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Introduction.

Let $R$ be a Dedekind domain with the quotient field $K,$ $D$ be a central
simple $K$-algebra. We call that $(D, R)$ has the strong approximation property
iff the commutator subgroup $[D^{\cross}, D^{\cross}]$ of $D^{\cross}$ is dense in its adelization (for the
precise meaning, see \S 3). In this paper, when $K$ is the rational function field
$R(X)$ of one variable over the reals, we shall prove:

SAT: $(D, R)$ has the strong approximation property if and only if $D\otimes_{K}K_{v}$

is not a division algebra for some non-prime place $v$ (i.e. the place $v$ which
does not come from any prime ideal of $R$ ).

If $K$ is a global field ( $i.e$ . $[K:Q]<\infty$ or $[K:F_{q}(X)]<\infty$ ), then $[D^{\cross}, D^{\cross}]$

coincides with the norm 1 group $D^{(1)}$ , and the result SAT of the above type

is well known as SAT (Strong Approximation Theorem) of Eichler.
Swan [11] systematically applied SAT of Eichler to the theory of lattices

over orders. Recently Hijikata [6], extending the scope of Swan’s approach to
arbitrary Dedekind domains and remarking that non-division $D$ always has the
strong approximation property, pointed out the importance of establishing SAT
for a central division $D$ over the quotient field of an arbitrary Dedekind domain.

Our result gives a first example of non-trivial SAT other than the global
field. In \S 1, 2, we describe the structure of the Brauer group $Br(K)$ for the
algebraic function field $K=R(X, y)$ of one variable. Although the structure of
$Br(K)$ is known as “abstract groups“, even for $K’ s$ with much more general
constant fields ([2], [4], [5]), we need to know some explicit isomorphism re-
flecting the ramification of $D’ s$ . A remarkable fact is that Hasse’s $pr\dot{l}nciple$

holds for $K=R(X, y)$ ( $i.e$ . $Br(K)arrow\Pi Br(K_{v})$ is injective). In \S 3, we formulate
the strong approximation property. In \S 4, we prove SAT for $R=R[X]$ . In
\S 5, we prove the only if part of SAT for $K=R(X, y)$ . We prove the if part
of SAT for any $R$ in $K_{-}R(X)$ .

Motivated by [6], the author started this study under the direction of Prof.
H. Hijikata. The author acknowledges him for this and for his continual en-
couragement and many valuable suggestions.
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1. Brauer groups of $R((X))$ and $R(X)$ .
Let $R((X))$ be the field of formal power series over $R$ . It is a complete

valuation field with the residue field $R$ . By J. P. Serre “Corps locaux” Chap.
12, we have

$Br(R((X)))\cong Gal(C/R)\cross Br(R)\cong(Z/2Z)^{2}$ .
($Br(K)$ denotes the Brauer group of $K$ ). We shall determine it more concretely.

Let $D$ be a central division algebra over $R((X))$ . Since $Br(C((X)))$ is trivial,
$D$ splits over $C((X))$ , so that $D$ contains a maximal subfield isomorphic to $C((X))$ .
Thus we have

$D=K+Ki+Kj+Kij$ , $K=R((X))$ ,

$i^{2}=-1$ , $j^{2}=f\in K^{\cross}$ , $Ji=-ij$ .
We shall denote this $D$ by $\{-1, f\}$ .

Since $\{-1, f\}\cong\{-1, f’\}\Leftrightarrow ff^{\prime-1}\in N_{K(^{\sqrt{}}\overline{-1})/K}(K(\sqrt{-1})^{\cross})=(K^{2}+K^{2})\cap K^{\cross}$ ,
we have $Br(K)\cong K^{\cross}/(K^{2}+K^{2})\cap K^{\cross}$ , whose complete representative system is
given by $\{1, -1, X, -X\}$ so that

$Br(R((X)))=\{R((X)), H((X)), \{-1, X\}, \{-1, -X\}\}$ .
Note that $R((X))=\{-1,1\}$ and $H((X))=\{-1, -1\}$ where $H$ is the usual qua-
ternion algebra over R. $H((X))$ is unramified over $R((X))$ , while $\{-1, X\}$ and
$\{-1, -X\}$ are ramified.

Next, we shall determine the Brauer group of $R(X)$ .
THEOREM 1. (1) Every central divzsion algebra over $R(X)$ has the $index\leqq 2$ ,

hence if it is not trimal, it is a quaternion algebra over $R(X)$ ,
(2) $Br(R(X))\cong Z/2Z\cross(Z/2Z)_{0}^{R}\cong(Z/2Z)_{0}^{Ru\{sgn)}$ , where $(Z/2Z)_{0}^{R}$ denotes the

continuous direct sum of $Z/2Z$, namely the aggregation of all finite subsets of $R$

with the grouP oPeration: $A\cdot B=the$ symmetnc difference of $A$ and $B$ .
PROOF. Let $D$ be a central division algebra over $R(X)$ . Then by the same

reason as before, $C(X)$ is a splitting field of $D$ . This proves (1), and some
maximal subfield of $D$ is isomorphic to $C(X)$ . Thus $D$ is in the form of $D=$

$\{-1, f\}$ for some $f\in K^{\cross},$ $K=R(X)$ , and we have $Br(R(X))\cong K^{\cross}/(K^{2}+K^{2})\cap K^{\cross}$ .
If $f\in K^{2}+K^{2}$ , then $f(a)\geqq 0$ for $\forall_{a}\in R$ . Conversely, if $f(a)\geqq 0$ for $\forall_{a}\in R$,

then $f$ is decomposed into the product $f=\Pi_{i}(X-a_{i})^{2}\Pi_{j}(X-\alpha_{j})(X-\overline{\alpha}_{j}),$ $a_{i}\in R$ ,
$\alpha_{j}\in C\backslash R$ . Since $(X-\alpha_{j})(X-\overline{\alpha}_{j})=N_{K(^{\sqrt{}}-\overline{1})/K}(X-\alpha_{j})$ , we have $\in K^{2}+K^{2}$ . There-
fore, as a complete representative system of $K^{\cross}/(K^{2}+K^{2})\cap K^{\cross}$ , we get $\{\pm(X$

$-a_{1})\cdots(X-a_{n})|a_{i}\in R$ , mutually distinct}.
A “place” means a valuation on $K$ which is trivial on $R^{\cross}$ . The residue
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field of a place $v$ is $R$ or $C$ , according to which we call $v$ “real” or “imaginary”.
(Note that this terminology differs from the ones used for algebraic number
fields). For an imaginary place $v,$ $D_{v}$ is trivial over $K_{v}$ . For a real place $v$ ,
$D_{v}$ is one of four algebras over $K_{v}$ .

