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1. Introduction.

The confluent hypergeometric function

¢2(ﬁ’ﬁ”y’x’y):m7zn;()w’(f;)i%%ﬂyn (11)

with (B),, = I'(B+m)/I'(P) satisfies a system of partial differential equations

XZxx + VZxy + ('}’ - x)zx - pz=0, (1 2)

VZyy + Xzxy + (y — y)zy — B2 =0
(see [4, §5.9]) for (x,y) € P/(C) x P!(C). Observing that (x — y)zy, — f'zx + Bz, =0,
we can verify that (z, xz,,yz,) satisfies a Pfaffian system which possesses the singular loci
x=0, y=0, x=y of regular type and x = o0, y = oo of irregular type, and that the
solutions of (1.2) constitute a three-dimensional vector space over C. In the previous
paper [6], we defined linearly independent solutions z,, zp, z_ admitting integral
representations. Modifying the paths of integration, we obtained monodromy matrices
with respect to them. The main theorems in [6] give the asymptotic properties of them
near the singular loci x = oo (y is bounded) and y = oo (x is bounded), that is to say,
asymptotic expansions in powers of 1/x and 1/y, respectively, and Stokes multipliers.
By a connection formula, the asymptotic behaviour of @,(8,8,7,x,y) itself is also
clarified near these singular loci.

The present paper gives asymptotic expansions and Stokes multipliers of linearly
independent solutions as (x,y) tends to (oo,00). Consequently, we know the
asymptotic behaviour of the general solutions in the whole tubular neighbourhood
around the singular loci of irregular type. As in [6], an integral of the form

J PP — )P —y)Fetar (1.3)
c
(by Erdélyi [2], [3]) satisfying (1.2) plays an important role. (For the integral see also

(1], [5].) The difficulty of our problem is caused by the fact that the three singular loci
X =00,y = 00,x =y meet at one point (x,y) = (00, 0). In Section 2, we define four
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solutions of (1.2) expressible in the form (1.3) and five domains of which the union
covers the full neighbourhood of (x,y) = (c0,0). In each domain, we examine the
asymptotic behaviour of a suitably chosen triplet of linearly independent solutions. In
Sections 3 and 5, we state main theorems which give asymptotic expansions and Stokes
multipliers, respectively. They are proved in Sections 4 and 6. In the final section, we
explain the asymptotic behaviour of @,.

Throughout this paper, we assume that none of the complex numbers B, f,
y—B—p, B—7,B —y and B+ f is an integer. For a complex number A, we use the
notation

e = exp(2nmil). (1.4)

2. Preliminaries.

2.1. Integrals.

Let # be the universal covering space of the domain {(x,y)e C?||x| > M,
ly| > M,y — x # 0}, where M is a sufficiently large positive constant. Consider the
domain

A={(x,y) e Z|0 <argx <m < argy < 2=, n < arg(y — x) < 2n}, (2.1)

which is simply connected. For (x,y) € A, we put

2B, pxy) = (1= M) | fny (22)
C(x)
20(B, 7 x,) = (1 — A=) j £y, )dt, (2.3)
c(0)
2 (8.8 nx) = (1= [ fOy o (24)
C(y)
(BB 7 x,) = (1 — B0 j £(x,y, 0)dt (2.5)
C.(0)
with
Sy, ) =P (= x) (e - y)F e, (2.6)

Here the paths of integration and the branch of each integrand are taken in such a way
that they have the following properties:

(i) C(0), C(x), C(y) and C,(0) are loops which start from ¢ = —o0, encircle the
points 0, x, y and 0, respectively, in the positive sense, and end at ¢t = —o0.

(11) These paths are located as described in Fig.1.

(i) The branch of f(x,y,?) in each integral is taken such that

argt=n, arg(t—x)=n, arg(t—y)=n= (2.7)

at the endpoint = —oo of the corresponding path of integration.
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C(x) >

C(0)

C(y) >

C«(0)

Fig. 1.

By modifying the paths of integration, we obtain the analytic continuations of these
integrals to the whole domain %, which are also denoted by the same notation.
Furthermore they are often expressed by appropriate abbreviations. For example the
function z, (8,8,7, x,y) is written as z, or z,(x,y), when it is not necessary to indicate
the variables or the parameters. As was shown in [6], the integrals z,,z,z_ are linearly
independent solutions of (1.2). Note that (1 — e(—F-F Nz =L + L+ 1. Here I,h,1;
are integrals along the contours C(y), C(0), —C(y), respectively, of which integrands are
determined in such a way that, at the endpoints of the paths of integration, (argtz,
arg(t — x), arg(t —»)) = (~-n,n,3n), (n,n,3n), (n,7n, ), respectively (see Fig.2). Since
I = eV FF)(eF) —1)z_, L =eF)(1 —e0FF))z, Iy = (1 —e-F))z_, the new inte-
gral z, is written in the form

zy = e Fzg+ (1 — e F))z_; (2.8)

hence z,,z,,z_ are also linearly independent solutions.
Note that integral representation (2.3), with unmodified path C(0), gives the analytic
continuation of zy to the domain

—n/2 < argx <0, =<arg(y—x)<argy<3n/2 (2.9)

Assume that (x,y) = (e7™x',y — X') satisfies (2.9) and that arg((y/ — x') —e™x') =
argy. Then we have =n/2 <argx’ <z <argy <arg(y —x') <3z/2. In (2.3), we
replace (B,8,7,x,y) by (y—B—B, B, y, e™x, ¥ —X), and put t =v— x'. Then the
resulting expression is ez (8, §,y,x,3'). Applying the same replacement to (2.4) in

" D0
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domain (2.9), we obtain the integral e *z_(B,£,y,x’,y'). Using the uniqueness of
analytic continuation, we have the following proposition.

PROPOSITION 2.1. We have
2B, B, 7. x,y) = €0y~ B~ BB, 7,¢7"x,y - x), (2.10)
z-(B,8,v,x,y) =z (y =B~ F,B,y,e7"x,y — x) (2.11)
on R, where arg((y — x) — e ™x) is to be argy.

Starting from integral representations (2.2) and (2.4) in the domain 7z <
argx < 3n/2 < argy < 27 < arg(y — x) < 5n/2, we arrive at the following proposition:

PROPOSITION 2.2. We have
2 (BB, v, %,y) = €2(B,y = B~ B9,y — X, "), (2.12)
z(B,B 7, %,y) =€z (B,y — B~ F,»,y — x,€"x) (2.13)
on R, where arg(e™x — (y — x)) is to be n+ argy.

