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1. Introduction.

In [5] A. Heller introduced a class of stochastic processes called finitary
processes $(\mathscr{F}- processes)$ . He proved that every Markov chain and every func-
tional of a Markov chain is finitary. J. B. Robertson ([9]) investigated mixing
properties of $\mathscr{F}$ -processes. He has shown that every mixing $\mathscr{F}$ -process is a
Kolmogoroff one. This result has been sharpened by M. Binkowska in [2]. It
is proved in [2] that every weakly mixing $\mathscr{F}$ -process is weak Bernoulli. An
example of a weak Bernoulli process which is not finitary is given in [3].

A concept of a finitary shift ( $\mathscr{F}$ -shift), i.e., a measure preserving automor-
phism of a Lebesgue space which has a finite generator forming together with
this automorphism an $\mathscr{F}$ -process, is introduced in [4]. It follows at once from
the above remark that Markov shifts are $\mathscr{F}$ -shifts.

An extension of the well known Adler-Shields-Smorodinsky classification of
irreducible Markov shifts has been proved in [4]. Namely, it has been shown
that two ergodic $\mathscr{F}$ -shifts are isomorphic iff they have the same number of
eigenvalues and the same entropy.

It would be interesting to extend the classification results of Kubo, Murata
and Totoki (cf. [6]) to one-sided finitary shifts.

The main purPose of this PaPer is to give a Probabilistic descriPtion of
$\mathscr{F}$ -processes and to show that the class of $\mathscr{F}$ -shifts is closed under factors,
products and roots. A characterization of the inverse limits of $\mathscr{F}$ -shifts which
are $\mathscr{F}$ -shifts is also given.

Section 2 contains the definitions and results used in the next sections.
In Section 3 using the Robertson spectral representation we give a prob-

abilistic characterization of $\mathscr{F}$ -processes and we discuss it on the class of
Bernoulli and Markov processes.

In Section 4 we show that sums and products of $\mathscr{F}$ -processes are again
$\mathscr{F}$ -processes.
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In Section 5 using results of Section 4 we prove that the class of $\mathscr{F}$ -shifts
is closed under taking sums, products, roots and factors. We give an example
showing that in general the class of $\mathscr{F}$ -shifts is not closed under taking inverse
limits. We also give a necessary and sufficient condition for an inverse limit
of $\mathscr{F}$ -shifts to be an $\mathscr{F}$ -shift.

2. Preliminaries.

Let (X, $\ovalbox{\tt\small REJECT},$

$\mu$) be a Lebesgue probability space, $T$ be a measure preserving
automorphism of (X, $\ovalbox{\tt\small REJECT},$

$\mu$ ) and $U_{T}$ be the unitary operator defined on $L^{2}(X, \mu)$

by the formula
$U_{T}f=f\circ T$ , $f\in L^{2}(X, \mu)$ .

We denote by $\sigma(T)$ the set of eigenvalues of $U_{T}$ .
Let $P=\{P_{i}, i\in I\}$ be a finite measurable partition of $X$ . The pair $(T, P)$

will be called a process.
Considering the problem of functionals of Markov chains, Heller introduced

in [5] a class of processes, called finitary Processes, defined as follows.
A triple $(L, q, l_{0})$ is said to be an algebraic representation of a process

$(T, P),$ $P=\{P_{i}, i\in I\}$ if
$(H_{1})$ $L$ is an $A_{I}$ -module where $A_{I}$ is the free associative algebra over the

field $R$ of real numbers generated by $I$,
$(H_{2})$ $l_{0}\in L$ ,
$(H_{s})$ $q:Larrow R$ is a linear functional with $q(l_{0})=1$ ,
$(H_{4})$ $q(\xi(\sigma-\emptyset)l_{0})=0,$ $\xi\in A_{I},$ $\sigma=\sum_{i\in I}i,$ $\emptyset$ is the emPty word,
$(H_{6})$ $q(i_{0}, \cdots , i_{n}l_{0})=\mu(P_{i_{0}}\cap T^{-1}P_{i_{1}}\cap \cap T^{-n}P_{t_{n}}),$ $i_{0},$

$\cdots,$
$i_{n}\in I,$ $n\geqq 0$ .

An algebraic representation $(L, q, l_{0})$ is said to be reduced if
$(H_{6})$ $A_{I}l_{0}=L$ ,
$(H_{7})$ $L$ does not contain a nonzero submodule $L’$ such that $q(x)=0,$ $x\in L’$ .

The process $(T, P)$ is said to be finitary ( $\mathscr{F}$ -process) if $\dim_{R}L<\infty$ where
$(L, q, l_{0})$ is a reduced algebraic representation of $(T, P)$ .

The automorphism $T$ is said to be an $\mathscr{F}$ -shift if there exists a finite
generator $P$ such that the process $(T, P)$ is an $\mathscr{F}$ -process.

In the sequel we shall also use a spectral representation of a process
introduced by Robertson in [8].

