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1. Introduction.

Let S be a semigroup. Let m(S) denote the Banach space of bounded
real-valued functions on S. A mean on m(S) is a bounded linear functional
¢ on m(S) such that for all fem(S), inf{f(s):seS}Zu(f)<sup{f(s): seS}.
An equivalent formulation is that |[p||=p(1)=1, where 1 denotes the constant
function on S with value 1. A mean g on m(S) is said to be a left [respec-
tively, right] invariant mean if u(l;f) [respectively, p(rsf)]=p(f) for all s€S
and fem(S), where /,f and r,f are defined on S by (;/)#)=f(st) and (r,f)(®)
=f(ts), t=S. A mean that is both a left invariant mean (L/M) and a right
invariant mean (RIM) is called an invariant mean. A semigroup which admits
[respectively left, right] invariant means is called [respectively left, right]
amenable. We refer the reader to for an introductory exposition on amenable
semigroups. Many results we use without mention in this article concerning
amenable semigroups can be found in this reference.

We say that a mean g on m(S) is an inner invariant mean if p(l,f)=pu(r,f)
for all s€S and fem(S). A semigroup S which admits inner invariant means
is called 7nner amenable. It follows immediately that every amenable semigroup
is inner amenable. In particular, commutative semigroups are inner amenable.
Another example of inner amenable semigroups is the class of semigroups with
nonempty centres. Indeed, if a=S commutes with all s& S, then the point mean
(or Dirac measure) p, defined by p.(f)=f(a) for all f&m(S) is an inner invariant
mean on m(S). We note that if S is a group, then an inner invariant mean is
a mean for which u(T,f)=u(f) for all s&S and fem(S), where (T,/)t)=f(sts™)
=(foa4)(t) for all s, t=S, where g, is the inner automorphism defined by s on
the group S. Inner invariant means on groups are introduced in [6] and later
studied extensively by Akeman [1], H. Choda [2], M. Choda [3], Paschke [10],
Pier [12], and Watatani [14], to name a few. Both Paterson and Pier
contain an account of the study of inner amenability of groups. In this article,
we shall study inner amenable semigroups and show that many classical prop-
erties concerning amenability have similar analogues for inner amenability.
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2. Analogues of some classical results.

In this section, S denotes a semigroup, and m(S) is defined as in the intro-
duction.

We first prove the basic characterization theorem for inner amenability.

THEOREM 1. Let

g = {é}l(lakf,,——rakfk): faem(s), a,,es}.

Then S is inner amenable if and only if

sup{h(s): s&S} =0 forall he 4.

PROOF. Suppose that m(S) has an inner invariant mean p. Then for all
h=2F1lla, fr—7a, 1), frEM(S), and a,ES, we have sup{h(s): s€S} zu(h)=
SEa(ple, f1)—p@a, f))=0. Conversely, if sup{i(s):s€S}=0 for all hed,
then the constant zero functional on 4 extends to a linear functional g on m(S)

such that p(f)<sup{f(s): s&S} for all f&m(S). It follows that g is a mean
on m(S). Since it vanishes on 4, it is inner invariant. d

THEOREM 2. S s inner amenable if and only if
inf{|1—nhll,: hex} =1.

If S is either left cancellative (i.e., t=u if st=su for some s) or right cancella-
tive (i.e., t=u if ts=us for some s), then it is inner amenable if and only if 4
is not norm dense in m(S).

" PROOF. Suppose that S is inner amenable. Then for any he .4,
0 < sup{—h(s): s&€S} = —inf{h(s): s&S},

by [Theorem 1. Thus, inf{h(s): s€S} <0. Hence, for any &>0, there exists

soeS such that A(s))<e, and so 1—h(sy)>1—e. Therefore, ||1—A|,=1 for any
hedr. But since =4,

inf{[1—-nAl.: hed} < 1-0], =1.

Conversely, suppose that inf{|l—#i|,: hed}=1. Then an application of
the Hahn-Banach extension theorem shows that there exists a bounded linear
functional p&m(S)* such that p(J)= {0}, p(1)=1 and ||p|=1/inf{|1—h|,: he s}
=1, The last two identities imply that g is a mean on m(S), whereas u()
= {0} means that g is inner invariant. .