Consider the analytic continuations of (2.4) and (2.5) to the domain 0 < argx <
n/2 < argy < arg(y — x) <=m, and those of (2.3) and (2.4) to the domain 7/2 <
argx < m < arg(y — x) < 2n < argy < 5n/2. Then, putting f = v — y, in these integrals,
we have the following results:

PROPOSITION 2.3. We have
2(B, B,y x,y) = €2_(y = B~ B, B,y,e7"y, e (y — X)), (2.14)
(BB, r.x,y) = €2y =B~ F B,y e ™y, e (y — x)) (2.15)
on R, where arg(e ™ (y — x) — e ™y) is to be argx.

PROPOSITION 2.4. We have
Z—(ﬂ)ﬁ’a Vs xay) = eyZO(ﬂvy _ﬁ - ﬂ'7 y,e—ni(y - x)’eniy), (216)

Z*(ﬂ,ﬁl,% x?y) = eyz—(ﬁ,y—ﬂ—ﬂlﬂ, e—m'(y - x),eniy) (217)

on R, where arg(e™y — e ™(y — x)) is to be n+ argx.

2.2. Domains.
Let r, ¥, R and ¢ be arbitrary positive constants satisfying 1 <r<r <5/4,
R>1,0<e=<1/24. Consider five domains defined by

Di(r) = {(x,y) € #||x| > rlyl},

Dy(r) = {(x,y) € #||y| > rlxl},

Do(R) = {(x,y) e 2|0 < |y — x| < R},

Dy(R) = {(x,y) € R|R/2 < |y — x| < |x|/3},

D.(r,e) ={(x,y) e R|1/r <|y/x| <7,|y — x| > (1/3 - &)|x[}.
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The union of them covers # completely. By E we denote an arbitrary one among
them. Then EnA is connected and not empty. Let c¢(E) denote the connected
component of E including E nA. In the subsequent sections, we are concerned with the
asymptotic behaviour of the solutions z,, 29, z_, z, in ¢(E). In the other connected
components of E, we can also derive the asymptotic representations from those in c¢(E),
using the monodromy matrices My, M, and M, (cf. Section 6 and [6, Proposition 2.1]).

3. Asymptotic expansions.

Before the statement of our results, we give some definitions of asymptotic
expansions in two variables. Let K(U,V) be a formal power series defined by
3 @ UmV" (0 <m < +00,0 <n< +0). Denote by Ky(U,V) (N eN) the partial
sum of K(U,V) over (m,n) such that m+n<N. We write y=y/x. Let Y be a
variable y or y —x. Let f(x,y),u(y) and v(n) be functions holomorphic in a sector of
the form

So = {(x,y) e E||argx — 6;| < @}, |arg Y — 6;| < O,}

(0; e R,6; >0 (j=1,2)), where E denotes one of the domains defined in the preceding
section except Dy(R). If, for every positive integer N, there exists a positive constant
My such that

|f(x,9) = K (u(m) /x,0()/ )| < Mu(xI™" " + | ¥|7¥7)

in Sy, then we say that f(x,y) admits the asymptotic expansion K(u(n)/x,v(n)/Y) as
(x,Y) tends to (00,00) through the sector Sy. In E, at least either # or 5! is
bounded. Suppose that, for every (x,y) € E, the variable n belongs to a bounded set
E' (< C). Let t(y) and w(y) be functions holomorphic in E’. If, for every positive
integer N, there exists a positive constant My such that

£ (%) = K (t(n) /%, win)/x)] < Mlx| ™!

in a sector of the form {(x,y) € E||argx — 6}| < ©},n€ E'} (0} € R,0] > 0), then we
say that f(x,y) admits the asymptotic expansion K(t(n)/x,w(n)/x) uniformly for n € E' as
x tends to oo through the sector |argx — 0| < @]. For each fixed n € E/, we can
analogously define an asymptotic expansion in powers of (¢(n)/x,w(n)/x) as x tends to
oo through the sector |argx — 67| < @]. In what follows, to indicate the asymptotic
relations defined above, we use the notation

S (x,y) ~ K(u(n)/x,v(n)/Y) ((x,Y)— (o0, ) through Sp),
f(x,y) ~ K(t(n)/x,w(n)/x) (x — oo through the sector
larg x — 6| < @] uniformly for n € E'),

respectively. If the quotient f(x,y)/g(x,y), where g(x,y) is a given function, admits an
asymptotic expansion K(u(n)/x,v(n)/Y) (or K(t(n)/x,w(n)/x)), then we write in the

form £(x,y) ~ g(x,»)K (u(n)/x,v(n)/ Y) (or f(x,y) ~ g(x,)K(1(n)/x,w(n)/x))-
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Let H(B,B,7;t,u) be a formal power series defined by

H(ﬂ,ﬂ’,'}); t, u) _ Z (:B)m(ﬂ )n(:(BI;_/(};)_ Y+ 1)m+n M
m=20 m n

nz0

Recall the power series expressions (cf. [6, §3])

+8 —y+1),
s = 3 Bl D

xs"Fi(B+p —y+n+1,B—y+n+2,5,

U(ﬂ,ﬂ,,'}’,S;u) = ZM lFl(ﬁlvy_ﬁ_n’s)una

n=0 (l)n
and
V(BB v,su) =D (1= B),Pu(B B, y,8)u"
n=0
with
(B)m( B )nm 7 (pone
Py, 7,5) = ;0 _n) (1>,,m LI V().

Here 1Fi(a,c,s) is the confluent hypergeometric function and L,(,‘,')(s) is the Laguerre
polynomial

o0 -$(21) -

j=0

In what follows, we write # = y/x,& =n"1; § denotes an arbitrary small positive
constant and J, an arbitrary constant satisfying sin~'(1/r) <4, < /2.

3.1. Asymptotic expansions in c(D;(r)).
Note that || < 1/r in ¢(Di(r)).

THEOREM 3.1. In the domain c(Di(r)) we have the following asymptotic expansions:

() 2o~ — eI =pxP (1 —m) P eHy - p— B8, % 1/x1—-n)"/x) (31)

uniformly for |n| < 1/r as x tends to oo through the sector |argx — n| < 3n/2 —J,;
) 20~ =@+ —y+ DxFy P HB B, v ~1/x%,—1/) (3.2)
as (x,y) tends to (00, 0) through the sector |argx| < 3n/2 —9,,|argy — 2zn| < 3n/2 —6;
(lll) 7~ _e—(ﬂ—f‘ﬂ')nir(l _ﬂ’)x_ﬂyﬂ"”ﬁ'—y(l —_ ﬂ)_ﬁey
x H(y =B~ B,8,%1/y,~(1-n)7"/x) (33)

as (x,y) tends to (o0, 0) through the sector |argx| < 3m/2 —9,,|argy — n| < 3mn/2 — 6.
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3.2. Asymptotic expansions in c(D,(r)).
Note that |¢| < 1/r in ¢(Da(r)).

