Asymptotic expansions and Stokes multipliers of the confluent hypergeometric function Φ_2 II. Behaviour near (∞,∞) in $P^1(C) \times P^1(C)$

By Shun SHIMOMURA

(Received Dec. 5, 1994) (Revised Oct. 24, 1995)

1. Introduction.

The confluent hypergeometric function

$$\Phi_2(\beta, \beta', \gamma, x, y) = \sum_{m,n \ge 0} \frac{(\beta)_m(\beta')_n}{(\gamma)_{m+n}(1)_m(1)_n} x^m y^n$$
 (1.1)

with $(\beta)_m = \Gamma(\beta + m)/\Gamma(\beta)$ satisfies a system of partial differential equations

$$xz_{xx} + yz_{xy} + (\gamma - x)z_x - \beta z = 0,$$

$$yz_{yy} + xz_{xy} + (\gamma - y)z_y - \beta' z = 0$$
(1.2)

(see [4, §5.9]) for $(x,y) \in P^1(C) \times P^1(C)$. Observing that $(x-y)z_{xy} - \beta'z_x + \beta z_y = 0$, we can verify that (z,xz_x,yz_y) satisfies a Pfaffian system which possesses the singular loci $x=0,\ y=0,\ x=y$ of regular type and $x=\infty,\ y=\infty$ of irregular type, and that the solutions of (1.2) constitute a three-dimensional vector space over C. In the previous paper [6], we defined linearly independent solutions $z_+,\ z_0,\ z_-$ admitting integral representations. Modifying the paths of integration, we obtained monodromy matrices with respect to them. The main theorems in [6] give the asymptotic properties of them near the singular loci $x=\infty$ (y is bounded) and $y=\infty$ (x is bounded), that is to say, asymptotic expansions in powers of 1/x and 1/y, respectively, and Stokes multipliers. By a connection formula, the asymptotic behaviour of $\Phi_2(\beta, \beta', \gamma, x, y)$ itself is also clarified near these singular loci.

The present paper gives asymptotic expansions and Stokes multipliers of linearly independent solutions as (x, y) tends to (∞, ∞) . Consequently, we know the asymptotic behaviour of the general solutions in the whole tubular neighbourhood around the singular loci of irregular type. As in [6], an integral of the form

$$\int_{C} t^{\beta+\beta'-\gamma} (t-x)^{-\beta} (t-y)^{-\beta'} e^{t} dt$$
 (1.3)

(by Erdélyi [2], [3]) satisfying (1.2) plays an important role. (For the integral see also [1], [5].) The difficulty of our problem is caused by the fact that the three singular loci $x = \infty, y = \infty, x = y$ meet at one point $(x, y) = (\infty, \infty)$. In Section 2, we define four

solutions of (1.2) expressible in the form (1.3) and five domains of which the union covers the full neighbourhood of $(x,y) = (\infty,\infty)$. In each domain, we examine the asymptotic behaviour of a suitably chosen triplet of linearly independent solutions. In Sections 3 and 5, we state main theorems which give asymptotic expansions and Stokes multipliers, respectively. They are proved in Sections 4 and 6. In the final section, we explain the asymptotic behaviour of Φ_2 .

Throughout this paper, we assume that none of the complex numbers β , β' , $\gamma - \beta - \beta'$, $\beta - \gamma$, $\beta' - \gamma$ and $\beta + \beta'$ is an integer. For a complex number λ , we use the notation

$$e^{(\lambda)} = \exp(2\pi i \lambda). \tag{1.4}$$

2. Preliminaries.

2.1. Integrals.

Let \mathcal{R} be the universal covering space of the domain $\{(x,y) \in \mathbb{C}^2 \mid |x| > M, |y| > M, y - x \neq 0\}$, where M is a sufficiently large positive constant. Consider the domain

$$\Delta = \{(x, y) \in \mathcal{R} | 0 < \arg x < \pi < \arg y < 2\pi, \ \pi < \arg(y - x) < 2\pi\},\tag{2.1}$$

which is simply connected. For $(x, y) \in \Delta$, we put

$$z_{+}(\beta, \beta', \gamma, x, y) = (1 - e^{(\beta)})^{-1} \int_{C(x)} f(x, y, t) dt,$$
 (2.2)

$$z_0(\beta, \beta', \gamma, x, y) = (1 - e^{(\gamma - \beta - \beta')})^{-1} \int_{C(0)} f(x, y, t) dt,$$
 (2.3)

$$z_{-}(\beta, \beta', \gamma, x, y) = (1 - e^{(\beta')})^{-1} \int_{C(y)} f(x, y, t) dt,$$
 (2.4)

$$z_*(\beta, \beta', \gamma, x, y) = (1 - e^{(\gamma - \beta - \beta')})^{-1} \int_{C_*(0)} f(x, y, t) dt$$
 (2.5)

with

$$f(x, y, t) = t^{\beta + \beta' - \gamma} (t - x)^{-\beta} (t - y)^{-\beta'} e^{t}.$$
 (2.6)

Here the paths of integration and the branch of each integrand are taken in such a way that they have the following properties:

- (i) C(0), C(x), C(y) and $C_*(0)$ are loops which start from $t = -\infty$, encircle the points 0, x, y and 0, respectively, in the positive sense, and end at $t = -\infty$.
 - (ii) These paths are located as described in Fig.1.
 - (iii) The branch of f(x, y, t) in each integral is taken such that

$$\arg t = \pi$$
, $\arg(t - x) = \pi$, $\arg(t - y) = \pi$ (2.7)

at the endpoint $t = -\infty$ of the corresponding path of integration.

By modifying the paths of integration, we obtain the analytic continuations of these integrals to the whole domain \mathcal{R} , which are also denoted by the same notation. Furthermore they are often expressed by appropriate abbreviations. For example the function $z_+(\beta, \beta', \gamma, x, y)$ is written as z_+ or $z_+(x, y)$, when it is not necessary to indicate the variables or the parameters. As was shown in [6], the integrals z_+, z_0, z_- are linearly independent solutions of (1.2). Note that $(1 - e^{(\gamma - \beta - \beta')})z_* = I_1 + I_2 + I_3$. Here I_1, I_2, I_3 are integrals along the contours C(y), C(0), -C(y), respectively, of which integrands are determined in such a way that, at the endpoints of the paths of integration, (arg t, arg(t-x), $arg(t-y) = (-\pi, \pi, 3\pi)$, $(\pi, \pi, 3\pi)$, (π, π, π) , respectively (see Fig.2). Since $I_1 = e^{(\gamma - \beta - \beta')}(e^{(-\beta')} - 1)z_-$, $I_2 = e^{(-\beta')}(1 - e^{(\gamma - \beta - \beta')})z_0$, $I_3 = (1 - e^{(-\beta')})z_-$, the new integral z_* is written in the form

$$z_* = e^{(-\beta')}z_0 + (1 - e^{(-\beta')})z_-; (2.8)$$

hence z_+, z_*, z_- are also linearly independent solutions.

Note that integral representation (2.3), with unmodified path C(0), gives the analytic continuation of z_0 to the domain

$$-\pi/2 < \arg x < 0, \quad \pi < \arg(y - x) < \arg y < 3\pi/2. \tag{2.9}$$

Assume that $(x,y)=(e^{-\pi i}x',y'-x')$ satisfies (2.9) and that $\arg((y'-x')-e^{-\pi i}x')=$ arg y'. Then we have $\pi/2<\arg x'<\pi<\arg y'<\arg (y'-x')<3\pi/2$. In (2.3), we replace $(\beta,\beta',\gamma,x,y)$ by $(\gamma-\beta-\beta',\beta',\gamma,e^{-\pi i}x',y'-x')$, and put t=v-x'. Then the resulting expression is $e^{-x'}z_+(\beta,\beta',\gamma,x',y')$. Applying the same replacement to (2.4) in

Fig. 2.

domain (2.9), we obtain the integral $e^{-x'}z_{-}(\beta, \beta', \gamma, x', y')$. Using the uniqueness of analytic continuation, we have the following proposition.

Proposition 2.1. We have

$$z_{+}(\beta, \beta', \gamma, x, y) = e^{x} z_{0}(\gamma - \beta - \beta', \beta', \gamma, e^{-\pi i}x, y - x), \tag{2.10}$$

$$z_{-}(\beta, \beta', \gamma, x, y) = e^{x} z_{-}(\gamma - \beta - \beta', \beta', \gamma, e^{-\pi i} x, y - x)$$
 (2.11)

on \mathcal{R} , where $\arg((y-x)-e^{-\pi i}x)$ is to be $\arg y$.

Starting from integral representations (2.2) and (2.4) in the domain $\pi < \arg x < 3\pi/2 < \arg y < 2\pi < \arg(y - x) < 5\pi/2$, we arrive at the following proposition:

Proposition 2.2. We have

$$z_{-}(\beta, \beta', \gamma, x, y) = e^{x} z_{+}(\beta', \gamma - \beta - \beta', \gamma, y - x, e^{\pi i} x), \tag{2.12}$$

$$z_*(\beta, \beta', \gamma, x, y) = e^x z_-(\beta', \gamma - \beta - \beta', \gamma, y - x, e^{\pi i}x)$$
 (2.13)

on \mathcal{R} , where $\arg(e^{\pi i}x - (y - x))$ is to be $\pi + \arg y$.

Consider the analytic continuations of (2.4) and (2.5) to the domain $0 < \arg x < \pi/2 < \arg y < \arg(y-x) < \pi$, and those of (2.3) and (2.4) to the domain $\pi/2 < \arg x < \pi < \arg(y-x) < 2\pi < \arg y < 5\pi/2$. Then, putting t = v - y, in these integrals, we have the following results:

Proposition 2.3. We have

$$z_{+}(\beta, \beta', \gamma, x, y) = e^{y} z_{-}(\gamma - \beta - \beta', \beta, \gamma, e^{-\pi i} y, e^{-\pi i} (y - x)), \tag{2.14}$$

$$z_{-}(\beta, \beta', \gamma, x, y) = e^{y} z_{*}(\gamma - \beta - \beta', \beta, \gamma, e^{-\pi i} y, e^{-\pi i} (y - x))$$
 (2.15)

on \mathcal{R} , where $\arg(e^{-\pi i}(y-x)-e^{-\pi i}y)$ is to be $\arg x$.

