On the decomposition of lattices over orders

By Hiroaki Hijlkata

(Received May 10, 1995)

0. Introduction.

We shall extend two basic theorems on decomposition of lattices over orders-'Roiter-Jacobinski Divisibility Theorem' and 'Jacobinski-Swan Cancellation Theorem'-to an arbitary R-order Λ over an arbitary Dedekind domain R. The point is that we do not assume the ambient algebra $A=K \Lambda$ to be separable over the quotient field K of R.
0.0. As for terminology, we mostly follow that of [1] and [2]. However, for a maximal ideal P of R, the suffix P like R_{P} always denotes the P-adic completion rather than the localization.

A left Λ-lattice L^{\prime} will be called a local direct summand of another Λ-lattice L if L_{P}^{\prime} is a direct summand of L_{P} for any maximal ideal P.

Write $K L \gg K L^{\prime}$ if every A-indecomposable direct summand of $K L^{\prime}$ occurs strictly oftener in $K L$ than in $K L^{\prime}$.

Write $M \sim L$ if $L_{P} \cong M_{P}$ for any P.
Theorem 1 (Roiter-Jacobinski type Divisibility). Suppose that L^{\prime} is a local direct summand of L. Then
(i) L has a direct summand M^{\prime} such that $M^{\prime} \sim L^{\prime}$.
(ii) If $K L \gg K L^{\prime}$, then L^{\prime} itself is a direct summand of L.

Theorem 2 (Jacobinski-Swan type Cancellation). Assume that the K-algebra $B=\operatorname{End}_{A} K L$ has the "strong approximation". Then the following cancellation law (c) holds.
(c) If L^{\prime} is a local direct summand of $n L=L \oplus L \oplus \cdots \oplus L$ (n-times), then $L \oplus L^{\prime} \cong M \oplus L^{\prime}$ implies $L \cong M$.
0.1. Remark on Theorem 1. (i) is known if A is separable over K (cf. [1] 31.12.) (ii) is known if A is separable over K and moreover K is a global field, i.e., K is a finite extension of the rational number field \boldsymbol{Q} or of the rational function field $\boldsymbol{F}_{q}(T)$ (cf. [1] 31.32, [4], [6].)

The current proof of (i) heavily depends on the existence of maximal orders, while the proof of (ii) depends on Jordan-Zassenhaus Theorem.

To avoid the use of maximal orders, generalizing the elementary subgroup $E(n, C)$ of $G L(n, C)=M(n, C)^{\times}$, we consider the "elementary subgroup" $E_{e}(B)$ of B^{\times}associated to a given finite set \boldsymbol{e} consisting of mutually orthogonal idempotents of B :

$$
E_{\boldsymbol{e}}(B):=\left\langle 1+e B e^{\prime} ; e, e^{\prime} \in \boldsymbol{e}, e \neq e^{\prime}\right\rangle
$$

Using an almost obvious fact (1.2.1) that $E_{e}(B)$ is always dense in the elementary subgroup $E_{e}(B \otimes \boldsymbol{A})$ of the adelized ring $B \otimes \boldsymbol{A}$, we can reduce the proof of Theorem 1 to an almost local problem (2.0) depending only upon $K L$ and $K L^{\prime}$ rather than L and L^{\prime}. This problem is easily solved by applying the well known Lemma of Bass which states: if C is semi-local, then, by the usual embedding $C^{\times} \subset G L(n, C), G L(n, C)=E(n, C) C^{\times}$. In our proof, claims (i) and (ii) are derived simultaneously.
0.2. Remark on Theorem 2. The theorem is known again under the assumption that K is a global field and A is separable over K (cf. [2] 51.28.) Beside that, there is a result of Drozd-Swan (cf. [7] 16.7, [3]), which is closely related to ours and will be recalled at the end of this paragraph. In the known case, the "strong approximation" is in the sense of Eichler-Kneser (cf. [5]), for the norm 1 subgroup $B^{(1)}$ of B^{\times}. We shall modify the sense of "strong approximation" by replacing $B^{(1)}$ with the group of Vaserstein $\tilde{E}(B)$ defined as

$$
\tilde{E}(B):=\left\langle(1+x y)(1+y x)^{-1} ; x, y \in B, 1+x y \in B^{\times}\right\rangle .
$$

The group $\tilde{E}(B)$ coincides with $\tilde{E}(1, B, B)$ of [8], and contains [$\left.B^{\times}, B^{\times}\right]$. If A is separable and K is a global field, $\tilde{E}(B)=B^{(1)}=\left[B^{\times}, B^{\times}\right]$.