A triple $(H, e, \{W_{i}, i\in I\})$ is said to be a spectral representation of $(T, P)$ if
$(R_{1})$ $H$ is a complex Hilbert space,
$(R_{2})$ $e\in H,$ $||e||=1$ ,
$(R_{3})$ for every $J\subset I$ the operator $\Sigma_{i\in J}W_{i}$ is a contraction on $H$,
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$(R_{4})$ $W_{T}e=W_{T}^{*}e=e$ where $W_{T}=\Sigma_{i\in I}W_{i}$ ,
$(R_{5})$ $(W_{\alpha}e, e)=\mu(P_{i_{0}}\cap\cdots\cap T^{-n}P_{i_{n}})$ where $\alpha=(i_{0}, \cdots , i_{n}),$ $W_{a}=W_{i_{0}}\cdots W_{i_{n}}$ .
A spectral representation $(H, e, \{W_{i}, i\in I\})$ is called reduced if
$(R_{6})$ $H=\overline{S}_{P}\{W_{\alpha}e, \alpha\in I^{\infty}\}=\overline{S}_{P}\{W_{\alpha}^{*}e, \alpha\in I^{\infty}\}$ .

In the sequel we shall make use of the following results (cf. [4])

LEMMA A. The following conditions are equivalent

(i) $(T, P)$ is an $\mathscr{F}$ -process,
(ii) for every reduced spectral representation $(H, e, \{W_{i}\}_{i\in I})$ of $(T, P)$ we

have $\dim H<\infty$ ,
(iii) there exists a spectral representation $(H, e, \{W_{i}\}_{i\in I})$ of $(T, P)$ with

$\dim H<\infty$ .
Let $Y\in B$ be a $T$-invariant set with a positive measure. We consider the

measure sPace $(Y, S_{Y}, \mu_{Y})$ where $B_{Y}=\{A\cap Y;A\in B\}$ and $\mu_{Y}$ is the conditional
measure on $Y$ determined by $\mu$ . Let $T_{Y}=T|_{Y}$ and $P_{Y}=\{P_{i}\cap Y;i\in I\}$ where
$P=\{P_{i}, i\in I\}$ is a partition of $X$ .

LEMMA B. If $(T, P)$ is an $\mathscr{F}- process$ , then $(T_{Y}, P_{Y})$ is an $\mathscr{F}$ -Process (in $Y$).

LEMMA C. If $T$ is an ergodic automorPhism and the set $\sigma(T)$ is finite, then
there exists a natural number $n$ such that

(i) $T$ admits an $n$ -tower { $A,$ TA, $\cdots,$
$T^{n-1}A$ }, $i.e$ . the sets $T^{t}A,$ $0\leqq i\leqq n-1$

are pairwise disjoint and $U_{i=0}^{n-1}T^{i}A=X$ ,
(ii) the automorphism $T^{n}|_{T^{i}A},$ $0\leqq i\leqq n-1$ is totally ergodic.

LEMMA D. If $T$ is an $\mathscr{F}$ -shift, then the set $\sigma(T)$ is finite.
LEMMA E. If $T$ is an $\mathscr{F}$ -shift, then $T^{n},$ $n\geqq 1$ is also an $\mathscr{F}$ -shift.
LEMMA F. Every totally ergodic $\mathscr{F}$ -shift is isomorphic to a Bernoulli shift.

3. Probabilistic characterization of $\mathscr{F}$-processes.

Let (X, $B,$ $\mu$) be a Lebesgue probability space, $P=\{P_{i}\}_{i\in I}$ a finite measurable
partition of $X$ and $T$ a measure preserving automorphism of (X, $B,$ $\mu$).

For given natural numbers $m,$ $n,$ $m<n$ we put

$P[m, n]=\vee^{n}T^{i}Pi=m$

THEOREM 1. A Process $(T, P)$ is an $\mathscr{F}$ -process if there exists a natural
number $n$ such that for every $q\geqq 1$ and $BeP[-q, -1]$ there exist numbers $\lambda_{C}(B)$ ,
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$C\in P[-n, -1]$ with the following property

(1) $\forall_{p\geq 0}\forall_{A\in P[0,p]\mu(B}|A)=\sum_{C\in P[-n.-1]}\lambda_{C}(B)\mu(C|A)$ .

PROOF. Let $(T, P)$ be an $\mathscr{F}$ -process and let $(H, e, \{V_{i}\}_{i\in I})$ be its reduced
spectral representation. It follows from Lemma $A$ that $\dim H<\infty$ .

Let $\{V_{\alpha_{1}}e, \cdots V_{a_{S}}e\}$ be a basis of $H$ and let $n=n(T, P)$ be the smallest
natural number such that $\alpha_{i}eI^{n},$ $i=1,$ $\cdots$ $s$ . The existence of such $n$ follows
at once from the equality

(2) $V_{a_{i}}e=V_{\alpha_{i^{\circ}}}V_{T}^{\tau n}e=$ $\sum$ $V_{a_{i}j_{1},\cdots,j_{m}}e$ , $i=1,2,$ $\cdots$ $s,$ $m\geqq 1$ .
$j_{1}\ldots..j_{m}\in I$

Let $q$ be an arbitrary natural number and let $B\in P[-q, -1],$ $B=T^{-1}P_{J_{1}}\cap$

$...\cap T^{-q}P_{J_{q}}$ .
Let $\alpha=(j_{1}, \cdots j_{q})$ and let $a_{1},$ $\cdots,$ $a_{s}eR$ be such that

(3) $V_{a}e=a_{1}V_{a_{1}}e+\cdots+a_{s}V_{a_{S}}e$ .