Proposition 2.4. We have

$$z_{-}(\beta, \beta', \gamma, x, y) = e^{y} z_{0}(\beta, \gamma - \beta - \beta', \gamma, e^{-\pi i}(y - x), e^{\pi i}y),$$
(2.16)

$$z_*(\beta, \beta', \gamma, x, y) = e^{y} z_{-}(\beta, \gamma - \beta - \beta', \gamma, e^{-\pi i}(y - x), e^{\pi i}y)$$
 (2.17)

on \mathcal{R} , where $\arg(e^{\pi i}y - e^{-\pi i}(y - x))$ is to be $\pi + \arg x$.

2.2. Domains.

Let r, r', R and ε be arbitrary positive constants satisfying $1 < r < r' \le 5/4$, R > 1, $0 < \varepsilon \le 1/24$. Consider five domains defined by

$$\begin{split} D_{1}(r) &= \{(x,y) \in \mathcal{R} | |x| > r|y| \}, \\ D_{2}(r) &= \{(x,y) \in \mathcal{R} | |y| > r|x| \}, \\ D_{0}(R) &= \{(x,y) \in \mathcal{R} | 0 < |y-x| < R \}, \\ D'_{0}(R) &= \{(x,y) \in \mathcal{R} | R/2 < |y-x| < |x|/3 \}, \\ D_{\star}(r',\varepsilon) &= \{(x,y) \in \mathcal{R} | 1/r' < |y/x| < r', |y-x| > (1/3-\varepsilon)|x| \}. \end{split}$$

The union of them covers \mathcal{R} completely. By E we denote an arbitrary one among them. Then $E \cap \Delta$ is connected and not empty. Let c(E) denote the connected component of E including $E \cap \Delta$. In the subsequent sections, we are concerned with the asymptotic behaviour of the solutions z_+ , z_0 , z_- , z_* in c(E). In the other connected components of E, we can also derive the asymptotic representations from those in c(E), using the monodromy matrices M_0 , M_1 and M_2 (cf. Section 6 and [6, Proposition 2.1]).

3. Asymptotic expansions.

Before the statement of our results, we give some definitions of asymptotic expansions in two variables. Let K(U,V) be a formal power series defined by $\sum a_{mn}U^mV^n$ $(0 \le m < +\infty, 0 \le n < +\infty)$. Denote by $K_N(U,V)$ $(N \in N)$ the partial sum of K(U,V) over (m,n) such that $m+n \le N$. We write $\eta = y/x$. Let Y be a variable y or y-x. Let $f(x,y), u(\eta)$ and $v(\eta)$ be functions holomorphic in a sector of the form

$$S_0 = \{(x, y) \in E \mid |\arg x - \theta_1| < \Theta_1, |\arg Y - \theta_2| < \Theta_2\}$$

 $(\theta_j \in R, \Theta_j > 0 \ (j = 1, 2))$, where E denotes one of the domains defined in the preceding section except $D_0(R)$. If, for every positive integer N, there exists a positive constant M_N such that

$$|f(x,y) - K_N(u(\eta)/x, v(\eta)/Y)| \le M_N(|x|^{-N-1} + |Y|^{-N-1})$$

in S_0 , then we say that f(x,y) admits the asymptotic expansion $K(u(\eta)/x,v(\eta)/Y)$ as (x,Y) tends to (∞,∞) through the sector S_0 . In E, at least either η or η^{-1} is bounded. Suppose that, for every $(x,y) \in E$, the variable η belongs to a bounded set E' ($\subset C$). Let $t(\eta)$ and $w(\eta)$ be functions holomorphic in E'. If, for every positive integer N, there exists a positive constant M_N such that

$$|f(x,y) - K_N(t(\eta)/x, w(\eta)/x)| < M_N|x|^{-N-1}$$

in a sector of the form $\{(x,y) \in E \mid |\arg x - \theta_1'| < \Theta_1', \eta \in E'\}$ $(\theta_1' \in R, \Theta_1' > 0)$, then we say that f(x,y) admits the asymptotic expansion $K(t(\eta)/x, w(\eta)/x)$ uniformly for $\eta \in E'$ as x tends to ∞ through the sector $|\arg x - \theta_1'| < \Theta_1'$. For each fixed $\eta \in E'$, we can analogously define an asymptotic expansion in powers of $(t(\eta)/x, w(\eta)/x)$ as x tends to ∞ through the sector $|\arg x - \theta_1'| < \Theta_1'$. In what follows, to indicate the asymptotic relations defined above, we use the notation

$$f(x,y) \sim K(u(\eta)/x, v(\eta)/Y)$$
 $((x, Y) \longrightarrow (\infty, \infty) \text{ through } S_0),$ $f(x,y) \sim K(t(\eta)/x, w(\eta)/x)$ $(x \longrightarrow \infty \text{ through the sector}$ $|\arg x - \theta_1'| < \Theta_1' \text{ uniformly for } \eta \in E'),$

respectively. If the quotient f(x,y)/g(x,y), where g(x,y) is a given function, admits an asymptotic expansion $K(u(\eta)/x,v(\eta)/Y)$ (or $K(t(\eta)/x,w(\eta)/x)$), then we write in the form $f(x,y) \sim g(x,y)K(u(\eta)/x,v(\eta)/Y)$ (or $f(x,y) \sim g(x,y)K(t(\eta)/x,w(\eta)/x)$).

Let $H(\beta, \beta', \gamma; t, u)$ be a formal power series defined by

$$H(\beta,\beta',\gamma;t,u)=\sum_{\substack{m\geq 0\\n\geq 0}}\frac{(\beta)_m(\beta')_n(\beta+\beta'-\gamma+1)_{m+n}}{(1)_m(1)_n}t^mu^n.$$

Recall the power series expressions (cf. [6, §3])

$$T(\beta, \beta', \gamma, s; u) = \sum_{n \ge 0} \frac{(\beta)_n (\beta + \beta' - \gamma + 1)_n}{(1)_n (\beta - \gamma + 2)_n} \times s^n {}_1 F_1 (\beta + \beta' - \gamma + n + 1, \beta - \gamma + n + 2, s) u^n,$$

$$U(\beta, \beta', \gamma, s; u) = \sum_{n \ge 0} \frac{(\beta)_n (\beta - \gamma)_{n+1}}{(1)_n} {}_1 F_1 (\beta', \gamma - \beta - n, s) u^n,$$

and

6

$$V(\beta, \beta', \gamma, s; u) = \sum_{n \ge 0} (1 - \beta)_n P_n(\beta, \beta', \gamma, s) u^n$$

with

$$P_n(\beta, \beta', \gamma, s) = \sum_{m=0}^{n} \frac{(\beta')_m (\gamma - \beta - \beta')_{n-m}}{(\beta - n)_m (1)_{n-m}} L_m^{(\beta - n - 1)}(s).$$

Here $_1F_1(a,c,s)$ is the confluent hypergeometric function and $L_m^{(a)}(s)$ is the Laguerre polynomial

$$L_m^{(a)}(s) = \sum_{j=0}^m {m+a \choose m-j} \frac{(-s)^j}{(1)_j}.$$

In what follows, we write $\eta = y/x$, $\xi = \eta^{-1}$; δ denotes an arbitrary small positive constant and δ_r an arbitrary constant satisfying $\sin^{-1}(1/r) < \delta_r < \pi/2$.

3.1. Asymptotic expansions in $c(D_1(r))$.

Note that $|\eta| < 1/r$ in $c(D_1(r))$.

THEOREM 3.1. In the domain $c(D_1(r))$ we have the following asymptotic expansions:

(i)
$$z_{+} \sim -e^{-\beta\pi i}\Gamma(1-\beta)x^{\beta-\gamma}(1-\eta)^{-\beta'}e^{x}H(\gamma-\beta-\beta',\beta',\gamma;1/x,(1-\eta)^{-1}/x)$$
 (3.1) uniformly for $|\eta| < 1/r$ as x tends to ∞ through the sector $|\arg x - \pi| < 3\pi/2 - \delta_r$;

(ii)
$$z_0 \sim -e^{(2\beta'-\gamma)\pi i}\Gamma(\beta+\beta'-\gamma+1)x^{-\beta}y^{-\beta'}H(\beta,\beta',\gamma;-1/x,-1/y)$$
 (3.2)

as (x,y) tends to (∞,∞) through the sector $|\arg x| < 3\pi/2 - \delta_r, |\arg y - 2\pi| < 3\pi/2 - \delta$;

(iii)
$$z_{-} \sim -e^{-(\beta+\beta')\pi i} \Gamma(1-\beta') x^{-\beta} y^{\beta+\beta'-\gamma} (1-\eta)^{-\beta} e^{y} \times H(\gamma-\beta-\beta',\beta,\gamma;1/y,-(1-\eta)^{-1}/x)$$
(3.3)

as (x,y) tends to (∞,∞) through the sector $|\arg x| < 3\pi/2 - \delta_r, |\arg y - \pi| < 3\pi/2 - \delta$.

3.2. Asymptotic expansions in $c(D_2(r))$.

Note that $|\xi| < 1/r$ in $c(D_2(r))$.

