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\S $0$ . Introduction.

Let $\alpha=(\alpha_{1}, \cdots, \alpha_{n})$ be an $n$ -tuple of positive integers. Assume that the
greatest common divisor of the integers $\alpha_{j}$ is 1. Let $N$ denote the set of
positive integers, and let $f$ : $(R^{n}, O)arrow(R, 0)$ be a polynomial function defined by

$f(x)=:A_{\beta}x_{1}^{\beta_{1}}\cdots x_{n}^{\beta_{n}}(A_{\beta}\neq 0, \beta_{1}, \cdots , \beta_{n}\in N\cup\{0\})$ .

We say that $f$ is weighted homogeneous of type $(\alpha_{1}, \cdots , \alpha_{n} ; L)(\alpha_{1},$ $\cdots$ , $\alpha_{n},$
$L\in$

$N)$ , if
$\alpha_{1}\beta_{1}+\cdots+\alpha_{n}\beta_{n}=L$ for any $\beta=$ $(\beta_{1}, \cdot. , \beta_{n})$ .

Let $J$ be an open interval, and $t_{0}\in J$ . Let $f_{t}$ : $(R^{n}, 0)arrow(R^{p}, 0)$ be a poly-
nomial mapping where each $f_{t}i$ is weighted homogeneous of type ( $\alpha_{1},$

$\cdots$ , $\alpha_{n}$ ;
$L_{i})(1\leqq i\leqq p)$ for $t\in J$ . We define a mapping $F:(R^{n}\cross J, \{0\}\cross J)-(R^{p}, 0)$ by
$F(x, t)=f_{t}(x)$ . Assume that $F$ is a polynomial mapping (or of class $C^{2}$). It is
well-known that the following fact holds under these assumptions:

FACT. If $f_{t}^{-1}(0) \cap\sum f_{t}=\{0\}$ for any $t\in J$ (where $\sum f_{t}$ denotes the singular
points set of $f_{t}$), then $(R^{n}\cross J, F^{-1}(0))$ is topologically trivial $i.e$ . there exists a
$t$-level preserving homeomorphism $\sigma$ : $(R^{n}\cross J, \{0\}\cross J)arrow(R^{n}\cross J, \{O\}\cross J)$ such
that

$\sigma((R^{n}\cross J, F^{-1}(0)))=(R^{n}\cross J, f_{t_{0^{-1}}}(0)\cross J)$ .

REMARK 1. Results generalizing this fact have been obtained in [2], [5].

But it seems that the fact itself was recognized by many mathematicians a
good while ago.
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Since we consider the weighted homogeneous case with an isolated singu-
larity, it seems natural that stronger triviality than topological holds. In fact,
we show that such triviality called “modified Nash triviality” holds under the
above assumptions (see Theorem in \S 2). On the other hand, we have intro-
duced the notion of “strong $C^{0}$ triviality” for a family of analytic functions in
[6]. Roughly speaking, strong $C^{0}$ equivalence is a $C^{0}$ equivalence which pre-
serves the tangency of analytic arcs at $0\in R^{n}$ . In \S 4, we discuss the relation
between modified Nash triviality and strong $C^{0}$ triviality for a family of zero-
sets of weighted homogeneous polynomials.

Main results in this paper have been announced in [7].

The author would like to thank Professor M. Shiota for helpful suggestions
concerning Proposition2 in \S 3 (semi-algebraic triviality theorem).

\S 1. Some properties of Nash manifolds.

In this section, we recall some important results on Nash manifolds. A
semi-algebraic set of $R^{n}$ is a finite union of sets of the form

$\{x\in R^{n}|f_{1}(x)=\ldots=f_{\iota}(x)=0, g_{1}(x)>0, \cdots , g_{m}(x)>0\}$ ,

where $f_{1}$ , $\cdot$ .. , $f_{l},$ $g_{1}$ , $\cdot$ .. , $g_{m}$ are polynomial functions on $R^{n}$ . Let $r=0,1,2$, ,
$\infty,$ $\omega$ . A semi-algebraic set of $R^{n}$ is called a $C^{r}$ (affine) Nash manifold if it is
a regular $C^{r}$ submanifold of $R^{n}$ . Let $M\subset R^{m}$ and $N\subset R^{n}$ be $C^{r}$ Nash mani-
folds. A C’ mapping $f:Marrow N$ (s$r) is called a $C^{s}$ Nash mapping if the graph
of $f$ is semi-algebraic in $R^{m}\cross R^{n}$ .

THEOREM 1 (B. Malgrange [14]). (1) A $C^{\infty}$ Nash manifold is a $C^{\omega}$ Nash

manifold.
(2) A $C^{\infty}$ Nash mapping between $C^{\omega}$ Nash manifolds is a $C^{\omega}$ Nash mapping.

After this, a Nash manifold and a Nash mapping mean a $C^{\omega}$ Nash manifold
and a $C^{\omega}$ Nash mapping, respectively.

$TH+OR+M2$ (M. Shiota [15]). Let $M_{1}\supset N_{1},$ $M_{2}\supset N_{2}$ be compact Nash mani-
folds crnd compact Nash submanifolds. If the pairs $(M_{1}, N_{1})$ and $(M_{2}, N_{a})$ are $C^{\infty}$

diffeomorphic, then they are Nash diffeomorPhec.
REMARK 2. In Theorem 2, we can replace the assumption of “

$C^{\infty}$ diffeo-
morphic” by “ $C^{1}$ diffeomorphic” ([16]).

THEOREM 3 (M. Shiota [16]). There exist two (affine) Nash manifolds which
are $C^{\omega}$ diffeomorphic but not Nash diffeomorphic.

In general, Nash diffeomorphism is stronger than the notion of $C^{\omega}$ diffeo-
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morphism. Consequently, modified Nash triviality (cf. \S 2) is stronger than
modified analytic triviality in the sense of T. C. Kuo ([11], [12], [13]).

\S 2. Modified Nash triviality theorem.

Let $\alpha=(\alpha_{1}, , \alpha_{n})$ be an $n$ -tuple of positive integers. Put $\rho=\alpha_{1}$ $\alpha_{n}$ and
$\rho_{i}=\rho/\alpha_{i}(1\leqq i\leqq n)$ . For $\gamma\geqq 0$, set

$S_{\gamma}(\alpha)=\{(X_{1}, \cdots , X_{n})\in R^{n}|X_{1}^{z\rho_{1}}+\cdots+X_{n}^{z\rho_{n}}=\gamma^{2\rho}\}$ .
We define $\pi_{a}$ : $S_{1}(\alpha)\cross Rarrow R^{n}$ by

$\pi_{\alpha}(X_{1}, \cdots , X_{n} ; u)=(u^{\alpha_{1}}X_{1}, \cdots , u^{a_{n}}X_{n})$ .