Let $P$ be an arbitrary natural number and let $A\in P[0, p],$ $A=P_{i_{0}}\cap TP_{i_{1}}\cap$

... $\cap T^{p}P_{i_{p}}$ .
It follows from (2) that

(4) $\mu(A\cap B)=\mu(T^{-p}(A\cap B))$

$=\mu(P_{i_{p}}\cap T^{-1}P_{i_{p-1}}\cap\cdots\cap T^{-p}P_{i_{0}}\cap T^{-p-1}P_{j_{1}}\cap\cdots\cap T^{-p-q}P_{J_{q}})$

$=(V_{t_{p}\cdots i_{0}j_{1}\cdots j_{q}}e, e)=(V_{i_{p}\cdots t_{0}}V_{\alpha}e, e)= \sum_{i\approx 1}^{s}a_{i}(V_{i_{p}\cdots i_{0}}V_{\alpha_{i}}e, e)$ .

Let $\alpha\cdot=(k_{1.i}, \cdots k_{n.i})\in I^{n},$ $1\leqq i\leqq s$ . Introducing the notation

$C_{i}=T^{-1}P_{\iota_{1,i}}\cap\cdots\cap T^{-n}P_{\iota_{n,i}}$ , $i=1,$ $\cdots$ , .
we may write (3) in the form

$\mu(A\cap B)=\Sigma_{i=1}^{s}a_{i}\mu(T^{-p}(A\cap C_{i}))$

$=\Sigma_{i=1}^{s}a_{i}\mu(A\cap C_{i})$ .
Putting

$\lambda_{C}(B)=\{$

$a_{i}$ , if $C=C_{i},$ $1\leqq i\leqq s$

$0$ , if $C \cap\bigcup_{i=1}^{s}C_{i}=\emptyset$

we get

$\mu(A\cap B)=\sum_{C\in P[-n,-1]}\lambda_{C}(B)\cdot\mu(A\cap C)$

which proves the necessity.
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In order to prove the sufficiency let us suppose that there exists a number
$n$ for which the property(1) is satisfied.

Let $(H, e, \{W_{i}\}_{i\in I})$ be a reduced representation of the process $(T, P)$ . We
shall show that $\dim H<\infty$ .

Let $I^{n}=$ { $\alpha_{1},$
$\cdots$ as}. We shall prove that the vectors $W_{\alpha_{1}}e,$ $\cdots$ $lV_{a_{S}}e$ form

a basis of $H$.
Let $\alpha,$ $\beta\in I^{\infty},$ $\beta=(]_{1}, \cdots j_{q})$ be arbitrary and $\alpha=(i_{0}, , i_{p})\in I^{p+1},$ $p\geqq 1$ . We

put
$A=P_{\iota_{0}}\cap TP_{i_{1}}\cap\cdots\cap T^{p}P_{i_{p}}$ ,

$B=T^{-1}P_{j_{1}}\cap T^{-2}P_{j_{2}}\cap\cdots\cap T^{-q}P_{J_{q}}$ .

(5) $(W_{a}W_{\beta}e, e)= \mu(A\cap B)=\sum_{i=1}^{l}\lambda_{i}\mu(A\cap C_{i})$

$= \sum_{i=1}^{\}\lambda_{i}(W_{a}W_{\alpha_{i}}e, e)$

where $C_{i}=T^{-1}P_{k_{1,i}}\cap\cdots\cap T^{-n}P_{k_{n.i}}$ if $\alpha_{i}=(k_{1.i}, \cdots , k_{n,i})$ and $\lambda_{i}=\lambda_{C_{i}}(B),$ $i=1,2$ ,
. .. $s$ .

We may rewrite (5) in the form

$(W_{\beta}e, W_{\alpha}^{*}e)=( \sum_{i=1}^{s}\lambda_{i}W_{a_{i}}e,$ $W_{\alpha}^{*}e)$ , $\alpha,$ $\beta\in I^{\infty}$.
Since our spectral representation is reduced we have

$W_{\beta}e- \sum_{i=1}^{*}\lambda_{i}W_{\alpha_{i}}e$ , $\beta\in I^{\infty}$ .

Using again the reducity of the representatlon we see that the vectors form a
basis of $H,$ $i.e$ . $\dim H<\infty$ . $\square$

COROLLARY 1. A process $(T, P)$ is an $\mathscr{F}$ -Process iff there exist natural
numbers $n,$ $q_{0}$ such that for every $q\geqq q_{0},$ $B\in P[-q, -1]$ there exist numbers
$\lambda_{C}(B),$ $C\in P[-n, -1]$ with the following property:

(6) $\forall_{p\geqq 0}\forall_{A\in P[0,p]\mu(B}|A)=\sum_{C\in P[-n.-1]}\lambda_{C}(B)\mu(C|A)$

PROOF. It is enough to show the sufficiency. Let $n$ and $q_{0}$ satisfy (6) and
let $q<q_{0}$ . For every $BeP[-q, -1]$ there exist sets $B_{j}\in P[-q_{0}, -1],$ $1\leqq j\leqq s$

such that $B=U_{J=1}^{s}B_{f}$.
Let $p\geqq 0$ and $A\in P[0, p]$ be arbitrary. It follows from (6) that

$\mu(A\cap B_{j})=\sum_{C\in P[-n.-1]}\lambda_{C}(B_{j})\mu(A\cap C)$ .
Putting
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$\lambda_{C}(B)=\sum_{j=1}^{i}\lambda_{C}(B_{j})$

we get

$\mu(A\cap B)=\sum_{C\in P[-n,-1]}\lambda_{C}(B)\mu(A\cap C)$ ,

$i.e$. the number $n$ satisfies (1). $\square$

EXAMPLE 1. Let $(T, P)$ be a Bernoulli process on (X, $e,$ $\mu$), $n=n(P, T)=$

$q_{0}=1$ and $\lambda_{C}(B)=\mu(B),$ $B\in P[-q, -1],$ $C\in T^{-1}P,$ $q\geqq 1$ . Since every $A\in P[0, p]$ ,
$p\geqq 0$ is independent of $B$ , the condition (1) is of course satisfied, $i.e$ . $(T, P)$ is
an $\mathscr{F}$ -process.