We note that the preceeding proof shows also that if S is inner amenable,
then 4 is not norm dense in m(S). This is true without even assuming any
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cancellative properties.

Now, for the converse, suppose that 4 is not norm dense in m(S). Then
by Hahn-Banach extension theorem again, there exists pgem(S)* such that
#(40)=1{0}, while £+0. By a general result of decomposing a bounded linear
functional, (B.37), we may write p=p*—p~, where

p*(f) = max {g, 0} (f) = sup{u(g): 0=g=f}
and

¢ (f) = —min{y, O} (f) = —inf{u(g): 0=sg=f}

for all fem(S) with f=0. We note that p¢* and g~ are nonnegative bounded
linear functionals on m(S), and that p* has the following properties:

) g (Hzp(f) for all fem(S) with £20;

2) If v is any other nonnegative linear functional on m(S) such that v(f)=
p(f) for all fem(S) with f=0, then v=p*, ie., v(H)=p*(f) for all
fem(S) with f=0.

Since p*=p, we have [¥(p") =¥ (). Also, as 4*=0, we have [¥(p*)=0. It
follows from 2) for the functional /¥(p) that [¥(pu")=({F(w)*. It thus follows
that

123 Cee™) — e I = @) —EEe) HD)
= p*D— Q)
= p* =)D,
where we note that
p*(1) = sup{n(g): 0=g=1}
and

(IFw)* (1) = sup{(I¥(w)(g) : 0= g1} = sup{u(lg): 0=g<1}.

We claim that if S is either left cancellative or right cancellative, then p*(1)=
(GAIMEON

Case 1. Suppose that S is left cancellative. Then given any gem(S) with
0=g=1, one can define hem(S) with 0<A=<1 such that g=I[h. In fact for any
x&sS, x=st for some uniquely defined t<S, and we put A(x)=g(), while for
any x&sS, put A(x)=0. This shows that {plsg): 0=g<1} = {n(g): 0<g<1}, and
consequently, p*(L)=(Fw)*({).

Case 2. Suppose that S is right cancellative. Then every gem(S) with
0<g<1 can be written as g=r;h2 for some he=m(S) with 0<h<1. But then
since p(H)=0, we have u(r.g)=p(lg) for all s&S. Consequently,

{u(@): 081} = {u(rsg): 0 g1} = {p(lg): 0=5g<1}.
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Hence, p*(D)=(w)* Q).

So, in both cases, we get p*(1)=0¥w)*(1). Therefore, [¥(p")=Fw)".

Next, we can repeat the whole argument above for »¥(u*) and (r¥(g))* and
we conclude that r¥(u")=@F¥(w)*.

Since now u(4)=0, we have [F(p)=r¥(w), and so [F(p")=U¥ (W) = w) =
r¥(e*). So, p*(4)=0, and since p =p*—p, p (H)=0 as well. Note that 0y
=p*—p~, at least one of p* and g~ must be nonzero. If p*+#0, then v=pu*/
It will be an inner invariant mean on m(S), and if g~ 0, then y=p /||l

will be an inner invariant mean on m(S). In any case, m(S) admits an inner
invariant mean. a

The next theorem says that increasing union of a family of inner amenable
semigroups is inner amenable.

THEOREM 3. Let § be a family of subsemigroups of S with the following
properties.

(a) For any F,, F,&{, there exists F,<% such that F)\UF,SF.
(b) UF=S.
If m(F) has an inner invariant mean for all FEY, then so does m(S).

ProOF. Let h=3}-i(la,fe—"a,f2), frEMS), and a,&S. Then by our
given conditions, there exists an FE{ such that a,F for all k=1, 2, ---, n.
Since m(F) has an inner invariant mean, it follows from theorem 1 that

sup{ é Ua, fr—Ta, F)(S): seF} > 0.

In particular,
sup{ 33 (la, fs—7a, F0)(S): €S} 2 0.

By theorem 1 again, m(S) has an inner invariant mean. O

Let T be a subsemigroup of S. We denote the characteristic function of T
in m(S) by &. A mean g on m(S) is said to be inner T-invariant if u(l,f)=
p(ref) for all teT, fem(S). We have the following theorem connecting the
inner amenability of a subsemigroup with the existence of a 7T-invariant mean
which “concentrates” on 7.