For $f=\pm(X-a_{1})\cdots(X-a_{n}),$ $D=\{-1, f\}$ is trivial at $a\in R$ such that $f(a)>0$ .
It is ramified at $a_{i}$ and at $\infty$ (the place corresponding to $X^{-1}$ ) if the degree of
$f$ is odd. Since $\{-1, f_{1}\}\otimes_{R(X)}\{-1, f_{2}\}\sim\{-1, f_{1}f_{2}\}$ , the multiplication in
$Br(R(X))$ corresponds to the symmetric difference of the sets of ramified places.
Thus we have obtained the desired result (2). Note that the isomorphism $presarrow$

cribes the ramification of each division algebra.

REMARK. The set of all real places will be denoted by $RP(K)$ . For $K=$

$R(X)$ , we have $RP(K)=RIIt\infty\}$ .
Then, we have $Br(R(X))\cong(Z/2Z)_{0}^{RP(R(X))}$ . The isomorphism is given as

follows. Suppose that a central division algebra $D$ over $R(X)$ corresponds to a
finite subset $A$ of $RP(R(X))=R$II $\{\infty\}$ . $D$ is ramified at every $a\in A\backslash \{\infty\}$ , and
at $\infty$ if $|A\backslash \{\infty\}|$ is odd. There are two $Ds$ which are ramified at no Place.
They are attributed to $Z/2Z$ at $\infty$ .

COROLLARY. $D$ is tnvial if and only if $D_{v}$ is tnvzal for any place $v$ . In
this sense, Hasse’s PnnciPle holds for $R(X)$ .

$\{-1, -1\}$ is unramified but non-trivial at every place. All other non-trivial
$\{-1, f\}$ are ramified at some places.

2. Brauer group of $R(X, y)$ .
Let $K$ be a finite extension of $R(X)$ , namely an algebraic function field of

one variable over $R$ . In other words, $K=R(X, y),$ $y$ is algebraic over $R(X)$ .
If $\sqrt{-1}\in K$, then $K$ is an algebraic function field of one variable over $C$ ,

so that $Br(K)$ is trivial. (Theorem of Tsen, $c.f$ . $[10]$ , Part III).

Hereafter we shall assume that $\sqrt{-1}\not\in K$. Since $Br(K(\sqrt{-1}))$ is trivial, a
central division algebra $D$ over $K$ splits over $K(\sqrt{-1})$ . This implies that $D$ is
a quaternion algebra and $D=\{-1, f\}$ for some $f\in K^{\cross}$ . From this we see that
$Br(K)$ has the exponent 2, and $Br(K)\cong K^{\cross}/(K^{2}+K^{2})\cap K^{\cross}$ .

Let $RP(K)$ be the set of all real places. Since the places of $K(\sqrt{}\overline{-1})=$

$C(X, y)$ are in one-to-one correspondence with points of a compact Riemann
surface Wt, and since a real place $v$ of $K$ does not decompose in $K(\sqrt{-1})$ ,
$RP(K)$ is identified with a subset of Wt.

For a real place $v$ of $K$, we have $\exists\varphi\in K,$ $ord_{v}(\varphi)=1$ . Then, $\varphi(z)$ is a local
coordinate in a neighbourhood of the corresponding $z_{v}\in\Re$ . Since $z\in RP(K)$ is
equivalent to $\varphi(z)\in R$ in this neighbourhood, $RP(K)$ is a one-dimensional real
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manifold. Since $\Re$ is compact, $RP(K)$ consists of $\nu$ closed curves, where $\nu$ is
the number of connected components of $RP(K)$ .

THEOREM 2. We have $Br(K)\cong(Z/2Z)_{0}^{RP(K)}$ .
The $isomorph2sm$ is given as follows: Fix a point $z_{i}(1\leqq i\leqq\nu)$ from each con-

nected comPonent of $RP(K)$ . Suppose that $Br(K)\ni D$ corresponds to a finite
subset $A$ of $RP(K)$ . Then, $D$ is ramified at $A\backslash \{z_{1}, , 2_{v}\}$ and possibly at $z_{i}$ .
The ramification at $z_{i}$ is determined by the rule that $D$ is ramified at even number
of places on each connected component of $RP(K)$ .

There are 2“ different dimston algebras which are ramified at no real place.
They are attnbuted to $(Z/2Z)^{\{z_{1},\cdots.z_{\nu}\}}$ .

PROOF. Let $Br_{1}(K)$ be the group of all division algebras which are ramified
at no real place. Then, $D=\{-1, f\}\in Br_{1}(K)$ is equivalent to that $ord_{z}(f)$ is
even for every $z\in RP(K)$ , namely that $f(z)$ has definite sign on each connected
component of $RP(K)$ .

AS sbown later, Hasse’s principle holds for $K=R(X, y)$ . Therefore, $D=$

$\{-1, f\}$ is trivial if and only if $f$ is non-negative on $RP(K)$ , so that we have
$|Br_{1}(K)|\leqq 2^{\nu}$ . The equality holds if for any connected component $C$ of $RP(K)$ ,

there exists $f\in K^{x}$ such that $f(z)\leqq 0$ on $C$ but $f(z)\geqq 0$ on $RP(K)\backslash C$ . Since
$RP(K)$ is mapped homeomorphically into $R^{4}$ by $z\vdasharrow(T_{i}(z))_{1\leq i\xi 4},$ $T_{1}(z)=X(z)/$

$X(z)^{2}+1,$ $T_{2}(z)=1/X(z)^{2}+1,$ $T_{3}(z)=y(z)/y(z)^{2}+1,$ $T_{4}(z)=1/y(z)^{2}+1$ , and since the
function $F$ defined by $F(z)=-1$ on $C$ and $F(z)=1$ on $RP(K)\backslash C$ is continuous
on $RP(K)$ , the polynomial approximation theorem of Weierstrass assures that
there exists a polynomial $P(T_{i})$ such that $P(T_{i}(z))<0$ on $C$ but $P(T_{i}(z))>0$ on
$RP(K)\backslash C$ . This completes the proof of $Br_{1}(K)\cong(Z/2Z)^{\{z_{1},\cdots,z_{\nu}\}}$ .