EXAMPLE 2. Let $(T, P)$ be an $r$-fold Markov process $r\geqq 1$ on (X, $B,$ $\mu$), i.e.

(7) $\mu(A|B)=\mu(A|\tilde{B})$ ,

$A\in P[0, m]$ , $B\in P[-l-r, -1]$ , $B\in P[-r, -1]$ ,
$B\subset\tilde{B}$ , $m$ il; $0,$ $l\geqq 0$ .

We put $n(P, T)=q_{0}=r$ . For $B\in P[-q, -1],$ $q\geqq r$ we fix $C_{0}\in P[-r, -1]$

with $B\subset C_{0}$ and we define

$\lambda_{C}(B)=\{$

$\frac{\mu(B)}{\mu(C_{0})}$ ; $C=C_{0}$ ,

$0$ ; $C\neq C_{0}$ .
The condition (1) easily follows from (7).

4. Algebraic properties of finitary processes.

In this section we shall show that sums and products of $\mathscr{F}$ -processes are
$\mathscr{F}$ -processes.

Let $(T, P)$ and $(S, Q),$ $P=\{P_{1}, \cdots , P_{m}\},$ $Q=\{Q_{1}, \cdots Q_{n}\}$ be processes on
Lebesgue probability spaces (X, $\mathcal{A},$

$\mu$) and $(Y, 9, \nu)$ respectively, where $X\cap Y$

$=\emptyset$ . Let $s,$ $t\in(O, 1)$ be such that $s+t=1$ .
We denote by $(Z, C, \lambda)$ the sum of (X, $\mathcal{A},$

$\mu$) and $(Y, \ovalbox{\tt\small REJECT}, \nu),$ $i.e$ . $Z=X\cup Y$ ,
$A\in C$ iff $A\cap X\in \mathcal{A},$ $A\cap Y\in 9$ and $\lambda=s\mu+i\nu$ .

We equip $Z$ with the automorphism $U$ defined by $U|_{X}=T,$ $U|_{Y}=S$ and the
partition $R=\{P_{1}, \cdots, P_{m}, Q_{1}, \cdots Q_{n}\}$ .

The process $(U, R)$ is called the sum of processes $(T, P)$ and $(Q, S)$ , and is
denoted by $(P, T)\oplus(Q, S)$ .

THEOREM 2. The process $(P, T)\oplus(Q, S)$ is an $\mathscr{F}$ -Process iff $(P, T)$ and $(Q, S)$

are $\mathscr{F}- processes$ .
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PROOF. The necessity follows at once from Lemma B.
In order to prove the sufficiency we consider spectral representations

$(H_{1}, e_{1}, \{W_{i}^{1}\}_{1\leq iSm})$ and $(H_{2}, e_{2}, \{W?\}_{1SiSn})$ of $(P, T)$ and $(Q, S)$ respectively such
that $\dim H_{i}<\infty,$ $i=1,2$ .

In the view of Lemma A it is enough to construct a spectral representation
$(H, e, \{W_{i}\}_{1\leq i\leq m+n})$ of $(P, T)\oplus(Q, S)$ with $\dim H<\infty$ .

Let $(H, (\cdot, ))$ be the product of spaces $(H_{i}, (\cdot, )_{i})$ where $(\cdot, )_{i}$ denotes the
inner Product in $H_{i},$ $i=1,2,$ $i.e$ . $H=H_{1}\cross H_{2}$ ,

$(h,\overline{h})=s\cdot(h_{1},\overline{h}_{1})_{1}+t\cdot(h_{2},\overline{h}_{2})_{2}$ ,

$h=(h_{1}, h_{2}),\overline{h}=(\overline{h}_{1},\overline{h}_{2})$ .
It is clear that the dimension of the Hilbert space $H$ is finite.
We put $e=(e_{1}, e_{2})$ and we define $W_{i}$ : $Harrow H$ as follows

$W_{1}(h)=(W_{1}^{1}(h_{1}), 0),$ $\cdots$ $W_{m}(h)=(W_{rn}^{1}(h_{1}), 0)$ ,

$W_{m+1}(h)=(0, W_{1}^{2}(h_{2})),$ $\cdots$ $W_{m+n}(h)=(0, W_{n}^{2}(h_{2}))$ .
It follows at once from the definition of the inner product in $H$ that $||e||=1$ .

For every set $I\subset\{1,2, \cdots, n+m\}$ the operator $\sum_{i\in I}W_{i}$ is a contraction because
the operators $W_{i}^{1}$ and $W_{j}^{2}$ , l\leqq i$m, $1\leqq_{J}\leqq n$ have, by the assumption, the same
property.