Put $E=S_{1}(\alpha)\cross R$ and $E_{0}=\pi_{a}^{-1}(0)=S_{1}(\alpha)\cross\{0\}$ . Then $E$ is a Nash manifold and
$E_{0}$ is a Nash submanifold. The restricted mapping $\pi_{\alpha^{1E-E_{0}}}$ : $E-E_{0}arrow R^{n}-\{0\}$

is a 2: 1 mapping. Therefore $\pi_{a}$ : $(E, E_{0})arrow(R^{n}, 0)$ is a finite modification.
Let $J$ be an open interval and $t_{0}\in J$ , and let $f_{t}$ : $(R^{n}, 0)arrow(R^{p}, 0)(t\in J)$ be a
weighted homogeneous polynomial mapping. We define $F:(R^{n}\cross J, \{0\}xJ)arrow$

$(R^{p}, 0)$ by $F(x, t)=f_{t}(x)$ .
DEFINITION. We say that $(R^{n}xJ, F^{-1}(0))$ admits a $\pi_{\alpha}$-modified Nash trivz-

alization, if there exists a $t$-level preserving Nash diffeomorphism $\phi:(E\cross J$ ,
$E_{0}\cross J)arrow(E\cross J, E_{0}xJ)$ which induces a $t$-level preserving homeomorphism $q$) :
$(R^{n}\cross I, \{0\}\cross J)arrow(R^{n}\cross J, \{O\}\cross J)$ such that

$\phi((R^{n}\cross J, F^{-1}(0)))=(R^{n}\cross J, f_{t_{0}}^{-1}(0)\cross J)$ .
THEOREM. Let $J$ be an oPen interval, and let $f_{t}$ : $(R^{n}, 0)arrow(R^{p}, 0)$ be a

polynomial mapping where each $f_{t,i}$ is weighted homogeneous of type $(\alpha_{1},$ $\cdots$ ,
$\alpha_{n}$ ; $L_{i}$) $(1\leqq i\leqq p)$ for $r\in J$ . Assume that $F:(R" \cross J, \{0\}\cross J)arrow(R^{p}, 0)$ is a poly-
nomial (or Nash) maPPing. If $f_{t}^{-1}(0) \cap\sum f_{t}=\{0\}$ for any $t\in J$ , then $(R^{n}xJ$ ,
$F^{-1}(0))$ admits a $\pi_{a}$-modified Nash trivzalization.

REMARK 3. In the case $n\leqq p$ , the condition $f_{t}^{-1}(0) \cap\sum f_{t}=\{0\}$ implies that
$f_{t}^{-1}(0)=\{0\}$ .

EXAMPLE 1. Let $f_{t}$ : $(R’, 0)arrow(R, 0)(t\in R)$ be a weighted homogeneous
polynomial of type $\alpha=(1,2,3;13)$ defined by

$f_{t}(x, y, z)=x^{13}+xy^{6}+xz^{4}+ty^{\overline{0}}z$ .

Then $(\partial f_{t}/\partial x)=13x^{12}+y^{6}+z^{4}$ . Therefore each $f_{t}$ has an isolated sigularity. It
follows from the Theorem that $(R^{3}\cross R, F^{-1}(0))$ admits a $\pi_{\alpha}$ -modified Nash tri-
vialization.

PROBLEM 1. Several kinds of topological triviality theorems for a family
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of analytic varieties are known. Do modified Nash triviality theorems hold
under the same assumption for a family of algebraic varieties?

\S 3. Proof of the Theorem.

By Remark 3, the Theorem holds in the case $n\leqq p$ . Therefore we consider
the case $n>p$ .

LEMMA 1 (Euler’s Theorem). If $f$ : $(R", 0)arrow(R, 0)$ is weighted homogeneous

of type $(\alpha_{1}, \cdots , \alpha_{n} ; L)$ , then

$\alpha_{1}x_{1}\frac{\partial f}{\partial x_{1}}+\cdots+\alpha_{n}x_{n}\frac{\partial f}{\partial_{X_{n}}}-Lf$ .

PROPERTY 1. Each algebraic variety $f_{t}^{-}$ ‘(0) is transverse to $S_{1}(\alpha)$ and $F^{-1}(0)$

is transverse to $S_{1}(\alpha)\cross J$ . Therefore $S_{1}(\alpha)\cap f_{t}^{-1}(0)(t\in J)$ and $S_{1}(\alpha)\cross J\cap F^{-1}(0)$

are Nash submanifolds of $S_{1}(\alpha)$ and $S_{1}(\alpha)xJ$, respectively.

PROPOSITION 1. Let $t_{0}\in J$ . Under the same assumPtion $os$ the Theorem,
there exists a $t$-level $preser^{-}mngC^{\infty}$ diffeomorphism

$H:S_{1}(\alpha)\cross J\cap F^{-1}(0)arrow(S_{1}(\alpha)\cap f_{t_{0}}^{-1}(0))\cross J$ .
PROOF OF PROPOSITION 1. Many singularitists would know that such a t-

level preserving $C^{\infty}$ diffeomorphism exists. Here we concretely construct a $C^{\infty}$

vector field on $S_{1}(\alpha)\cross J\cap F^{-1}(0)$ whose flow gives the diffeomorphism.
For $\gamma>0$, set

$Z_{\gamma}(\alpha)=\{(x_{1}, \cdots, x_{n})\in R^{n}|\alpha_{1}x_{1}^{2}+\cdots+\alpha_{n}x_{n}^{2}=\gamma^{2}\}$ .

Remark that $Z_{\gamma}(\alpha)$ and $Z_{\gamma}(\alpha)xJ$ are Nash manifolds. It follows from Lemma
1 that for any $x=(x_{1}, \cdots, x_{n})\in Z_{\gamma}(\alpha)\cap f_{\overline{\iota}}^{1}(0),$ $(\alpha_{1}x_{1}, \cdots , \alpha_{n}x_{n})\cdot Gradf_{t.i}(x)=$

$L_{l}f_{t.i}(x)=0$ (1;Si:$ $p$), and for any $(x, t)\in Z_{\gamma}(\alpha)\cross J\cap F^{-1}(0),$ $(\alpha_{1}x_{1}, \cdots , \alpha_{n}x, 0)$ .
$GradF_{i}(x, t)=L_{i}f_{t.i}(x)=0(1\leqq i\leqq p)$ . Therefore $Z_{\gamma}(\alpha)$ and $Z_{\gamma}(\alpha)xJ$ are perpendi-

cular to $f_{t}^{-1}(0)(t\in J)$ and $F^{-1}(0)$ , respectively. It follows that $Z_{\gamma}(\alpha)\cap f_{t}^{-1}(0)$

$(t\in J)$ and $Z_{\gamma}(\alpha)\cross J\cap F^{-1}(0)$ are Nash submanifolds of $Z_{\gamma}(\alpha)$ and $Z_{\gamma}(\alpha)\cross J$ ,
respectively.

