On the decomposition of lattices over orders

By Hiroaki HIJIKATA

(Received May 10, 1995)

0. Introduction.

We shall extend two basic theorems on decomposition of lattices over orders—'Roiter-Jacobinski Divisibility Theorem' and 'Jacobinski-Swan Cancellation Theorem'—to an arbitary *R*-order Λ over an arbitary Dedekind domain *R*. The point is that we do not assume the ambient algebra $A = K\Lambda$ to be separable over the quotient field *K* of *R*.

0.0. As for terminology, we mostly follow that of [1] and [2]. However, for a maximal ideal P of R, the suffix P like R_P always denotes the P-adic completion rather than the localization.

A left Λ -lattice L' will be called a local direct summand of another Λ -lattice L if L'_P is a direct summand of L_P for any maximal ideal P.

Write $KL \gg KL'$ if every A-indecomposable direct summand of KL' occurs strictly oftener in KL than in KL'.

Write $M \sim L$ if $L_P \cong M_P$ for any P.

THEOREM 1 (Roiter-Jacobinski type Divisibility). Suppose that L' is a local direct summand of L. Then

- (i) L has a direct summand M' such that $M' \sim L'$.
- (ii) If $KL \gg KL'$, then L' itself is a direct summand of L.

THEOREM 2 (Jacobinski-Swan type Cancellation). Assume that the K-algebra $B=\operatorname{End}_{A}KL$ has the "strong approximation". Then the following cancellation law (c) holds.

(c) If L' is a local direct summand of $nL = L \oplus L \oplus \cdots \oplus L$ (n-times), then $L \oplus L' \cong M \oplus L'$ implies $L \cong M$.

0.1. Remark on Theorem 1. (i) is known if A is separable over K (cf. [1] 31.12.) (ii) is known if A is separable over K and moreover K is a global field, i.e., K is a finite extension of the rational number field Q or of the rational function field $F_q(T)$ (cf. [1] 31.32, [4], [6].)

The current proof of (i) heavily depends on the existence of maximal orders, while the proof of (ii) depends on Jordan-Zassenhaus Theorem.

Η. Ηιjikata

To avoid the use of maximal orders, generalizing the elementary subgroup E(n, C) of $GL(n, C)=M(n, C)^{\times}$, we consider the "elementary subgroup" $E_{e}(B)$ of B^{\times} associated to a given finite set e consisting of mutually orthogonal idempotents of B:

$$E_{e}(B) := \langle 1 + eBe'; e, e' \in e, e \neq e' \rangle.$$

Using an almost obvious fact (1.2.1) that $E_e(B)$ is always dense in the elementary subgroup $E_e(B \otimes A)$ of the adelized ring $B \otimes A$, we can reduce the proof of Theorem 1 to an almost local problem (2.0) depending only upon KL and KL' rather than L and L'. This problem is easily solved by applying the well known Lemma of Bass which states: if C is semi-local, then, by the usual embedding $C^{\times} \subset GL(n, C)$, $GL(n, C) = E(n, C)C^{\times}$. In our proof, claims (i) and (ii) are derived simultaneously.

0.2. Remark on Theorem 2. The theorem is known again under the assumption that K is a global field and A is separable over K (cf. [2] 51.28.) Beside that, there is a result of Drozd-Swan (cf. [7] 16.7, [3]), which is closely related to ours and will be recalled at the end of this paragraph. In the known case, the "strong approximation" is in the sense of Eichler-Kneser (cf. [5]), for the norm 1 subgroup $B^{(1)}$ of B^{\times} . We shall modify the sense of "strong approximation" by replacing $B^{(1)}$ with the group of Vaserstein $\tilde{E}(B)$ defined as

$$\tilde{E}(B) := \langle (1+xy)(1+yx)^{-1}; x, y \in B, 1+xy \in B^{\times} \rangle.$$

The group $\tilde{E}(B)$ coincides with $\tilde{E}(1, B, B)$ of [8], and contains $[B^{\times}, B^{\times}]$. If A is separable and K is a global field, $\tilde{E}(B)=B^{(1)}=[B^{\times}, B^{\times}]$.