Since $W_{T}^{1}e_{1}=e_{1},$ $W_{S}^{2}e_{g}=e_{2}$ we get

$W_{U}e= \sum_{i=1}^{m+n}W_{i}e=\sum_{i=1}^{m}(W_{i}^{1}(e_{1}), 0)+\sum_{i=1}^{n}(0, W_{t}^{2}(e_{2}))$

$=(W_{T}^{1}e_{1},0)+(0, W_{s}^{2}e_{2})=e$

Similarly $W_{U}^{*}e=e$ .
NOW, let $\alpha=(i_{0}, i_{1}, \cdots i_{s})\in I^{\infty}$. Let us observe that

$W_{a}e=W_{i_{0}}W_{i_{1}}$ $W_{i_{S}}e$

is equal to

$(W_{\iota_{0}}^{1}W_{i_{1}}^{1}\cdots W_{i_{S}}^{1}e_{1},0)$ if all $i_{k}\in\{1, \cdots, m\}$ ,

$(0, W_{i_{0}}^{2}W_{i_{1}}^{2}\cdots W_{i_{\}}^{2}0)$ if all $i_{k}\in\{m+1, \cdots , n\},$ $1\leqq k\leqq s$ ,

$(0,0)$ otherwise.
Simllarly

$\lambda(R_{i_{0}}\cap U^{-1}R_{\iota_{1}}\cap\cdots\cap U^{-s}R_{i_{S}})$

is equal to
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$s\mu(P_{i_{0}}\cap T^{-1}P_{i_{1}}\cap\cdots\cap T^{-s}P_{i_{S}})$ if all $i_{k}\in\{1, \cdots , m\}$ ,

$t\nu(Q_{t_{0}}\cap S^{-1}Q_{i_{1}}\cap\cdots\cap S^{-s}Q_{i_{S}})$ if all $i_{k}\in\{m+1, \cdots , m+n\}_{1\leq k\lessgtr s}$ ,

$0$ otherwise.

Therefore we get

$(W_{a}e, e)=\lambda(R\cap U^{-1}R_{i_{1}}\cap 0 \cap U^{-s}R_{i_{S}})$ .
$i.e$ . the triple $(H, e, \{W_{i}\}_{1\leq i\leq n+m})$ is a spectral rePresentation of $(P, T)\oplus(Q, S)$

with $\dim H<\infty$ , which completes the proof. $\square$

One can easily extend Theorem 2 to the case of an arbitrary finite number
of processes.

In order to consider other operations on $\mathscr{F}$ -processes we introduce the con-
cept of an euclidean representation of a process.

Let $(T, P),$ $P=\{P_{i}, i\in I\}$ be a process on a Lebesgue space (X, $B,$ $\mu$).

DEFINITION. An euclidean representation of $(T, P)$ is a triple $(r, e, \{A_{i}\}_{i\in I})$

where $e\in R^{s},$ $r:R^{s}arrow R,$ $A_{i}$ : $R^{s}arrow R^{s}$ are linear transformations, $s\geqq 1,$ $i\in I$ such
that

(i) $r(e)=1$ ,
(ii) $\mu(P_{i_{0}}\cap T^{-1}P_{i_{1}}\cap \cap T^{-k}P_{t_{k}})=r(A_{i_{0}}A_{i_{1}}\cdots A_{i_{k}}e),$ $i_{s}\in I$, O$s\leqq k, $k\geqq 0$ .

PROPOSITION. A process $(T, P)$ is fimtary iff it has an euclidean rePresen-
tation.

PROOF. If $(T, P)$ is finitary it has a Heller algebraic representation $(L, q, l_{0})$

with $\dim_{R}L<\infty$ . Let $\dim_{R}L=s$ and let $\varphi:Larrow R^{s}$ be a linear isomorphism.
We put

$r=q_{0}\varphi^{-1}$ , $e=\varphi(l_{0})$ , $A_{i}x=\varphi(i\varphi^{-1}(x))$ , $i\in I,$ $xeR^{s}$ .
It is clear that the triple $(r, e, \{A_{i}\}_{i\in I})$ is an euclidean representation.

Conversely, let $(r, e, \{A_{i}\}_{i\in I})$ be an euclidean representation of $(T, P)$ . Let
$L=R^{S},$ $l_{0}=e$ and $q(x)=r(x),$ $x\in L$ . For every $i_{s}eI$, O;$s\leqq k we define

$i_{0}i_{1}\cdots i_{k}x=A_{i_{0}}A_{i_{k}}x$ , $x\in R^{s}$ .

It is easy to see that $(L, q, l_{0})$ is an algebraic representation of $(T, P)$ . $\square$

Let $(T, P),$ $P=\{P_{i}\}_{iEI}$ and $(S, Q),$ $Q=\{Q_{j}\}_{j\in J}$ be processes on Lebesgue
spaces (X, $\mathcal{A},$

$\mu$) and $(Y, B, v)$ respectively.

We consider the partition $R=\{R_{ij}\}$ of $X\cross Y$ defined as follows

$R_{ij}=P_{i}\cross Q_{j}$ , $i\in I,$ $j\in J$ .
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The process $(R, T\cross S)$ is called the product of the processes $(T, P)$ and
$(S, Q)$ and is denoted by $(T, P)\cross(S, Q)$ .

THEOREM 3. If $(T, P)$ and $(S, Q)$ are $\mathscr{F}$ -Processes then their product $(T, P)$

$\cross(S, Q)$ is also an $\mathscr{F}$ -process.

PROOF. Let $(r, e, \{A_{i}\}_{i\in I})$ and $(\overline{r},\overline{e}, \{\overline{A}_{j}\}_{j\in J})$ be euclidean representations of
$(T, P)$ and $(S, Q)$ , respectively, and let $R^{n}$ and $R^{m}$ be the corresponding euclidean
spaces.

We denote by $\{e_{1}, \cdots, e_{n}\}$ and $\{\overline{e}_{1}, \cdots \overline{e}_{m}\}$ the standard basis of $R^{n}$ and $R^{m}$ ,

respectively. Let $\{e_{11}, e_{12}, \cdots e_{1m}, e_{21}, \cdots e_{2m}, , e_{n1}, \cdots, e_{nm}\}$ be the standard
basis in $R^{n\cdot m}$.