At first, we construct a $C^{\infty}$ vector field $K(x, t)$ on $Z_{\gamma}(\alpha)\cross J\cap F^{-1}(0)$ which
is in the following form:

$K(x, t)= \frac{\partial}{\partial t}+\sum_{i=1}^{n}W_{\ell}(x, t)\frac{\partial}{\partial_{X_{i}}}$ .

It follows from the isolated singularity of $f_{t}^{-1}(0)$ that the vectors $Gradf_{t,i}(x)$

$(1\leqq i\underline{:\leq}p)$ are linearly independent for any $x\in Z_{\gamma}(\alpha)\cap f_{t}^{-1}(0)$ . Let $n_{t,i}(x)$ be a
vector of $R^{n}$ for which $Gradf_{t.i}(x)-n_{t.i}(x)$ is the projection of $Gradf_{t,i}(x)$ to
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the subspace spanned by the vectors $Gradf_{t.j}(x)$ , for $j\neq i$ . For $(x, t)\in Z_{\gamma}(\alpha)\cross$

$J\cap F^{-1}(0)$ , we put

$Grad_{x}F(x, t)=(Gradf_{t}(x), 0)$ in the case $p=1$ .
and

$N_{i}(x, t)=(n_{t.i}(x), 0)$ in the case $p\geqq 2$ .
Then we define the Kuo vector field $K(x, t)([9], [10])$ on $Z_{\gamma}(\alpha)\cross J\cap F^{-1}(0)$ as
follows:

$K(x, t)=\{$

$e_{n+1}- \sum_{i=1}^{p}\frac{\partial F_{i}}{\partial t}(x, t)\frac{N_{l}(x,t)}{|N_{i}(x,t)|^{2}}$ $(p\geqq 2)$

$e_{n+1}- \frac{\partial F}{\partial t}(x, t)\frac{Grad_{x}F(x,t)}{|Grad_{x}F(x,t)|^{l}}$ $(P=1)$

where $e_{n+1}=$ $(0, \cdot. , 0,1)\in R^{n+1}$ . In fact, this Kuo vector field is tangent to
$Z_{\gamma}(\alpha)\cross J\cap F^{-1}(0)$ . We show it in the case $p\geqq 2$ only. The case $P=1$ follows
similarly. From the construction, we have

(3.1) $K(x, t)\cdot GradF_{i}(x, t)=0$ on $Z_{\gamma}(\alpha)\cross J\cap F^{-1}(0)$ (1Si$ $p$ ).

On the other hand, we can write

$N_{i}(x, t)=Grad_{x}F_{i}(x, t)+(N_{i}(x, t)-Grad_{x}F_{i}(x, t))$

$= Grad_{x}F_{i}(x, t)+\sum_{j\neq i}a_{f}(x, t)Grad_{x}F_{j}(x, t)(1\leqq i\leqq P)$ ,

for $(x, t)\in Z_{\gamma}(\alpha)\cross J\cap F^{-1}(0)$ . It follows from Lemma 1 that for $(x, t)\in Z_{\gamma}(\alpha)\cross$

$J\cap F^{-1}(0)$ ,
$(\alpha_{1}x_{1}, \cdots , a_{n}x_{n}, 0)\cdot N_{i}(x, t)=0$ $(1\leqq i\leqq p)$ .

Therefore we have

(3.2) $K(x, t)\cdot(\alpha_{1}x_{1}, \cdots , \alpha x, 0)=0$ on $Z_{\gamma}(\alpha)\cross J\cap F^{-1}(0)$ .
$lt$ follows from (3.1) and (3.2) that the Kuo vector field $K$ is tangent to $Z_{\gamma}(\alpha)\cross$

$J\cap F^{-1}(0)$ .
REMARK 4. It follows from the existence of the Kuo vector field that if

$Z_{\gamma}(\alpha)\cap f_{t_{1}}^{-1}(0)\neq\emptyset$ for some $t_{1}\in J$ , then $Z_{\gamma}(\alpha)\cap f_{t}^{-1}(0)\neq\emptyset$ for any $t\in J$ .
Next we show that there exists a $t$-level preserving $C^{\infty}$ diffeomorpbism $H$ :

$S_{1}(\alpha)\cross J\cap F^{-1}(0)arrow(S_{1}(\alpha)\cap f_{\overline{\iota}_{0}}^{1}(0))\cross J$ . By Remark 4, we may assume that $S_{1}(\alpha)\cap$

$f_{t}^{-1}(0)\neq\emptyset$ for any $t\in J$ , since $f_{t}$ is weighted homogeneous. As the Kuo vector
field $K(x, t)\in T_{(x.t)}F^{-1}(0)$ , we have

PROPERTY 2. For any $(x, t)\in F^{-1}(0)-$ { $t$-axis} , the tangent space $T_{(x.t)}F^{-1}(0)$

is not parallel to x-space.
By Properties 1, 2, we have
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PROPBRTY 3. For any $(x, t)\in S_{1}(\alpha)\cross J\cap F^{-1}(0)$ , the tangent space
$T_{(x.t)}(S_{1}(\alpha)\cross J\cap F^{-1}(0))$ is not parallel to x-space.