THEOREM 3.2. In the domain $c(D_2(r))$ we have the following asymptotic expansions:

(i)
$$z_{+} \sim -e^{(\beta'-\beta)\pi i} \Gamma(1-\beta) x^{\beta+\beta'-\gamma} y^{-\beta'} (1-\xi)^{-\beta'} e^{x} \times H(\gamma-\beta-\beta',\beta',\gamma;1/x,-(1-\xi)^{-1}/y)$$
(3.4)

as (x,y) tends to (∞,∞) through the sector $|\arg x - \pi| < 3\pi/2 - \delta, |\arg y - 2\pi| < 3\pi/2 - \delta_r$;

(ii)
$$z_0 \sim -e^{(2\beta'-\gamma)\pi i} \Gamma(\beta+\beta'-\gamma+1) x^{-\beta} y^{-\beta'} H(\beta,\beta',\gamma;-1/x,-1/y)$$
 (3.5)

as (x,y) tends to (∞,∞) through the sector $|\arg x| < 3\pi/2 - \delta, |\arg y - 2\pi| < 3\pi/2 - \delta_r$;

(iii)
$$z_{-} \sim -e^{-\beta'\pi i} \Gamma(1-\beta') y^{\beta'-\gamma} (1-\xi)^{-\beta} e^{y} \times H(\gamma-\beta-\beta',\beta,\gamma;1/\gamma,(1-\xi)^{-1}/\gamma)$$
(3.6)

uniformly for $|\xi| < 1/r$ as y tends to ∞ through the sector $|\arg y - \pi| < 3\pi/2 - \delta_r$.

3.3. Asymptotic expansions in $c(D_0(R))$.

It is easy to see that, $|\arg y - \arg x| < \pi/2$ for $(x,y) \in c(D_0(R)) \cup c(D_0'(R))$. In $c(D_0(R))$, when $x \to \infty$ through each sector, y also tends to ∞ and satisfies $\arg y - \arg x \to 0$.

THEOREM 3.3. In the domain $c(D_0(R))$ we have a convergent series expansion

$$z_{+} - z_{-} = e^{\beta'\pi i} \frac{\Gamma(1-\beta)\Gamma(1-\beta')}{\Gamma(2-\beta-\beta')} x^{\beta+\beta'-\gamma} (y-x)^{1-\beta-\beta'} e^{x}$$

$$\times T(\gamma - \beta - \beta', \beta', \gamma, y - x; -1/x)$$
(3.7)

and the following asymptotic expansions:

(i)
$$(1 - e^{(\beta)})z_{+} + e^{(\beta)}(1 - e^{(\beta')})z_{-}$$

$$\sim \frac{2\pi i}{\Gamma(\beta + \beta')} x^{\beta + \beta' - \gamma} e^{x} U(\gamma - \beta - \beta', \beta', \gamma, y - x; 1/x)$$
(3.8)

uniformly for |y-x| < R as x tends to ∞ through the sector $|\arg x - \pi| < 3\pi/2 - \delta$;

(ii)
$$z_* \sim -e^{-\gamma \pi i} \Gamma(\beta + \beta' - \gamma + 1) x^{-\beta - \beta'} V(\gamma - \beta - \beta', \beta', \gamma, y - x; -1/x)$$
 (3.9)

uniformly for |y-x| < R as x tends to ∞ through the sector $|\arg x| < 3\pi/2 - \delta$.

3.4. Asymptotic expansions in $c(D'_0(R))$.

Note that $|\eta - 1| < 1/3$ in $c(D'_0(R))$.

THEOREM 3.4. In the domain $c(D'_0(R))$ we have the following asymptotic expansions:

(i)
$$z_{+} \sim -e^{(\beta'-\beta)\pi i} \Gamma(1-\beta) x^{\beta+\beta'-\gamma} (y-x)^{-\beta'} e^{x} \times H(\gamma-\beta-\beta',\beta',\gamma;1/x,-1/(y-x))$$
(3.10)

as (x, y - x) tends to (∞, ∞) through the sector $|\arg x - \pi| < 4\pi/3$, $|\arg(y - x) - 2\pi| < 3\pi/2 - \delta$;

(ii)
$$z_* \sim -e^{-\gamma \pi i} \Gamma(\beta + \beta' - \gamma + 1) x^{-\beta - \beta'} \eta^{-\beta'} H(\beta, \beta', \gamma; -1/x, -\eta^{-1}/x)$$
 (3.11)

uniformly for $|\eta - 1| < 1/3$ as x tends to ∞ through the sector $|\arg x| < 4\pi/3$;

(iii)
$$z_{-} \sim -e^{-\beta'\pi i} \Gamma(1-\beta') (x\eta)^{\beta+\beta'-\gamma} (y-x)^{-\beta} e^{\eta x}$$

$$\times H(\gamma-\beta-\beta',\beta,\gamma;\eta^{-1}/x,1/(y-x))$$
(3.12)

as (x, y - x) tends to (∞, ∞) through the sector $|\arg x - \pi| < 4\pi/3$, $|\arg(y - x) - \pi| < 3\pi/2 - \delta$.

3.5. Asymptotic expansions in $c(D_*(r', \varepsilon))$.

Note that $D_*(r', \varepsilon)$ is expressible in the form

$$D_*(r', \varepsilon) = \{ (x, x\eta) \in \Re |1/r' < |\eta| < r', |1 - \eta| > 1/3 - \varepsilon \}.$$

Since $0 < \arg y - \arg x < 2\pi$ for $(x,y) \in c(D_*(r',\varepsilon))$, there exists a constant θ_0 $(\delta < \theta_0 < \pi/6)$ such that $|\arg \eta - \pi| = |\arg y - \arg x - \pi| < \pi - \theta_0$ in this domain. In fact, if θ_0 satisfies $|r'e^{i\theta_0} - 1| < 1/3 - \varepsilon$ and $|(1/r')e^{i\theta_0} - 1| < 1/3 - \varepsilon$, then this inequality is valid. For instance a numerical computation shows that we can take $\theta_0 = \pi/16$, if r' = 5/4, $\varepsilon \le 1/1600$, and $\theta_0 = \pi/12$, if r' = 9/8, $\varepsilon \le 1/35$. Consider the subdomains

$$c_{+}(r',\varepsilon) = \{(x,x\eta) \in c(D_{*}(r',\varepsilon)) | \theta_{0} < \arg \eta < \pi - \theta_{0} \},$$

$$c_{0}(r',\varepsilon) = \{(x,x\eta) \in c(D_{*}(r',\varepsilon)) | 5\pi/6 < \arg \eta < 7\pi/6 \},$$

$$c_{-}(r',\varepsilon) = \{(x,x\eta) \in c(D_{*}(r',\varepsilon)) | \pi + \theta_{0} < \arg \eta < 2\pi - \theta_{0} \},$$

which satisfy

$$c(D_*(r',\varepsilon)) = c_+(r',\varepsilon) \cup c_0(r',\varepsilon) \cup c_-(r',\varepsilon).$$

We can regard z_+, z_0, z_-, z_* as functions of (x, η) .

THEOREM 3.5. Put $K_+ = \{s \in C | 1/r' < |s| < r', |1-s| > 1/3 - \varepsilon, \theta_0 < \arg s < \pi - \theta_0 \}$ and $\theta = \arg \eta$. Then, in the domain $c_+(r', \varepsilon)$, we have the following asymptotic expansions:

(i) for each $\eta \in K_+$,

$$z_{+} \sim -e^{-\beta\pi i}\Gamma(1-\beta)(1-\eta)^{-\beta'}x^{\beta-\gamma}e^{x}H(\gamma-\beta-\beta',\beta',\gamma;1/x,(1-\eta)^{-1}/x)$$
(3.13)

as x tends to ∞ through the sector $\pi/2 - \theta < \arg x < 5\pi/2 - \delta$;

(ii) for each $\eta \in K_+$,

$$z_* \sim -e^{-\gamma \pi i} \Gamma(\beta + \beta' - \gamma + 1) \eta^{-\beta'} x^{-\beta - \beta'} H(\beta, \beta', \gamma; -1/x, -\eta^{-1}/x)$$
 (3.14)

as x tends to ∞ through the sector $-3\pi/2 + \delta < \arg x < 3\pi/2 - \theta - \delta$;

(iii) for each $\eta \in K_+$,

$$z_{-} \sim -e^{-(\beta+\beta')\pi i} \Gamma(1-\beta') \eta^{\beta+\beta'-\gamma} (1-\eta)^{-\beta} x^{\beta'-\gamma} e^{\eta x}$$

$$\times H(\gamma-\beta-\beta',\beta,\gamma;\eta^{-1}/x,-(1-\eta)^{-1}/x)$$
(3.15)

as x tends to ∞ through the sector $-\pi/2 - \theta + \delta < \arg x < 3\pi/2$.

The asymptotic representations of z_+ , of z_* and of z_- given above are uniformly valid for $\eta \in K_+$ as x tends to ∞ through the sectors $\pi/2 - \theta_0 < \arg x < 5\pi/2 - \delta$, $-3\pi/2 + \delta < \arg x < \pi/2 + \theta_0 - \delta$, and $-\pi/2 - \theta_0 + \delta < \arg x < 3\pi/2$, respectively.

THEOREM 3.6. Put $K_- = \{s \in C | 1/r' < |s| < r', |1-s| > 1/3 - \varepsilon, \pi + \theta_0 < \arg s < 2\pi - \theta_0\}$ and $\theta' = 2\pi - \arg \eta$. Then, in the domain $c_-(r', \varepsilon)$, for each $\eta \in K_-$, the integrals $z_+, e^{(-\beta')}z_0$ and z_- admit the asymptotic expansions in the right-hand members of (3.13), (3.14) and (3.15), respectively, as x tends to ∞ through the sectors $-\pi/2 + \delta < \arg x < 3\pi/2 + \theta', -3\pi/2 + \theta' + \delta < \arg x < 3\pi/2 - \delta$, and $-3\pi/2 < \arg x < \pi/2 + \theta' - \delta$, respectively.