Let
$e= \sum_{i=1}^{n}\alpha_{i}e_{i}$ and $\overline{e}=\sum_{j=1}^{m}\beta_{J}\overline{e}_{j}$ .

We put

$=e= \sum_{i=1}^{n}\sum_{j\Rightarrow 1}^{m}\alpha_{i}\beta_{j}e_{ij}$ .

Next we define linear transformations

$\Leftarrow r:R^{mn}arrow R$ and $A_{ij}^{=}$ : $R^{mn}arrow R^{mn}$ , $i\in I,$ $i\in J$

by the formulas

(8) $r(e_{st})=r(e_{s})r(e_{t})$ , $seI,$ $t\in J$

(9) $A_{\iota j}^{=}(e_{\epsilon t})= \sum_{p=1}^{n}\sum_{q\Rightarrow 1}^{7n}\gamma_{ps}\beta_{qt}e_{pq}$

where

$A_{i}(e_{s})= \sum_{p=1}^{n}\gamma_{ps}e_{p}$ , $\overline{A}_{j}(\overline{e}_{t})=\sum_{q=1}^{m}\beta_{qt}\overline{e}_{q}$ , $i\in I,$ $j\in J$ .

We shall prove that the triple $(r=, =e, \{A_{ij}\}_{i\in I.j\in J})$ is an $n\cdot m$-dimensional
euclidean representation of $(T, P)\cross(S, Q)$ .

It is clear that
$r=(=e)=1$ .

It follows from (9), by induction, that if

$A_{i_{1}} \cdots A_{t_{s}}e=\sum_{\ell=1}^{n}\alpha_{i}e_{i}$ and $\overline{A}_{j_{1}}$ $\overline{A}_{J_{\epsilon}}\overline{e}=\sum_{j=1}^{m}\beta_{j}\overline{e}_{j}$

then

$A_{i_{1}j_{1}} \cdots A_{i_{\epsilon^{j}\epsilon}}(\overline{\overline{e}})=\sum_{i=1}^{n}==\sum_{j=1}^{rn}\alpha_{i}\beta_{j}e_{ij}$ .
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Hence, by the assumption

$r=(A_{t_{1}}^{=} \cdots A_{i_{\}j_{\theta}}^{=}e^{=}e)=\sum_{i=1}^{n}\sum_{j=1}^{m}\alpha_{i}\beta_{j}r(e_{i})\cdot\overline{r}(\overline{e}_{j})=r(A_{i_{1}}\cdots A_{\iota_{\epsilon}}e)\cdot r(\overline{A}_{j_{1}}\cdots\overline{A}_{j}\overline{e})$

$=\mu(P_{i_{1}}\Gamma\backslash T^{-1}P_{i_{2}}\cap\cdots\cap T^{-S+1}P_{i_{S}})\cdot\nu(Q_{j_{1}}\cap S^{-1}Q_{j_{2}}\cap\cdots\cap S^{-S+1}Q_{j_{S}})$

$=(\mu\cross\nu)(R_{i_{1}j_{1}}\cap(T\cross S)^{-1}R_{i_{2}j_{2}}\cap\cdots\cap(T\cross S)^{-S+1}R_{\iota_{\epsilon^{j_{S}}}})$ .
This means that $(r=, e=, \{A_{ij}^{=}\}_{i\in I.j\in J})$ is an euclidean representation of ( $T,$ t- $|\cross$

$(S, Q)$ . $\square$

5. Applications to finitary shifts.

We have proved in [4] that the class of $\mathscr{F}$ -shifts is closed under taking
powers and passing to subsystems. In this section we shall show that this
class is closed under taking sums, products, roots and factors. We also consider
inverse limits of $\mathscr{F}$ -shifts.

An immedlate consequence of Theorems 2 and 3 is the following

REMARK. The class of $\mathscr{F}$ -shifts is closed under taking sums and products.
Let $T$ be an automorphism on a Lebesgue space (X, $B,$ $\mu$).

THEOREM 4. If $T^{n},$ $n\geqq 1$ is an $\mathscr{F}$-shift, then $T$ is also an $\mathscr{F}$ -shift.
PROOF. First suppose $T$ is ergodic. It follows from Lemma $C$ that $T$

admits a $k$ -tower { $A,$ TA, $\cdots,$
$T^{k-1}A$ } such that $T^{k}|_{T^{i}A}$ is totally ergodic,

$0\leqq i\leqq k-1$ . Hence the automorphism $T^{nk}|_{\tau^{i_{A}}}$ is also totally ergodic. Since $T^{n}$

is an $\mathscr{F}$ -shift Lemmas $E$ and $B$ imply $T^{nk}|_{T^{i}A}$ is also an $\mathscr{F}$ shift, $0\leqq i\leqq k-1$ .
By Lemma $F$ the automorphism $T^{nk}|_{\tau^{i_{A}}}$ is isomorphic to a Bernoulli shift,
$0\leqq i\leqq k-1$ . It follows from Corollary to Theorem 13 ([7]) that the automor-
phism $T^{k}|_{\tau^{i}A}$ as a root of $T^{nk}|_{T^{i}A}$ is also isomorphic to a Bernoulli shift.