We put

$T_{(x.t)}R^{n}\cross J=R_{tx.)}^{n+1}$ and $T_{(x,t)}\{O\}\cross J=R_{t}$ .
For any $(x, t)\in S_{1}(\alpha)\cross J\cap F^{-1}(0)$ , there exists $\gamma>0$ such that

$(x, t)\in Z_{\gamma}(\alpha)\cross J\cap F^{-1}(0)$ .
Let $\pi:R_{(x.t)}^{n+1}arrow T_{(x.t)}(S_{1}(\alpha)\cross J\cap F^{-1}(0))$ be the orthogonal projection, and let
$\pi_{t}$ : $R_{(x.t)}^{n+1}arrow R_{t}$ be the standard projection. It follows from Property 3 that for
$K(x, t)\in T_{(x.t)}(Z_{\gamma}(\alpha))\cross J\cap F^{-1}(0))\subset R_{(x.t)}^{n+1},$ $\pi_{t}(d\pi(K(x, t)))\neq 0$ . We define

$\tilde{K}(x, t)=d\pi(K(x, t))/|\pi_{t}(d\pi(K(x, t)))|$

for $(x, t)\in S_{1}(a)\cross J\cap F^{-1}(0)$ . Then $\tilde{K}$ is a $C^{\infty}$ vector field on $S_{1}(\alpha)\cross J\cap F^{-1}(0)$

which is in the following form:

$\tilde{K}(x, t)=\frac{\partial}{\partial t}+\sum_{i=1}^{n}\pi_{i}(x, t)\frac{\partial}{\partial x_{i}}$ .
It is easy to see that the flow of this vector field $\tilde{K}$ gives the $t$-level preserv-
ing diffeomorphism $H$. This completes the proof of Proposition 1.

Next we show a semi-algebraic triviality theorem for a family of compact
Nash manifolds. In this paper, we assume that a submersion is surjective.

NOTATION. Let $M$ be a $C^{1}$ manifold with or without boundary, and let
$P$ : $Marrow R$ be a proper $C^{1}$ submersion. Then we write $M_{t}=p^{-1}(t)$ for $t\in R$ .

PROPOSITION 2. Let $M\supset N$ be a Nash manifold and a Nash (regular) sub-
manifold such that $N$ is closed in M. Let $p:Marrow R$ be a proper Nash submer-
sion such that the restnction of $p$ to $N$ is also a ProPer Nash submersion. Then
there exists a Nash diffeomorphism

$\Phi$ : $(M, N)arrow(M_{0}, N_{0})\cross R$

such that $pQ\Phi^{-1}$ is the canonical projection $mtoR$ , namely, $p\circ\Phi^{-1}(m_{0}, t)=t$ for
$(m_{0}, t)\in M_{0}\cross R$.

$R+MARK5$ . We can replace $R$ by an open interval $J\iota n$ Proposition 2.

We prepare some lemmas to show this proposition.

LEMMA 2 ([3] Nash trivialization theorem). Let $M$ be a Nash manifold,
and let $p:Marrow R$ be a proper $Nash$ submersion. Then there exists a Nash dif-
feomorphism $\phi:Marrow M_{0}\cross R$ such that $P^{\circ}\phi^{-1}$ is the canonical projection.
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LEMMA 3 ([3] Theorem 3). Let $0<r<\infty$ . Let $M$ be a $C^{r}$ Nash manifold
with boundary $N$, and let $p:Marrow R$ be a proper $C^{r}$ Nash submersion such that
the restriction of $p$ to $N$ is also a proper $C^{r}$ Nash submersion. Then there exis $ts$

a $C^{r}$ Nash diffeomorphism

$\phi:(M, N)arrow(M_{0}, N_{0})\cross R$

such that $p\circ\phi^{-1}$ is the canonical projection onto $R$ .

LEMMA 4 ([3] Theorem 8). Let $0<r<\infty$ . Let $S$ be a $C^{r}$ Nash manifold,
and let $Q$ be a $C^{r}$ Nash manifold with boundary. Let $(\pi, q)$ : $Qarrow S\cross R$ be a
proper $C^{r}$ Nash submersion such that the restriction of $(\pi, q)$ to the boundary is
also a proper $C^{r}$ Nash submersion. Denote $(Q)_{0}=Q\cap q^{-1}(0)$ . Then there exists a
$C^{r}$ Nash diffeomorphism

$h=(h_{0}, q)$ : $Qarrow(Q)_{0}\cross R$

such that $h_{0}$ is the identity on $(Q)_{0}$ and $\pi\circ h_{0}=\pi$ .

LEMMA 5 ([16] Lemma 1.3.2). Given a $C^{r}$ Nash manifold $M$ in $R^{n}$ for
$r>1$ , there exists a $C^{r-1}$ Nash tubular neighbourhood $U$ of $M$ in $R^{n}(i.e$ . $U$ is a
Nash manifold and the orthogonal Projection $x:Uarrow M$ is a $C^{r-1}$ Nash map).

Here the radius of each fibre $\chi^{-1}(x)$ is not a constant, and it may come near $0$

as $x$ comes near the boundary of $M$ or infinity.

LEMMA 6 ([16] Corollary 2.5.7). Let $M_{1}\subset M$ be Nash manifolds such that
$M_{1}$ is closed in $M$, let $M_{2}$ be a Nash manifold, and let $f:Marrow M_{2}$ be a $C^{r}$

Nash map, $r<\infty$ , such that $f|_{M_{1}}$ is of class Nash. Then we can approximate $f$

by a Nash maPffing $g$ in the $C^{r}$ topology so that $f=g$ on $M_{1}$ .

LEMMA 7 ([16] Lemma 2.1.7). Let $M,$ $M’$ be $C^{r}$ Nash manifold $s$ for $r>0$

and let $\phi:Marrow M’$ be a $C^{r}$ Nash diffeomorphism. Then any $C^{r}$ Nash close
aPProximation $\beta)’$ of $\phi$ in the $C^{r}$ toPology is a diffeomorphism.

For the definition of $C^{r}$ topology, see M. Shiota [16].

PROOF OF PROPOSITION 2. It follows from Lemma 2 that there exists a
Nash diffeomorphism $\phi:Narrow N_{0}\cross R$ such that $p|_{N^{\circ}}\phi^{-1}$ is the canonical projec-
tion onto $R$ . Remark that we can take $\phi$ so that $\phi|_{N_{0}}(n_{0})=(n_{0},0)$ .

