of d classes, called the group
association scheme of G. (See [2].)

It is well known that G is simple if and only if the group association scheme % (G) is
primitive.

In the study of association schemes, primitive association schemes play an important
role, similar to the role simple groups play in finite groups. Namely, they are building
blocks of general association schemes in the following sense. For any commutative



44 M. ToMiYyAMA

association scheme %, there exists a composition series, i.e., a sequence % =
Zo2%12 - 2%, = ({x},Ro) such that the composition factors %;/%;.1 are
primitive for 0 <i<r—1. (If we fix xe X, then the schemes %;/% ;1 are uniquely
determined up to isomorphism as association schemes. See [5].)

The classification of primitive commutative association schemes is a hard problem,
too hard to be expected to be solved completely. It would be interesting to classify
some special classes of primitive commutative association schemes. In [1] E. Bannai
proposed that in order to study finite simple groups from the viewpoint of algebraic
combinatorics, it would be interesting and necessary to determine whether the asso-
ciation scheme %Z(G) is the only association scheme having the same intersection
numbers as those of Z(G) for a given simple group G. He posed this question, in
particular, for the alternating group of degree 5 As, the smallest non-abelian finite simple
group. In this paper, we solve this question; namely we prove the following:

THEOREM 1.1. Let % be an association scheme having the same intersection numbers
as those of the group association scheme % (As). Then % is isomorphic to Z(As).

ReMARkS. (1) Most known characterizations of association schemes by inter-
section numbers concern P— (and Q—) polynomial association schemes. But % (As) is
not P-polynomial.

(2) In Section 5, we consider the case G = SL(2,5), which is isomorphic to the
nonsplit central extension of 4s. We also show that Z(SL(2,5)) is the only association
scheme having the same intersection numbers as those of Z(SL(2,5)). (See Theorem
5.1.)

(3) For a finite group G, the character table of G determines the intersection
numbers of Z(G), and vice versa. (See [2].) But the classification of the groups having
the same character table as that of G and the classification of the association schemes
having the same intersection numbers as those of Z(G) are different problems. For
example, the dihedral and quaternion groups of order 8, Dg and Qg, are non-isomorphic
but the association schemes Z'(Dg) and Z(Qs) are isomorphic. On the other hand, there are
exactly three non-isomorphic association schemes having the same intersection numbers
as those of Z'(Ss), where S4 is the symmetric group of degree 4. (See Theorem 6.1.)

2. Intersection numbers

Let % = (X,{Ri}y<i<q) be an association scheme and let Ao,...,4; be the

adjacency matrices of %.
Let

Ri(x) = {y e X|(x,y) € Ri},
Ros3(x)={ye X |(x,y) e RoUR; UR,URs}.

We define the graph (R;(x),R;) as the graph with vertex set R;(x) and edge set
(R,-(x) X R,(X)) n Rj.
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We denote by B; the i intersection matrix of %, defined by

(B:) ik = Pf;
We order the conjugacy classes of 4s as follows:
Co G G G Cq
representative : () (12345) (123) (12354) (12)(34)
|Cil 1 12 20 12 15

Then the intersection matrices of %' (A4s) are as follows:

1 0 0 0 O 0 1 00O 0100
01 0 00O 12 5 310 0 5 3 5 4
Bp=|(0 01 0 0|, Bj=]10 535 4|, B,=|20 5 7 5 8],
00010 0 1 31 4 535 4
000 01 0 0 35 4 5 6 5 4
0 010 0 0 0 01
1 31 4 0 0 3 5 4
B; = 5 354, B4=]0 5 6 5 4
121 3 50 0 53 0 4
0 5 3 0 4 15 5 3 5 2

We assume % = (X,{R;};.;<4) is an association scheme having the same inter-
section matrices as Z(4s).

Let I' = (X, R;), then the adjacency matrix of I" is the 1 adjacency matrix 4; of
% . 1If we know the matrix 4;, then we have the other adjacency matrices of % by using
the equation

4
A =) phi A = 1240 + 54, + 34, + 143 + 044
k=0

So to prove Theorem 1.1, we determine the graph I" uniquely up to isomorphism.