NOW, arguing similarly as in the proof of Theorem ([1]) we may show that
$T$ is isomorphic to an automorphism which is a product of a rotation on the
group $Z_{k}$ and a Bernoulli shift. By Remark the automorphism $T$ is an $\mathscr{F}$ -shift.

Let us now suppose $T$ is an arbitrary automorphism of (X, $B,$ $\mu$). Since
$T^{n}$ is an $\mathscr{F}$ -shift the set $\sigma(T^{n})$ is finite. Hence the set $\sigma(T)$ is also finite.
Therefore the partition of $X$ on ergodic components with respect to $T$ is finite.
We denote it by $\{X_{1}, \cdots X_{\epsilon}\}$ .

It follows from the first part of the proof that the automorphisms $T_{x_{i}}$ ,
$1\leqq i\leqq s$ are $\mathscr{F}$ -shifts. Applying Theorem 2 we see that $T$ is an $\mathscr{F}$ -shift, which
finishes the proof. $\square$

LEMMA. If $T$ is an $\mathscr{F}$ -shift, $\{X_{1}, \cdots, X_{m}\}$ is a partition of $X$ on ergodic
components with respect to $T$ and $S$ is an ergodic factor of $T$ , then $S$ is also a
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factor of $T|_{X},$ , l;$i\leqq m.

PROOF. Suppose $S$ acts on a Lebesgue space $(Y, C, v)$ . Let $\varphi:Xarrow Y$ be a
measure preserving transformation such that $\varphi\circ T=S\circ\varphi$ .

Let l;$i;$m be fixed. We define a measure $\nu_{i}$ on $C$ by the formula

$\nu_{i}(B)=\mu(\varphi^{-1}(B)|X_{i})$ , $B\in C$ .
Since $TX_{i}=X_{i}$ the measure $\nu_{i}$ is $S$-invariant. The obvious equality

$\nu=\sum_{k=1}^{m}\mu(X_{\iota})\nu_{k}$

implies $\nu_{i}\ll\nu$ . The ergodicity of $S$ implies that $\nu_{i}=\nu$ , lSi$m. This means
that $S$ is a factor of $T|_{x_{i}},$ $1\leqq i\leqq m$ .

THEOREM 5. The class of $\mathscr{F}$ -shifts is closed under taking factors.
PROOF. Let $T$ be an $\mathscr{F}$ -shift and let $S$ be a factor of $T$ acting on Lebesgue

spaces (X, $B,$ $\mu$) and $(Y, C, \nu)$ , respectively.
Let $\{Y_{1}, \cdots Y_{k}\}$ be the partition of $Y$ on ergodic components with respect

to $S$ and let $\varphi:Xarrow Y$ be a measure preserving transformation such that $\varphi^{\circ}T$

$=S\circ\varphi$ .
For $1\leqq i\leqq k$ we put $X_{i}=\varphi^{-1}(Y_{i})$ . It is clear that the elements of the parti-

tion $\{X_{1}, \cdots X_{k}\}$ are $T$-invariant sets.
Equipping $X_{i}$ and $Y_{i}$ with the conditional measures $\mu_{i}$ and $\nu_{i}$ , respectively,

one easily verifies that the automorphism $S_{i}=S|_{Y_{i}}$ is a factor of $T_{i}=T|_{x_{l}}$ given
by the transformation $\varphi_{i}=\varphi|_{x_{i}},$ $1\leqq i\leqq k$ .

Let l\leqq i::$ $k$ be fixed. It follows from the assumption and Lemma $B$ that $T_{i}$

is an $\mathscr{F}$ -shift. Let $\{X_{1}, \cdots, X_{il_{i}}\}$ be the partition of $X_{i}$ on ergodic components
with respect to T..

Let $\mu_{tj}$ be the conditional measure on $X_{ij}$ defined by $\mu_{i}$ and let $T_{ij}=T_{i}|_{X_{j}}$ ,
$1\leqq j\leqq l_{i}$ .

It follows from Lemma that for every $1\leqq j\leqq l_{i}$ the automorphism $S_{i}$ is a
factor of $T_{ij}$ . Applying Lemma $C$ to $T_{ij}$ and $S_{i}$ we see that there exists a
measurable set $B\subset Y_{i}$ and a natural number $m=m_{i}$ such that the sets $B$ ,
$S_{i}B,$ $\cdots$ $S_{i}^{m-1}B$ form a partition of $Y_{i}$ and the automorphism $S_{i}^{m}|_{S_{i}^{P}B}$ is totally
ergodic, $0\leqq p\leqq m-1$ .

It follows from Corollary 4 ([4]) that $S_{i}^{m}|_{s_{i}^{p_{B}}}$ is a Bernoulli shift and so is
an $\mathscr{F}$ -shift, $0\leqq p\leqq m-1$ . Using Theorem 4 and Theorem 2 we see that $S$ is an

$\mathscr{F}$ -shift. $\square$

The well known Ornstein theorem says that the class of Bernoulli shifts is
closed under taking inverse limits. It is a natural question whether this prop-
erty holds for $\mathscr{F}$ -shifts.
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The following example shows that this question has a negative answer.
EXAMPLE 3. Let $X_{1}$ be the group of 2-adic numbers, $\ovalbox{\tt\small REJECT}_{1}$ the $a$ -algebra of

Borel sets of $X_{1}$ equipped with the Haar measure $\mu_{1}$ and let $T_{1}$ : $X_{1}arrow X_{1}$ be the
adding machine, i.e.