THEOREM 3.2. In the domain c(D,(r)) we have the following asymptotic expansions:
() 2o~ =P PPy (1P e
X H(y—ﬂ——ﬂ',ﬂ’,y;l/x,—(l—f)_l/y) (34)

as (x,y) tends to (o0,00) through the sector |argx —z| < 3m/2—9,|argy —2n| <

@) 2o~ @B —y+ Dx Py T H (BB v -1/x,-1/) (35)
as (x,y) tends to (00, 0) through the sector |argx| < 3m/2 —d,|argy — 27| < 3n/2 —Jy;
(i) 2o~ —e (1 - B)yF (1 - o Fe
x H(y—f~B.8,%:1/y,1=87"/) (36)
uniformly for |E| < 1/r as y tends to oo through the sector |argy — x| < 3n/2 —6,.

3.3. Asymptotic expansions in c¢(Dy(R)).

It is easy to see that, |argy —argx| < m/2 for (x,y) € c(Dop(R))uc(Dy(R)). In
¢(Do(R)), when x — oo through each sector, y also tends to oo and satisfies
argy —argx — 0.

THEOREM 3.3. In the domain c¢(Dy(R)) we have a convergent series expansion

Zy —z_ = P F(;(; )ﬁ(lﬂ'ﬂ,) B+F - Ty — x)l_ﬁ_ﬂe"
T(y—ﬂ—ﬁ',ﬂ',y,y—x;—l/x) (37)
and the following asymptotic expansions:
i (- e(ﬂ))z+ +eB (1 = elF))z_
i pip- .
F(ﬂ ﬁ,) X * }’exU(y ﬁ ﬂ’ ﬂ, y’ x’ l/x) (3‘8)

uniformly for |y — x| < R as x tends to oo through the sector |argx — n| < 3n/2 — 6;

(i) 2z~ —eTB+F —y+ Dx PPV —B-F By —x-1/x)  (39)
uniformly for |y — x| < R as x tends to oo through the sector |argx| < 3m/2 — 9.

3.4. Asymptotic expansions in c¢(Dy(R)).
Note that |y — 1| < 1/3 in ¢(Dj(R)).
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THEOREM 3.4. In the domain c(Dy(R)) we have the following asymptotic expansions:
(i) Zp ~ — e(ﬁ'—ﬂ)ﬂt’p(l _ﬂ)xﬂﬂ?’—y(y _ x)_ﬁ'e"
XH('}'—ﬂ—ﬂ,,ﬂ/,y;l/x,—l/(y"X)) (310)

as (x,y — x) tends to (00, 0) through the sector |argx — nt| < 4n/3, |arg(y — x) — 27| <
3n/2 —9;

() z~ — e LB+ —y+Dx "y HB,B, y;~1/x,—1" /x) (3.11)
uniformly for |n—1| < 1/3 as x tends to oo through the sector |argx| < 4n/3;
(i) 2o~ —e P = B) oY (y — x)Fer
x H(y—B—F,B,yin " /x,1/(y - x)) (3.12)

as (x,y — x) tends to (o0, 00) through the sector |argx — zn| < 4n/3, |arg(y — x) — n| <
3n/2 0.

3.5. Asymptotic expansions in ¢(D.(”,¢)).
Note that D,(r,¢) is expressible in the form

D.(7,e) = {(x,xn) e R|1/¥ < |n| <V,]1—n|>1/3—¢}.

Since 0 < argy —argx <2n for (x,y)e€c(D.(r,¢)), there exists a constant 6
(0 < 0y <m/6) such that |argn —n| = |argy —argx — | < w — @y in this domain. In
fact, if 6, satisfies |Fe®® — 1| < 1/3 —¢ and |(1/7)e® — 1| < 1/3 — ¢, then this inequality
is valid. For instance a numerical computation shows that we can take 6y = n/16, if
¥ =5/4, e £1/1600, and 6y = n/12, if ¥ =9/8, ¢ < 1/35. Consider the subdomains

ci(”,€) = {(x,xn) € c(D.(V,¢))|60p < argn < 7 — Gy},

co(r,€) = {(x,xn) € c(D.(r,¢))|57/6 < argn < Tn/6},

c_ (7, &) = {(x,xn) € c(D.(r,¢))|n+ 6y < argn < 27 — 6o},
which satisfy

c(Di(V,8)) = (P, &) Uco(r,e) ue_(V,e).
We can regard z,,zp,z_,z, as functions of (x,7).
THEOREM 3.5. Put K, ={seC|l/¥ <|s| <V, |l —5|>1/3—¢, Oy < args < n—

6o} and 0 = argn. Then, in the domain c.(r,&), we have the following asymptotic

expansions:
(1) for each ne K.,

Zp~ =PI = B)(1 =) PSP IS H G — B BB,y 1 /x, (L —m) /%) (3.13)

as x tends to oo through the sector n/2 — 0 < argx < 5n/2 — J;
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(i1) for each ne Ky,

Zo~ — eI+ B —y+ O Px PP HBB,y;~1/x,—17x) (3.14)

as x tends to oo through the sector —3m/2+ 9 < argx < 3n/2 —0 - J;
(ii1) for each ne K.,

z_~ — e B — BygfE 1 (1 — )P xF v er

xH(y~f—B,B,yin" /x,~(1=n)"/x) (3.15)
as x tends to oo through the sector —m/2 — 0+ 0 < argx < 3m/2.

The asymptotic representations of z,, of z, and of z_ given above are uniformly
valid for e K; as x tends to oo through the sectors 7/2 — 6 < argx < 5%/2 — 9,
—3n/2+d<argx <m/2+ 6y —3J, and —n/2 — 6y +J < argx < 37m/2, respectively.

THEOREM 3.6. Put K_={seC|l/F <|s|<V, |1 -5|>1/3—¢ n+6) <args<
2n — 6o} and ¢ = 2r — argn. Then, in the domain c_(7,¢), for each n € K_, the integrals
zy,eF)zy and z_ admit the asympiotic expansions in the right-hand members of (3.13),
(3.14) and (3.15), respectively, as x tends to oo through the sectors —m/2+0d <
argx <3n/2+0', -3n/2+ 6" +6 < argx < 3n/2 ~ 5, and ~3n/2 < argx < m/2 + 0’ -4,
respectively.