Take any $f\in K^{\cross}$ . If ord. $0(f)$ is odd for $z_{0}\in RP(K)$ , then $f(z)$ changes its
sign when $z$ crosses $z_{0}$ . Since a connected component $C$ of $RP(K)$ is a closed
curve, $f(z)$ must change its sign even times on $C$ , therefore $D=\{-1, f\}$ is
ramified at even number of places on $C$ .

NOW, we shall show that for any two points $\zeta$ and $\zeta’$ on $C$ , there exists
$f\in K^{\cross}$ such that $D=\{-1, f\}$ is ramified at $\zeta$ and $\zeta’$ , but not ramified at other
real places. Again we shall map $RP(K)$ into $R^{4}$ by $zrightarrow(T_{i}(z))_{1\xi iS4}$ . Since $C$

is a closed analytic curve, there are $\zeta=\zeta_{0},$ $\zeta_{1},$ $\cdots\zeta_{n}=\zeta’(\zeta_{i}\in C)$ and small spheres
$S_{j}$ : $\Sigma_{i=1}^{4}(T_{i}-a_{ij})^{2}=r_{j}^{2}$ such that $S_{j}\cap RP(K)=\{\zeta_{j-1}, \zeta_{j}\}$ .

Then $f=\Pi_{j=1}^{n}\{\Sigma_{i=1}^{4}(T_{i}(z)-a_{ij})^{2}-r_{j}^{2}\}$ satisfies $ord_{\zeta}(f)=ord_{\zeta’}(f)=1,$ $ord_{\zeta_{i}}(f)$

$=$ 2(1Si$n--l), and ord.$(f)=0$ for $z\in RP(K)\backslash \{\zeta_{i}\}$ . This $f$ is the desired
element of $K^{\cross}$ .

Thus we have proved $Br(K)/Br_{1}(K)\cong(Z/2Z)_{0}^{RP(K)\backslash \{z_{1}}$
”

$z_{y}$ } so combining
with the result for $Br_{1}(K)$ , we get $Br(K)\cong(Z/2Z)_{0}^{RP(K)}$ .

REMARK. $K$ satisfies Hasse’s principle as a result of the following lemma.
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Let $\square K$ be the set of all sums of squares, $\square K=\{\sum x_{i}^{2}|x_{i}\in K\}$ .
LEMMA. Let $K=R(X, y)be_{-}^{-}an$ algebraic function field over $R$ .
(1) For $f\in K^{\cross},$ $f\in\coprod K$ if and only if $f(z)\geqq 0$ for $\forall_{z\in RP(K)}$ Especially,

if $RP(K)=\emptyset$ then $\square K=K$.
(2) Every element of $\square K$ can be wntten as a sum of two squares.

We shall omit the proof here, and refer to [9], Th. 3.2, Chap. 3 and Th.
2.1, Chap. 4.

COROLLARY. $K=R(X, y)$ satisfies Hasse’s pnncrple.

PROOF. $D=\{-1, f\}$ is locally trivial if and only if $f(z)\geqq 0$ for $\forall_{z\in RP(K)}$

which is equivalent to $f\in K^{2}+K^{2}=N_{K(1_{\overline{-1})/K}}(K(\sqrt{-1})^{\cross})$ , hence $D=\{-1, f\}$ is
trivial.

3. Approximation in idele groups.

Let $R$ be a Dedekind domain, and $K$ be its quotient field. Every prime
ideal $P$ of $R$ defines the $P$ -adic valuation on $K$. We call this a prime valuation.
Besides $P$ -adic valuations, we often consider some others, which we call non-
prime valuations. For instance, if $K$ is an algebraic function field over the
constant field $k$ , it seems to be inevitable to consider all valuations trivial on $k^{\cross}$ .

We define the adele ring $R_{A}$ of $R$ by $R_{A}=\Pi_{p}R_{p}$ , where $P$ runs over all
prime valuations and $R_{p}$ denotes the completion of $R$ at the place $p$ . Also we
define the adele ring $K_{A}$ of $K$ by $K_{A}=K\otimes_{R}R_{A}\cong U_{S}(\Pi_{p\in S}K_{p}\cross\Pi_{p\not\in S}R_{p})$ where
$S$ runs over all finite set of prime valuations. The idele group $K_{A}^{\cross}$ is defined
as the group of inversible elements of $K_{A}$ . $lt$ is written in the form of $K_{A}=$

$\bigcup_{S}(\Pi_{p\in S}K_{p}^{\cross}\cross\Pi_{p\not\in S}R_{p}^{\cross})$ .
The fundamental system of neighbourhoods of $0$ in $K_{A}$ is given by $\{V(S$ ,

$n)\}$ , where

$V(S, n)= \prod_{p\in S}p^{n}R_{p}\cross\prod_{p\not\in S}R_{p}$ .

Similarly, the fundamental system of neighbourhoods of 1 in $K_{A}^{\cross}$ is given by
$\{U(S, n)\}$ , where

$U(S, n)= \prod_{p\in S}(1+p^{n}R_{p})\cross\prod_{p\not\in S}R_{p}^{\cross}$ .

Let $D$ be a central division algebra over $K$. A finitely generated R-sub-
module of $D$ is called an $R$-lattice, and if it spans $D$ as a $K$-vector space, it is
called a full $R$ -lattice. An $R$ -lattice is called an $R$ -order, if it is a subring in-
cluding 1 ( $=the$ unit element of $D$).

The adele ring $D_{A}$ of $D$ is defined by $D_{A}=D\otimes_{K}K_{A}$ . It is written in the
form of $D_{A}=Us(\Pi_{p\in S}D_{p}\cross\Pi_{p\not\in S}\Gamma_{p})$ , where $\Gamma$ is a full $R$-order of $D$ and $\Gamma_{p}=$
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$\Gamma\otimes_{R}R_{p}$ . The idele group $D_{A}^{\cross}$ is defined similarly. The fundamental system of
neighbourhoods of 1 in $D_{A}^{\cross}$ is given by

$U( S, n)=\prod_{p\in S}(1+p^{n}\Gamma_{p})\cross\prod_{p\not\in S}\Gamma_{p}^{\cross}$ .

$D$ is diagonally imbedded into $D_{A}$ , and $D^{\cross}$ is diagonally imbedded into $D_{A}^{\cross}$ . $D$

is dense in $D_{A}$ (by the Chinese remainder theorem), but $D^{\cross}$ is not dense in $D_{A}^{\cross}$ .
But $D^{\cross}$ may be dense in some subgroup of $D_{A}^{\cross}$ .