THEOREM 3.7. Put $K_0 = \{s \in C | 1/r' < |s| < r', 5\pi/6 < \arg s < 7\pi/6\}$ and $\theta'' = |\pi - \arg \eta|$. Then, in the domain $c_0(r', \varepsilon)$, for each $\eta \in K_0$, the integrals $z_+, z_*, e^{(-\beta')}z_0$ and z_- admit the asymptotic expansions in the right-hand members of (3.13), (3.14), (3.14) and (3.15), respectively, as x tends to ∞ through the sectors $-\pi/2 + \theta'' + \delta < \arg x < 5\pi/2 - \theta'' - \delta, -3\pi/2 + \delta < \arg x < \pi/2 - \theta'' - \delta, -\pi/2 + \theta'' + \delta < \arg x < 3\pi/2 - \delta,$ and $-3\pi/2 + \theta'' + \delta < \arg x < 3\pi/2 - \theta'' - \delta$, respectively.

4. Proofs of the theorems in Section 3.

4.1. Proofs of Theorems 3.1 and 3.2.

We prove Theorem 3.1 only. Theorem 3.2 is proved in a similar way. First we consider the function z_0 . Let δ be an arbitrary small positive constant. In order to calculate an asymptotic expansion in $c(D_1(r))$, we have to modify continuously the path C(0), which is originally defined for $(x, y) \in \Delta$, so that it has the following properties:

- (a) C(0) lies outside the circles $|t-x| = \delta'|x|, |t-y| = \delta'|x|$, where δ' is some positive constant;
- (b) C(0) consists of $C_{x,y}$, the circle |t|=1, and $-C_{x,y}$, where $C_{x,y}$ denotes a curve defined by $t=\tau+ig(\tau)$ $(-\infty<\tau<0,|t|\ge1),\ g(\tau)$ being a real-valued piecewise smooth function such that $g'(\tau)=O(1)$ for $-\infty<\tau<0$.

To verify this modifiability, assume that $(x, y) \in c(D_1(r))$ belongs to the sector

$$|\arg x| < 3\pi/2 - \delta_r, \quad |\arg y - 2\pi| < 3\pi/2 - \delta,$$
 (4.1)

Fig. 3.

where δ_r is a constant satisfying $\sin^{-1}(1/r) < \delta_r < \pi/2$. Then, as is shown below, such a modification of C(0) is possible. Note that t = x moves outside the circle |t| = r|y|. If $|\arg x - (\arg y - 2\pi)| < 2\pi - \delta$, then we can take $C_{x,y}$ to be the half line $t = \tau + ig(\tau)$ with $g(\tau) = \tau \tan \phi_0$, where $\phi_0 = \phi_0(x,y)$ satisfies $|\phi_0 - \pi| < \pi/2 - \delta/2$ (cf. Fig.3); hence conditions (a) and (b) are satisfied. In the remaining case where $|\arg x - (\arg y - 2\pi)| \ge 2\pi - \delta$, we can also modify C(0) preserving the properties above. For example, when $\pi/2 < \arg y - \delta \le \arg x < 3\pi/2 - \delta_r$, we can take $C_{x,y}$ to be the broken line $t = \tau + ig(\tau)$ with

$$g(\tau) = \begin{cases} \tau \tan(\arg y - \delta''), & \text{if } \operatorname{Re} y \leq \tau < 0, \\ (\tau - \operatorname{Re} y) \tan \phi_1 + g(\operatorname{Re} y), & \text{if } -\infty < \tau < \operatorname{Re} y, \end{cases}$$

such that C(0) satisfies (a) and (b), where $\delta'' = \delta''(y, \delta')$ ($<\delta$) is a small positive constant and $\phi_1 = \phi_1(x, y, \delta')$ is a constant satisfying $|\phi_1 - \pi| \le \pi/2 - (\delta_r - \sin^{-1}(1/r))/2$ (cf. Fig.4). Thus, under (4.1), there exists a desired modification of C(0). If $\delta_r \le \sin^{-1}(1/r)$, we cannot take $C_{x,y}$ any longer. This implies that the inequality on δ_r is essential.

In view of condition (2.7), we can write $t - x = e^{\pi i}x(1 - t/x)$ and $t - y = e^{-\pi i}y(1 - t/y)$ for $t \in C(0)$, in which $\arg(1 - t/x) \to 0$ (as $t/x \to 0$) and

Fig. 4.

 $arg(1-t/y) \to 0$ (as $t/y \to 0$). Applying [6, Lemma 4.1] to the factors $(1-t/x)^{-\beta}$ and $(1-t/y)^{-\beta'}$, we write the integrand in the form

$$e^{(\beta'-\beta)\pi i}x^{-\beta}y^{-\beta'}\left(\sum_{m+n\leq N}\frac{(\beta)_m(\beta')_n}{(1)_m(1)_n}t^{m+n}x^{-m}y^{-n}+O(t^{N+1}(|x|^{-N-1}+|y|^{-N-1}))\right)t^{\beta+\beta'-\gamma}e^{t}$$

for $t \in C(0)$, where N is an arbitrary large positive integer. For each $\lambda \in C - Z$ and $v \in N$ ($v > \text{Re } \lambda$), using property (b), we have

$$(1 - e^{(-\lambda)})^{-1} \int_{C(0)} t^{\lambda + \nu} e^t dt = (-1)^{\nu + 1} e^{\lambda \pi i} (\lambda + 1)_{\nu} \Gamma(\lambda + 1),$$

and

$$\int_{C(0)} |t^{\lambda+\nu}e^t| \, |dt| = O\left(\int_{-\infty}^0 |\sigma|^{\operatorname{Re}\lambda+\nu}e^{\sigma}d\sigma\right) = O(1).$$

Using these estimates, we arrive at asymptotic expansion (3.2) as $(x, y) \to (\infty, \infty)$ through the sector given above.

Next consider the function z_- . As long as (x, y) belongs to the sector $|\arg x| < 3\pi/2 - \delta_r$, $|\arg y - \pi| < 3\pi/2 - \delta$, we can modify the path C(y) continuously in such a way that it has the following properties:

- (a') C(y) lies outside the circles $|t x| = \delta'|x|, |t| = \delta'|x|$;
- (b') $C(y) y = \{t y | t \in C(y)\}$ consists of the same circle and the same curves as those of (b).

The verification of this fact is similar to that of the modifiability of C(0). Putting t = v + y, we have

$$z_{-} = (1 - e^{(\beta')})^{-1} e^{y} \int_{C(y)-y} v^{-\beta'} (v+y)^{\beta+\beta'-\gamma} (v+y-x)^{-\beta} e^{v} dv.$$

In view of condition (2.7), the integrand is written as

$$e^{-\beta\pi i}x^{-\beta}y^{\beta+\beta'-\gamma}(1-\eta)^{-\beta}v^{-\beta'}(1+v/y)^{\beta+\beta'-\gamma}(1-v/(x-y))^{-\beta}e^{v}$$

with $\eta = y/x$, where $\arg(1 - \eta) \to 0$ (as $\eta \to 0$), $\arg(1 + v/y) \to 0$ (as $v/y \to 0$) and $\arg(1 - v/(x - y)) \to 0$ (as $v/(x - y) \to 0$). Applying [6, Lemma 4.1] and using properties (a') and (b'), we obtain asymptotic expansion (3.3) uniformly for $|\eta| < 1/r$.

Since |x| > r|y|, as long as $|\arg x - \pi| < 3\pi/2 - \delta_r$, we can modify the path C(x) of z_+ continuously in such a way that it has the following properties:

- (a") C(x) lies outside the circles $|t| = \delta'|x|, |t y| = \delta'|x|$;
- (b") C(x) consists of the circle $t x = e^{\sigma i}$ $(-\pi + \rho \le \sigma \le \pi + \rho)$ and the two half lines $t x = \tau e^{-(\pi + \rho)i}$, $t x = \tau e^{(\pi + \rho)i}$ $(\tau \ge 1)$, where ρ is some real constant depending on x and satisfying $|\rho| < \pi/2$.

Put t = v + x and observe that x + v = x(1 + v/x), $x - y + v = x(1 - \eta)(1 + v/(x - y))$, where $\arg(1 + v/x) \to 0$ (as $v/x \to 0$), $\arg(1 - \eta) \to 0$ (as $\eta \to 0$), and

 $arg(1 + v/(x - y)) \rightarrow 0$ (as $v/(x - y) \rightarrow 0$). Using these facts and [6, Lemma 4.1], we obtain asymptotic expansion of (3.1). This completes the proof of Theorem 3.1.

4.2. Proof of Theorem 3.3.

By virtue of [6, Propositions 5.1 and 5.2] combined with formulae (2.10) and (2.11), we can easily obtain the convergent series expansion of $z_+ - z_-$ and the asymptotic representation of $(1 - e^{(\beta)})z_+ + e^{(\beta)}(1 - e^{(\beta')})z_-$. Using formula (2.13), we immediately derive the asymptotic representation of z_* from [6, Theorem 3.4].

4.3. Proof of Theorem 3.4.

Note that Theorem 3.1 is valid for r > 1. From formula (2.10) and Theorem 3.1, (ii) (with r = 3), we derive the desired expansion of z_+ as (x, y - x) tends to (∞, ∞) through the sector $|\arg x - \pi| < 3\pi/2 - \delta_3$, $|\arg(y - x) - 2\pi| < 3\pi/2 - \delta$ with $\pi/2 - \cos^{-1}(1/3) < \delta_3 < \pi/2$. Taking $\delta_3 = \pi/6$, we arrive at assertion (i). Using formula (2.11) and Theorem 3.1, (iii), we can prove assertion (iii) in a similar way. Observe that $|\arg x - \arg y| < \sin^{-1}(1/3) < \pi/6$ in $c(D_0'(R))$. Assertion (ii) immediately follows from this fact and the proposition below:

PROPOSITION 4.1. Write $\Delta_{\delta} = \{(x,y) \in \mathcal{R} | |\arg y - \arg x| < 2\pi - \delta\}$. Denote by $c(\Delta_{\delta})$ the connected component of Δ_{δ} including $\Delta_{\delta} \cap \Delta$. In $c(\Delta_{\delta})$ we have

$$z_* \sim -e^{-\gamma\pi i}\Gamma(\beta+\beta'-\gamma+1)x^{-\beta}y^{-\beta'}H(\beta,\beta',\gamma;-1/x,-1/y)$$

as (x,y) tends to (∞,∞) through the sector $|\arg x| < 3\pi/2 - \delta$, $|\arg y| < 3\pi/2 - \delta$.