We say that B has the "strong approximation" if $\tilde{E}(B)$ is dense in $\tilde{E}(B \otimes A)$. Our Theorem 2 follows directly from a result of Vaserstein ([8] Th. 3.6) which states: if C is semi-local, then $E(n, C) \cap C^* = \tilde{E}(C)$ for $n \ge 2$. We do not discuss in this paper, the interesting problem of finding out when "strong approximation" holds. Thus our extension in Theorem 2 remains rather formal. However it still gives us some gain, say, if B = M(n, C) by some K-algebra C with $n \ge 2$, then our "strong approximation" trivially holds for B (1.2.2). In particular our Theorem 2 includes the above mentioned result of Drozd-Swan.

0.3. Restatements of Theorems. Let $\mathcal{Q}(L)$ denote the genus of L, namely $\mathcal{Q}(L)$ is the set of all Λ -isomorphism classes of Λ -lattices M such that $M \sim L$. Theorem 1 can be restated as:

THEOREM 1'. Suppose $M \in \mathcal{G}(L' \oplus L'')$. Then

- (i) $M \cong M' \oplus M''$ by some $M' \in \mathcal{G}(L')$ and $M'' \in \mathcal{G}(L'')$
- (ii) If $KM \gg KL'$, then $M \cong L' \oplus M''$.

432

When Theorem 1 (ii) is granted, the cancellation law (c) of Theorem 2 can be restated as

(c') The map $X \mapsto X \oplus (n-1)L$ induces an injection $\mathcal{G}(L) \to \mathcal{G}(nL)$ for any $n \ge 1$.

1. Adeles and Ideles.

Let R be a Dedekind domain and K be its quotient field. Let A denote the (finite) adele ring of K, namely, the restricted direct product $\prod' K_P$ (w.r.t R_P) of the topological rings K_P with respect to the subrings R_P , $A = \{a = (a_P) \in \prod K_P; a_P \in R_P \text{ for almost all } P\}$. As usual we consider A to contain (diagonally embedded) K and to be a K-algebra. Let B be a finite dimensional K-algebra. The adelization of B is, by definition, the K-algebra $B \otimes_K A$, emdowed with the initial topology for the family of mappings $f \otimes id_A : B \otimes A \to A$, $f \in \text{Hom}_K(B, K)$, or equivalently the topology from the identification $B \otimes A \cong A \oplus A \oplus \cdots \oplus A$ by any choice of K-basis of B. It is a topological ring and contains B through the embedding $b \mapsto b \otimes 1$. The K-algebra morphism $\theta : B \otimes A \to \prod B_P$, $b \otimes a \mapsto (b \otimes a_P)$ induces an isomorphism of topological rings as well as of bi-B-modules:

$$\theta: B \otimes_{\kappa} A \longrightarrow B_A := \prod' B_P \text{ (w.r.t } \Gamma_P), \ x \mapsto (x_P),$$

where Γ is any *R*-order of *B*. We shall identify $B \otimes A$ with B_A and *x* with (x_P) by θ .

1.1. The idele group $(B \otimes A)^{\times} = B_A^{\times}$ of B is, by definition, the topological group $\Pi'(B_P)^{\times}$ (w.r.t $(\Gamma_P)^{\times}$). Explicitly, a fundamental system of neighbourhoods of 0 in B_A (resp. of 1 in $(B_A)^{\times}$) is given by

$$U^{+}(S, n) = \prod_{P \in S} P^{n} \Gamma_{P} \times \prod_{P \notin S} \Gamma_{P} \text{ (resp. } U^{\times}(S, n) = \prod_{P \in S} (1 + P^{n} \Gamma_{P}) \times \prod_{P \notin S} (\Gamma_{P})^{\times}),$$

where S runs over all finite set of maximal ideals and n runs over all positive integers.

1.1.1. Suppose H is a subgroup of $(B \otimes A)^{\times} = (B_A)^{\times}$ having the following property:

(b) If $x=(x_P)\in H$ and $x_P\in \Gamma_P$, then $x_P\in (\Gamma_P)^{\times}$. Then the induced topology on H from the adele topology of $B\otimes A$ coincides with the induced topology on H from the idele topology of $(B\otimes A)^{\times}$.