Let $\mathfrak{R}_{D/K}$ be the reduced norm $Darrow K$. $\mathfrak{R}_{D/K}$ maps $D^{\cross}$ homomorphically
into $K^{\cross}$ . We shall denote its kernel by $D^{(1)}$ . $\mathfrak{R}_{D/K}$ is uniquely extended as a
$K_{A}$-valued polynomial function on $D_{A}$ . This extension is denoted by the same
symbol $\mathfrak{R}_{D/K}$ , and its kernel in $D_{A}^{\cross}$ is denoted by $D_{A}^{(1)}$ .

Eichler’s theorem ascertains that for global fields, $D^{(1)}$ is dense in $D_{A}^{(1)}$ (in
the toPology of $D_{A}^{\cross}$) if and only if $D_{v}$ is not a division algebra for some non-
prime $v$ .

For global Pelds, we have also $D^{(1)}=[D^{\cross}, D^{\cross}]$ , the commutator subgroup
of $D^{\cross}$ . But for a general $K$, this relation does not hold (Platonov [8]).

For a general $K$, in the connection with the cancellation problem of $\Gamma$, it
seems natural to consider $[D^{\cross}, D^{\cross}]$ rather than $D^{(1)}$ . Thus we define the strong
approximation property as follows: A central division algebra $D$ is said to have
strong approximation property if $[D^{\cross}, D^{\cross}]$ is dense in $[D_{A}, D_{A}]$ . To find a
necessary and sufficient condition for strong approximation property is a gener-
alization of Eichler’s theorem to a general case.

In the connection with the cancellation problem of $\Gamma$, we consider a little
weaker approximation property. We say that $D$ has $D^{\cross}$ -approximation property,
if the closure of $D^{\cross}$ (in the topology of $D_{A}$) contains $[D_{A}^{\cross}, D_{A}^{\cross}]$ . We say that $D$

has $R_{A}^{\cross}D^{\cross}$ -approximation property, if the closure of $R_{A}^{x}D^{\cross}$ contalns $[D_{A}^{\cross}, D_{A}^{\cross}]$ .
(Both of $D^{\cross}$ and $R_{A}^{x}$ are contained in $D_{A}^{x}$ , so $R_{A}^{\cross}D^{\cross}\subset D_{A}^{x}.$ ) The last and weakest
approximation property is necessary and sufficient for the cancellation of every
full $R$ -order $\Gamma$ of $D$ (namely $\Gamma\oplus\Gamma\cong L\oplus\Gamma$ implies $\Gamma\cong L$ , the isomorphism
being as $\Gamma$-lattices).

4. Eichler’s theorem for $R(X)$ .
In \S 1 we have seen that for $R=R[X]$ and $K=R(X),$ $D=\{-1, f\}$ is trivial

at the non-prime place $\infty$ if and only if $f$ is monic of even degree.

THEOREM 3. If $D_{\infty}$ is not tnvzal, then $D^{\cross}$ is discrete in $D_{A}^{\cross}$ and $R_{A}^{x}D^{\cross}$ is
closed in $D_{A}^{\cross}$ .

COROLLARY. If $D_{\infty}$ is not tnmal, then $R_{A}^{\cross}D^{\cross}$ -apprximation ProPeny does
not hold.
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PROOF OF COROLLARY. It suffices to show $[D_{A}^{x}, D_{A}^{x}]\not\subset R_{4}^{x_{1}}D^{\cross}$ . For a real
place $a$ , we shall identify $D_{a}^{x}$ with the subgroup $D_{a}^{x}\cross\Pi_{p\neq a}(1)_{p}$ of $D_{A}$ . $lt$ is
clear that $[D_{A}^{\cross}, D_{A}^{x}]\cap D_{a}^{x}=[D_{a}^{\cross}, D_{a}^{x}]$ . Since $D_{a}$ is a quaternion (or a matrix)

algebra over $K_{a}$ , we have $[D_{a}^{x}, D_{a}^{x}]=D_{a}^{t1)}$ , so that $[D_{a}^{\cross}, D_{a}^{x}]\not\subset K_{a}^{x}$ .
On the other hand, if $x=(x_{p})\in R_{A}^{x}D^{\cross}\cap D_{a}^{x}$ , then we have $\exists_{d\in D^{\cross}}\forall p(prime$

place), $\exists_{r_{p}\in R_{p}^{\cross}}x_{p}=r_{p}d$ . For $P\neq a$ , we have $x_{p}=1$ so that $d=r_{p}^{-1}\in R_{p}^{x}\subset K_{p}^{x}$ ,

so that $d\in D^{x}\cap K_{p}^{x}=K^{\cross}$ , hence $x_{a}=r_{a}d\in R_{a}^{x}K^{\cross}\subset K_{a}^{x}$ . This assures $R_{A}^{\cross}D^{\cross}\cap$

$D_{a}^{x}\subset K_{a}^{x}$ so that $[D_{r}^{x_{1}}, D_{A}^{x}]\not\subset R_{4}^{x}D^{\cross}$ .

PROOF OF THEOREM 3. $D=\{-l, f\}$ meanS that

$D=K+Ki+Kj+Kij$

$i^{2}=-1,$ $j^{2}=f,$ $ji=-ij$ .
Then $\Gamma=R+Ri+Rj+Rij$ is a full $R$-order of $D(K=R(X), R=R[X])$ .

A fundamental neighbourhood of 1 in $D_{A}^{\cross}$ is $U(g)=\Pi_{p}(1+g\Gamma_{p})\cap\Pi_{p}\Gamma_{p}^{x}$ for
$g\in R$ and we have $U(g)\cap D^{\cross}=(1+g\Gamma)\cap\Gamma^{\cross}$ , so the first half of Theorem 3 is
$(1+g\Gamma)\cap\Gamma^{\cross}=(1)$ .

Suppose that $d=\varphi_{1}+\varphi_{2}i+\varphi_{8}j+\varphi_{4}ir\in(1+g\Gamma)\cap\Gamma^{\cross},$ $\varphi_{5}\in R$ . This means that
$\varphi_{1}\equiv 1mod g,$ $\varphi_{i}\equiv 0mod g$ for $i\geqq 2$, and $\mathfrak{R}_{DfK}(d)=\varphi_{1}^{2}+\varphi_{2}^{2}-f(\varphi_{\epsilon}^{2}+\varphi_{4}^{2})\in R^{\cross}=R^{\cross}$ .
If $g\in R\backslash R^{\cross}$ , substituting a zero of $g$ , we see that $\mathfrak{R}_{D/K}(d)=1$ .