THEOREM 3.7. Put Ko={seC|l/F <|s| <7V, 5r/6 <args<Tn/6} and 0" =
|m — argn|. Then, in the domain co(r,¢), for each n € Ky, the integrals 24,24,z and
z_ admit the asymptotic expansions in the right-hand members of (3.13), (3.14), (3.14)
and (3.15), respectively, as x tends to oo through the sectors —m/2+0" +5<
argx<5n/2 — 0" -6, -3n/2+d<argx<n/2 — 0" -5, —n/2+ 0" +6 < argx < 3m/2 -9,
and —3n/2 + 6" +J < argx < 3n/2 — 0" — §, respectively.

4. Proofs of the theorems in Section 3.

4.1. Proofs of Theorems 3.1 and 3.2.

We prove Theorem 3.1 only. Theorem 3.2 is proved in a similar way. First we
consider the function z;. Let J be an arbitrary small positive constant. In order to
calculate an asymptotic expansion in ¢(D;(r)), we have to modify continuously the path
C(0), which is originally defined for (x,y) € A, so that it has the following properties:

(a) C(0) lies outside the circles |t — x| =0’|x]|,|t — y| =d'|x|, where ¢’ is some
positive constant;

(b) C(0) consists of Cy,, the circle |f| = 1, and —Cy,, where C,, denotes a curve
defined by ¢t = 7+ ig(z) (—o0 <t < 0,[t| = 1), g(r) being a real-valued piecewise smooth
function such that g'(7) = O(1) for —0 < 7 < 0.

To verify this modifiability, assume that (x,y) € ¢(D;(r)) belongs to the sector
larg x| < 37/2 —&,, |argy —2=n| < 3m/2 -9, 4.1)
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C(0) [tl=r|y|

Fig. 3.

where J, is a constant satis;ying sin~'(1/r) < d, < n/2. Then, as is shown below, such a
modification of C(0) is possible. Note that # = x moves outside the circle [f| = r|y|. If
larg x — (argy — 2n)| < 2n — J, then we can take C,, to be the half line ¢ = 7 + ig(7)
with g(7) = ttang,, where @, = ¢y(x, y) satisfies |@, — n| < n/2 — /2 (cf. Fig.3); hence
conditions (a) and (b) are satisfied. In the remaining case where
largx — (argy — 27n)| = 2 — 9, we can also modify C(0) preserving the properties
above. For example, when n/2 < argy —J < argx < 3n/2 — &,, we can take Cy, to be
the broken line ¢ = 7+ ig(r) with

(2) = { ttan(argy —d"), if Rey<1<0,
a= (r —Rey)tang, + g(Rey), if —oo <7 <Rey,

such that C(0) satisfies (a) and (b), where 8" =" (y,d’) (<) is a small positive constant
and ¢, = ¢,(x,y,0) is a constant satisfying |¢; —n| < n/2— (8, —sin~'(1/r))/2
(cf. Fig.4). Thus, under (4.1), there exists a desired modification of C(0). If
5, <sin"!1(1/ r), we cannot take C, any longer. This implies that the inequality on &,
is essential.

In view of condition (2.7), we can write f—x=¢%x(1—1t/x) and
t—y=e"y(l —t/y) for te C(0), in which arg(l-t/x) -0 (as t/x— 0) and

L O

L ——— sin~!(1/7)

| ltl=rlg]

C

Fig. 4.
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arg(l —t/y) — 0 (as t/y — 0). Applying [6, Lemma 4.1] to the factors (1 — t/x)_ﬂ and
(1—1¢/ y)“ﬁ’ , we write the integrand in the form

/

e(ﬂ'—ﬂ)"ix—ﬂy—ﬂ’ Z Mﬂtm+nx—my—n+0(tN+1(lx'-N—-l +|y|—N—1)) tﬂ+ﬂ’_yet
mirzy (Dm(1),

for te C(0), where N is an arbitrary large positive integer. For each A1 e C — Z and

ve N (v> ReAl), using property (b), we have

(1 —e=2)! J Pt dr = (1) e (A+ 1), (A + 1),
c(0)

and
0
J Vel |di]| = o(J |a|R“+Ve6da) ~ 0(1).
C(0) —00

Using these estimates, we arrive at asymptotic expansion (3.2) as (x,y) — (o0, 0)
through the sector given above.

Next consider the function z_. As long as (x,y) belongs to the sector
larg x| < 37/2 — 4,, |argy — 7| < 3n/2 — 4, we can modify the path C(y) continuously in
such a way that it has the following properties:

(a') C(y) lies outside the circles |t — x| =&'|x], |¢| = &'|x[;
(b)) C(y) —y={t—y|te C(y)} consists of the same circle and the same curves as
those of (b).

The verification of this fact is similar to that of the modifiability of C(0). Putting
t=v+y, we have

zo = (1-ePy e J v 0+ o+ y — x)Fedv.
o)~y

In view of condition (2.7), the integrand is written as
e X1 =) P (14 o)1 = o/ (x = ) Fer

with n = y/x, where arg(l —n) —» 0 (as # — 0), arg(l+v/y) — 0 (as v/y — 0) and
arg(l —v/(x—y)) -0 (as v/(x—y)—0). Applying [6, Lemma 4.1] and using
properties (a’) and (b’), we obtain asymptotic expansion (3.3) uniformly for |y| < 1/r.

Since |x| > r|y|, as long as |arg x — n| < 37/2 — J,, we can modify the path C(x) of
z, continuously in such a way that it has the following properties:

(@”) C(x) lies outside the circles |¢f| = &'|x|, |t — y| = &'|x[;

(b") C(x) consists of the circle t—x =e” (—n+p <0 <+ p) and the two half
lines ¢ — x = te~ ") t — x = 7e(™P) (7 > 1), where p is some real constant depending
on x and satisfying |p| < /2.

Put t = v+ x and observe that x + v =x(1 +v/x), x —y+v=x(1 —n)(1 +v/(x — ),
where arg(l+v/x) -0 (as ov/x—0), arg(l-n)—0 (as #n—0), and
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arg(l +v/(x—y)) —» 0 (as v/(x —y) — 0). Using these facts and [6, Lemma 4.1], we
obtain asymptotic expansion of (3.1). This completes the proof of Theorem 3.1.

4.2. Proof of Theorem 3.3.

By virtue of [6, Propositions 5.1 and 5.2] combined with formulae (2.10) and (2.11),
we can easily obtain the convergent series expansion of z, —z_ and the asymptotic
representation of (1 — e(#)z, + P (1 — (F))z_. Using formula (2.13), we immediately
derive the asymptotic representation of z, from [6, Theorem 3.4].