3. Local structure of I”

In this section we show I is locally an icosahedron. We take any x € X and let
4 = (Ri(x), Ri).
For vertices u,v € R;(x), let 0(u,v) denote the distance between u and v in 4. Set
4;(u) = {v e Ri(x)| d(u,v) =i},
S,' = (R] (x) X R1 (x)) ﬂRi,
Si(u) = {v e Ri(x)|(u,v) € S;}.



46 M. Tomryama

By definition, |S;(u)| = p}; for every ue Ri(x). Since pl, =0,S4=¢. From pl, =

pl, =5 and pl; = 1, we have |S)(u)| = |S2(u)| = 5 and |S3(u)| = 1 for every u e Ri(x).
Lemma 3.1. For 0<i<3, S; is the distance relation in A, ie, S;=

{(u, )] 0(u, v) = i}.

Proor. Take any (u,v) € S;. Suppose d(u,v) > 3. Since 4 is regular of valency 5
on 12 vertices, Rj(x) = {u}USi(#)U{v}USi(v) (disjoint union). So we get

S1(v) = S3(u) U (S2(u) \{v})
and
4 = |Sy(u) \{v}| = [S2(u) N S1(v)] < |Ra() N Ry (v)]-

This contradicts p3; = 3. Hence we have d(u,v) = 2.

Next we take any (u,u') € S3. Suppose 0(u,u') =2, then there is some vertex
we Si(u)NSi(#). So w,xe Ri(u)NRy(«). This contradicts p}, =1. So Si(«) =
S>(u). Hence we have d(u,u/') = 3. O

COROLLARY 3.2. For every u,u’ € Ri(x) with d(u,u') =3, we have A1(u) = A>(').
For any u,v e Ri(x) with d(u,v) =1, let
Au,v) = {w € Ri(x)|u ~ w,v ~ w}|,
and for any u,v e Ri(x) with d(u,v) =2, let
u(u,v) = |{w € Ri(x)|u ~w,v ~ w}|.

LemMmA 3.3. We have the following.
(1) wu(u,v) =2 for every u,ve Ri(x) with o(u,v) = 2.
(2) A(u,v) =2 for every u,ve Ri(x) with d(u,v) = 1.

Proor. For every v,we Rj(x) with d(v,w) =1, there is v/ € Rj(x) such that
O(v,v") = 3. Then by Corollary 3.2, 4;(v) = 42(v'). So A(v,w) + u(w,v’) =4. Hence
it is enough to show (1).

Cramm. 1 < u(u,v) <2 for every u,ve Ri(x) with d(u,v) =2.

Suppose u(u,v) > 3 for some u,v € R;(x) with d(u,v) =2. Then at least 3 vertices
of Ri(x) and x are in Ry(u)NRy(v). But this contradicts p?, = 3. Therefore we get
the claim.

By Corollary 3.2 and the claim, we also get 2 < A(v,w) < 3 for every v,w € R;(x)
with d(v,w) = 1. Suppose u(u,v) = 1 for some u,v € R;(x) with d(u,v) =2. Let {w}=
Ai(u)N4;(v). Take u' € 43(u). Then by Corollary 3.2 and {w} = 4;(u) N 4,(v),

{U} U (Al(w) ﬂA](U)) < Al(w) ﬂAl(u’).
So 3 <1+ A(v,w) < u(w,u’), which is impossible. Hence we have (1). O

LemMA 3.4. A4 is isomorphic to the icosahedron.
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Proor. By Lemma 3.3, 4 is distance-regular with intersection array

wnh O *

1 2 5
2 20
2 1

This array easily determines that 4 is isomorphic to the icosahedron. O

By Lemma 3.4, we have I' is locally an icosahedron. The locally icosahedral
graphs are completely classified in [4]. There are precisely three lccally icosahedral
graphs, namely the point graph of the 600-cell on 120 vertices, and quotients of this
graph on 60 vertices and 40 vertices, respectively. But we will give the complete proof
which shows I" is uniquely determined in our situation, because it is elementary and self-
contained.