Since each $\varphi_{i}^{2}$ has, if not zero, a positive coefficient of the highest degree
term, such terms of $\varphi_{1}^{2}$ and $\varphi_{2}^{2}$ (resp. $\varphi_{3}^{2}$ and $\varphi_{4}^{2}$ ) do not cancel.

From $\varphi_{1}^{2}+\varphi_{2}^{2}-1=f(\varphi_{S}^{2}+\varphi_{4}^{2})$ , if $f$ is of odd degree, both hand sides should
be zero. This implies that $\varphi_{3}=\varphi_{4}=0$ and $\varphi_{1},$

$\varphi_{2}\in R$ , which implies $\varphi_{2}=0$ and
$\varphi_{1}=1$ because $\varphi_{2}$ is a multiple of $g$ .

If $f$ is of even degree with a negative coefficient of the highest degree
term, then the highest degree terms of $\varphi_{1}^{2}+\varphi_{2}^{2}-f(\varphi_{8}^{2}+\varphi_{4}^{2})$ do not cancel, so that
we have $\forall_{i}\varphi_{i}\in R$ . This again implies $\varphi_{i}=0$ for $i\geqq 2$ , and so $\varphi_{1}=1$ .

Thus the first half of Theorem 3 has been proved. Similar discussions
show that $(R+g\Gamma)^{\cross}=R^{\cross}$ , if $g\in R\backslash R^{\cross}$ .

$\Gamma_{g}=R+g\Gamma$ is a full $R$-order of $D$ , and $(\Gamma_{g})_{A}^{x}=\Pi_{p}(R_{p}+g\Gamma_{p})^{\cross}$ is an open
subgroup of $D_{A}^{\cross}$ , so $(\Gamma_{g})_{A}^{\cross}D$ is open and closed, hence $\bigcap_{g}(\Gamma_{g})_{A}^{\cross}D^{\cross}$ is a closed
subgroup of $D_{A}^{\cross}$ , containing $R_{A}^{x}D^{\cross}$ .

We shall show the inverse inclusion. Take any $x \in\bigcap_{g}(\Gamma_{g})_{A}^{x}D^{\cross}$ , then $v_{g}$

$\exists\gamma_{g}\in(\Gamma_{g})_{A}^{\cross},$ $\exists_{d_{9}\in D^{\cross}}x=\gamma_{g}d_{g}$ . Since $(\Gamma_{g})_{A}^{\cross}\cap D^{\cross}=(R+g\Gamma)^{\cross}=R^{\cross},$ $d_{g}$ is deter-
mined modulo $R^{X}$ , so if $g_{1}$ is a multiple of $g$ , then $d_{g_{1}}$ differs from $d_{g}$ only
modulo $R^{X}$ . This implies that we can choose $d_{g}$ independently of $g$ , thus $\exists_{d\in}$

$D^{\cross},$ $xd^{-1} \in\bigcap_{g}(\Gamma_{g})_{A}^{x}$ .
But we have $R_{A}^{x}= \bigcap_{g}(\Gamma_{g})_{A}^{\cross}$ , because $\forall p,$ $\bigcap_{g}(R_{p}+g\Gamma_{p})^{\cross}=R_{p}^{\cross}$ . Thus the

proof of the second half of Theorem 3 is completed.
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THEOREM 4. If $D_{\infty}$ is tnnial, hence if $f$ is monic of even degree, then
$[D^{X}, D^{X}]=D^{(1)}$ is dense in $[D_{A}^{\cross}, D_{A}^{x}]$ .

This theorem is divided into the following two parts.

THEOREM 4.1. If $f$ is monic of even degree, then for $g,$ $h\in R$ such that
$(h, gf)=1$ , we have

$(1+g\Gamma)\cap(i+h\Gamma)\cap\Gamma^{\cross}\neq\varphi’$ .

THEOREM 4.2. The conclusion part of Theorem 4.1 is equivalent to strong
approximation property.

PROOF OF THEOREM 4.1. It suffices to show the existence of $\varphi_{i}\in R,$ $1\leqq i\leqq 4$

such that

$\varphi_{1}\equiv 1(mod g)$ , $\varphi_{i}\equiv 0(mod g)$ , $2\leqq i\leqq 4$

$\varphi_{2}\equiv 1(mod h)$ , $\varphi_{i}\equiv 0(mod h)$ , $i=1,3,4$
and

(1) $\varphi_{1}^{2}+\varphi_{2}^{2}-f(\varphi_{s}^{2}+\varphi_{4}^{2})=1$ .
Put $\varphi_{1}=1+g^{2}fu_{1},$ $\varphi_{2}=g^{2}fu_{2},$ $\varphi_{i}=gu_{i}(i=3,4)$ , then the required congruence

modulo $g$ is automatically satisfied. Substituting them into (1) and dividing
both sides by $g^{2}f$ , we get

(2) $2u_{1}+g^{2}fu_{1}^{2}+g^{2}fu_{2}^{2}-(u_{s}^{2}+u_{4}^{2})-0$ .
Since $(h^{2}, g^{2}f)=1,$ $g^{2}f$ is inversible in $R/h^{2}R$ , so there exist $\psi,$ $\psi’\in R$ such

that
$g^{2}f\psi=1+h^{2}\psi’$ .

Put $u_{1}=-\psi+h^{2}v_{1},$ $u_{2}=\psi+h^{2}v_{2},$ $u_{i}=hv_{l}(i=3,4)$ , then the required congruence
modulo $h$ is automatically satisfied. Substituting them into (2), we get

$-2\psi+2h^{2}v_{1}+g^{2}f\{2\psi^{2}+2h^{2}\psi(v_{2}-v_{1})+h^{4}(v_{1}^{2}+v_{2}^{2})\}=h^{2}(v_{3}^{2}+v_{4}^{2})$ .
Since $-2\psi+2g^{2}f\psi^{2}=-2\psi(1-g^{2}f\psi)=2h^{2}\psi\psi’$ , we have

(3) $2\psi\psi’+2(1-g^{2}f\psi)v_{1}+2g^{2}f\phi Jv_{2}+g^{2}fh^{2}(v_{1}^{2}+v_{2}^{2})=v_{3}^{2}+v_{4}^{2}$ .
Put $v_{1}=(1-g^{2}f\psi)w$ and $v_{2}=g^{2}f\psi w$ , then we get

(4) $2\psi\psi’+\{(1-g^{2}f\psi)^{2}+(g^{2}f\psi)^{2}\}(2w+g^{2}fh^{2}w^{z}):=v_{3}^{2}+v_{4}^{21}$ .
A polynomial $P\in R=R[X]$ belongs to $R^{2}+R^{2}$ , if and only if $P(a)\geqq 0$ for $\forall_{a}\in$

$R$ , as shown in the proof of Theorem 1. So it suffices to show that the left
hand side of (4) is everywhere non-negative for some $w\in R$ .