THEOREM 4. Let T be a subsemigroup of S. Then m(T) has an inner invariant
mean if and only if m(S) has an inner T-invariant mean p such that p(Er)=1.

ProoF. Let %:T—S be the embedding of T into S. Then it induces
7:m(S)—m(T) via 7#(f)=f|r. Then 7 is bounded linear. Consider 7*: m(T)*
— m(S)*,



Inner amenable semigroups 607

Suppose that gem(T)* is an inner invariant mean. Since 7(f)=0 whenever
f20, and since 7(1)=1, it follows that 7*(¢) is a mean on m(S). Also, for any
fem(S), teT, it is easy to see that

7ef) = UHlr = L(flr) = (7))

and

7 f) = e f)lr =r(flr) = r(G(f)).
Therefore, for all fem(S), teT,

Tl f) = #qef)) = pl(f)) = plrd7(f))
= p(G(ref)) = F*)ref).

So, 7*(p) is'an inner T-invariant mean on m(S). Finally,
(F*)Er) = pHED) = plrin) = p1) = 1.
For the converse, consider the function {: m(T)— m(S) defined by

ENNr=f, &Nlsve=0, forall femT).

Then ¢ is bounded linear. Consider {*: m(S)* — m(T)*.

Suppose that v is an inner T-invariant mean on m(S) such that y(&p)=1.
Since {(f)=0 whenever f=0, and since {(1)=£&r, it is easy to see that {*(v) is
a mean on m(T). Also, for any fem(T), t, =T, we have

CUe/)—LLIME) = UL NHE)—CUNE) = fEt)— @) = 0.
So, €U:/)—1.L(HNIr=0, and
18U /)= QN = 18EeN)—LEUNubsir -

This implies that v(C({.f)—{(&(N)=0, or, v f))=vl(L(f))). Similarly, one
can show that v({{(F.f)=v(@«(C(f))). Therefore,

C*NUef) = v(€Uef)) = v(l(E(f)) = v(r (L))
= v f) = TN f).
So, {*(v) is an inner invariant mean on m(7T). n

Next, we prove the characterization theorem by “convergence to inner
invariance”. A mean is called a finite mean if it is a (finite) convex combina-
tion of the point means. See Day [4] and [5] for more details.

THEOREM 5. The following statements are equivalent.

(@) S is inner amenable.
(b) There exists a net ¢, of finite means such that
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SPa—Pas —> 0 weakly in [(S), for all s S.
(c) There exists a net ¢, of finite means such that

s@a—@asy —> 0 for all s S.

PROOF. (a)=(b). Suppose that g is an inner invariant mean on m(S).
Since the finite means are weak* dense in the set of means, there is a net ¢,
of finite means in /,(S) which converges to p weakly* in m(S)*. Then for all
fem(S), and s€S,

f(5Pa—0aS) = Qalls f)—@alrsf) —> pulls f)—pulr.f) = 0.

(b)=(c). Consider the product E=({,(S))S. Then E is a locally convex
topological vector space under the product of the norm topologies. Define
T:1(S)—E as follows: (T(p)(s)=sp—e¢s, ¢=li(S), s&€S. Then T is well-
defined and linear. Let ¢, be a net of finite means satisfying the convergence
in (b). Then (T(¢a))(s)—0 weakly in [,(S) for all s=S. Since the weak
topology of E is the product of the weak topologies of /,(S), (see, for example,
(17.13)), T(¢o)—0 in the weak topology of E. But then 0 lies in the weak
closure of the convex set T(®@) in E, where @ denotes the set of all finite
means. It follows that 0 lies in the norm closure of 7(®) in the original
topology for E, i.e., the product of the norm topologies. Thus, there exists a
net ¢ of finite means such that T(pg)—0 in E, i.e., (T(pp)(s)—0 in norm in
1,(S) for all s=S.

(¢)=(b). Trivial.