PROOF. Under the assumption $|\arg x| < 3\pi/2 - \delta$, $|\arg y| < 3\pi/2 - \delta$, $|\arg y - \arg x| < 2\pi - \delta$, we can modify the path $C_*(0)$ continuously in such a way that it has the following properties:

- (a_{*}) $C_*(0)$ lies outside the circles $|t-x| = \delta'|x|, |t-y| = \delta'|x|$, where δ' is some positive constant;
- (b_{*}) $C_*(0)$ consists of the circle $t = e^{\sigma i}$ $(-\pi + \rho \le \sigma \le \pi + \rho)$ and the two half lines $t = \tau e^{(-\pi + \rho)i}$, $t = \tau e^{(\pi + \rho)i}$ $(\tau \ge 1)$, where ρ is some real constant depending on x and satisfying $|\rho| < \pi/2$.

Considering condition (2.7), we put $t - x = e^{\pi i}x(1 - t/x), t - y = e^{\pi i}y(1 - t/y)$, where $arg(1 - t/x) \to 0$ (as $t/x \to 0$), $arg(1 - t/y) \to 0$ (as $t/y \to 0$). By the same calculation as that of z_0 (cf. the proof of Theorem 3.1), we arrive at the desired asymptotic representation of z_* .

4.4. Proof of Theorem 3.5.

Since assertion (ii) is an immediate consequence of Proposition 4.1, we show the remaining ones. By the definition of z_* and [6, Corollary 2.3, (1)], we have $z_*(x,y) = z_0(x, ye^{2\pi i})$. Then we arrive at the following corollary of Proposition 4.1.

COROLLARY 4.2. Write $\Delta'_{\delta} = \{(x,y) \in \mathcal{R} | |\arg y - \arg x - 2\pi| < 2\pi - \delta\}$. Denote by $c(\Delta'_{\delta})$ the connected component of Δ'_{δ} including $\Delta'_{\delta} \cap \Delta$. In $c(\Delta'_{\delta})$ we have

$$z_0 \sim -e^{(2\beta'-\gamma)\pi i}\Gamma(\beta+\beta'-\gamma+1)x^{-\beta}y^{-\beta'}H(\beta,\beta',\gamma;-1/x,-1/y)$$

as (x,y) tends to (∞,∞) through the sector $|\arg x| < 3\pi/2 - \delta$, $|\arg y - 2\pi| < 3\pi/2 - \delta$.

Assume that $(x,y) \in c_+(r',\varepsilon) \subset c(\Delta_\delta) \cap c(\Delta'_\delta)$. Note that $\theta_0 < \theta < \pi - \theta_0$ $(\theta = \arg y - \arg x)$. Considering the triangle with vertices x, 0, y, we see that

$$\theta + \delta_0 < \arg(y - x) - \arg x < \pi - \delta_0, \tag{4.2}$$

where δ_0 is some positive constant satisfying $0 < \delta_0 < \theta_0$. Consider the function z_+ . The inequality $\pi/2 - \theta < \arg x < 5\pi/2 - \delta$ combined with (4.1) yields $-3\pi/2 + \delta < -\pi/2 - \theta < \arg(e^{-\pi i}x) < 3\pi/2 - \delta$, $\pi/2 + \delta_0 < \pi/2 - \theta < \arg(y - x) < 7\pi/2 - \delta$, and $\pi < \pi + \theta + \delta_0 < \arg(y - x) - \arg(e^{-\pi i}x) < 2\pi$. Hence, using formula (2.10) and Corollary 4.2, and observing that $y - x = e^{\pi i}x(1 - \eta)$, we have the desired asymptotic expansion of z_+ uniformly for $1/r' < |\eta| < r'$ as $x \to \infty$ through the sector $\pi/2 - \theta < \arg x < 5\pi/2 - \delta$.

Finally consider the function z_- . If $-\pi/2 - \theta + \delta < \arg x < 3\pi/2$, then, by (4.2) and the definition of θ , we have $-3\pi/2 + \delta < \arg(e^{-\pi i}y) < \arg x - \theta_0 < 3\pi/2 - \theta_0$, $-3\pi/2 + \delta < \arg(e^{-\pi i}(y-x)) < 3\pi/2 - \delta_0$, and $\delta_0 < \arg(e^{-\pi i}(y-x)) - \arg(e^{-\pi i}y) < \pi - \theta - \delta_0 < \pi$. Therefore, by Proposition 4.1 combined with (2.15), we obtain the asymptotic expansion in assertion (iii) uniformly for $1/r' < |\eta| < r'$ as $x \to \infty$ through the sector $-\pi/2 - \theta + \delta < \arg x < 3\pi/2$, which completes the proof of the theorem.

4.5. Proofs of Theorems 3.6 and 3.7.

Note that, under the assumption of Theorem 3.6, $\pi + \delta_0 < \arg(y - x) - \arg x < 2\pi - \theta' - \delta_0$, and that, under that of Theorem 3.7, $\pi - \theta'' + \delta_0' < \arg(y - x) - \arg x < \pi + \theta'' - \delta_0'$, where δ_0 and δ_0' are some positive constants. Using these inequalities, we have the asymptotic expressions of z_+ , $e^{(-\beta')}z_0$, z_- , z_* in the same way as in the proof of Theorem 3.5.

5. Stokes multipliers.

5.1. Stokes multipliers in $c(D_1(r))$.

To indicate a sector in $c(D_1(r))$ we use the notation

$$S_1(\theta_1, \theta_2) = \{(x, y) \in c(D_1(r)) | |\arg x - \theta_1| < \pi - \delta_r, |\arg y - \theta_2| < \pi - \delta\}.$$

Consider the linearly independent solutions z_+, z_0 and z_- on $c(D_1(r))$. By Theorem 3.1 we have

$$z_{+} \sim Z_{+}(x, y), \quad z_{0} \sim Z_{0}(x, y), \quad z_{-} \sim Z_{-}(x, y),$$
 (5.1)

as $(x,y) \to (\infty,\infty)$ through the sector $S_1(\pi/2,3\pi/2)$, where $Z_+(x,y)$, $Z_0(x,y)$ and $Z_-(x,y)$ denote the asymptotic expansions in the right-hand members of (3.1), (3.2) and (3.3), respectively. For a given sector S ($\subset c(D_1(r))$), assume that linearly independent solutions z_+^S, z_0^S, z_-^S satisfy

$$z_{+}^{S} \sim Z_{+}(x, y), \quad z_{0}^{S} \sim Z_{0}(x, y), \quad z_{-}^{S} \sim Z_{-}(x, y),$$
 (5.2)

as $(x,y) \to (\infty,\infty)$ through the sector S. There exists a matrix $C_S \in GL(3,\mathbb{C})$ such that

$${}^{t}(z_{+}, z_{0}, z_{-}) = C_{S}{}^{t}(z_{+}^{S}, z_{0}^{S}, z_{-}^{S}).$$

$$(5.3)$$

(The notation ${}^{t}v$ denotes the transposed vector of v.) Then we call C_{S} the Stokes multiplier (for the sector S) with respect to (z_{+}, z_{0}, z_{-}) . From (5.2) and (5.3) we obtain the asymptotic representation

$$^{t}(z_{+},z_{0},z_{-}) \sim C_{S}^{t}(Z_{+}(x,y),Z_{0}(x,y),Z_{-}(x,y))$$

as $(x, y) \to (\infty, \infty)$ through the sector S. In the other domains treated afterward, the Stokes multipliers are similarly defined.

THEOREM 5.1. In the domain $c(D_1(r))$, we have the Stokes multipliers with respect to (z_+, z_0, z_-) listed below:

(a)
$$S_1(\pi/2, \pi/2)$$
 (b) $S_1(\pi/2, 3\pi/2)$ $C_{11}^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 - e^{(\beta')} \\ 0 & 0 & 1 \end{pmatrix}$, $C_{12}^{(1)} = I$,

$$C_{21}^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ 1 - e^{(-\beta)} & 1 & 1 - e^{(\beta')} \\ 1 - e^{(-\beta)} & 0 & 1 \end{pmatrix}, \qquad C_{22}^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ 1 - e^{(-\beta)} & 1 & 0 \\ 1 - e^{(-\beta)} & 0 & 1 \end{pmatrix},$$

where I denote the identity matrix.

5.2. Stokes multipliers in $c(D_2(r))$.

In the domain $c(D_2(r))$, we write

$$S_2(\theta_1, \theta_2) = \{(x, y) \in c(D_2(r)) | |\arg x - \theta_1| < \pi - \delta, |\arg y - \theta_2| < \pi - \delta_r \}.$$

THEOREM 5.2. In the domain $c(D_2(r))$, we have the Stokes multipliers with respect to (z_+, z_0, z_-) listed below:

(a)
$$S_2(\pi/2, \pi/2)$$
 (b) $S_2(\pi/2, 3\pi/2)$ $C_{11}^{(2)} = \begin{pmatrix} 1 & 0 & 1 - e^{(\beta')} \\ 0 & 1 & 1 - e^{(\beta')} \\ 0 & 0 & 1 \end{pmatrix}$, $C_{12}^{(2)} = I$, (c) $S_2(3\pi/2, \pi/2)$ (d) $S_2(3\pi/2, 3\pi/2)$

$$C_{21}^{(2)} = \begin{pmatrix} 1 & 0 & 1 - e^{(\beta')} \\ 1 - e^{(-\beta)} & 1 & 1 - e^{(\beta')} \\ 0 & 0 & 1 \end{pmatrix}, \qquad C_{22}^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 1 - e^{(-\beta)} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

5.3. Stokes multipliers in $c(D_0(R))$.

We put

$$S_0(\theta) = \{(x, y) \in c(D_0(R)) | |\arg x - \theta| < \pi - \delta\},\$$

in which arg y necessarily satisfies $|\arg y - \arg x| < \delta$, if |x|, and hence |y|, is sufficiently large.