Put $2\psi\psi’=F$ and $g^{2}fh^{2}=G$ , then $(1-g^{2}f\psi)^{2}+(g^{2}f\psi)^{2}=1-2g^{2}f\psi(1-g^{2}f\psi)$

$=1+2g^{2}f\psi h^{2}\psi’=1+FG$ , so we have
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(5) $F+(1+FG)(2w+Gw^{2})\geqq 0$ .
The above calculation also shows $1+FG$ ) (1/2), namely $FG\geqq-(1/2)$ . Since $f$

is monic of even degree, we have $\lim_{tarrow\pm\infty}G(t)=\infty$ so that $\exists_{M}>0,$ $\forall_{t\in R}G(t)\geqq$

$-M$. Since $\{t|G(t)\leqq 0\}$ is compact, $F$ is bounded there, so $\exists_{N}>0,$ $|F(t)|\leqq N$

for G(t);:$O.

The left hand side of (5) is zero for

$w= \frac{1}{G}\{-1\pm(1+FG)^{-1/2}\}$ .

Since $(1+t)^{-1/2}\leqq 1-(t/2)+(3/\sqrt{2})t^{2}$ for $t\geqq-(1/2)$ , if we set $w=-(F/2)+$
$(3/\sqrt{2})F^{2}G$ , then (5) is satisfied for $G\geqq 0$ . Let $P$ be an everywhere positive
polynomial of two variables $s$ and $t$ , then $w=-(F/2)+(3/\sqrt{2})F^{2}G+P(G, FG)$

satisfies (5) for $G$ lillO.
The condition (5) is satisfied also for $G<0$ , if

(6) $-1 \leqq-\frac{t}{2}+\frac{3}{\sqrt{}}t^{2}+sP(s, t)\leqq-1+(1+t)^{-1/2}$

on $\Delta=\{(s, t)|-M\leqq s\leqq 0, t\geqq-(1/2), |t|\leqq N|s|\}$ . The condition (6) is satisfied if

$\epsilon\geqq\frac{1}{s}\{1-(1+t)^{-1/2}-\frac{t}{2}+\frac{3}{\sqrt{2}}t^{2}\}+P(s, t)\geqq 0$

on $\Delta$ , where $\epsilon\leqq(1+NM)^{-1/2}/M$. Since $\alpha(s, t)=(1/s)\{1-(1+t)^{-1/2}$ – $(t/2)+$

$(3/\sqrt{2})t^{2}\}$ is nonpositive and continuous on $\Delta$ (it is continuous at $(0,0)$ because
of $|t|\leqq N|s|$ ), such a polynomial $P(s, t)$ exists by virtue of polynomial approxi-
mation theorem of Weierstrass. $P(s, t)$ can be assumed everywhere positive,
because we can put $P=Q^{2}+(\epsilon/2),$ $Q$ being an approximating polynomial of
$\sqrt{}|a(St)|t)|$ Thus Theorem 4.1 has been proved.

PROOF OF THEOREM 4.2. Let $H$ be the closure of $[D^{\cross}, D^{\cross}]=D^{(1)}$ in $D_{A}$ .
Let $p_{0}$ be a prime place where $D$ is unramified, and let $i_{p_{0}}=$ $(1, , 1, i, 1, )\in$

$D_{A}^{\cross}$ be the element of $D_{A}^{\cross}$ whose $p_{0}$ -coordinate is $i$ , while other coordinates are 1.
The proof is completed by the following steps, which are slight modifica-

tions of ones given in [3] \S 51.
Step1. The conclusion part of Theorem 4.1 is equivalent to that $\forall P_{0}(where$

$D_{p_{0}}$ is unramified), $i_{p_{0}}\in H$ ($note$ that $i_{p_{0}}\in D_{p_{0}}^{(1)}=[D_{p_{0}}^{\cross},$ $D_{p_{0}}^{x}]\subset[D_{A}^{x},$ $D_{A}^{\cross}]$ ).

Step2. Identify $D_{p_{0}}^{(1)}$ with a subgroup $D_{p_{0}}^{(1)}\cross\Pi_{p\neq p_{0}}(1)_{p}$ of $D_{A}^{\cross}$ , then $H\cap D_{p_{0}}^{(1)}$

is a closed normal subgroup of $D_{p_{0}}^{(1)}$ .
Step3. If $D$ is unramified at $p_{0}$ , then $i_{p_{0}}\in H$ implies $D_{p_{0}}^{(1)}\subset H$.
If $D_{p_{0}}$ is a matrix algebra, the assertion is a result of simplicity of $PSL(2$ ,

$K_{p_{0}})$ . If $D_{p_{0}}$ is an unramified quaternion algebra, since $x=a+bi+cj+dij\in D_{p_{0}}^{(1)}$

satisfies $x^{2}-2ax+1=0$ , the condition $x\in H$ depends only on $a$ . (Here we iden-
tify $x\in D_{p_{0}}^{(1)}$ with $x_{p_{0}}=(1, \cdots 1, x, 1, )\in D_{A}^{\cross})$ .
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Take any $x=a+bi+cj+dij\in D_{p_{0}}^{(1)}$ . Sinc$eb^{2}+c^{2}+d^{2}$ has a root in $K_{p_{0}}$ , wc
have $\exists_{e\in K_{p_{0}}}b^{2}+c^{2}+d^{2}=e^{2}$ . If $i\in H$, then $-ai+ej\in H$, therefore $i(-ai+ej)=$

$a+eij\in H$, hence $x\in H$. This means $D_{p_{0}}^{(1)}\subset H$.
SteP 4. Assume the conclusion part of Theorem 4.1. For a finite set $S$

of prime places, we have $\Pi_{p\in S}D_{p}^{(1)}\cross\Pi_{p\not\in S}(1)_{p}\subset H$.
If $D$ is unramified on $S$ , the assertion is a consequence of Step 3.
Let $S_{0}$ be the set of all prime places where $D$ is ramified. The assertion

for $S=S_{0}$ follows from the fact that $D^{(1)}$ is dense in $\Pi_{p\in S_{0}}D_{p}^{(1)}$ in the product
topology of $D_{p}^{x}$ .