We identify $M(\subset R^{k})$ with the graph of $p$ . Therefore we suppose that
$N\subset M\subset R^{k}\cross R$ and $p:R^{k}xRarrow R$ is the canonical projection. By lemma 5,
there exists a Nash tubular neighbourhood $v_{1}$ : $T_{1}arrow N$ in $R^{k}\cross R$ . Since $p$ :
$Marrow R$ is a Nash submersion such that $p|_{N}$ : $Narrow R$ is also a Nash submersion,
shrinking $T_{1}$ if necessary, we can assume that $B=M\cap T_{1}$ is a Nash manifold
(with boundary) and $p|_{B^{--p\circ v_{1}}}|_{B}$ . Then $\beta=v_{1}|_{B}$ : $Barrow N$ is a Nash submersion
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such that $P^{\circ}\beta=P|_{B}$ . Here let $0<r<\infty$ . We apply Lemma 4 with $Q=B,$ $S=$

$N_{0}$ and $(\pi, q)=\phi\circ\beta$ Then there exists a $C^{r}$ Nasb diffeomorphism

$h=(h_{0}, q):Barrow B_{0}\cross R$

such that $p\circ h^{-1}$ is the canonical projection onto $R$ , namely, $q=p|_{B}$ . From the
construction, we have $(\pi, q)|_{N}=\emptyset$ . Let $\phi(n)=(n_{0}, t)$ for $n\in N$. Then we have

$h_{0}(n)=\pi\circ h_{0}(n)=\pi(n)=n_{0}$ .
It follows that

$h|_{N}\circ\phi^{-1}(n_{0}, t)=h(n)=(h_{0}(n), q(n))=(n_{0}, t)$ .
namely, $h|_{N^{\circ}}\phi^{-1}$ is the identity on $N_{0}\cross R$ . Therefore $h|_{N}=\phi$ is a Nash dif-
feomorphism from $N$ to $N_{0}\cross R$ .

Let $D_{0}$ be an open Nash submanifold of $M_{0}$ such that $\overline{D}_{0}$ is a Nash manifold
with boundary and $N_{0}cD_{0}c$ Int $B_{0}$ where $\overline{D}_{0}$ denotes the closure of $D_{0}$ in $M_{0}$ .
We put $C=h^{-1}(D_{0}\cross R)$ . We further put $V=M-C$ and $W=h^{-1}(\partial D_{0}\cross R)$ . Then
$V$ is a $C^{r}$ Nash manifold with boundary $W$ and $h$ gives a Nash diffeomorphism
$h_{w}$ : $Warrow W_{0}\cross R$ such that $P^{\circ}h_{w}^{-1}$ is the canonical projection onto $R$ . Since
$P|_{V}$ : $Varrow R$ and $P|_{W}$ : $Warrow R$ are proper $C^{r}$ Nash submersions, it follows from
Lemma 3 that there exists a $C^{r}$ Nash diffeomorphism

$\psi=(\psi_{0}, p)$ : $(V, W)arrow(V_{0}, W_{0})\cross R$

such that $p\circ\psi^{-1}$ is the canonical projection onto $R$ . Here, by the arguments in
[3] \S 2, we can take $\psi$ so that $\psi|_{W}=h_{w}$ and we can extend $\psi$ over some
semialgebraic neighbourhood $U_{1}$ of $V$ in $M$. Let $U_{2}$ be a sufficiently small
semlalgebraic neighbourhood of $W$ in $M$ such that $U_{2}cU_{1}\cap B$ . By applying a
$C^{r}$ Nash partition of unity ($c.f$ . $[16]$ ChaPter 2, \S 2.2.), we can construct a $C^{r}$

Nash function $e:Marrow R$ with OS $e\leqq 1$ such that

$e=1$ on $\overline{V-U_{2}}$ and $e=0$ on $\overline{C}$ .
Let $v_{2}$ : $T_{2}arrow M_{0}$ be a Nash tubular neighbourhood in $R^{k}$ . Define $\Psi=(\Psi_{0}, p)$ :
$(M, N)arrow(M_{0}, N_{0})\cross R$ by

$\Psi(m)=\int\psi(m)form\in V-U_{2}(v_{2}(e(m)\psi_{0}(m)+(1-e(m))h_{0}(m)), p(m))$

$|h(m)$

for
$m\in(V-U_{2})^{c}withform\in(V-U_{2})^{c}e(m)=0withe(m)>0$

,

where $(V-U_{2})^{c}$ denotes the complement of $V-U_{2}$ in $M$. Then $\Psi$ is a $C^{r}$ Nash
diffeomorPhism such that $\Psi|_{N}=\phi$ and $p:Marrow R$ is a Nash function. Therefore
it follows from Lemmas 6, 7 that there exists a Nash diffeomorphism
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$\Phi$ : $(M, N)arrow(M_{0}, N_{0})\cross Ii$

such that $p\circ\Phi^{-1}$ is the canonical projection onto $R$ . This completes the proof
of Proposition 2.

Finally we show the Theorem by using Propositions 1 and 2. By Proposi-
tion 1, there exists a $t$-level preserving diffeomorphism

$H:S_{1}(\alpha)\cross J\cap F^{-1}(0)arrow(S_{1}(\alpha)\cap f_{t_{0}}^{-1}(0))\cross J$ .

Then it follows from Proposition 2 that there exists a $t$-level preserving Nash
diffeomorphism $G:S_{1}(\alpha)\cross Jarrow S_{1}(\alpha)xJ$ such that

$G(S_{1}(\alpha)\cross J\cap F^{-1}(0))=(S_{1}(\alpha)\cap f_{t_{0}}^{-1}(0))\cross J$ .

We write $G(x, t)=(\sigma_{t}(x), t)$ for $(x, t)\in S_{1}(\alpha)\cross J$ . Then

$\sigma_{t}=(\sigma\{^{1)}, \cdots \sigma\ell^{n)})$ :

$(S_{1}(\alpha), S_{1}(\alpha)\cap f_{1}^{-1}(0))arrow(S_{1}(\alpha), S_{1}(\alpha)\cap f_{t_{0}}^{-1}(0))$

is a Nash diffeomorphism for each $t\in J$ , where $\sigma_{t_{0}}$ is the identity on $S_{1}(\alpha)$ .
Let $x=$ $(x_{1}, , x_{n})\in R^{n}$ be written as follows:

$x_{i}=u^{\alpha_{i}}P_{i}$ for $u\geqq 0$ and $P=$ $(P_{1}, \cdots , P_{n})\in S_{1}(\alpha)$

$(1\leqq i\leqq n)$ . Then we define a homeomorphism

$\psi_{t}=(\psi_{t}^{(1)}, \cdots, \psi_{t^{n)}}^{(})$ : $(R^{n}, 0)arrow(R^{n}, 0)$

such that $\psi_{t}(f_{t}^{-1}(0))=f_{t_{0}}^{-1}(0)$ by

$\psi_{t}^{(i)}(x)=u^{\alpha}{}^{t}\sigma\{^{i)}(P)$ $(1\leqq i\leqq n)$ .
Next we define a mapping $\phi:(R^{n}\cross J, \{0\}\cross J)arrow(R^{n}\cross J, \{0\}\cross J)$ by

$\phi(x, t)=(\psi_{t}(x), t)$ .