THEOREM 5.3. In the domain $c(D_0(R))$, we have the Stokes multipliers with respect to $(z_{-1}, z_1, z_*) = (z_+ - z_-, (1 - e^{(\beta)})z_+ + e^{(\beta)}(1 - e^{(\beta')})z_-, z_*)$ listed below:

(a)
$$S_0(-\pi/2)$$
 (b) $S_0(\pi/2)$
$$C_1^{(0)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & (1 - e^{(\beta + \beta')})(1 - e^{(\gamma - \beta - \beta')}) \\ 0 & 0 & 1 \end{pmatrix}, \quad C_2^{(0)} = I.$$

5.4. Stokes multipliers in $c(D'_0(R))$.

Consider the sector

$$S'(\theta_1, \theta_2) = \{(x, y) \in c(D_0'(R)) | |\arg x - \theta_1| < 5\pi/6, |\arg(y - x) - \theta_2| < \pi - \delta\}.$$

THEOREM 5.4. In the domain $c(D'_0(R))$, we have the Stokes multipliers with respect to (z_+, z_*, z_-) listed below:

(a)
$$S'(-\pi/2, \pi/2)$$
 (b) $S'(-\pi/2, 3\pi/2)$ $C'_{11} = \begin{pmatrix} 1 & 1 - e^{(\gamma - \beta - \beta')} & 1 - e^{(\beta')} \\ 0 & 1 & 0 \\ 0 & 1 - e^{(\gamma - \beta - \beta')} & 1 \end{pmatrix}$, $C'_{12} = \begin{pmatrix} 1 & 1 - e^{(\gamma - \beta - \beta')} & 0 \\ 0 & 1 & 0 \\ 0 & 1 - e^{(\gamma - \beta - \beta')} & 1 \end{pmatrix}$, (c) $S'(\pi/2, \pi/2)$ (d) $S'(\pi/2, 3\pi/2)$ $C'_{21} = \begin{pmatrix} 1 & 0 & 1 - e^{(\beta')} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $C'_{22} = I$.

5.5. Stokes multipliers in $c(D_{\star}(r',\varepsilon))$.

For each $\eta \in K_+ \cup K_0 \cup K_-$ (see Theorems 3.5, 3.6 and 3.7), we put

$$S_{*}^{+}(\eta; f_{1}(\theta), f_{2}(\theta)) = \{(x, \eta x) \in c_{+}(r', \varepsilon) | f_{1}(\theta) < \arg x < f_{2}(\theta)\}$$
 (if $\eta \in K_{+}$),

$$S_{*}^{-}(\eta; g_{1}(\theta'), g_{2}(\theta')) = \{(x, \eta x) \in c_{-}(r', \varepsilon) | g_{1}(\theta') < \arg x < g_{2}(\theta')\}$$
 (if $\eta \in K_{-}$),

$$S_{*}^{0}(\eta; h_{1}(\theta''), h_{2}(\theta'')) = \{(x, \eta x) \in c_{0}(r', \varepsilon) | h_{1}(\theta'') < \arg x < h_{2}(\theta'')\}$$
 (if $\eta \in K_{0}$),

where $f_j(\theta), g_j(\theta')$ and $h_j(\theta'')(j=1,2)$ are linear functions of $\theta = \arg \eta, \theta' = 2\pi - \arg \eta$ and $\theta'' = |\pi - \arg \eta|$, respectively.

THEOREM 5.5. In the domain $c_+(r', \varepsilon)$, for each $\eta \in K_+$, we have the Stokes multipliers with respect to (z_+, z_*, z_-) listed below:

(a)
$$S_*^+(\eta; -\pi/2 - \theta + \delta, \pi/2 - \delta)$$

$$C_{+,-1}^* = \begin{pmatrix} 1 & e^{(\beta')} - e^{(\gamma - \beta)} & 1 - e^{(\beta')} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

(b)
$$S_*^+(\eta; \pi/2 - \theta, 3\pi/2 - \theta - \delta)$$

 $C_{+,0}^* = I,$

(c)
$$S_{\star}^{+}(\eta; \pi/2 + \delta, 3\pi/2)$$

$$C_{+,1}^* = \left(egin{array}{cccc} 1 & 0 & 0 \ e^{(-eta')} - e^{(-eta-eta')} & 1 & 1 - e^{(-eta')} \ 0 & 0 & 1 \end{array}
ight).$$

THEOREM 5.6. In the domain $c_{-}(r', \varepsilon)$, for each $\eta \in K_{-}$, we have the Stokes multipliers with respect to (z_{+}, z_{0}, z_{-}) listed below:

(a)
$$S_*^-(\eta; -3\pi/2 + \theta' + \delta, -\pi/2 + \theta')$$

 $C_{-,-1}^* = \begin{pmatrix} 1 & 1 - e^{(\gamma - \beta - \beta')} & e^{(\gamma - \beta - \beta')} - e^{(\gamma - \beta)} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$

(b)
$$S_*^-(\eta; -\pi/2 + \delta, \pi/2 + \theta' - \delta)$$

 $C_{-0}^* = I$,

(c)
$$S_*^-(\eta; \pi/2, 3\pi/2 - \delta)$$

$$C_{-,1}^* = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ e^{(\beta+\beta'-\gamma)} - e^{(\beta'-\gamma)} & 1 - e^{(\beta+\beta'-\gamma)} & 1 \end{pmatrix}.$$

THEOREM 5.7. In the domain $c_0(r', \varepsilon)$, for each $\eta \in K_0$, we have the Stokes multipliers with respect to (z_+, z_0, z_-) (or (z_+, z_*, z_-)) given by (a), (b) (or (a'), (b')):

(a)
$$S^0_*(\eta; -3\pi/2 + \theta'' + \delta, \pi/2 - \theta'' - \delta)$$

 $C^*_{0,-1} = \begin{pmatrix} 1 & 1 - e^{(\gamma - \beta - \beta')} & 1 - e^{(\beta')} \\ 0 & 1 & 1 - e^{(\beta')} \\ 0 & 0 & 1 \end{pmatrix},$

(b)
$$S_*^0(\eta; -\pi/2 + \theta'' + \delta, 3\pi/2 - \theta'' - \delta)$$

 $C_{0,1}^* = I,$

$$(a') \quad S^0_*(\eta; -3\pi/2 + \theta'' + \delta, \pi/2 - \theta'' - \delta)$$

$$C^*_{*,-1} = \begin{pmatrix} 1 & e^{(\beta')} - e^{(\gamma - \beta)} & 1 - e^{(\beta')} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

(b')
$$S_*^0(\eta; -\pi/2 + \theta'' + \delta, 3\pi/2 - \theta'' - \delta)$$

$$C_{*,1}^* = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 - e^{(-\beta')} \\ 0 & 0 & 1 \end{pmatrix}.$$

REMARK 5.1. For each $\eta_0 \in K_+$, consider the projection $p: D(\eta_0) \to V(\eta_0)$, where $D(\eta_0)$ and $V(\eta_0)$ denote domains defined by $y/x = \eta_0$ in $c_+(r', \varepsilon)$ and in C^2 ,

respectively. Then the images of the three sectors in Theorem 5.5 under p cover the full neighbourhood of $(x,y)=(\infty,\infty)$ in $V(\eta_0)$. The sectors in Theorems 5.6 and 5.7 possess the same property.

REMARK 5.2. In the three theorems above, we can replace the sectors by ones which are independent of $\theta = \arg \eta$. For example, in Theorem 5.5, the asymptotic formulae in (a), (b) and (c) are valid uniformly for $\eta \in K_+$ as x tends to ∞ through $\cup_{\eta} S_*^+(\eta; -\pi/2 - \theta_0 + \delta, \pi/2 - \delta)$, $\cup_{\eta} S_*^+(\eta; \pi/2 - \theta_0, \pi/2 + \theta_0 - \delta)$ and $\cup_{\eta} S_*^+(\eta; \pi/2 + \delta, 3\pi/2)$, respectively, where the union is over all $\eta \in K_+$.

6. Proofs of the theorems in Section 5.

6.1. Proofs of Theorems 5.1 and 5.2.

Recall the monodromy matrices

$$egin{aligned} M_0 &= egin{pmatrix} e^{(-eta')} & 0 & 1 - e^{(-eta')} \ -(1 - e^{(-eta)})(1 - e^{(-eta')}) & 1 & (1 - e^{(-eta')})(1 - e^{(-eta')}) \ e^{(-eta')}(1 - e^{(-eta)}) & 0 & 1 - e^{(-eta')} + e^{(-eta-eta')} \end{pmatrix}, \ M_1 &= egin{pmatrix} e^{(eta+eta'-\gamma)}(1 - e^{(-eta')}) & 1 - e^{(eta+eta'-\gamma)} & 0 \ e^{(eta+eta'-\gamma)} - e^{(eta'-\gamma)} & 1 - e^{(eta+eta'-\gamma)} + e^{(eta'-\gamma)} & 0 \ 0 & 0 & 1 \end{pmatrix}, \ M_2 &= egin{pmatrix} 1 & 0 & 0 \ 0 & e^{(-eta')} & 1 - e^{(-eta')} \ 0 & e^{(-eta')} - e^{(eta-\gamma)} & 1 - e^{(-eta')} + e^{(eta-\gamma)} \end{pmatrix} \end{aligned}$$

(cf. [6, Proposition 2.1]). To prove Theorem 5.1, it is sufficient to show assertions (a), (c) and (d). We prepare the following lemma, which is easily obtained from [6, Corollary 2.3, (1)] and the monodromy matrices above.