We say that B has the "strong approximation" if $\tilde{E}(B)$ is dense in $\tilde{E}(B \otimes A)$. Our Theorem 2 follows directly from a result of Vaserstein ([8] Th. 3.6) which states: if C is semi-local, then $E(n, C) \cap C^{\times}=\tilde{E}(C)$ for $n \geqq 2$. We do not discuss in this paper, the interesting problem of finding out when "strong approximation" holds. Thus our extension in Theorem 2 remains rather formal. However it still gives us some gain, say, if $B=M(n, C)$ by some K-algebra C with $n \geqq 2$, then our "strong approximation" trivially holds for B (1.2.2). In particular our Theorem 2 includes the above mentioned result of Drozd-Swan.
0.3. Restatements of Theorems. Let $\mathcal{G}(L)$ denote the genus of L, namely $G(L)$ is the set of all Λ-isomorphism classes of Λ-lattices M such that $M \sim L$. Theorem 1 can be restated as:

Theorem 1'. Suppose $M \in \mathcal{G}\left(L^{\prime} \oplus L^{\prime \prime}\right)$. Then
(i) $M \cong M^{\prime} \oplus M^{\prime \prime}$ by some $M^{\prime} \in \mathcal{G}\left(L^{\prime}\right)$ and $M^{\prime \prime} \in \mathcal{G}\left(L^{\prime \prime}\right)$
(ii) If $K M \gg K L^{\prime}$, then $M \cong L^{\prime} \oplus M^{\prime \prime}$.

When Theorem 1 (ii) is granted, the cancellation law (c) of Theorem 2 can be restated as
(c') The map $X \mapsto X \oplus(n-1) L$ induces an injection $\mathcal{G}(L) \rightarrow \mathcal{G}(n L)$ for any $n \geqq 1$.

1. Adeles and Ideles.

Let R be a Dedekind domain and K be its quotient field. Let \boldsymbol{A} denote the (finite) adele ring of K, namely, the restricted direct product $\Pi^{\prime} K_{P}$ (w.r.t R_{P}) of the topological rings K_{P} with respect to the subrings $R_{P}, \boldsymbol{A}=\left\{a=\left(a_{P}\right) \in \Pi K_{P}\right.$; $a_{P} \in R_{P}$ for almost all $\left.P\right\}$. As usual we consider \boldsymbol{A} to contain (diagonally embedded) K and to be a K-algebra. Let B be a finite dimensional K-algebra. The adelization of B is, by definition, the K-algebra $B \otimes_{K} A$, emdowed with the initial topology for the family of mappings $f \otimes \mathrm{id}_{A}: B \otimes \boldsymbol{A} \rightarrow \boldsymbol{A}, f \in \operatorname{Hom}_{K}(B, K)$, or equivalently the topology from the identification $B \otimes \boldsymbol{A} \cong \boldsymbol{A} \oplus \boldsymbol{A} \oplus \cdots \oplus \boldsymbol{A}$ by any choice of K-basis of B. It is a topological ring and contains B through the embedding $b \mapsto b \otimes 1$. The K-algebra morphism $\theta: B \otimes \boldsymbol{A} \rightarrow \Pi B_{P}, b \otimes a \mapsto\left(b \otimes a_{P}\right)$ induces an isomorphism of topological rings as well as of bi- B-modules:

$$
\theta: B \otimes_{K} \boldsymbol{A} \xrightarrow{\sim} B_{A}:=\Pi^{\prime} B_{P}\left(\text { w.r.t } \Gamma_{P}\right), x \mapsto\left(x_{P}\right),
$$

where Γ is any R-order of B. We shall identify $B \otimes \boldsymbol{A}$ with B_{A} and x with $\left(x_{P}\right)$ by θ.
1.1. The idele group $(B \otimes \boldsymbol{A})^{\times}=B_{\boldsymbol{A}}^{\times}$of B is, by definition, the topological group $\Pi^{\prime}\left(B_{P}\right)^{\times}$(w.r.t $\left.\left(\Gamma_{P}\right)^{\times}\right)$. Explicitly, a fundamental system of neighbourhoods of 0 in $B_{\boldsymbol{A}}$ (resp. of 1 in $\left.\left(B_{A}\right)^{\times}\right)$is given by

$$
U^{+}(S, n)=\prod_{P \in S} P^{n} \Gamma_{P} \times \prod_{P \oplus S} \Gamma_{P}\left(\text { resp. } U^{\times}(S, n)=\prod_{P \in S}\left(1+P^{n} \Gamma_{P}\right) \times \prod_{P \oplus S}\left(\Gamma_{P}\right)^{\times}\right),
$$

where S runs over all finite set of maximal ideals and n runs over all positive integers.
1.1.1. Suppose H is a subgroup of $(B \otimes \boldsymbol{A})^{\times}=\left(B_{\boldsymbol{A}}\right)^{\times}$having the following property:
(b) If $x=\left(x_{P}\right) \in H$ and $x_{P} \in \Gamma_{P}$, then $x_{P} \in\left(\Gamma_{P}\right)^{x}$.