Step5. $\bigcup_{S}(\Pi_{p\in S}D_{p}^{(1)}\cross\Pi_{p\not\in S}(1)_{p})$ is dense in $[D_{A}^{x}, D_{A}^{\cross}]$ .
Combining the five assertions above, we complete the proof of Theorem 4.2.

5. Eichler’s theorem for $R(X, y)$ .
For an algebraic function field $K=R(X, y)$ , we shall fix a set $P$ of valua-

tions (which are trivial on $R^{X}$ ). We call valuation $v\in P$ a prime place and $v\not\in P$

a non-prime place. We assume that there exists a non-prime place. Then,
$R_{P}=\{x\in K|^{\forall}v\in P, v(x)\leqq 1\}$ is a Dedekind domain and $K$ is its quotient field.
A prime ideal of $R_{P}$ is given by $p_{v}=\{x\in R_{p}|v(x)<1\}$ for $v\in P$.

The adele ring and the idele group are constructed using prime places only.
Fixing the set $P$, we shall write $R$ instead of $R_{P}$ .

We consider the following Property (E):

(E) A central division algebra $D$ over $K$ has strong approximation property,
if $D$ is trivial at some non-prime place.

The converse of the Property (E) holds always as shown below.

THEOREM 5. If a central dimsion algebra $D$ is non-tnmal at every non-Pnme
place, then $D$ does not have $R_{A}^{\cross}D^{\cross}$ -aPProximation pmperty.

REMARK. Before proving this theorem, we shall mention about the product
formula. The formula is expressed as follows using $ord_{v}$ ; $v(x)=\theta^{ord_{v^{(x)}}}(0<\theta<1)$ .

$v_{X}\in K^{\cross}$ , $\sum_{v:rea1}ord_{v}(x)+2\sum_{v.imag}ord_{v}(x)=0$ ,

where the sum is taken over all places, prime or not.

PROOF. Similar discussions as the proof of Theorem 3 show that it suffices
to prove that

$(R+g\Gamma)^{\cross}=R^{\cross}$ for $g\in R\backslash R^{\cross}$

Let $D=\{-1, f\},$ $f\in R$ . The assumption of Theorem 5 means that all non-
prime places are real and that for every non-prime place $v,$ $ord_{v}(f)$ is odd or
$ord_{v}(f)$ is even with a negative coefficient of the lowest degree term with
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respect to the prime element $\pi_{v}$ .
Suppose that $\varphi_{1}+\varphi_{2}i+\varphi_{sJ}+\varphi_{4}if\in(R+g\Gamma)_{\cross}$ , then $\varphi_{1}\in R,$ $\varphi_{i}\in gR(2\leqq i\leqq 4)$ ,

and $\varphi_{1}^{2}+\varphi_{2}^{2}-f(\varphi_{3}^{2}+\varphi_{4}^{2})\in R^{x}$ . Put $\varphi=\varphi_{1}^{2}+\varphi_{2}^{2}-f(\varphi_{3}^{2}+\varphi_{4}^{2})$ , then $\varphi\in R^{x}$ implies
$ord_{v}(\varphi)=0$ for every prime place $v$ . As for a non-prime place $v$ , the assump-
tion on $f$ implies that the lowest degree $te$rms do not cancel, so that $ord_{v}(\varphi)=$

${\rm Min}(2ord_{v}(\varphi_{1}), 2ord_{v}(\varphi_{2}),$ $ord_{v}(f)+2ord_{v}(\varphi_{3}),$ $ord_{v}(f)+2ord_{v}(\varphi_{4}))$ , if $\varphi_{i}\neq 0$ .
Combining this with the product formula, we have

$\sum_{nonprime}ord_{v}(\varphi_{i})$ I $0$ $(i=1,2)$ ,

$\sum_{non- prime}ord_{v}(\varphi_{i})\geqq\frac{1}{2}\sum_{prime}\alpha_{v}ord_{v}(f)$ $(i=3,4)$

where $\alpha_{v}=1$ for a real $v$ and $\alpha_{v}=2$ for an imaginary $v$ . Since $\varphi_{i}\in R$ and $f\in R$ ,

we have $ord_{v}(\varphi_{i})\geqq 0$ and $ord_{v}(f)\geqq 0$ for a prime place $v$ , hence again from the
product formula, we must have $ord_{v}(\varphi_{i})=0$ for every prime place $v$ . This
means $\varphi_{i}\in R^{\cross}$ . For $i\geqq 2$ , this contradicts with $\varphi_{l}\in gR$ , so we must have $\varphi_{i}=0$ ,
which in turn implies $\varphi_{1}\in R^{\cross}$ . This comPletes the proof of $(R+g\Gamma)^{\cross}=R^{\cross}$ .

REMARK. Property (E) depends not only on $K$, but also on $R$ , or equi-
valently on the choice of non-prime places. However:

THEOREM 6. (1) Suppose that Property $(E)$ holds whenever $R$ has only one
non-Pnme place, then it holds for any $R$ .

(2) For the rational function field $K=R(X)$ , Property $(E)$ holds for any $R$ .
PROOF OF (1). Let $P(R)$ be the set of all prime places for the Dedekind

domain $R$ . Then $P(R’)\subset P(R)$ implies $R\subset R’$ . We shall denote the idele group
of $D$ with respect to $R$ by $D_{A}^{\cross}(R)$ . Then $P(R)=P(R’)\Pi P(R_{1})$ implies that
$D_{A}(R)$ is the product topological group of $D_{A}^{x}(R’)$ and $D_{A}^{\cross}(R_{1})$ , because of $D_{A}^{\cross}(R)$

$= \bigcup_{S}(\Pi_{v\in S}D_{v}^{\cross}\cross\Pi_{v\in P(R)\backslash s}\Gamma_{v}^{\cross})$ where $S$ runs over all finite subsets of $P(R)$ .
$D^{\cross}$ is imbedded diagonally in $D_{A}$ , and strong approximation property means

precisely that the image $i_{R}(D^{(1)})$ is dense in $[D_{A}^{\cross}(R), D_{A}^{\cross}(R)]$ .
$lfP(R’)\subset P(R)$ , then the projection $D_{A}^{x}(R)arrow D_{A}^{x}(R’)$ maps $i_{R}(D^{(1)})$ onto $i_{R’}(D^{(1)})$

and $[D_{A}^{\cross}(R), D_{A}^{\cross}(R)]$ onto $[D_{A}^{\cross}(R’), D_{A}^{\cross}(R’)]$ . Therefore, if $i_{R}(D^{(1)})$ is dense in
$[D_{A}^{\cross}(R), D_{A}^{x}(R)]$ , then $i_{R’}(D^{(1)})$ is dense in $[D_{A}^{x}(R’), D_{A}^{x}(R’)]$ .