Then $\phi$ is a $t$-level preserving homeomorphism such that

$\phi((R^{n}\cross J, F^{-1}(0)))=(R^{n}\cross J, f_{t_{\theta}}^{-1}(0)\cross J)$ .

We further define a mapping $\Phi$ : $(ExJ, E_{0}\cross J)arrow(E\cross J, E_{0}\cross J)$ by

$\Phi((x ; s), t)=((\sigma_{t}(x) ; s), t)$ .

Then by the construction of $\sigma_{t}$ we can require that $\Phi$ is a $t$-level preserving
Nash diffeomorphism such that $\Phi$ induces $\phi$ . Therefore $(R^{n}\cross J, F^{-1}(0))$ admits
a $\pi_{\alpha}$-modified Nash trivialization.
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\S 4. Strong $C^{0}$ equivalence.

First, we define the notion of strong $C^{0}$ equivalence.

NOTATION. (1) By an analytic arc at $0\in R^{n}$ , we mean the germ of an
analytic map $\lambda:[0, \epsilon)arrow R^{n}$ with $\lambda(0)=0,$ $\lambda(s)\neq 0,$ $s>0$. The set of all sucb arcs
is denoted by $\mathcal{A}(R^{n}, 0)$ .

(2) For $\lambda,$ $\mu\in \mathcal{A}(R^{n}, 0),$ $O(\lambda, \mu)>1$ (resp. $O(\lambda,$ $\mu)=1$ ) means that arcs $\lambda,$

$\mu$

are tangent (resp. crossing without touching) at $0\in R^{n}$ .

Let $\mathcal{E}_{[\omega]}(n, 1)$ be the set of analytic function germs: $(R^{n}, 0)arrow(R, 0)$ , and
let $S(R^{n}, 0)$ be the set of set germs at $0\in R^{n}$ .

DEFINITION. Given $f,$ $gee_{[\cdot]}(n, 1)$ , we say that $(R^{n}, f^{-1}(0)),$ $(R^{n}, g^{-1}(0))\in$

$S(R^{n}, 0)$ are strongly $C^{0}$ equivalent, if there exists a local homeomorphism $\sigma$ :
$(R^{n}, 0)arrow(R^{n}, 0)$ such that

(I) $\sigma(f^{-1}(0))=g^{-1}(0)$ ,

(II) if $\lambda\in \mathcal{A}(R^{n}, 0)$ with $\lambda\subset f^{-1}(0)$ (resp. $g^{-1}(0)$), then $\sigma(\lambda)$ (resp. $\sigma^{-1}(\lambda)$) $\in$

$\mathcal{A}(R^{n}, 0)$ , and
(m) for any $\lambda,$ $\mu\in \mathcal{A}(R^{n}, 0)$ with $\lambda,$ $\mu\subset f^{-1}(0),$ $0(\lambda, \mu)=1$ if and only if

$O(\sigma(\lambda), \sigma(\mu))=1$ .

EXAMPLE 2. Let $f_{k}$ : $(R^{2}, O)arrow(R, 0)(k\in N)$ be a polynomial function
defined by

$f_{k}(x, y)=x^{2}-y^{2k+1}$ .

Then $(R^{2}, f_{i}^{-1}(0)),$ $(R^{2}, f_{j}^{-1}(0))\in S(R^{2},0)$ are strongly $C^{0}$ equivalent for any $i$ ,
$j\in N$

Let $J$ be an open interval, and let $f_{t}$ : $(R^{n}, 0)arrow(R, 0)(t\in J)$ be a weighted
homogeneous polynomial of type $\alpha=$ $(a_{1}, \cdots , \alpha_{n})$ with an isolated singularity.
In this section, we discuss the relation between $\pi_{a}$ -modified Nash triviality and
strong $C^{0}$ triviality of the family $\{(R^{n}, f_{t}^{-1}(0))\}_{t\in J}$ .

(A) Consider the homogeneous case: $\alpha_{1}=\cdots=\alpha_{n}=1$ . Recall the notations
$E=S_{1}(\alpha)\cross R$ and $E_{0}=S_{1}(\alpha)\cross\{0\}$ . We say that (X; $u$ ) $=(X_{1}, \cdots , X_{n} ; u),$ $(Y, s)=$

$(Y_{1}, \cdots , Y ; s)\in E$ are equivalent. if
(i) $X_{i}=Y_{i}(1\leqq i\leqq n)$ and $u=s$ , or
(ii) $X_{i}=-Y_{i}(1\leqq i\leqq n)$ and $u=-s$ .

Then this relation is an equivalence relation. We denote by $\tilde{E}$ and $\tilde{E}_{0}$ the
quotient sets of $E$ and $E_{0}$ by the relation $\sim$ , respectively. Let $\pi:(E, E_{0})arrow$

$(E, E_{0})$ be the quotient map, and let $\tilde{\pi}_{a}$ : $(\tilde{E},\tilde{E}_{0})arrow(R^{n}, 0)$ be the blow up at
$0\in R^{n}$ . Then the following diagram commutes:
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$(E, E_{0})$

By the Theorem, $\{(R^{n}, f_{t}^{-1}(0))\}_{t\in J}$ admits a $\pi_{\alpha}$ -modified Nash trivialization i.e.
there exists a $t$-level preserving Nash diffeomorphism $\Phi$ : $(E\cross J, E_{0}\cross J)arrow$

$(E\cross J, E_{0}\cross J)$ which induces a $t$-level preserving homeomorphism $\phi$ : $(R^{n}\cross J$ ,
$\{0\}\cross J)-(R^{n}\cross J, \{O\}\cross J)$ such that

$\phi((R^{n}\cross J, F^{-1}(0)))=(R^{n}\cross J, f_{t_{0}}^{-1}(0)\cross J)$ for $t_{0}\in J$ .
In this case, the Nash diffeomorphism $\Phi$ induces a $t$-level preserving Nash dif-
feomorphism di : $(\tilde{E}\cross J,\tilde{E}_{0}\cross J)arrow(\tilde{E}xI,\tilde{E}_{0}\cross J)$ such that the following diagram
commutes:

$(E\cross J, E_{0}\cross J)\underline{(\pi,id)}(\tilde{E}\cross J,\tilde{E}_{0}\cross J)\underline{(\tilde{\pi}_{\alpha},id)}(R^{n}\cross J, \{0\}\cross J)$

$\downarrow\Phi$

$(\pi, id)$
$\downarrow\Phi$

$(fi_{\alpha}, id)$

$\downarrow\phi$

$(E\cross J, E_{0}\cross J)--(\tilde{E}\cross J,\tilde{E}_{0}\cross J)-(R\cross J, \{O\}\cross J)$ .
Therefore $\pi_{\alpha}$ -modified Nash triviality implies strong $C^{0}$ triviality.