4.3. Proof of Theorem 3.4.

Note that Theorem 3.1 is valid for » > 1. From formula (2.10) and Theorem 3.1, (ii)
(with r =3), we derive the desired expansion of z; as (x,y —x) tends to (oo, 0)
through the sector |argx — 7| <37n/2—03, |arg(y —x)—2n| <3n/2 -6 with
n/2 —cos™1(1/3) < &3 < m/2. Taking J3 =m/6, we arrive at assertion (i). Using
formula (2.11) and Theorem 3.1, (iii), we can prove assertion (iii)) in a similar
way. Observe that |argx —argy| <sin'(1/3) <n/6 in c(Dj(R)). Assertion (ii)
immediately follows from this fact and the proposition below:

PROPOSITION 4.1.  Write As = {(x,y) € &| |argy — arg x| < 2n — J6}.  Denote by c(As)
the connected component of As including As " A.  In c(As) we have

2o~ =B+ —y+ Dx Py P HB By ~1/x,~1/)
as (x,y) tends to (o0, 00) through the sector |argx| < 3m/2 — 4, |argy| < 3m/2 — .

ProoF. Under  the  assumption larg x| < 3m/2 -4, largy| < 3n/2 -4,
largy — arg x| < 2m — J, we can modify the path C,(0) continuously in such a way that it
has the following properties:

(a.) C.(0) lies outside the circles |t — x| = d'|x|, |t — y| = §'|x|, where & is some
positive constant;

(bs) Ci(0) consists of the circle t = ¢” (—n+p < 6 < n+ p) and the two half lines
t = el t = 7e(*P)i (7 > 1), where p is some real constant depending on x and
satisfying |p| < m/2.

Considering condition (2.7), we put ¢ —x = e"x(1 —t/x),t — y = e"y(1 — t/y), where
arg(l —t/x) — 0 (as t/x — 0), arg(1 — t/y) — 0 (as t/y — 0). By the same calculation
as that of zy (cf. the proof of Theorem 3.1), we arrive at the desired asymptotic
representation of z,.

4.4. Proof of Theorem 3.5.

Since assertion (ii) is an immediate consequence of Proposition 4.1, we show the
remaining ones. By the definition of z, and [6, Corollary 2.3, (1)], we have z.(x,y) =
zo(x,ye*™). Then we arrive at the following corollary of Proposition 4.1.

COROLLARY 4.2. Write Ay = {(x,y) € #||argy — argx — 2| < 2n —d}. Denote by
c(A}) the connected component of A} including Agn A In c(A;) we have

z0 ~ __e(Zﬂ’—y)nir(ﬂ+ﬂ/ - y+ l)x_ﬂy_ﬂlH(ﬁaﬂla 14 —1/x> _l/y)
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as (x,y) tends to (o0,00) through the sector |argx|<3m/2—06, |argy—2n|<
3n/2 — 6.

Assume that  (x,y) e c(”,€) = c(As) nc(A;). Note that 6y <0<m— 6y
(0 = argy —argx). Considering the triangle with vertices x,0,y, we see that

0+ < arg(y — x) — argx < m — Jy, (4.2)

where Jp is some positive constant satisfying 0 < dp < 6p. Consider the function
z4. The inequality n/2 — § < argx < 51/2 — 6 combined with (4.1) yields —37/2 +J <
-n/2 — 0 < arg(e™™x) < 3n/2 -0, m/2+d0<m/2—60<arg(y—x)<Tn/2—-46, and
n<m+ 0+ <arg(y —x) —arg(e™x) < 2n. Hence, using formula (2.10) and Cor-
ollary 4.2, and observing that y — x = e™x(1 —#), we have the desired asymptotic
expansion of z, uniformly for 1/7 < |5| < ¥ as x — oo through the sector 7/2 — 0 <
argx < 5m/2 — 6. .

Finally consider the function z_. If —n/2 -6+ < argx < 3n/2, then, by (4.2)
and the definition of 6, we have —3rm/2+J < arg(e ™y) < argx — 0y < 3n/2 — 6y,
—3m/2+6 < arg(e ™(y—x)) <3n/2—3Jy, and Jy < arg(e ™(y — x)) — arg(e™"y) <
n—0—3J9 <mn. Therefore, by Proposition 4.1 combined with (2.15), we obtain the
asymptotic expansion in assertion (iii) uniformly for 1/r < || < ¥ as x — oo through
the sector —n/2 — 0+ < argx < 3m/2, which completes the proof of the theorem.

4.5. Proofs of Theorems 3.6 and 3.7.

Note that, under the assumption of Theorem3.6, =+ dy < arg(y —x)—
argx < 2m — 0’ — &, and that, under that of Theorem 3.7, n — 0" + &) < arg(y — x) —
argx <n+0" -, where & and &, are some positive constants. Using these
inequalities, we have the asymptotic expressions of z,, e(#)zy, z_, z, in the same way
as in the proof of Theorem 3.5.

5. Stokes multipliers.

5.1. Stokes multipliers in c(Di(r)).
To indicate a sector in ¢(D;(r)) we use the notation

S1(01,60,) = {(x,y) € ¢(D1(r))| largx — 61| < m — &,, |argy — 65| < m — J}.

Consider the linearly independent solutions z,z¢ and z_ on ¢(D;(r)). By Theorem 3.1

we have
Zy ~Z+(xay)7 ZONZO(xay)3 Z— NZ—(xvy)’ (51)

as (x,y) — (o0, 0) through the sector Si(n/2,3n/2), where Z.(x,y), Zo(x,y) and
Z_(x,y) denote the asymptotic expansions in the right-hand members of (3.1), (3.2) and
(3.3), respectively. For a given sector S (< ¢(D;(r))), assume that linearly independent

solutions z%,z5, 25 satisfy

5 ~Zu(x%,y), z5 ~Zo(x,y), 25 ~Z_(x,p), (5.2)
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as (x,y) — (o0, o) through the sector S. There exists a matrix Cs € GL(3, C) such that
“(z4,20,2-) = Cs'(23, 25, 25). (5.3)

(The notation ‘v denotes the transposed vector of v.) Then we call Cs the Stokes
multiplier ( for the sector S) with respect to (z4,20,z_). From (5.2) and (5.3) we obtain
the asymptotic representation

I(Z-f-) 20, Z—) ~ Cst(Z+(X,y), ZO(x,y), Z_ (X, y))
as (x,y) — (o0, c0) through the sector S. In the other domains treated afterward, the

Stokes multipliers are similarly defined.