NOW suppose tbat $D$ is trivial at som $e$ non-prime place $v$ of a given $R$ .
Let $P_{0}$ be the set of all places other than $v$ , and suppose that Property $(E)$

holds for $R_{0}$ corresponding to $P_{0}$ , then $i_{R_{0}}(D^{(1)})$ is dense in $[D_{A}^{\cross}(R_{0}), D_{A}^{\cross}(R_{0})]$ ,

hence $i_{R}(D^{(1)})$ is dense in $[D_{A}^{\cross}(R), D_{A}^{x}(R)]$ , so Property $(E)$ holds for $R$ .

REMARK. The proof of Theorem 4.2 does work for a general algebraic
function field $K=R(X, y)$ and its Dedekind domain $R$ . So, strong approxima-
tion property holds for $D=\{-l, f\}$ , if $(1+g\Gamma)\cap(i+h\Gamma)\cap\Gamma^{\cross}\neq\emptyset$ for $\forall_{g}h\in R$
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such that $(gf, h)=1$ .
Also the proof of Theorem 4.1 works partially. For $\psi,$ $\psi’\in R$ such that

$g^{2}f\psi=1+h^{2}\psi’$ , put $F=2\psi\psi’$ and $G=g^{2}fh^{2}$ . Then, we have $(1+g\Gamma)\cap(i+h\Gamma)\cap$

$\Gamma^{\cross}\neq\emptyset$ if $\exists_{w}\in R,$ $F+(1+FG)(2w+Gw^{2})\in R^{2}+R^{2}$ .
Suppose that $R$ has only one non-prime place $v$ , then $f\in R$ means that $f$

does not have a pole other than $v$ . If $v$ is real and $D_{v}$ is trivial, then $ord_{v}(f)$

is even and $f(z)$ is positive near $v$ . Since $RP(K)$ is compact, this implies that
$f$ , hence $G$ , is bounded from below on $RP(K)$ , and that $F$ is bounded on $\{z\in$

$RP(K)|G(z)\leqq 0\}$ . If $v$ is imaginary, then both $F$ and $G$ are bounded on $RP(K)$ .
So, similar discussions as the proof of Theorem 4.1 show that $\exists_{w}\in R,$ $F+$

$(1+FG)(2w+Gw^{2})\geqq 0$ on $RP(K)$ .
The proof for general $K$ fails only because the condition $\varphi\in R$ and $\varphi\geqq 0$

on $RP(K)$ does not imply $\varphi\in R^{2}+R^{2}$ . Since Hasse’s principle is satisfied, $\varphi\in$

$K^{2}+K^{2}$ is assured, but $\varphi\in R^{2}+R^{2}$ is not concluded. We shall give a counter
example for an elliptic function field $K=R(X, y),$ $y^{2}=(X-a)(X-b)(X-c)$ . If
$\alpha\in R$ is smaller than ${\rm Min}(a, b, c)$ , then we have $X-\alpha>0$ on $RP(K)$ . $X-\alpha$

has a double pole at the non-prime place $v$ , while an element of $R^{2}+R^{2}=$

$N_{K(^{\sqrt{}}-1)/K}-(R+’-1R)$ should have $ord_{v}\leqq-4$ .
PROOF OF THEOREM 6 (2).

Let $K=R(X)$ and suppose that $R$ has only one non-prime place $v$ .
If $R\neq R[X]$ , then $v$ corresponds to an irreducible Polynomial $p$ , and $\varphi\in R$

is equivalent to $\varphi=g/p^{\nu},$ $g\in R[X]$ and $\deg g\leqq\nu\deg p$ . Here we can assume
that $\nu$ is even. Then $\varphi\geqq 0$ on $RP(K)$ implies $g\geqq 0$ on $RP(K)$ , so $g$ is of even
degree and can be written as $g=g_{1}^{2}+g_{2}^{2},$ $g_{i}\in R[X],$ $\deg g_{i}\leqq(1/2)\deg g$ . There-
fore $\varphi=(g_{1}/p^{\nu/2})^{2}+(g_{2}/p^{\nu/2})^{2}$ and $\deg g_{i}\leqq(\nu/2)degP$ , so that $\varphi\in R^{2}+R^{2}$ .

From the remark above, this completes the proof of Theorem 6 (2).

References

[1] A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ., 24 (1939).
[2] M. Auslander and A. Brumer, Brauer groups of discrete valuation rings, Nederl.

Akad. Wetensch. Proc. Ser. A, 71 (1968), 286-296.
[3] C. W. Curtis and I. Reiner, Methods of representation theory, vol. 1, vol. 2. Inter-

science (1981, 1987).
Especially \S 23 lattices and orders, \S 51 Jacobinski’s cancellation theorem.

[4] D. K. Faddeev, Simple algebras over a field of algebraic functions of one variable.
Amer. Math. Soc. Transl. Ser. II, 3 (1956), 15-38.

[5] B. Fein and M. Schacher, Brauer groups of rational function fields over global fields.
Springer, Lecture Notes in Math., 844 (1981), 46-74.

[6] H. Hijikata, On the decomposition of lattices over orders, to appear in this issue.
[7] A. Pfister, Zur Darstellung definiter Funktionen als Summe von Quadraten, Invent.

Math., 4 (1967), 229-237.



Strong approximation theorem 467

[8] V. P. Platonov, The Tannaka-Artin problem and reduced $K$-theory, Math. USSR.
Izvestija, 10 (1976), 211-243.

[9] W. Scharlau, Quadratic and Hermitian forms, Springer, GMW, 270 (1985).
[10] J. P. Serre, Corps locaux, Hermann (1968).
[11] R. G. Swan, Strong approximation and locally free modules, Ring Theory and Alge-

bra III (B. McDonald, ed.), Marcel Dekker, New York, (1980), 153-223.

Aiichi YAMASAKI
Department of Mathematics
Kyoto University
Kyoto 606-01
Japan


	Introduction.
	1. Brauer groups of $R((X))$ ...
	THEOREM 1. ...

	2. Brauer group of $R(X, ...
	THEOREM 2. ...

	3. Approximation in idele ...
	4. Eichler's theorem for ...
	THEOREM 3. ...
	THEOREM 4. ...
	THEOREM 4.1. ...
	THEOREM 4.2. ...

	5. Eichler's theorem for ...
	THEOREM 5. ...
	THEOREM 6. ...

	References