PROOF. (b) implies $H \cap (1+U^+(S, n)) = H \cap U^{\times}(S, n)$.

1.2. Let e be a finite set of orthogonal idempotents in B. Identifying $e \otimes 1$ with e, along with the elementary subgroup $E_e(B)$ of 0.1, we can consider $E_e(B_P) = E_e(B \otimes K_P)$ or $E_e(B \otimes A)$. Put

$$\mathcal{E}_{\boldsymbol{e}}(B) := (B_{\boldsymbol{A}})^{\times} \cap \prod E_{\boldsymbol{e}}(B_{\boldsymbol{P}}).$$

 $E_{e}(B\otimes A)$ is obviously a subgroup of $\mathcal{E}_{e}(B)$. In some cases it is known that these two groups coincide, but in general we do not know whether they coincide or not. However, since $E_{e}(B\otimes A)$ contains each quasi factor $E_{e}(B_{P})$, for any open subgroup \mathcal{U} of $(B_{A})^{\times}$, we have

(1) $E_{\boldsymbol{e}}(B \otimes \boldsymbol{A}) \mathcal{U} = \mathcal{E}_{\boldsymbol{e}}(B) \mathcal{U}.$

1.2.1. LEMMA. $E_{e}(B)$ is dense in $E_{e}(B \otimes A)$ in the idele topology. It is also dense in $\mathcal{E}_{e}(B)$.

PROOF. By Chinese Remainder Theorem, B is dense in $B \otimes A$, and eBe' is dense in $e(B \otimes A)e'$. Hence 1+eBe' is dense in $1+e(B \otimes A)e'$ in the adele topology. Since any element of $e(B \otimes A)e'$ is nilpotent, the group $H=1+e(B \otimes A)e'$ has the property (b) of 1.1.1. Thus 1+eBe' is dense in $1+e(B \otimes A)e'$ in the idele topology. This obviously implies that $E_e(B)$ is dense in $E_e(B \otimes A)$. It is also dense in $\mathcal{E}_e(B)$ by (1).

1.2.2. Let $\tilde{E}(B)$ be the group of Vaserstein as in 0.2. Suppose that B is the total matrix algebra M(n, C) over some K-algebra C with $n \ge 2$. Then as is easily seen from [8] Th. 3.6, $\tilde{E}(B)$ (resp. $\tilde{E}(B_P)$) can be identified with the elementary subgroup E(n, C) (resp. $E(n, C_P)$) of $B^{\times}=GL(n, C)$ (resp. $(B_P)^{\times}=GL(n, C_P)$.) Hence, by 1.2.1, B has the "strong approximation."

1.3. LEMMA. Let \mathcal{E}_P , H_P be subgroups of B_P^{\times} such that $B_P^{\times} = \mathcal{E}_P H_P$, and $\mathcal{E} = (B_A)^{\times} \cap \Pi \mathcal{E}_P$. Suppose that $B^{\times} \cap \mathcal{E}$ is dense in \mathcal{E} . Then, for any open subgroup \mathcal{U} of $(B_A)^{\times}$, we have:

- (i) The double coset space $B^{\times} \setminus (B_A)^{\times} / \mathcal{U}$ admits a set of representatives in the subgroup $\Pi' H_P$ (w.r.t. {1}) of $(B_A)^{\times}$.
- (ii) Further, if *E_P* is a normal subgroup of (B_P)[×] with the abelian quotient for any P, then B[×]U is a normal subgroup containing *E*, and B[×]\(B_A)[×]/U is in fact the quotient group (B_A)[×]/B[×]U.