(by=(). Let ¢, be a net satisfying the convergence in (b). By Alaoglu’s
theorem, it has a weak* convergent subnet. By passing to such a subnet if
necessary, we may assume that ¢,— g weakly* in m(S)*. Then g is a mean
on m(S), and for all s€S, fem(S), '

pls f)—plrsf) = lim(alls f)—@a(rs f)) = lim(spa—@as)(f) = 0. O

REMARK. If S=G is a group, then we can say more about the nets in (b)
and (¢). H fem(G), let f*em(G) be defined by f*(s)=f(s™Y), s€G, We say
that a mean px on m(G) is symmetric, or inversion invariant, if pu(f*)=p(f) for
all fem(G). Let @5 denote the set of all symmetric finite means on m(G). It
is easy to see that @ is convex. Namioka has proved that @ is weak* dense
in the set of all symmetric means on m(G), [9]. Using this fact, one can prove
the following result.

THEOREM 6. Let G be a group. The following are equivalent.

(@) G is inner amenable.



Inner amenable semigroups 609

(b) There exists a net ¢, of symmetric finite means such that s@,—@.s—0
weakly in [,(G) for all s€G.

(c) There exists a net ¢, of symmetric finite means such that ||sQa—@as)l;—0
for all seG.

PROOF. (a)=5(b). Let g be an inner invariant mean on m(G). Then it is
easy to see that R

W) = 3 D+uf), fEm©),

defines a symmetric mean on m(G). Now, a direct calculation shows that

Ls(f*) = (re-1f)*, and  7(f*) = (-1 /)%

Therefore,

o0sf) = 3 @l (a7
= L+ st
= L a0

= () )
= u(rsf).

This show that v is a symmetric inner invariant mean on m(G). By
weak* density of @5 in the means, we get a net ¢, of symmetric finite means
converging weakly* to v in m(G)*. The remaining argument is identical to
the one given in the semigroup case.

(b)=(c) and (c)=(a) are easy. O

3. On Fglner’s condition.

We now turn-to a characterization theorem analogous to the Fglner’s
characterization of amenability. The original result for amenability is basically
combinatorial in nature. When we investigate the corresponding question for
inner amenability, we find that most of the combinatorial lemmas to the final
result require working out all over again. The spirit behind the calculations
here is the same as in the case of amenability. But the details in the calcula-
tions requires many adjustments. In particular, cancellative properties play an
important role in this situation.

In the theorems and discussions below, S denotes a semigroup and A is
a nonempty subset of S. If s&S, we write As7'={teS:ise A} and s'A=
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{teS: st A}. We also note that

A if se A

1
1a(s) = |—A_]$A = (14|
0 ifs& A
defines an element in /,(S).

LEMMA 7. We have
|[AN{t} s —|ANs™ {t} |

(pas—sp)@) =

|Al
-1
'Aqg? lglil if te As\sA
-1
B —E%%%jikg—ﬁﬁ if t e sA\As
-1] __ -1
[AN{t}s llAllAf\s {t} | if t € sANAs
0 if t& sAUAs.
PROOF. By a direct calculation, we get
A -1
(A= 3 pasH = T pals) =205 M1
88’ =t sres—1(ey IAI

Similarly, one finds that (u.s)(©)=|AN{t}s7'|/|Al. The second equality comes
from rewriting the general formula in different cases. O

LEMMA 8. If S is right cancellative, then

Nl_zil—\ if te As\sA
CAnsTg 1

(as—sp)® = A = 4] if te sA\As
H‘l_@s“‘_{i}ql <0 if tesANAs
0 if t&& sAUAs,

If S is left cancellative, then

lAqg?ﬂlg];|iftEAﬂa4

1 .
(pas—sp)® ={ 1Al if te sA\As
kﬂl%ﬁj:izo if te sANAs

0 if t & sAUAs.
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Proor. If S is right cancellative, then t€As= |AN{t}s™|=1, and if S is
left cancellative, then t€sA= |ANs™'{t} |=1. The result follows from the
preceeding lemma. O

LEMMA 9. If S is right cancellative, then |pas—spalli=2|As\sA|/|Al.
If S is left cancellative, then |pas—spali=2|sA\As|/|Al.