LEMMA 6.1. In the domain $c(D_1(r))$, we have

$$z_0(xe^{-2\pi i}, y) = (1 - e^{(\beta)})z_+(x, y) + e^{(\beta)}z_0(x, y), \tag{6.1}$$

$$z_{-}(xe^{-2\pi i}, y) = (1 - e^{(\beta)})z_{+}(x, y) + e^{(\beta)}z_{-}(x, y), \tag{6.2}$$

$$z_0(x, ye^{2\pi i}) = e^{(-\beta')}z_0(x, y) + (1 - e^{(-\beta')})z_-(x, y).$$
(6.3)

In $S_1(\pi/2, \pi/2)$, the asymptotic relations $z_+(x,y) \sim Z_+(x,y)$ and $z_-(x,y) \sim Z_-(x,y)$ immediately follow from Theorem 3.1, (i), (iii). Observing that $|\arg x| < 3\pi/2 - \delta_r$, $|\arg(ye^{2\pi i}) - 2\pi| < 3\pi/2 - \delta$ in $S_1(\pi/2, \pi/2)$, and using Theorem 3.1, (ii), we have $z_0(x, ye^{2\pi i}) \sim Z_0(x, ye^{2\pi i}) = e^{(-\beta')}Z_0(x,y)$. Substitution of this into (6.3) yields

$$z_0(x,y) + (e^{(\beta')} - 1)z_-(x,y) \sim Z_0(x,y).$$

Thus we have obtained a column vector of solutions

$$^{t}(z_{+}^{11}(x, y), z_{0}^{11}(x, y), z_{-}^{11}(x, y)) = T_{11}^{t}(z_{+}(x, y), z_{0}(x, y), z_{-}(x, y))$$

satisfying $z_+^{11}(x,y) \sim Z_+(x,y)$, $z_0^{11}(x,y) \sim Z_0(x,y)$, $z_-^{11}(x,y) \sim Z_-(x,y)$ as $(x,y) \rightarrow (\infty,\infty)$ through $S_1(\pi/2,\pi/2)$, where

$$T_{11} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & e^{(oldsymbol{eta'})} - 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Hence the Stokes multiplier $C_{11}^{(1)} = T_{11}^{-1}$ immediately follows.

Since $|\arg(xe^{-2\pi i})| < 3\pi/2 - \delta_r$, $|\arg y - 3\pi/2| < \pi - \delta$ in $S_1(3\pi/2, 3\pi/2)$, Theorem 3.1 yields $z_0(xe^{-2\pi i}, y) \sim e^{(\beta)}Z_0(x, y)$ and $z_-(xe^{-2\pi i}, y) \sim e^{(\beta)}Z_-(x, y)$. Using these relations together with (6.1) and (6.2), we derive the Stokes multiplier $C_{22}^{(1)}$ by the same argument as above.

Suppose that $(x,y) \in S_1(3\pi/2,\pi/2)$. Since $|\arg(xe^{-2\pi i})| < 3\pi/2 - \delta_r$, $|\arg(ye^{2\pi i}) - 2\pi| < 3\pi/2 - \delta$, we have $z_0(xe^{-2\pi i}, ye^{2\pi i}) \sim Z_0(xe^{-2\pi i}, ye^{2\pi i}) = e^{(\beta-\beta')}Z_0(x,y)$. On the other hand, from Lemma 6.1, it follows that

$$z_0(xe^{-2\pi i}, ye^{2\pi i}) = e^{(-\beta')}z_0(xe^{-2\pi i}, y) + (1 - e^{(-\beta')})z_-(xe^{-2\pi i}, y)$$
$$= (1 - e^{(\beta)})z_+(x, y) + e^{(\beta - \beta')}z_0(x, y) + (e^{(\beta)} - e^{(\beta - \beta')})z_-(x, y).$$

Hence,

$$(e^{(\beta'-\beta)} - e^{(\beta')})z_{+}(x,y) + z_{0}(x,y) + (e^{(\beta')} - 1)z_{-}(x,y) \sim Z_{0}(x,y). \tag{6.4}$$

Observing that $|\arg(xe^{-2\pi i})| < 3\pi/2 - \delta_r$, $|\arg y - \pi| < 3\pi/2 - \delta$, and using (6.2), we have

$$(e^{(-\beta)} - 1)z_{+}(x, y) + z_{-}(x, y) = e^{(-\beta)}z_{-}(xe^{-2\pi i}, y) \sim Z_{-}(x, y).$$
(6.5)

Adding a trivial relation $z_+(x,y) \sim Z_+(x,y)$ to (6.4) and (6.5), we arrive at linearly independent solutions $z_+^{21}(x,y) \sim Z_+(x,y)$, $z_0^{21}(x,y) \sim Z_0(x,y)$, $z_-^{21}(x,y) \sim Z_-(x,y)$ (as $(x,y) \to (\infty,\infty)$ through $S_1(3\pi/2,\pi/2)$) given by

$$^{t}(z_{+}^{21}(x,y),z_{0}^{21}(x,y),z_{-}^{21}(x,y)) = T_{21}^{t}(z_{+}(x,y),z_{0}(x,y),z_{-}(x,y))$$

with

$$T_{21} = \left(egin{array}{cccc} 1 & 0 & 0 \ e^{(eta'-eta)} - e^{(eta')} & 1 & e^{(eta')} - 1 \ e^{(-eta)} - 1 & 0 & 1 \end{array}
ight).$$

This gives the Stokes multiplier $C_{21}^{(1)} = T_{21}^{-1}$, and the proof of Theorem 5.1 is completed. Theorem 5.2 can be verified in a similar way.

6.2. Proof of Theorem 5.3.

Recall the fundamental group $\pi_1(D)$ generated by the loops c_0, c_1 and c_2 , where $D = \mathbb{C}^2 - (\{X = 0\} \cup \{Y = 0\} \cup \{X - Y = 0\})$ (see [6, §2]). They satisfy the relation $c_0c_1c_2 = c_1c_2c_0 = c_2c_0c_1$. Let E_0 ($\subset \mathbb{C}^2$) be a domain defined by 0 < |Y - X| < (1/3)|x|, |X| > M, |Y| > M. Then $\pi_1(E_0)$ is generated by c_0 and c_1c_2 . In

 $c(D_0(R)) \cup c(D'_0(R))$ ($\ni (x,y)$), which is a covering of E_0 , we regard $z = {}^t(z_+, z_0, z_-)$ as a function of (x, y - x), and write it in the form z = z(x, y - x). Then we easily obtain the following proposition:

PROPOSITION 6.2. In the domain $c(D_0(R)) \cup c(D'_0(R))$, we have

$$[c_0]z(x,y-x) = z(x,(y-x)e^{2\pi i}) = M_0z(x,y-x), \tag{6.6}$$

$$[c_1c_2]z(x,y-x) = z(xe^{2\pi i},y-x) = M_1M_2z(x,y-x),$$
(6.7)

where [c]z(x, y - x) denotes the analytic continuation of z(x, y - x) along the loop c.

Consider the convergent series expansion $z_{-1} = T_{-1}(x, y - x)$ and the asymptotic expansions $z_1 \sim T_1(x, y - x)$, $z_* \sim T_*(x, y - x)$ given by Theorem 3.3. It is sufficient to deduce $C_1^{(0)}$. If we put $w = {}^t(z_1, z_*)$, then, by (6.7), we have

$$[c_1c_2]w(x,y-x) = w(xe^{2\pi i},y-x) = M'w(x,y-x)$$

with

$$M'=egin{pmatrix} e^{(eta+eta'-\gamma)}&(1-e^{(eta+eta')})(1-e^{(eta+eta'-\gamma)})\ -e^{(-\gamma)}&1+e^{(-\gamma)}-e^{(eta+eta'-\gamma)} \end{pmatrix}.$$

This implies the relation

$$z_1(xe^{2\pi i}, y - x) = e^{(\beta + \beta' - \gamma)}z_1(x, y - x) + (1 - e^{(\beta + \beta')})(1 - e^{(\beta + \beta' - \gamma)})z_*(x, y - x).$$

Since $|\arg(xe^{2\pi i}) - \pi| < 3\pi/2 - \delta$ in $S_0(-\pi/2)$, we have $z_1(xe^{2\pi i}, y - x) \sim e^{(\beta + \beta' - \gamma)} T_1(x, y - x)$ in $S_0(-\pi/2)$. Hence,

$$z_1(x,y-x) - (1-e^{(\beta+\beta')})(1-e^{(\gamma-\beta-\beta')})z_*(x,y-x) \sim T_1(x,y-x).$$

From this and trivial relations $z_{-1}(x, y - x) = T_{-1}(x, y - x)$, $z_*(x, y - x) \sim T_*(x, y - x)$, we derive the Stokes multiplier $C_1^{(0)}$, which completes the proof of the theorem.

6.3. Proof of Theorem 5.4.

We write the asymptotic expansions of Theorem 3.4 in the form $z_+ \sim U_+(x,y-x)$, $z_* \sim U_*(x,\eta)$, $z_- \sim U_-(x,y-x,\eta)$. When x, and hence y, turns round the point (∞,∞) along the loop c_1c_2 , then $\arg \eta$ remains invariant. Using Proposition 6.2, we have the following lemma.