4. Structure of I
We set
EA = {e = Ri(x)| e is an edge in 4},
FA ={F < Ry(x)| F is a triangle in 4}.
For u e R|(x), let
{t'} = 45(w).
Similarly for e = {u,v} € E4A and F = {u,v,w} € F4, let
e ={u,v} and F ={u,v,w}

Since p}, =p}, =1, for every ue Ri(x) and « € R3(x), we have |Rs3(x)NRy(u)| =
|R1(x) an(a)l =1. So let

{it} = R3(x) N Ry (u),
then
Riy(x) ={u|ue Ri(x)}.
So we get the following lemma.
LemMMA 4.1. For ue R (x) and b € R3(x), u~ D if and only if u=v.

We show the graph (R»(x), R;) is isomorphic to the dual graph 4* of 4, where 4" is
the graph whose vertex set is F4 and two distinct vertices F and G are adjacent if and
only if |[FNG|=2.

For any u € R|(x), let

P(u) = Ra(x) = N Ry (u).

Then |P(u)| =5 because p}; = 5.
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LeEMMA 4.2. We have the following.

(1) P(u) = Ra(x)N Ry (1) for every ue Ri(x).
(2) P(u) is a pentagon for every ue€ R)(x).
(3) P(u)NP(v) is an edge if {u,v} € EA.

4) |P@)NP)NPw)| =1 if {u,v,w}eFAa.
(5) P@)NP() = ¢ if {u,0} ¢ E4.

Proor. (1)—(4) Take u € Rj(x), then we have
Ri(u) = {x} U (R1(x) N Ry (u)) UP(u) U {ir}.

5

(Ry(u), Ry) is isomorphic to the icosahedron by Lemma 3.4. By Lemma 3.1 and
|[Ra(x) N Ri(@)] = p}y = 5, we get (1)-(4).

(5) Take {u,v} ¢ EA, then (u,v) € Ry or R3. If (u,v) € R3, then Ry(u) N R;(v) =
{x} because p}; = 1. If (u,v) € R, then by Lemma 3.3 and p?, =3, Ri(u) NRi(v) =
{x,a,p} where {a,f} = R;(x)N (R () NRy(v)). Hence we get (5). O

By Lemma 4.2, there is a subgraph of (Rz(x), R;) which is isomorphic to 4*. Since
both (Ry(x),R;) and A* are regular of valency 3 on 20 vertices, they are iso-
morphic. So there is a one-to-one correspondence between Ry(x) and FA4. Hence we
set

Ry(x) = {F|F e F4}.

COROLLARY 4.3. For ue Ri(x), F,G e Ry(x), we have the following.
(1) F~G if and only if |[FNG|=2.
(2) u~F if and only if it ~ F if and only if ueF.

Next consider (R3(x), R;).
LEMMA 4.4. For i1, € R3(x),it ~ ¥ if and only if v=1u'.
Proor. Since

(Pgo,sz,,szanpPgﬁ = (p}O)pil’p%Zipi3?pi4) = (1’5,57 1)0)’

we have (R3(x),R;3) is isomorphic to the icosahedron by changing the role R; and
R;. We note the distance-2 graph of the icosahedron is isomorphic to the icosahe-
dron. So (R3(x),R;) is isomorphic to the icosahedron. It is enough to show
(1,0) e R, if (u,v) € R;. Because the mapping “: (Ri(x),R;) — (R3(x), Ry)(ur>)
becomes a graph isomorphism, the distance-3 graph of (R;(x), R;) is (R;(x), R3) and the
distance-3 graph of (R3(x),R,) is (R3(x), R)).

For wu,ve Ri(x) with 0d(u,v) =1,|P(u)NP(v)| = |R2(x)NRi () N R (D)| =2 by
Lemma 4.2(1)(3). So (i,7) ¢ Rs because p3, = 1. Since v,#t € Ri(4) and they are at
distance 2 in (R;(u), R;), we get (v,&t) € R, by Lemma 3.1. Since p?, =3,

{u} U (P(u) N P(v)) = Ri(v) N Ry ().
So (u,0) ¢ R;. Hence we get (i1,D) € R,. O
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For any & € R3(x), let
Q(#) = Ra(x) N Ry (&)
Then |Q(#1)] = 5 because p3; = 5.