PROOF. Suppose that S is right cancellative. Then by the formula in the
preceeding lemma,

— = 1 1ANs e | |ANs~ {t} | -1
leeas—spalli = 23 [A] " ieifas A reiThs [A|
_ 14s\sA| |ANs™ {#} | IsANAs|
T A LE(SANAD U(SANAS) [A| [A]

(IAs\sAl-}—teEMIAf\s“{t} |—|sAmAs|)

=14
I_[lﬂ(|As\sAl+lAl—lsAf\Asl>
lj“(iAs\sAl+|AS|*|3AHA5|)’

since S is right cancellative

lAl(lAS\sAIJrlz‘lS\sA])

2| As\sA|
A

The proof for the left cancellative case is similar., O

THEOREM 10. A right cancellative semigroup S is inner amenable if it satisfies
the following condition.

(#® For any finite set FES and any €>0, there exists a finite nonempty set
ACS such that |As\sA|<e|A| for all s&F.

A left cancellative semigroup S is inner amenable if it satisfies the following
condition.

(b) For any finite set FSS and any >0, there exists a finite nonempty set
ACSS such that |sA\As|<elA| for all s&PF.

PROOF. Let & be the family of all finite subsets of S directed upward by
inclusion, and let £=(0, 1) be directed downward by its usual order. Let D be
the product directed set FXE.

If S is right cancellative, then (%) says that for any a=D, a=(F, ¢), there
exists a nonempty set A,ES such that
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2| Axs\sA,
leeags—spanh = 2oz Ael < 3.

It follows that the net u4, in [,(S) converges in norm to inner invariance, and
hence S is inner amenable.
The case for left cancellative semigroups is similar. d

Observing that | As\sA|+|sA\As|=|AsAsA|, we have the following result
immediately.

COROLLARY 11. Suppose that S is either right cancellative or left cancellative.
Then S is inner amenable if

(x) For any finite set FSS and any >0, there exists a fimte nonempty set
ACSS such that |AsAsA|<e|A| for all sEF.

It turns out that for semigroups that are both right and left cancellative,
(%) is also a necessary condition for inner amenability. We first need a lemma
just like above, and its proof should be evident now.

LEMMA 12. Suppose that S is both right and left cancellative. Then

éﬂ if t= As\sA
(tas—sp(®) = _],jl if tesA\As
0 otherwise .
Consequently,
ltas—spall = 230541
pras—spall Vi

We need another technical lemma. We first note by that every finite
mean ¢ in /,(S) can be written in the form

(P = lgl'zlﬂtil;

where A;2A4,2 --- 2A, are finite nonempty subsets of S, 4,>0 for 1</<n,
and Zzl:]Zi:l.

LEMMA 13. Suppose that S is both left and right cancellative, and ¢ is a
finite mean in [,(S) as expressed in the above form. Then

n n | AgsAsA,
lps—sel: = lzzl'zz leta,s—spa,lls :lgl 4, i’ils‘/TS]1 ,

for any s<S.
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PROOF. For 1<, j<n, we have either 4;£A4;, or 4,2 A;. Now,

A € A== sANA;s © sA; © sA; == (SANASIN(A s\s4;) = @ ;

and

A; S A== Ajs\sA; S Ajs © Ais == (SANAs)N(Ajs\sA) = @ .

Thus, in any case, we have (sAN\As)N(A;s\sA)=@. Put A=U%L,(sA:\A;9).
Then for all t=A, tesA\A;s for some 7, and so, t¢&A;s\sA; for any J.
Consequently, (ua;8—spa)(®)<0 for all ;. On the other hand, if t& A, then
t&sA\A;s for any #, and hence by the preceeding lemma, (p4;5—spa,)#)=0
for all ;. In other words, given {&S, the numbers (pa;5—spa)®), 1=s7=n,
are all <0 or all =0 according as t=A or t&A. In both cases, we have

ps—s)O1 = | 3 Alpars—sa)®| = 3 Al (as—spa)O)1.
Therefore,

los—sell, = ES | (ps—sp)(t)|

=3 3 Al (e, s—spa)®)

teS i=1

= 34 B H(pas—spa)d)
= 3 lpras—sptalh- 0

THEOREM 14, Supjbose that S is both left and right cancellative. If S is
inner amenable, then it salisfies (%),

PROOF. Let F={s;, s; -, sx} S, and let ¢>0. By convergence to inner
invariance, there exists a finite mean ¢ in /,(S) such that [¢s;—s;¢],<e/k, for
1<i<k. Write =27, 4;14, as above, Then,

>

k
i=1 jJ

k n A iA iA' n k A iA ,,A
e> D losi—sipli =2 2 PRECTLE L (2 1 Assids:iAy| ).