(B) Consider the case where $n=3$ and $\alpha_{1}<\alpha_{2}<\alpha_{3}$ .

PROPOSITION 3. Let $f,$ $g:(R^{3}, O)arrow(R, 0)$ be weighted homogeneous poly-
nomials of type $(\alpha_{1}, \alpha_{2}, \alpha_{3} ; L)(a_{1}<\alpha_{2}<\alpha_{3})$ with an isolated singulanty. Assume
that two set germs $(R^{3}, f^{-1}(0)),$ $(R^{3}, g^{-1}(0))\in S(R^{3},0)$ are strongly $C^{0}$ equivalent.

If $f^{-1}(0)\supset\{x_{1}=0\}$ , then $g^{-1}(0)\supset\{x_{1}=0\}$ .

We shall show this proposition in the next section.

EXAMPLE 1. Let $f_{t}$ : $(R^{3},0)arrow(R, 0)(t\in R)$ be a weigbted homogeneous
polynomial defined in \S 2. Then, by Proposition 3, $\{(R^{3}, f_{t}^{-1}(0))\}_{t\in R}$ is not
strongly $C^{0}$ trivial at $O\in R$ .

EXAMPLE 3 (Briangon-Speder family [1]). Let $f_{t}$ : $(R^{3},0)arrow(R, 0)$ be a
weighted homogeneous polynomial defined by

$f_{t}(x, y, z)=z^{5}+tzy^{6}+y^{7}x+x^{15}$

for $|t|<1+\epsilon$ , where $\epsilon$ is a sufficiently small positive number. Then each $f_{t}$

has an algebraically isolated singularity. But two set germs $(R^{3}, f_{0}^{-1}(0)),$ $(R^{3}$ ,
$f_{-1}^{-1}(0))\in S(R^{3},0)$ are not strongly $C^{0}$ equivalent (Theorem A in [6]).

It follows from the Theorem and the above examples that modified Nash
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triviality does not imply strong $C^{0}$ triviality in the non-homogeneous case.

REMARK 6. $ln$ [8], the author formulated a necessary condition for a
family of weighted homogeneous polynomials of three variables to be strongly
$C^{0}$ trivial. Recently T. Fukui has given a new approach to strong $C^{0}$ triviality
of a family of polynomial functions of three variables, by using toric resolu-
tion ([4]).

\S 5. Proof of Proposition3.

In this section, let $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ be a 3-tuple of positive integers with
$\alpha_{1}<\alpha_{2}<\alpha_{3}$ , and let $x,$ $y,$ $z$ be the coordinates of $R^{3}$ . Then we have the fol-
lowing lemma.

LEMMA 8. Let $f$ : $(R^{3},0)arrow(R, 0)$ be a weighted homogeneous polynomial of
type $(\alpha_{1}, \alpha_{2}, \alpha_{3} ; L)$ with an isolated singulanty, and let $g$ : $(R^{3},0)-(R, 0)$ be
weighted homogeneous of type $(\alpha_{1}, \alpha_{2}, \alpha_{3} ; L)$ . If $f^{-1}(0)\supset\{x=0\}$ , then we have
$g^{-1}(0)\supset\{x=y=0\}\cup\{x=z=0\}$ .

PROOF. Since $f^{-1}(0)\supset\{x=0\}$ , we can write $f(x, y, z)=x\phi(x, y, z)$ where
$\phi$ is a polynomial. It follows from the isolated singularity of $f$ that

$(*)$ $\phi^{-1}(0)\cap\{x=0\}=\{0\}$ .
AS $O\in R^{3}$ is a singular point of $f,$ $\phi(0)=0$ .

NOW assume that there is no term of the form $cz^{n}(c\neq 0)$ in $\phi$ . Then we
have

$\phi^{-1}(0)\cap\{x=0\}\supset\{x=y=0\}$ .

This contradicts $(*)$ . Therefore $\phi$ contains the term $cz^{n}(c\neq 0)$ for some $n$ .
Similarly $\phi$ contains the term, $L^{by^{m}(b\neq 0)}$ for some $m$ . Therefore $f$ contains
both terms $bxy^{m}(b\neq 0)$ and cxz $(c\neq 0)$ .

Since $f$ and $g$ are weighted homogeneous of type $(\alpha_{1}, \alpha_{2}, \alpha_{3} ; L)$ and $\alpha_{1}<$

$a_{2}<\alpha_{3},$ $g$ contains neither term of the form $dy^{s}(d\neq 0)$ nor term of the form
$ez^{t}(e\neq 0)$ . Therefore we can write

$g(x, y, z)=x\psi(x, y, z)+yzh(y, z)$ .
It follows that $g^{-1}(0)\supset\{x=y=0\}\cup\{x=z=0\}$ .

In order to show Proposition 3, assume that $f,$ $g:(R^{3},0)arrow(R, 0)$ are
weighted homogeneous polynomials of type $(a_{1}, \alpha_{2}, \alpha_{3} ; L)$ with an isolated
singularity, from now on. In addition, assume that $(R^{3}, f^{-1}(0)),$ $(R^{3}, g^{-1}(0))\in$

$s(R^{s}, 0)$ are strongly $C^{0}$ equivalent. Then there exists a local homeomorphism
$\sigma$ : $(R^{3},0)arrow(R^{3},0)$ which gives their strong $C^{0}$ equivalence.
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PROPERTY 4 (H. Whitney [17]). The number of connected components of
$f^{-1}(0)-\{0\}$ (or $g^{-1}(0)-\{0\}$ ) is finite.

Therefore we can write

$f^{-1}(0)-\{0\}=\{C_{1}, \cdots C_{d}\}$

$g^{-1}(0)-\{0\}=\{C\text{\’{i}}, , C_{d}’\}$ $(d\in N\cup\{0\})$ ,

where $C_{i}$ (resp. $C_{\ell}’$) $(1\leqq i\leqq d)$ is a connected component of $f^{-1}(0)-\{0\}$ (resp.
$g^{-1}(0)-\{0\})$ . For simplicity, we assume that $C_{t}’=\sigma(C_{i})$ (1$i:S $d$ ) as germs at
$0eR^{3}$ .

We shall show a more precise statement of Proposition 3.

PROPOSITION 3’. If $C_{1}=\{x=0\}$ , then $\overline{C}_{1}’=\{x=0\}$ , where $\overline{C}$ denotes the clo-
sure of $C$ in $R^{s}$ .