Then the induced topology on H from the adele topology of $B \otimes \boldsymbol{A}$ coincides with the induced topology on H from the idele topology of $(B \otimes \boldsymbol{A})^{\times}$.

Proof. (b) implies $H \cap\left(1+U^{+}(S, n)\right)=H \cap U^{\times}(S, n)$.
1.2. Let \boldsymbol{e} be a finite set of orthogonal idempotents in B. Identifying $e \otimes 1$ with e, along with the elementary subgroup $E_{e}(B)$ of 0.1 , we can consider $E_{e}\left(B_{P}\right)=E_{e}\left(B \otimes K_{P}\right)$ or $E_{e}(B \otimes \boldsymbol{A})$. Put

$$
\mathcal{E}_{\boldsymbol{e}}(B):=\left(B_{\mathbf{A}}\right)^{\times} \cap \Pi E_{\boldsymbol{e}}\left(B_{P}\right) .
$$

$E_{e}(B \otimes \boldsymbol{A})$ is obviously a subgroup of $\mathcal{E}_{e}(B)$. In some cases it is known that these two groups coincide, but in general we do not know whether they coincide or not. However, since $E_{e}(B \otimes \boldsymbol{A})$ contains each quasi factor $E_{e}\left(B_{P}\right)$, for any open subgroup \mathcal{U} of $\left(B_{A}\right)^{\star}$, we have
(1) $E_{e}(B \otimes \boldsymbol{A}) \cup=\mathcal{E}_{e}(B) \cup$.
1.2.1. Lemma. $E_{\boldsymbol{e}}(B)$ is dense in $E_{\boldsymbol{e}}(B \otimes \boldsymbol{A})$ in the idele topology. It is also dense in $\mathcal{E}_{e}(B)$.

Proof. By Chinese Remainder Theorem, B is dense in $B \otimes A$, and $e B e^{\prime}$ is dense in $e(B \otimes \boldsymbol{A}) e^{\prime}$. Hence $1+e B e^{\prime}$ is dense in $1+e(B \otimes \boldsymbol{A}) e^{\prime}$ in the adele topology. Since any element of $e(B \otimes \boldsymbol{A}) e^{\prime}$ is nilpotent, the group $H=1+e(B \otimes \boldsymbol{A}) e^{\prime}$ has the property (b) of 1.1.1. Thus $1+e B e^{\prime}$ is dense in $1+e(B \otimes \boldsymbol{A}) e^{\prime}$ in the idele topology. This obviously implies that $E_{\boldsymbol{e}}(B)$ is dense in $E_{\boldsymbol{e}}(B \otimes \boldsymbol{A})$. It is also dense in $\mathcal{E}_{e}(B)$ by (1).
1.2.2. Let $\tilde{E}(B)$ be the group of Vaserstein as in 0.2 . Suppose that B is the total matrix algebra $M(n, C)$ over some K-algebra C with $n \geqq 2$. Then as is easily seen from [8] Th. 3.6, $\tilde{E}(B)$ (resp. $\tilde{E}\left(B_{P}\right)$) can be identified with the elementary subgroup $E(n, C)\left(\right.$ resp. $\left.E\left(n, C_{P}\right)\right)$ of $B^{\times}=G L(n, C)\left(\right.$ resp. $\left.\left(B_{P}\right)^{\times}=G L\left(n, C_{P}\right).\right)$ Hence, by 1.2.1, B has the "strong approximation."
1.3. Lemma. Let \mathcal{E}_{P}, H_{P} be subgroups of B_{P}^{\times}such that $B_{P}^{\times}=\mathcal{E}_{P} H_{P}$, and $\mathcal{E}=$ $\left(B_{A}\right)^{\times} \cap \Pi \mathcal{E}_{P}$. Suppose that $B^{\times} \cap \mathcal{E}$ is dense in \mathcal{E}. Then, for any open subgroup U of $\left(B_{A}\right)^{\times}$, we have:
(i) The double coset space $B^{\times} \backslash\left(B_{A}\right)^{\times} / \mathcal{U}$ admits a set of representatives in the subgroup $\Pi^{\prime} H_{P}$ (w.r.t. \{1\}) of $\left(B_{A}\right)^{\times}$.
(ii) Further, if \mathcal{E}_{P} is a normal subgroup of $\left(B_{P}\right)^{\times}$with the abelian quotient for any P, then $B^{\times} \mathcal{G}$ is a normal subgroup containing \mathcal{E}, and $B^{\times} \backslash\left(B_{A}\right)^{\times} / \mathcal{U}$ is in fact the quotient group $\left(B_{A}\right)^{\times} / B^{\times}$U.