$T_{1}x=x+e$ , $x\in X_{1}$

where $e=(1,0, \cdots)$ .
It is well known that $T_{1}$ is ergodic and has a discrete spectrum.
For a fixed natural number $k$ and $i_{0},$ $i_{1},$ $\cdots$ $i_{k}\in\{0,1\}$ we put

$C(i_{0}, \cdots , i_{k})=\{x\in X;x_{0}=i_{0}, \cdots, x_{k}=i_{k}\}$ .

Let $C_{k}$ be the algebra generated by the partition

$\{C(i_{0}, i_{1}, \cdots i_{k});i_{0}, i_{1}, \cdots i_{k}\in\{0,1\}\}$ .
We have

(10) $T_{1}C_{k}=C_{\iota}$ , $k\geqq 1,$ $C_{k}\nearrow B_{1}$ .

Let $(X_{2}, B_{2}, \mu_{2}, T_{2})$ be a Bernoulli shift and let (X, $\ovalbox{\tt\small REJECT},$

$\mu,$
$T$) be the direct

product of $(X_{i}, B_{i}, \mu_{i}, T_{i}),$ $i=1,2$ . It is clear that $T$ is ergodic and has a
positive entropy.

Let $\mathcal{A}_{k}=C_{k}\otimes B_{2},$ $k\geqq 1$ . It follows at once from (10) that

$T\mathcal{A}_{k}=\mathcal{A}_{i}$ , $k\geqq 1,$ $\mathcal{A}_{5}\nearrow\ovalbox{\tt\small REJECT}$ .

It is easy to see that for every $k\geqq 1$ the factor automorphism $T_{A_{k}}$ is
isomorphic to the product of the rotation on the group $Z_{2i+1}$ and the Bernoulli
shift. Therefore, by Remark, it is an $\mathscr{F}$ -shift.

On the other hand the set $\sigma(T)$ is infinite because it contains the set $\sigma(T_{1})$

which is infinite. In view of Lemma $DT$ is not an $\mathscr{F}$ -shift.
Let now $T$ be an automorphism of a Lebesgue space (X, $\ovalbox{\tt\small REJECT},$

$\mu$).

THEOREM 6. Let $(\mathcal{A}_{n})$ be a sequence of a-algebras such that $\prime I’ \mathcal{A}_{n}=\mathcal{A}_{n}$ and
let every factor automorPhism $T_{\tau}J_{n}$ be an $\mathscr{F}$ -shift, $n\geqq 1$ and $\mathcal{A}_{n}\nearrow\ovalbox{\tt\small REJECT}$ .

$T$ is an $\mathscr{F}$ -shift iff the set $\sigma(T)$ is finite and every $\lambda\in\sigma(T)$ has a finite
multiplicity.

PROOF. In view of Lemma $D$ it is enough to prove the sufficiency.
First we consider the case wben $T$ is ergodic. Since $a(T)$ is finite there

exists a natural number $n_{0}$ such that

$\sigma(T_{\iota}A_{n})=a(T_{A_{n_{0}}})$ , $n\geqq n_{0}$ .
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Let $n\geqq n_{0}$ be fixed. In view of Lemma $C$ there exists a natural number $k$

and a set $A\in \mathcal{A}_{n}$ such that the sets $T^{i}A,$ $i=0,1,$ $\cdots$ $k-1$ are pairwise disjoint,
$U_{i=0}^{k-1}T^{i}A=X$ and $T^{k}|_{T^{i}A},$ $i=0,1,$ $\cdots,$ $k-1$ is totally ergodic.

Let us observe that due to the ergodicity of $T$ all towers { $A,$ TA, $\cdots$ , $T^{k-1}A$
)

are the same $(mod \mu)$ . Hence for every set $T^{i}A,$ $0\leqq i\leqq k-1$ the automorphism
$T^{k}|_{T^{i}A}$ is an inverse limit of $T_{\mathcal{A}_{n}}^{k}|_{T^{i}A},$ $n\geqq 1$ and $T_{\mathcal{A}_{n}}^{k}|_{\tau^{i}A}$ is a totally ergodic
$\mathscr{F}$ -shift. It follows from [4] that $T_{A_{n}}^{k}|_{\tau^{i_{A}}}$ is Bernoulli and so $T^{k}|_{T^{i}A}$ is Bernoulli
by [7].

Adapting some arguments from the proof of Theorem 2 in [1] we see that
$T$ is isomorphic to the product of a rotation on the group $Z_{k}$ and a Bernoulli
shift. Therefore, by Remark, $T$ is an $\mathscr{F}$ -shift.

NOW, let us suppose $T$ is an arbitrary $\mathscr{F}$ -shift. It follows from Lemma $D$

that the partition of $X$ on ergodic components with respect to $T$ is finite.
Hence our assumption implies that there exists $n_{0}$ such that for all $n\geqq n_{0}$ the
partition of $X$ on ergodic components with respect to the factor automorphism
$T_{J}$ is the same as this for $T_{\llcorner},l_{n_{0}}$ . We denote it by $\{X_{1}, X_{2}, , X_{k}\}$ . It is
clear that for every $1\leqq i\leqq k$ the automorphism $T|_{X_{i}}$ is an inverse limit of
$T_{\llcorner}\ell_{n}|_{X_{i}}$ . Since $T_{A_{n}}|_{X_{i}}$ is ergodic for $n\geqq n_{0},$ $T|_{X_{i}}$ is also ergodic. It follows
from the first part of the proof that $T|_{x_{i}}$ is an $\mathscr{F}$ -shift and so Theorem 2 im-
plies $T$ is an $\mathscr{F}$ -shift. $\square$
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