PROOF. (i) For any $g \in (B_A)^{\times}$, $(B^{\times} \cap \mathcal{E})g\mathcal{U} = \mathcal{E}g\mathcal{U}$. Hence, $B^{\times}g\mathcal{U} = B^{\times}(B^{\times} \cap \mathcal{E})g\mathcal{U} = B^{\times}\mathcal{E}g\mathcal{U}$. (ii) Since \mathcal{E} is normal, $B^{\times}\mathcal{E}$ and $\mathcal{U}\mathcal{E}$ are subgroups. Since $(B_A)^{\times}/\mathcal{E}$ is abelian, $B^{\times}\mathcal{E}$ and $\mathcal{U}\mathcal{E}$ are normal in $(B_A)^{\times}$. By (i), $B^{\times}\mathcal{U} = B^{\times}\mathcal{E}\mathcal{U} = B^{\times}\mathcal{E}\mathcal{U}\mathcal{E}$ is normal, and $B^{\times}g\mathcal{U} = B^{\times}\mathcal{E}g\mathcal{U} = gB^{\times}\mathcal{E}\mathcal{U} = gB^{\times}\mathcal{U}$.

2. Proof of Theorem 1'.

Put $L=L'\oplus L''$, V=KL, V'=KL', V''=KL'', $B=\operatorname{End}_A V$, $\Gamma=\operatorname{End}_A L$. Let e'(resp. e'') be the idempotent of B corresponding to the projection $V \to V'$ (resp. $V \to V''$), and $B'=e'Be'\cong \operatorname{End}_A V'$, $B''=e''Be''\cong \operatorname{End}_A V''$. As is well known (cf.

434

Lattices over orders

[1] 31.18 and 31.35 (iv)), the map $x = (x_P) \mapsto \bigcap (x_P(L_P) \cap V)$ induces the bijection between $B^{\times} \setminus (B_A)^{\times} / \mathcal{U}(L)$ and $\mathcal{Q}(L)$, where $\mathcal{U}(L) = \prod (\Gamma_P)^{\times}$. The claim of Theorem 1 is clearly equivalent to

- (i) $B^{\times} \setminus (B_A)^{\times} / \mathcal{U}(L)$ admits a set of representatives in the diagonal subgroup $(B'_A)^{\times} \times (B''_A)^{\times}$.
- (ii) If $V \gg V'$, one can even reduce the representatives in the subgroup $\{1\} \times (B'_A)^{\times}$.

To prove the above, in view of 1.3 together with 1.2.1, it suffice to prove

- 2.0. There is a set of orthogonal idempotents \tilde{e} of B such that:
- (i) $(B_P)^{\times} = E_{\hat{\epsilon}}(B_P)((B'_P)^{\times} \times (B''_P)^{\times})$ for any P.
- (ii) If $V \gg V'$, $(B_P)^{\times} = E_{\tilde{e}}(B_P)(\{1\} \times (B_P'')^{\times})$ for any P.

2.1. Let U_i $(1 \le i \le n)$ be the distinct A-indecomposable direct summand of V, and $n_i > 0$, $n'_i \ge 0$, $n''_i \ge 0$ be the multiplicity of U_i in V, V' and V'', respectively. Note that the condition $V \gg V'$ means $n'_i > 0 \Rightarrow n''_i > 0$. Decompose e', e'' into the orthogonal sum of primitive idempotents $e_{i\alpha}$, choosing the double index (i, α) in the following way:

$$e_{i\alpha}(V) \cong U_i \ (1 \leq i \leq n); \quad e' = \sum e'_i, \quad e'' = \sum e''_i,$$

where e'_i (resp. e''_i) is the sum $\sum e_{i\alpha}$ over $1 \le \alpha \le n'_i$ (resp. $n'_i < \alpha \le n_i$). Then put $e_i = e'_i + e''_i$, and $e = \{e_i; 1 \le i \le n\}$.

2.1.1. First, we look at the set of idempotents e, and put $B_{ij}=e_iBe_j$, $B_i=B_{ii}$. Then each element $b\in B$ is uniquely written as $b=\sum b_{ij}$ with $b_{ij}=e_ibe_j\in B_{ij}$. The multiplication with $b'=\sum b'_{ij}$ is given as $bb'=\sum c_{ij}$ with $c_{ij}=\sum_k b_{ik}b'_{kj}$. Suggestively said, the correspondence $b\mapsto (b_{ij})$ gives B the structure of n by n matrix algebra with entries in B_{ij} . In particular, if the pair (B, e) has the property

(a) $b = \sum b_{ij} \in B^{\times} \Rightarrow b_{ii} \in B_i^{\times}$,

then B^{\times} can be diagonalized by $E_{e}(B)$, $B^{\times} = E_{e}(B) \prod B_{i}^{\times}$.