1 ]Ajl Jj=1 i=1 IAJ]
Since 4;>0 for 1<7<n, and 332, 4;=1, there must exist some index j, such
that

’_21 JVAjOsiAS':Ajol

2V Y

Let A=A;,. Then for all /=1, 2, ---, &,
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|AS¢AS¢A—[»
T4l <e. 0

The following corollary is now obvious. Note also that it applies in partic-
ular to groups.

COROLLARY 15. Let S be a left and right cancellative semigroup. Then S
is inner amenable if and only if it satisfies (k).

We may also formulate the above characterizations of inner amenability
using “intersections” instead of “symmetric differences” of sets.

THEOREM 16. Suppose that S is either left cancellative or right cancellative.
Then S is inner amenable if it satisfies the following condition.

() For any finite subset FSS, and for any k<(0, 1), there exists a finite
nonempty set ASS such that |sANAs|>k|A| for all s&F.

PROOF. Suppose that S is left cancellative and that it satisfies (f). We
shall prove that S satisfies (p).

Let FES be finite and let ¢>0. Without loss of generality, we may assume
that e=(0, 1). Let k=1—e<(0, 1). Then by (1), there exists a nonempty ASS
such that |sANAs|>k|A| for all s&€F. Now, since S is left cancellative, we
have |sA|=]A]| for all s&S. Therefore, for all s=F,

|sA\As| = |sA|—|sANAs| = |A|—|sANAs| < |A|—k|A| = ¢e|A]|.
The case for right cancellative semigroups is similar. O

Note again that the following applies in particular to groups.

THEOREM 17. Suppose that S is both left and right cancellative. If S is
inner amenable, then it satisfies (T).

PrOOF. We know that S satisfies (x). Now, given a finite set FSS, and
ke(0, 1), let e=1—k. By (%), there exists a nonempty set ASS such that
|sAAAs|<2¢|A| for all sF. Since S is both left and right cancellative,
|sA|=|As|=|A]| for all s&S. Therefore, for all s=F, we have

2|sANAs| = (|sA|—|sA\As|)4-(| As| — | As\sA])
=2|A|—|sAAAs]|
>2|A|—2¢| Al =2k |A],
ie., |SANAs|>k|A|, and S satisfies (1). O

REMARK. In case when S is a group, one can choose the set A in (%)
and () to be symmetric, i.e., s€cA=s'eA. What we need here is a result
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claimed and used, but not proved in [9]. We shall supply the proof here, and
then we mention the final theorem.

LEMMA 18, Let S=G be a group and let ¢ be a symmetric finite mean on
m(G). Write o=2317-1A;14, as before. Then the sets A; (1=j<n) are symmetric.

PROOF., Let s&A,. Since A,24,2 - 2A4,, we have
st A == o*(s) = ¢(s7!) = 0<¢(s) = contradiction.

Therefore, sc A, = s €A, ie.,, AT'=A.
Next, suppose that we have shown that A7'=A4,, ---, Ay*=A,. Then for
all s€A,,:, we have

STHE Apr = 0*(s) = o(s7h)

k
) Eziﬂ‘di(s—l)

»

I

/1 Al

-,
[J

I
M=

4 Zi,uAi(s)

2

k+1

< l=‘21 /ziﬂAi(S)
= ¢(s) = contradiction.

Therefore, s€ Ay, =s €A, 6., Aghi=As,.. By induction, all the A; are
symmetric. O

We now state the final theorem whose proof should be easy. We therefore
omit it. '

THEOREM 19. Let G be a group. Then each of the following conditions is
equivalent to G being inner amenable.

(x)s For any finite set FEG and any €>0, there exists a finite nonempty
set ASG such that | AsAsA|<<e|A| for all s&F.

(N)s For any finite subset FEG, and for any k<(0, 1), there exists a finite
nonempty set ASG such that |sANAs|>k|A| for all s&F.
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