THEOREM 5.1.  In the domain c¢(Di(r)), we have the Stokes multipliers with respect to
(z4,20,2-) listed below:

(@) Si(n/2,7/2) (b) Si(n/2,3n/2)
10 0
cl=10 1 1-¢# ], cy =1,
00 1
() Si1(3n/2,7/2) d) Si1(3n/2,3n/2)
1 0 0 1 00
Cl=1-eh 1 1-¢b ], c=[1-¢eP 1 0],
1—-eH 0 1 1—e=A 0 1

where I denote the identity matrix.

5.2. Stokes multipliers in ¢(D;(r)).
In the domain c¢(D;(r)), we write

S2(01,02) = {(x,y) € c(Da(r))| |Jargx — 01| < m —J,|argy — 02| < m — 6, }.

THEOREM 5.2. In the domain c(D;(r)), we have the Stokes multipliers with respect to
(z4+,20,z-) listed below:

(a) Sa(m/2,m/2) (b) S2(n/2,37/2)
, 1 0 1—e#) )
cP=[0 1 1-¢® |, cy =1,
0 0 1
(C) S2(37T/2, 7t/2) (d) S2(3T[/27 37[/2)
1 0 1—e#) 1 0 0
Ch=1-eP 1 1-eb |, cl=11-¢P 1 0].
0 0 1 0 0 1

5.3. Stokes multipliers in c(Dy(R)).
We put

So(6) = {(x,y) € c(Do(R))| largx — 0] < = — 6},



Asymptotic expansions and Stokes multipliers 15

in which argy necessarily satisfies |argy — arg x| < J, if |x|, and hence |y|, is sufficiently
large.

THEOREM 5.3. In the domain ¢(Dy(R)), we have the Stokes multipliers with respect to
(z_1,21,24) = (24 — 2_, (1 — &Pz + BV (1 — eFN)z_, 2,) listed below:

(a) So(—m/2) (b) So(n/2)

1 0 0
c© = (0 1 (1= e+ - e(y—ﬂﬂ’))) , c¥ =1
00 1

5.4. Stokes multipliers in c(Dg(R)).
Consider the sector

S'(61,62) = {(x,y) € c(Dy(R))| larg x — 61| < 57/6, |arg(y — x) — 62| < 7 — d}.

THEOREM 5.4. In the domain c¢(Dj(R)), we have the Stokes multipliers with respect to
(z4,24,2-) listed below:

(a) S'(-n/2,7/2) (b) S'(—n/2,37/2)
1 1=erB8-8) 1—el#) 1 1=e088) 0
i] = 0 1 0 , Ciz = 0 1 0 y
0 1—er5-8) 1 0 1—e0—£-8) 1
() S'(n/2,m/2) (d) S'(r/2,37/2)
1 0 1—e#)
n=10 1 0 ; Cp=1I
00 1

5.5. Stokes multipliers in c(D.(7,¢)).

For each ne K, UKy u K_ (see Theorems 3.5, 3.6 and 3.7), we put

Sy (1:41(0),£2(0)) = {(x,nx) € ¢4 (7, )| /1(0) < argx < f2(6)} (if n € K3),
Sy (1;91(6'),9200")) = {(x,1%) € c_(r',€)|g1(0") < argx < g2(0)} (if # € K-),
S2(m; m(0"), h2(8")) = {(x,1x) € co(',€)| 1 (8") < argx < hp(0")}  (if 7 € Ko),

where f;(6),9;(0') and h;j(0")(j = 1,2) are linear functions of 6 = argn, 8’ = 2n — argy
and 0" = |n — argy|, respectively.

THEOREM 5.5. In the domain c (v, ¢), for each n € K, we have the Stokes multipliers
with respect to (z,z.,z_) listed below:

(@) 87(n;—n/2—0+6,7/2—-9)

1 e(ﬂ/) — e(y_ﬁ) 1 _ e(ﬂ’)
C—T—-,——l = O 1 O )

0 0 1
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(b) S} (m;m/2~6,3n/2 — 60— 9)
Cio=1,

(c) 87 (m;m/246,3m/2)

1 0 0
C:_ 1 — e(_ﬂ') — e(—ﬂ_ﬂ,) 1 1 — e(_ﬂ,) .

0 0 1

THEOREM 5.6. In the domain c_(',¢), for each n € K_, we have the Stokes multipliers

with respect to (z4,z0,z-) listed below:

(@) S-(7;—3n/2+60"+6,—-n/2+0")
1 1—=e0—8-8) 0—B-F) _ o(r-B)
C:’_l =10 1 0 ’
0 0 1

(b) S7(n;—=/2+5,7/2+ 6" —6)
Cto=1,

(¢) S;(m;m/2,3n/2 —9)

1 0 0
C, = 0 1 0.
’ e(BHB'=7) _ o(B'=1) | — o(B+F' - 1

THEOREM 5.7. In the domain cy(r,¢€), for each n € Ky, we have the Stokes multipliers

with respect to (z,,z9,2_) (or (z4+,2,2-)) given by (a), (b) (or (a’), (b')):
(a) SY(n; —3m/2+ 0" +6,7/2 - 0" - 9)
1 1~ e(y-ﬂ_ﬁl) 1— e(ﬂ,)
Coi=10 1 1—e®) ],
0 0 1

(b) S(n; —m/2+ 0" +6,3n/2 — 0" —9)
Ca‘,l - I,

@) S%n;—3n/2+0" +6,n/2—0" -6
«\1
1 e(ﬂ,) — e(y_ﬂ) 1 — e(ﬁ/)
C:,—l = 0 1 0 3
0 0 1

(b') SXm;—m/2+ 6" +6,3n/2 — 6" - 6)

10 0
Cri=(0 1 1-e£) .
0 0 1

REMARK 5.1. For each 7, € K, consider the projection p : D(y) — V(n,), where
D(ny,) and V(y,) denote domains defined by y/x=n, in c,(r,e) and in C?
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respectively. Then the images of the three sectors in Theorem 5.5 under p cover the
full neighbourhood of (x,y) = (o0,00) in V(n,). The sectors in Theorems 5.6 and
5.7 possess the same property.

ReMARK 5.2. In the three theorems above, we can replace the sectors by ones
which are independent of 6 = argn. For example, in Theorem 5.5, the asymptotic
formulae in (a), (b) and (c) are valid uniformly for # € K, as x tends to oo through
UpST(m; —m/2 — 00 +0,m/2 - 6), UySE(m;n/2 —6p,m/2+ 60y —35) and U,ST(n;7/2+3,
3n/2), respectively, where the union is over all # € K.