LEMMA 4.5. We have the following.

(1) Q@) = Q@) for it e Ry(x),

() 1Q@NQ®)| =1 if i+,

(3) let {a} = Q(&) N Q(D) for it + b, then R3(x)NRy(a) = {ir,&',,9'}.

Proor. Take i, 7€ R3(x) such that # # 9. By Lemma 4.2(1),
R3(x) N (Ry (&) N Ry (D)) = Ry(x) N(Ry (&) N Ry (D)) = P(u) N P(v).

By the proof of Lemma 4.4, (u,v) € R; if and only if (&#,0) e R;. So from Lemma

4.2(3)(5), we get
0 if (#,0) € Ry,

|RS3(x) N (Rl(fl) an(f)))I = { 2 if (fl, f)) € Rz,
0 if (i,9) € Rs.

(1) Since (it,u’) € Ry and p}, =5, we get (1).
(2) p} =3 and p}, =1 imply (2).
(3) It is easy from (1)(2) and p}, = 4. O

Take any e = {u,v} € EA. As it + d,eUe determines one vertex in R4(x). Since
|E4|/2 = |Ra(x)|, we set
Ry(x) ={e|le=¢ =eU¢,ec E4}.
COROLLARY 4.6. For i1 € R3(x), €€ R4(x), it ~€ if and only if ueeUe.
For any F € Ry(x), let
T(F) = Ra(x) N Ry(F).
Then |T(F)| = 3 because pZ, = 3.

LeMMA 4.7. We have the following.
(1) T(F) is a triangle for every F € Ry(x).

2) |T(F)NT(G)| =1 if |[FNG|=2.
(3) For F~ G, T(F)NT(G) = {e} where e=FNG.
(4) For F ~ G, let {g} = T(FYNT(G). Then Ry(x)NR, () = {F,G,F,G}.

Proor. Let F = {u,v,w} and {a,B,7} = Rs(x) N Ry (F).
(1)(2)(3) Take G = {u,v,w1}, H = {u,vi,w}, I ={u1,v,w} € FA4. Then by Corollary

4.3, N
{u, v, W} = R] (x) N R] (F),

{évﬁ’i} = Rz(X) an(F);
{it, b, w} = Rs3(x) N Ry (F).
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By Lemma 4.1 and Corollary 4.3, we know the subgraph on these vertices. (R;(F), R;)
is the icosahedron by Lemma 3.4. So we get

a~ﬂ’ﬂ~ V¥~
and we may assume
a~ G~ u,a~7D.
So we get (1)(2). By Corollary 4.6, « = {u,v,u’,v'}. Hence we have (3).
(4) Since F/NG' =¢ and & =e=eU¢, we get T(F')NT(G') = {&} by (3). So
P, =4 implies (4). O

Let & be a graph whose vertex set is R4(x) and two distinct vertices ,f are adjacent
if and only if there is some F € FA4 such that e,f < F or e,f’' = F. Then @ is regular of
valency 4 on 15 vertices.

COROLLARY 4.8. For F € Ry(x), e,f € Ry(x), we have the following.
(1) F~eifandonly if ecF or € = F
(2) e~f if and only if there is some F € FA such that e,f < F or e, f < F.

Proor. (1) It is clear from Lemma 4.7(3)(4).

(2) If there is F € FA such that e,f < F, then F ~¢ and F ~f from (1). By
Lemma 4.7(1), e ~f. So & is the subgraph of (R4(x), R;). Since (R4(x),R;) is also
regular of valency 4 on 15 vertices, we get @ = (R4(x),R;). So we have (2). O

PrOOF OF THEOREM 1.1. From these Lemmas and Corollaries, (X, R;) is expressed
in terms of 4 = (R;(x),R;) as follows:

Ry(x) = {F|F e F4},

Ry(x) = {i|ue Ri(x)},

Ry(x) ={e|e=¢€,eec EA},

Uu~vu=mu,

F~Ge|FNG| =2,

u~Foiu~FoueF,

F~esecForédcF,

¢ ~ f < there is some F € FA such that e, f € F or e, f' < F.