2.1.2. LEMMA. (B, e) of 2.1 has the property (a).

PROOF. It obviously suffice to see:

(a') If $i \neq k$, $B_{ik}B_{ki} \subset \operatorname{rad} B_i = e_i(\operatorname{rad} B)e_i$.

To see this, we first observe:

(1)
$$e_{i\alpha}Be_{k\beta}Be_{i\alpha} \subset \operatorname{rad}(e_{i\alpha}Be_{i\alpha}) = e_{i\alpha}(\operatorname{rad}B)e_{i\alpha}.$$

Indeed, if $x \in e_{i\alpha}Be_{k\beta}$, $x' \in e_{k\beta}Be_{i\alpha}$ and $xx' \notin \operatorname{rad}(e_{i\alpha}Be_{i\alpha})$, then since $e_{i\alpha}Be_{i\alpha} \cong$ End₄ U_i is a local ring, $xx' \in (e_{i\alpha}Be_{i\alpha})^* \cong \operatorname{Aut}_4 U_i$. Hence the A-injection Η. Ηιjικατα

 $x': e_{i\alpha}(V) \to e_{k\beta}(V)$ splits, contradicting $U_i \notin U_k$. Since $e_{i\gamma}(V) \cong e_{i\alpha}(V) \cong U_i$, there is some $y \in B^{\times}$ such that $y e_{i\gamma} B = e_{i\alpha} B$. Multiplying (1) by y, we have $e_{i\gamma} B e_{k\beta} B e_{i\alpha} \subset e_{i\gamma}(\operatorname{rad} B) e_{i\alpha}$ for any γ . This implies (a').

2.1.3. $(B_P)^{\times} = E_e(B_P) \cdot \prod (B_{i,P})^{\times}$.

PROOF. B_P^{\times} is open in B_P , and B is dense in B_P . Since (B, e) has the property (a), (B_P, e) also has the property (a).

2.2. Put $e_i = \{e_{i\alpha}; 1 \le \alpha \le n_i\}$, $\tilde{e} = \bigcup_i e_i$. We shall further reduce $\prod (B_{i,P})^{\times}$ by $E_{\tilde{e}}(B_P)$ to the form of 2.0. Fixing one arbitrarily chosen P, we simplify the notation by dropping the suffix P, so we mean B_P by B. Put $B'_i = e'_i B e'_i = e'_i B_i e'_i$, $B''_i = e''_i B e''_i$, one of which may be $\{0\}$. Put $C_i = \operatorname{End}_A U_i$.

Since $B_i \cong \operatorname{End}_A e_i(V) \cong \operatorname{End}_A(n_iU_i) \cong M(n_i, C_i)$, there is an isomorphism f_i : $B_i \to M(n_i, C_i)$ mapping $e_{i\alpha}$ to ε_{α} , the matrix with the α -th diagonal entry 1 and other entries 0. Then f_i maps the diagonal subalgebra $B'_i \oplus B''_i$ onto the diagonal subalgebra $M(n'_i, C_i) \oplus M(n''_i, C_i)$, B^{\times}_i to $GL(n_i, C_i)$ and $E_{\epsilon_i}(B_i)$ to $E(n_i, C_i)$. Since C_i is semi-local, applying the lemma of Bass in 0.1 to $GL(n_i, C_i)$, then pulling the result back by f_i , we have

(2)
$$B_{i}^{\times} = \begin{cases} E_{e_{i}}(B_{i})((B_{i}')^{\times} \times (B_{i}'')^{\times}) \\ E_{e_{i}}(B_{i})(\{1\} \times (B_{i}'')^{\times}) & \text{if } n_{i}'' > 0. \end{cases}$$

Since $E_{\tilde{e}}(B) \supset E_{e_i}(B)$ and we are identifying as $E_{e_i}(B_i) = E_{e_i}(B) \subset B^*$, (2) implies that each B_i^{\times} (considered as a subgroup of B^{\times}) is contained in $E_{\tilde{e}}(B)((B_i')^{\times} \times (B_i'')^{\times})$. Regrouping $(B_i')^{\times}$'s to $(B')^{\times}$ and recovering the suffix P, we have established 2.0.