6. Proofs of the theorems in Section 5.

6.1. Proofs of Theorems 5.1 and 5.2.
Recall the monodromy matrices

e(=B) 0 1 — e=8)
Moy=| —(1 -1 —elF)) 1 (1 —e=P)1 -5 |,
B (1 — e-P) 0 1-—e8) 4 el-8-8)
e(B+8'—7) 1 — e(B+8-7) 0
My = | BB _ o(B'=1) 1 — BB —7) B0 ¢ |,
0 0 1
1 0 0
M2 = O e(_ﬂ,) 1 J— e(_ﬂ’)

0 e(_ﬂl) — e(ﬂ_'}') 1 — e(_ﬂ/) + e(ﬂ_y)

(cf. [6, Proposition 2.1]). To prove Theorem 5.1, it is sufficient to show assertions (a),
(c) and (d). We prepare the following lemma, which is easily obtained from [6,
Corollary 2.3, (1)] and the monodromy matrices above.

LeMMA 6.1. In the domain c(D:(r)), we have

zo(xe ™, y) = (1 — M)z, (x,y) + ePzo(x, ), (6.1)
z_(xe” % ) = (1 — )z, (x,9) + ePz_(x, ), (6.2)
z0(x, ye¥™) = e F)z5(x,y) + (1 — & Nz_(x, ). (6.3)

In Si(n/2,7/2), the asymptotic relations z; (x,y) ~ Z,(x,y) and z_(x,y) ~ Z_(x,y)
immediately follow from Theorem 3.1, (i), (iii). Observing that |argx| < 37/2 -4,
larg(ye*™) — 2n| < 3n/2 -6 in S|(n/2,m/2), and using Theorem 3.1, (ii), we have
20(x, ye¥™) ~ Zy(x,ye?™) = e{-F)Zy(x,y). Substitution of this into (6.3) yields

z0(x,) + () = Dz_(x,) ~ Zo(x,).

Thus we have obtained a column vector of solutions

(2 (x,), 20" (%), 2 (%, ) = Ti1 (24 (%, ), 20(%, ), 2_ (%, )
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satisfying 2! (x,y) ~ Z1.(x,¥), z'(%,») ~ Zo(x,»), 2(x%,9) ~Z_(x,y) as (x,9) —
(00, 0) through Si(n/2,7n/2), where

1 0 0
T11= 0 1 e(ﬁ')—l .
00 1

Hence the Stokes multiplier Cﬂ) = Ty;! immediately follows.

Since |arg(xe*")| < 3n/2 —§,, |argy —3n/2| <m—4 in S1(3n/2,3n/2), Theorem
3.1 yields zo(xe 2™ y) ~eF)Zy(x,y) and z_(xe 2™ y) ~eP)Z_(x,y). Using these
relations together with (6.1) and (6.2), we derive the Stokes multiplier Cg) by the same
argument as above.

Suppose that (x,y) € S1(37/2,7/2). Since |arg(xe™?™)| < 3n/2 — J,, |arg(ye?™) — 2z]
< 31/2 — 8, we have zo(xe~2™, ye?™) ~ Zo(xe 2™ ye?™) = elF~F) Zy(x,y). On the other
hand, from Lemma 6.1, it follows that

z0(xe™ 2 ye?™) = eF)zo(xe™2™ ) + (1 — e F))z_(xe 2™, y)
= (1= éP)zo(x,y) + PPz (x,) + (P — PPz (x, ).
Hence,

(e BB — e Bz, (x,¥) + 20(x,) + (€)= 1)z_(x,y) ~ Zo(x,). (6.4)

Observing that |arg(xe ?*)| < 3%/2 — &, |argy — n| < 3n/2 — &, and using (6.2), we have

(P — Dzy(x,y) + z_(x,y) = e Pz_(xe™ ™ y) ~ Z_(x,). (6.5)

Adding a trivial relation z,(x,y) ~ Z.(x,y) to (6.4) and (6.5), we arrive at linearly
independent solutions z2!(x,y) ~ Z,(x,y), 23! (x,y) ~ Zo(x,y), 22 (x,y) ~ Z_(x,) (as
(x,y) — (00, 00) through S;(3n/2,7/2)) given by

(2 (%,9), 25 (%,9), 22 (x,9)) = T (24 (x, %), 20(%, ), 2- (%, ))

1 0 0
T21 — e(ﬂ’_ﬁ) — e(ﬂ’) 1 e(ﬂ’) J— 1 .

with

eh-1 0 1

This gives the Stokes multiplier Cg) = T,;', and the proof of Theorem 5.1 is completed.
Theoremi 5.2 can be verified in a similar way.

6.2. Proof of Theorem 5.3.

Recall the fundamental group 7)(D) generated by the loops co,c; and c;, where
D=C*-({X=0}u{Y=0}u{X —Y=0}) (see [6, §2]). They satisfy the relation
CoC1Cy = C1CaCo = Cacoc1. Let Ey (CCZ) be a domain defined by 0<|Y — X| <
(1/3)|x|, |X|> M, |Y|> M. Then m=(Ey) is generated by c¢o and cjc;. In
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c(Do(R)) U c(Dy(R)) (2 (x,¥)), which is a covering of Ey, we regard z = '(z4,29,z_) as a
function of (x,y — x), and write it in the form z = z(x,y — x). Then we easily obtain
the following proposition:

PROPOSITION 6.2. In the domain c¢(Do(R)) U c(Dgy(R)), we have

[co)z(x, ¥ — x) = z(x, (¥ — x)e*™) = Myz(x,y — x), (6.6)
[CICZ]Z(x7y - X) = z(erni,y - X) = M1M2Z(X,y - x)’ (67)
where [c|z(x,y — x) denotes the analytic continuation of z(x,y — x) along the loop c.

Consider the convergent series expansion z_; = T_;(x,y — x) and the asymptotic
expansions z; ~ T1(x,y — x), z« ~ T«(x,y — x) given by Theorem 3.3. It is sufficient to
deduce C{O). If we put w =‘(zy,z,), then, by (6.7), we have

[cica]w(x,y — x) = w(xe®™,y — x) = M'w(x,y — x)
with

M =

This implies the relation
z1(xe? y — x) = &Pz (x,p — x) + (1 — PN (1 — P D)z, (x,y — x).

Since  |arg(xe’™) —n| < 3n/2~6 in  So(-m/2), we have zj(xe®™,y—x)~
ePHF=NT)(x,y — x) in So(—n/2). Hence,

zi(x,y—x)— (1 - e(’”ﬂ'))(l — e(”—ﬂ‘ﬂ'))z*(x,y —x) ~ Ty(x,y — x).