So we know I is uniquely determined. Therefore we have completed the proof of
Theorem 1.1. d

5. Group association scheme of SL(2,5)

In this section, we consider Z(SL(2,5)). We order the conjugacy classes of
SL(2,5) as follows:
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(0 000 0O0O0OT1TTO (O 0000 O0O0DO0 1\

0 0 0 001 3 5 12 0000 O0O0OOT1TOWO

0 000 25335 0 0 000 O0OT1TO0UO

0 001 2031 0 000 0O0OT1TUO0OTO0OTPO
B,=]10 03 5 45360 0}, Bg=]|]00UO0O0OT1TO0TUO0TO0OO
0 1 3021200 O 00010 O0O0O0O

0 5352000 O0 001 00 0O0O0O

12 5310000 O 01 000 O0OTO0OO

\O 1 0000 0O 0) \1 0000 0 OO 0)

We assume % = (X, {R;}o.;<3) is an association scheme having the same inter-
section numbers as those of Z(SL(2,5)).
For any xe X, let 4 = (Ry(x),R;). Since

(Pioaph,P%zaPh,Phan-ap%g) = (175a571’0,"'a0)a
(p%l’p%hp:l;]ap‘lt]a e ap?l) = (1275>3a 1707 s 70) andp%2 - 3;

by the same arguement in section 3 we have 4 is isomorphic to the icosahedron. So we
have (X, R;) is the point graph of the 600-cell on 120 vertices from the classification of
the locally icosahedral graphs in [4].

So we get 1¥ adjacency matrix A; is unique. By the equation

A’ = 1240 + 54, + 34, + A3,
we have A, and A;. Similarly by two equations

A2 =2040 + 541 + 64, + 444 + 5As + Aq,
A3? = 1240+ 34, + 545 + 747

we have all the other adjacency matrices. So we have # is unique. Hence we have the
following theorem.

THEOREM 5.1. Let % be an association scheme having the same intersection numbers
as those of the group association scheme % (SL(2,5)). Then % is isomorphic to
Z(SL(2,9)).

REMARK. We also show that (X, R;) is unique by the similar arguement in Section
4. (X,Ry) is expressed in terms of 4 = (R;(x),R;) as follows:

Ry(x) = {F|F e F4},

R3(x) = {it]u € Ri(x)},

Ry(x) = {e|e e E4),

Rs(x) = {a|ue Ri()},

Ro(x) = {E|F e F 4},

Ry(x) = {u|ue Ri(x)},

Rg(x) = {x},
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Uu~vteou~IS I~ uUu="1,
u~Foig~Fou~Foia~F o ucekF,
F~GoF~G&eFNG| =2,
Fr~eeoF~r~eoeckF,
u~esiu~esuce,

¢ ~ f < there is some F € F4 such thate,f < F,
u~vES U~

U~ x.

6. Group association scheme of Sj

We order the conjugacy classes of S4 as follows:

CO Cl Cz C3 C4
representative : () (12)(34) (123) (1234) (12)
|Cil 1 3 8 6 6

Then the intersection matrices of Z'(Ss) are as follows:

1000 0 (0100 0 00100
01000 32000 00300
Bo=|0 01 00| B=|0oo0300]| B=|828400],
00010 0001 2 000 4 4
0000 1) \0o 0 0 2 1) 000 4 4
00 0 1 0\ (0000 1)
000 12 000 2 1
Bi=|0 00 4 4|, Bi=|0oo0 o0 4 4
6 2 30 0 04300
\0 4 3 0 0 \6 2 3 0 0/

We assume % = (X, {Ri}g.;<4) is an association scheme having the same inter-
section matrices as Z(Ss). Let R = Z?:o iA; be the relation matrix of #%.

RemArk. If we order the conjugacy classes of Ss as follows:

CO Cl C2 C3 C4
representative : () (12)(34) (123) (12) (1234)
|Cil : 1 3 8 6 6

then we have the same intersection matrices. So if we have two sets of adjacency
matrices {Ao,..., A4} and {4j,..., Ay} such that A;=A} and A, = A4}, then the
corresponding association schemes are isomorphic.