Let $S^{2}$ denote the two dimensional unit sphere. For $P=(P_{1}, P_{2}, P_{3})\in S^{2}$ ,

let $L(P),$ $a(P)$ : $[0, \delta)arrow R^{3}(\delta>0)$ be mappings defined by

$L(P)(t)=(P_{1}t, P_{2}t, P_{3}t)$ and $a(P)=(P_{1}t^{\alpha_{1}}, P_{2}t^{\alpha_{2}}, P_{3}t^{a_{3}})$ ,

respectively. Then $L(P),$ $a(P)\in \mathcal{A}(R^{3},0)$ . For any $\lambda\in \mathcal{A}(R^{3},0)$ , there exists
unique $P\in S^{2}$ such that $O(\lambda, L(P))>1$ . Then we write $L(P)=T(\lambda)$ .

LEMMA 9. For a weighted homogeneous polynomial of type( $\alpha_{1},$ $\alpha_{2}$ , as) $h$ ,
let $h^{-1}(0)-\{0\}=\{C_{1}, , C_{d}\}$ . Assume that $C_{i}\subset\{x>0\}$ (resp. $C_{i}\subset\{x<0\}$ ). Then

$T(\lambda)=L((1,0,0))$ (resP. $T(\lambda)=L((-1,0,0))$)

for any $\lambda e\mathcal{A}(R^{3},0)$ with $\lambda cC_{t}$ .

PROOF. Since $C_{i}\cap\{x=0\}=\emptyset$ , tbere exists $K>0$ such that

$\overline{C}_{i}\subset\{x\geqq 0\}\cap\{K(|y|^{a_{1}/\alpha_{2}}+|z|^{\alpha_{1}/\alpha_{3}})\leqq|x|\}$

(resp. $\overline{C}_{i}c\{x\leqq 0\}\cap\{K(|y|^{a_{1}/\alpha_{2}}+|z|^{\alpha_{1}/\alpha_{3}})\leqq|x|\}$ ).

Therefore the statement of the lemma immediately follows.

PROOF OF PROPOSITION 3’. At first we show the case $d=1$ . Therefore let
$f^{-1}(0)=\overline{C}_{1}$ and $g^{-1}(0)=\overline{C}$ I. Assume that $C_{1}’\neq\{x=0\}$ . Then we have

$\#(S^{2}\cap g^{-1}(0)\cap\{x=0\})<\infty$ .
Since $S^{2}\cap f^{-1}(0)$ is homeomorphic to a circle, so is $S^{2}\cap g^{-1}(0)$ . We write

$S^{2}\cap g^{-1}(0)\cap\{x\neq 0\}=\{D_{1}, \cdots , D_{k}\}$ $(k\in N)$ .

where $D_{j}(1\leqq j\leqq k)$ is a connected component. Put



630 S. KOIKE

$\{$

$Q_{+}=(0,0,1)$ , $Q_{-}=(O, 0, -1)$ ,

$R_{+}=(0,1,0)$ , $R_{-}=(O, -1,0)$ .
By Lemma 8, we have

$\{Q_{+}, Q_{-}, R_{+}, R_{-}\}cS^{2}\cap g^{-1}(0)\cap\{x=0\}$ .

Therefore one of the following conditions holds:

(i) $\#\{D_{j}|D_{j}\subset S^{2}\cap g^{-1}(0)\cap\{x>0\}\}$ $)$ 2,

(ii) $\#\{D_{j}|D_{j}\subset S^{2}\cap g^{-1}(0)\cap\{x<0\}\}$ $)$ 2.

NOW assume that (i) (resp. (ii)) holds. Let $D_{1},$ $D_{2}cS^{2}\cap g^{-1}(0)\cap\{x>0\}$ (resp.
$S^{2}\cap g^{-1}(0)\cap\{x<0\})$ . Pick $P_{1}\in D_{1}$ and $P_{2}\in D_{2}$ . We have $T(a(P_{1}))=T(a(P_{2}))$ . We
write

$S^{2}\cap g^{-1}(0)-D_{1}\cup D_{2}=E_{1}\cup E_{2}$ ,

where $E_{j}(]=1,2)$ is a connected component. Then $E_{j}\cap\{x=0\}\neq\emptyset$ for $j=1,2$ .
Pick $P_{3}\in E_{1}\cap\{x=0\}$ and $P_{4}eE_{2}\cap\{x=0\}$ . Then we have

$T(a(P_{1}))=T(a(P_{2}))\neq T(a(P_{j}))$ $(j=3,4)$ .

Since $\sigma$ is a strong homeomorphism, it follows that

$T(\sigma^{-1}(a(P_{1})))=T(\sigma^{-1}(a(P_{2})))\neq T(\sigma^{-1}(a(P_{j})))$ $(j=3,4)$ .
This is a contradiction, because $\sigma^{-1}(g^{-1}(0))=\{x=0\}$ . Therefore we deduce that
$C_{1}’=\{x=0\}$ .
$AssumethatNexttweC_{j}’\cap\{x=0\}\neq\emptyset forsomej\geqq 2.IIntheccasewhere\overline{C}_{j}’=\{x=0\}showthecased\geqq 2Sincce\overline{C}_{1}=\{x=0\},C_{\mathfrak{i}}\cap\{x=0\}=\emptyset(22\leqq i\leqq d)$

.

$a((O, 1,0)),$ $a((O, 0,1))cC;$ . Then we have

$O(a((O, 1,0)), a((O, 0,1)))=1$ .
On the other hand, by Lemma 9, we have

$O(\sigma^{-1}(a((0,1,0))), \sigma^{-1}(a((0,0,1))))>1$ .
This contradicts the strong $C^{0}$ equivalence. In the case where $\overline{C}_{f}’\neq\{x=0\}$ ,

pick
$P\in C_{j}’\cap S^{2}\cap\{x=0\}$ and $Q\in C_{j}’\cap S^{2}\cap\{x\neq 0\}$ .

Then we have $O(a(P), a(Q))=1$ . Similarly to the above, we have $O(\sigma^{-1}(a(P))$ ,
$\sigma^{-1}(a(Q)))>1$ . This also contradicts the strong $C^{0}$ equivalence. Therefore
$C_{i}’\cap\{x=0\}=\emptyset$ for $2\leqq i\leqq d$ . By Lemma 8, we have

$\overline{C}_{1}’\supset\{x=y=0\}\cup\{x=z=0\}$ .
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Then we deduce $\overline{C}_{1}’=\{x=0\}$ from the same argument as the case $d=1$ .
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