From this and trivial relations z_;(x,y — x) = T_1(x,y — x), z.(x,y — x) ~ Tu(x,y — x),
we derive the Stokes multiplier Cfo), which completes the proof of the theorem.

6.3. Proof of Theorem 5.4.

We write the asymptotic expansions of Theorem 3.4 in the form z, ~ U,(x,y — x),
zo ~ Us(x,n), z_ ~U_(x,y —x,n7). When x, and hence y, turns round the point
(00, 00) along the loop cjcy, then argn remains invariant. Using Proposition 6.2, we
have the following lemma.

LEMMA 6.3. In the domain c(Djy(R)), we have
2o (v, y - x) = &FF Nz (x,y = x) + (1= ePF Mz (xy— %), (68)
z_(xe?™,y — x) = (1 — eBF Nz, (x,y — x) + P Nz_(x,y - x), (6.9)

Z+(X, (y - x)eZni) = e(”ﬂ,)z+(x,y - X) + (1 - e(_ﬂ,))z— (x,y - X). (610)
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From (6.8) and (6.10), it follows that
2 (%€, (y — x)e?™) = e PPz (x,y — x) + (1 — PP D)z, (x,y - x)
+ BN () — 1)z_(x,y — x). (6.11)

Assume that (x,y) € §'(-n/2,n/2). Since |arg(xe?™) —n| < 4n/3, |arg((y — x)e*™)—
21| < 3n/2 — 35, we obtain z,(xe?™, (y — x)e*™) ~ ef U, (x,y — x). Substitution of
this into (6.11) yields

2.(x,y = %) + (7P — Pz, (x,y = ) + (P ~ Dz_(x,y — %)
~ Uy (x,y — x). (6.12)
Since |arg(xe*™) — x| < 4n/3, |arg(y — x) — x| < 3n/2 — 6, from (6.9), we obtain
(e("_ﬂ‘ﬁ') — Dzo(x,y — x) + z_(x,y — x)
~ ' FBYY_(xe?™ y — x,5) = U_(x,y — x,7). (6.13)

From (6.12), (6.13) and a relation z,(x,y — x) ~ U(x,#), we derive the Stokes multiplier
Cj;. Other assertions are verified by analogous arguments.

6.4. Proofs of Theorems 5.5, 5.6 and 5.7.

Let E, (< C?) be a domain defined by 1/F < |Y/X|<F, |Y — X| > (1/3 —¢&)|X].
Then =;(E.) is a free group generated by cocic2. In ¢(D.(7,€)), we regard
z="24,20,2-) and u ="*(z4,z,,z_) as functions of (x,#), and write them in the form
z2=2z(x,n) and u = u(x,7).

PROPOSITION 6.4. In the domain c(D.(r,¢)), we have
[cociealz(x,7) = z(xe®™, ) = Mo M1 Maz(x, 1), (6.14)

cocrcalu(x, n) = u(xe®™, ) = QMM M> Q™ 'u(x, 7)), (6.15)

1 0 0
Q = 0 e("ﬂ’) 1 — e(_ﬁl) .
0 0 1

To prove Theorem 5.5, it is sufficient to show assertions (a) and (c). From (6.15)
we deduce that

where

2o (x€, ) = ez, (x,) + (1 = PPNz, (xy7)

+ (e(ﬂ"’ﬂl_}’) — e(ﬂ_y))z_ (X, n). (616)

We write the asymptotic expansions given by Theorem 3.5 as z, ~ W, (x,7),
2, ~ Wi(x,m), z_— ~ W_(x,n). Assume that (x,xn)eSf(n;—n/2— 60+, =n/2-09).
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Observing that 37/2 — 0 +J < arg(xe*™) < 57/2 — 4, and using (6.16), we have

20 (%,7) + (7 — )z, (x,m) + () — 1)z_(x,m)
~ TP W (xe¥, ) = W, (x,7).
Combining this with z.(x,n) ~ Wi(x,n), z_(x,n) ~ W_(x,n), we derive the Stokes

multiplier C} _,. Relation (6.15) implies u(xe™*",7) = QM5 ' M 'M;' Q0 'u(x,n), from
which it follows that

zo(xe™ ) = (1 - D)z, (x,7) + Bz, (x, 1) + (B — B)z_(x,p).  (6.17)

The matrix C7 ; can also be obtained from (6.17) in a similar way. Thus Theorem 5.5
is proved.

The asymptotic formula of zy in Theorem 3.6 is written in the form
20 ~ Wo(x,n) = e#)W,(x,7). From (6.14) we obtain

zy (xe ) = ¥z, (x,7) + () — P MNzo(e,m) + (1 — Nz (x,m),  (6.18)
and
z_(xe 2 ) = (1 — )z, (x,7) + (€B) — ") zg(x, 1) + € F)z_(x,m).  (6.19)

By virtue of Theorem 3.6 combined with the use of them, we can prove Theorem 5.6 in
a similar way.

Using (6.16) and Theorem 3.7, we easily obtain the matrices C; _,, (g, of Theorem
5.77. The matrices Cj_,,C;, immediately follow from them by virtue of relation
(2.8).

7. Asymptotic behaviour of @,.

By [6, Provosition 2.4], the function @, given by (1.1) is expressible in the form

¢2(ﬂaﬂlay7 x’y) = at(Z+,Z(),Z_)

with @ = 27) ' T(y)(1 — P, elB) — 0=F) —F) _ ). By (2.8) it is also written in
the form

¢2(ﬂ’ﬂ/’y1 x’y) = a*’(z+,z*,z_) = bt(Z_l,Zl,Z*)

with a, = Qu)7'T(H)(1—e®), eFF) _ ) oB) —B+)) b = (2mi)~'T(y)
(0,1, eA+F) — )Y (for z_;,z; see Theorem 5.3). Using these formulae, we can derive
an asymptotic expansion of @, in each sector. Recall the notation Z,(x,y), Zo(x,y),
Z_(x,y) and S)(0y,6,) defined in Section 5.1. For example, in the domain ¢(D(r)), by
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Theorem 5.1, we have

D) ~ i) {(Z,(x,9), Zo(x,y), Z-(x,)) in Si(n/2,7/2),
Dy ~ &) (Z4(x,9), Zo(x, ), Z_(x,y)) in Si(n/2,3n/2),
D) ~ ) (Z4(x,9), Zo(x,), Z_(x,y)) in 51(3n/2,7/2),

B; ~ ¢ (Z4(x,9), Zo(x,3), Z-(x,)) in $1(3n/2,3n/2),

where the vector multipliers c,(,;) (p,g=1,2) are given by aCi(,},).

(1]
(2]

(3]
(4]
(5]
(6]
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