By the intersection matrices, % is imprimitive and U?:o R; is an equivalence
relation.
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For each equivalence class X', %" = (X', {R}};_o1,) has the intersection matrices

100 010 00 1
BO=(010), B1=<320), Bz—<003).
00 1 0 0 3 8 8 4

. . .. . D E
These matrices determine an association scheme uniquely. So we have R = ( ),

‘E D
where
(001 1 1 2222/]2222)
101 12222|2222
1101} 2222|2222
11 102222|2222
222201112222
p_|2222] 101112222
2222|1101 {2222
2222 1110]2222
222222220111
222222221011
222222221101
\2 2 2 2 22221110)

Let Xi,X>,...,Xs be partition of X such that X; UX,U X3 and X4U X5U Xg are
equivalence classes of U?:o R; and (x,y) € Ry if and only if x,y € X; for some i with
1<i<é6.

To find A3, let F be the submatrix of 43, whose rows and columns are indexed by
X1UX2U X3 and X3 U X5 U Xg, respectively. We decompose F into 9 submatrices F [i.J]
whose rows and columns are indexed by X; and Xj, respectively.

We set F, is a x™* row of F for xe X;UX>U X3 and F* is a x'* column of F for
xeXsUXsUXs. Then

2 fx#yandx,yeX; (1 <i<3),
<anFy): . .. ..
3 ifxeX,yelX;,i#j(1<i,j<3),
and
(F*, ) = 2 %fx;éy andx,y.eX.,-(4s'i's6),
3 ifxeX,yeX;,i#j(4<i,j<6),

where (, ) is a usual inner product. We know for 1 <i <3 and 4 <j < 6, there are
some permutation matrices P and Q such that

1 100 1 100
1 10 1 010
PEaj@=10 0 1 1| ™ fo 1 01
0 0 1 1 0 0 11
By these properties, we determine F.
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The group association scheme of As

The corresponding association schemes are iso-

F1 or Fz.

Assume we have F
morphic if and only if there are some permutation matrices P and @ such that

F, or J — F,, where J is the all one matrix.
Therefore, up to isomorphism, there are exactly three possibilities for F. So we

PF,0

have E is one of the following:

)

I

— ™~ —
St n<ton enton<t | ton<ton tnent | it Nt | tonnon <
tngon | tenteon|on<ton <t <ttt on|longtston
Nt Tt | <tTonTaon Nttt | tenen <t o<t <t on
ntTont|nton<t|on<ton <t Nttt ntgtFon|rtnon <t
T nentTionTrTon |t onon <t Tt NNttt on <
e nent( tenengton<t <t on <t o ot ngTgont | FTon<ton
Nttt tonent | FTonon <t Nt | FTtonon|onen - <
Nt ton(lenttton|on<t <ton NNt T | ot |+ttt onaen
Ittt nninntt (T tronaen Tt | Tt on|tonton
t oI Nnn | e nnton| ittt n|enton <t
nmNT T | T | <ttt onen Nttt iongtgon<t | T onon
g tlinonttionon <+ <t nenttlionontstlionon - <+
— — N—— —

I I

R R

— BN
t o nengt|itonont|lon<tton
<t Nt ot ton |  ttonon <
Nt TTonao Nt FTonon -
NIt n Tt gt o
ttneon|enent <t |onton <
Tt ntonlontong | ot on
Nttt it TonFon
NNttt |ttt nenjnton <t
Ittt nen ittt nen | onen <+ <
tntTeon o<t | Tt onon
nnt(ontent | Tt onon
nenttrtinengstslonon - <
~— _

Il

R
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THEOREM 6.1. There are exactly three non-isomorphic association schemes having the
same intersection numbers as those of % (Ss).

ReMARKS. (1) If E = E;, then ¥ ~ (S,).

1 100
1 010
(2) The number of Fj;; such that PF|; ;0 = 01 0 1 for some permu-
0 0 11
0 if E=E,,
tation matrices P, Q is ¢ 6 if E =E,,
4 if E=E;.

(3) By using computer, we have the order of Au?(%), the automorphism group of
%Y.

1152 if E=E;,
|[Adut(®)| =4 24 if E=E,
64 if E =E;.
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