LEMMA 6.3. In the domain $c(D'_0(R))$, we have

$$z_{+}(xe^{2\pi i}, y - x) = e^{(\beta + \beta' - \gamma)}z_{+}(x, y - x) + (1 - e^{(\beta + \beta' - \gamma)})z_{*}(x, y - x), \tag{6.8}$$

$$z_{-}(xe^{2\pi i}, y - x) = (1 - e^{(\beta + \beta' - \gamma)})z_{*}(x, y - x) + e^{(\beta + \beta' - \gamma)}z_{-}(x, y - x), \tag{6.9}$$

$$z_{+}(x,(y-x)e^{2\pi i}) = e^{(-\beta')}z_{+}(x,y-x) + (1-e^{(-\beta')})z_{-}(x,y-x).$$
 (6.10)

From (6.8) and (6.10), it follows that

$$z_{+}(xe^{2\pi i}, (y-x)e^{2\pi i}) = e^{(\beta-\gamma)}z_{+}(x, y-x) + (1 - e^{(\beta+\beta'-\gamma)})z_{*}(x, y-x) + e^{(\beta-\gamma)}(e^{(\beta')} - 1)z_{-}(x, y-x).$$

$$(6.11)$$

Assume that $(x,y) \in S'(-\pi/2,\pi/2)$. Since $|\arg(xe^{2\pi i}) - \pi| < 4\pi/3$, $|\arg((y-x)e^{2\pi i}) - 2\pi| < 3\pi/2 - \delta$, we obtain $z_+(xe^{2\pi i},(y-x)e^{2\pi i}) \sim e^{(\beta-\gamma)}U_+(x,y-x)$. Substitution of this into (6.11) yields

$$z_{+}(x, y - x) + (e^{(\gamma - \beta)} - e^{(\beta')})z_{*}(x, y - x) + (e^{(\beta')} - 1)z_{-}(x, y - x)$$

$$\sim U_{+}(x, y - x). \tag{6.12}$$

Since $|\arg(xe^{2\pi i}) - \pi| < 4\pi/3$, $|\arg(y - x) - \pi| < 3\pi/2 - \delta$, from (6.9), we obtain

$$(e^{(\gamma-\beta-\beta')}-1)z_*(x,y-x) + z_-(x,y-x)$$

$$\sim e^{(\gamma-\beta-\beta')}U_-(xe^{2\pi i},y-x,\eta) = U_-(x,y-x,\eta). \tag{6.13}$$

From (6.12), (6.13) and a relation $z_*(x, y - x) \sim U_*(x, \eta)$, we derive the Stokes multiplier C'_{11} . Other assertions are verified by analogous arguments.

6.4. Proofs of Theorems 5.5, 5.6 and 5.7.

Let E_* ($\subset \mathbb{C}^2$) be a domain defined by 1/r' < |Y/X| < r', $|Y-X| > (1/3-\varepsilon)|X|$. Then $\pi_1(E_*)$ is a free group generated by $c_0c_1c_2$. In $c(D_*(r',\varepsilon))$, we regard $z = {}^t(z_+, z_0, z_-)$ and $u = {}^t(z_+, z_*, z_-)$ as functions of (x, η) , and write them in the form $z = z(x, \eta)$ and $u = u(x, \eta)$.

PROPOSITION 6.4. In the domain $c(D_*(r', \varepsilon))$, we have

$$[c_0c_1c_2]z(x,\eta) = z(xe^{2\pi i},\eta) = M_0M_1M_2z(x,\eta), \tag{6.14}$$

$$[c_0c_1c_2]\mathbf{u}(x,\eta) = \mathbf{u}(xe^{2\pi i},\eta) = QM_0M_1M_2Q^{-1}\mathbf{u}(x,\eta), \tag{6.15}$$

where

$$Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{(-\beta')} & 1 - e^{(-\beta')} \\ 0 & 0 & 1 \end{pmatrix}.$$

To prove Theorem 5.5, it is sufficient to show assertions (a) and (c). From (6.15) we deduce that

$$z_{+}(xe^{2\pi i}, \eta) = e^{(\beta - \gamma)}z_{+}(x, \eta) + (1 - e^{(\beta + \beta' - \gamma)})z_{*}(x, \eta) + (e^{(\beta + \beta' - \gamma)} - e^{(\beta - \gamma)})z_{-}(x, \eta).$$

$$(6.16)$$

We write the asymptotic expansions given by Theorem 3.5 as $z_+ \sim W_+(x, \eta)$, $z_* \sim W_*(x, \eta)$, $z_- \sim W_-(x, \eta)$. Assume that $(x, x\eta) \in S_*^+(\eta; -\pi/2 - \theta + \delta, \pi/2 - \delta)$.

Observing that $3\pi/2 - \theta + \delta < \arg(xe^{2\pi i}) < 5\pi/2 - \delta$, and using (6.16), we have

$$z_{+}(x,\eta) + (e^{(\gamma-\beta)} - e^{(\beta')})z_{*}(x,\eta) + (e^{(\beta')} - 1)z_{-}(x,\eta)$$
$$\sim e^{(\gamma-\beta)}W_{+}(xe^{2\pi i},\eta) = W_{+}(x,\eta).$$

Combining this with $z_*(x,\eta) \sim W_*(x,\eta)$, $z_-(x,\eta) \sim W_-(x,\eta)$, we derive the Stokes multiplier $C_{+,-1}^*$. Relation (6.15) implies $\boldsymbol{u}(xe^{-2\pi i},\eta) = QM_2^{-1}M_1^{-1}M_0^{-1}Q^{-1}\boldsymbol{u}(x,\eta)$, from which it follows that

$$z_*(xe^{-2\pi i}, \eta) = (1 - e^{(\beta)})z_+(x, \eta) + e^{(\beta + \beta')}z_*(x, \eta) + (e^{(\beta)} - e^{(\beta + \beta')})z_-(x, \eta). \tag{6.17}$$

The matrix $C_{+,1}^*$ can also be obtained from (6.17) in a similar way. Thus Theorem 5.5 is proved.

The asymptotic formula of z_0 in Theorem 3.6 is written in the form $z_0 \sim W_0(x, \eta) = e^{(\beta')} W_*(x, \eta)$. From (6.14) we obtain

$$z_{+}(xe^{2\pi i},\eta) = e^{(\beta-\gamma)}z_{+}(x,\eta) + (e^{(-\beta')} - e^{(\beta-\gamma)})z_{0}(x,\eta) + (1 - e^{(-\beta')})z_{-}(x,\eta),$$
 (6.18)

and

$$z_{-}(xe^{-2\pi i},\eta) = (1 - e^{(\beta)})z_{+}(x,\eta) + (e^{(\beta)} - e^{(\gamma - \beta')})z_{0}(x,\eta) + e^{(\gamma - \beta')}z_{-}(x,\eta).$$
(6.19)

By virtue of Theorem 3.6 combined with the use of them, we can prove Theorem 5.6 in a similar way.

Using (6.16) and Theorem 3.7, we easily obtain the matrices $C_{*,-1}^*$, $C_{0,1}^*$ of Theorem 5.7. The matrices $C_{0,-1}^*$, $C_{*,1}^*$ immediately follow from them by virtue of relation (2.8).

7. Asymptotic behaviour of Φ_2 .

By [6, Proposition 2.4], the function Φ_2 given by (1.1) is expressible in the form

$$\Phi_2(\beta, \beta', \gamma, x, y) = a^t(z_+, z_0, z_-)$$

with $\mathbf{a} = (2\pi i)^{-1} \Gamma(\gamma) (1 - e^{(\beta)}, e^{(\beta)} - e^{(\gamma - \beta')}, e^{(\gamma - \beta')} - e^{(\gamma)})$. By (2.8) it is also written in the form

$$\Phi_2(\beta, \beta', \gamma, x, y) = \mathbf{a_*}^t(z_+, z_*, z_-) = \mathbf{b}^t(z_{-1}, z_1, z_*)$$

with $\mathbf{a}_* = (2\pi i)^{-1} \Gamma(\gamma) (1 - e^{(\beta)}, e^{(\beta+\beta')} - e^{(\gamma)}, e^{(\beta)} - e^{(\beta+\beta')})$, $\mathbf{b} = (2\pi i)^{-1} \Gamma(\gamma) (0, 1, e^{(\beta+\beta')} - e^{(\gamma)})$ (for z_{-1}, z_1 see Theorem 5.3). Using these formulae, we can derive an asymptotic expansion of Φ_2 in each sector. Recall the notation $Z_+(x, y), Z_0(x, y), Z_-(x, y)$ and $S_1(\theta_1, \theta_2)$ defined in Section 5.1. For example, in the domain $c(D_1(r))$, by

Theorem 5.1, we have

$$\begin{split} & \varPhi_2 \sim c_{11}^{(1)\ t}(Z_+(x,y),Z_0(x,y),Z_-(x,y)) & \text{in } S_1(\pi/2,\pi/2), \\ & \varPhi_2 \sim c_{12}^{(1)\ t}(Z_+(x,y),Z_0(x,y),Z_-(x,y)) & \text{in } S_1(\pi/2,3\pi/2), \\ & \varPhi_2 \sim c_{21}^{(1)\ t}(Z_+(x,y),Z_0(x,y),Z_-(x,y)) & \text{in } S_1(3\pi/2,\pi/2), \\ & \varPhi_2 \sim c_{22}^{(1)\ t}(Z_+(x,y),Z_0(x,y),Z_-(x,y)) & \text{in } S_1(3\pi/2,3\pi/2), \end{split}$$

where the vector multipliers $c_{pq}^{(1)}$ (p,q=1,2) are given by $aC_{pq}^{(1)}$.

References

- [1] B. Dwork and F. Loeser, Hypergeometric series, Japan. J. Math., 19 (1993), 81-129.
- [2] A. Erdélyi, Integration of a certain system of linear partial differential equations of hypergeometric type, Proc. Roy. Soc. Edinburgh, **59** (1939), 224–241.
- [3] A. Erdélyi, Some confluent hypergeometric functions of two variables, Proc. Roy. Soc. Edinburgh, 60 (1940), 344-361.
- [4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, vols. 1 and 2, McGraw-Hill, New York, 1953.
- [5] K. Okamoto and H. Kimura, On particular solutions of the Garnier systems and the hypergeometric functions of several variables, Quart. J. Math. Oxford (2), 37 (1986), 61-80.
- [6] S. Shimomura, Asymptotic expansions and Stokes multipliers of the confluent hypergeometric function Φ_2 , I, Proc. Roy. Soc. Edinburgh (A), 123 (1993), 1165–1177.

Shun Shimomura

Department of Mathematics Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-0061 E-mail address: shimomur@math.Keio.ac.jp