3. Proof of Theorem 2.

Let V = KL and $B = \text{End}_A V$. By the obvious identification $\text{End}_A(nV) \cong M(n, B)$, the property (c') in 0.3 is equivalent to:

(c'') The map

$$x \longmapsto \begin{pmatrix} x & 0 \\ 0 & 1_{n-1} \end{pmatrix}$$

induces an injection from $B^{\times} (B \otimes A)^{\times} / \mathcal{U}(L)$ into $GL(n, B) \setminus GL(n, B \otimes A) / \mathcal{U}(nL)$.

By the assumption that *B* has the "strong approximation", $\tilde{E}(B)$ is dense in $\tilde{E}(B \otimes A)$, hence it is also dense in $(B \otimes A)^{\times} \cap \prod \tilde{E}(B_P)$. While E(n, B) is always dense in $GL(n, B \otimes A) \cap \prod E(n, B_P)$ by 1.2.1. In view of 1.2 (ii), what we shall prove is:

(c''')
$$(B \otimes A)^{\times} \cap GL(n, B) \cup (nL) = B^{\times} \cup (L).$$

Lattices over orders

The left hand side of (c^{'''}) obviously contains the right hand side of it. Since Γ_P is semi-local, by the lemma of Bass, $GL(n, \Gamma_P) = E(n, \Gamma_P)(\Gamma_P)^{\times}$ and $U(nL) = \prod GL(n, \Gamma_P) = (\prod E(n, \Gamma_P)) \prod (\Gamma_P)^{\times} \subset (\prod E(n, B_P)) U(L)$. Since B is also semi-local, $GL(n, B) = B^{\times}E(n, B) \subset B^{\times} \prod E(n, B_P)$. Hence left hand side of (c''') is contained in

$$(B\otimes A)^{\times} \cap B^{\times}(\prod E(n, B_P)) \cup (L) = B^{\times}((B\otimes A)^{\times} \cap \prod E(n, B_P)) \cup (L).$$

Now, by the theorem of Vaserstein in 0.2, $(B \otimes K_P)^{\times} \cap E(n, B_P) = \tilde{E}(B_P)$ and $(B \otimes A)^{\times} \cap \prod E(n, B_P) \subset (B \otimes A)^{\times} \cap \prod \tilde{E}(B_P)$. The last group is contained in $B^{\times} \mathcal{U}(L)$ by 1.3 (ii). This showed that the left hand side of (c''') is contained in $B^{\times} \mathcal{U}(L)$, completing the proof of Theorem 2.

References

- [1] Curtis, C.W. and Reiner, I., Methods of Representation Theory, vol. 1, Interscience, 1981.
- [2] Curtis, C.W. and Reiner, I., Methods of Representation Theory, vol. 2, Interscience, 1987.
- [3] Drozd, Ju. A., Adeles and integral representations, Math. USSR Izv., 3 (1969), 1019-1026.
- [4] Jacobinski, H., Genera and decomposition of lattices over orders, Acta. Math., 121 (1968), 1-29.
- [5] Kneser, M., Starke approximation in algebraishen Gruppen I, J. Reine Angew. Math., 218 (1965), 190-203.
- [6] Roiter, A.V., On the integral representation belonging to a genus, Izv. Akad. Nauk SSSR ser. Mat., 30 (1966), 1315-1324; English transl. in AMS Transl. (2) 71 (1968), 49-59.
- [7] Swan, R.G., Strong approximation and locally free modules, Ring Theory and Algebra, III (B. McDonald, ed.), Marcel Dekker, New York, 1980, pp. 153-223.
- [8] Vaserstein, L.N., On the stabilization of the general linear group over a ring, Math. USSR Sbornik, 8 (1969), 383-400.

Hiroaki HIJIKATA Department of Mathematics Kyoto University Kyoto 606-01 Japan