Proof. (i) For any $g \in\left(B_{\mathbf{A}}\right)^{\times},\left(B^{\times} \cap \mathcal{E}\right) g \mathcal{U}=\mathcal{E} g \mathcal{U}$. Hence, $B^{\times} g \mathcal{U}=$ $B^{\times}\left(B^{\times} \cap \mathcal{E}\right) g \mathcal{U}=B^{\times} \mathcal{E} g \mathcal{V}$. (ii) Since \mathcal{E} is normal, $B^{\times} \mathcal{E}$ and $\mathcal{E} \mathcal{E}$ are subgroups. Since $\left(B_{A}\right)^{\times} / \mathcal{E}$ is abelian, $B^{\times} \mathcal{E}$ and $\mathcal{U} \mathcal{E}$ are normal in $\left(B_{A}\right)^{\times}$. By (i), $B^{\times} \mathcal{U}=$ $B^{\times} \mathcal{E} \mathcal{U}=B^{\times} \mathcal{E} \mathcal{E} \mathcal{E}$ is normal, and $B^{\times} g \mathscr{U}=B^{\times} \mathcal{E} g \mathcal{U}=g B^{\times} \mathcal{E} \mathcal{V}=g B^{\times} \mathcal{U}$.

2. Proof of Theorem $\mathbf{1}^{\prime}$.

Put $L=L^{\prime} \oplus L^{\prime \prime}, V=K L, V^{\prime}=K L^{\prime}, V^{\prime \prime}=K L^{\prime \prime}, B=\operatorname{End}_{A} V, \Gamma=\operatorname{End}_{A} L$. Let e^{\prime} (resp. $e^{\prime \prime}$) be the idempotent of B corresponding to the projection $V \rightarrow V^{\prime}$ (resp. $V \rightarrow V^{\prime \prime}$), and $B^{\prime}=e^{\prime} B e^{\prime} \cong \operatorname{End}_{A} V^{\prime}, B^{\prime \prime}=e^{\prime \prime} B e^{\prime \prime} \cong \operatorname{End}_{A} V^{\prime \prime}$. As is well known (cf.
[1] 31.18 and 31.35 (iv)), the map $x=\left(x_{P}\right) \mapsto \cap\left(x_{P}\left(L_{P}\right) \cap V\right)$ induces the bijection between $B^{\times} \backslash\left(B_{A}\right)^{\times} / \mathcal{U}(L)$ and $\mathcal{G}(L)$, where $\mathcal{U}(L)=\Pi\left(\Gamma_{P}\right)^{\times}$. The claim of Theorem 1 is clearly equivalent to
(i) $B^{\times} \backslash\left(B_{A}\right)^{\times} / \mathcal{Q}(L)$ admits a set of representatives in the diagonal subgroup $\left(B_{A}^{\prime}\right)^{\times} \times\left(B_{A}^{\prime \prime}\right)^{\times}$.
(ii) If $V \gg V^{\prime}$, one can even reduce the representatives in the subgroup $\{1\} \times\left(B_{A}^{\prime}\right)^{\times}$.
To prove the above, in view of 1.3 together with 1.2 .1 , it suffice to prove
2.0. There is a set of orthogonal idempotents $\tilde{\boldsymbol{e}}$ of B such that:
(i) $\left(B_{P}\right)^{\times}=E_{\hat{e}}\left(B_{P}\right)\left(\left(B_{P}^{\prime}\right)^{\times} \times\left(B_{P}^{\prime \prime}\right)^{\times}\right)$for any P.
(ii) If $V \gg V^{\prime},\left(B_{P}\right)^{\times}=E_{\bar{e}}\left(B_{P}\right)\left(\{1\} \times\left(B_{P}^{\prime \prime}\right)^{\times}\right)$for any P.
2.1. Let $U_{i}(1 \leqq i \leqq n)$ be the distinct A-indecomposable direct summand of V, and $n_{i}>0, n_{i}^{\prime} \geqq 0, n_{i}^{\prime \prime} \geqq 0$ be the multiplicity of U_{i} in V, V^{\prime} and $V^{\prime \prime}$, respectively. Note that the condition $V \gg V^{\prime}$ means $n_{i}^{\prime}>0 \Rightarrow n_{i}^{\prime \prime}>0$. Decompose $e^{\prime}, e^{\prime \prime}$ into the orthogonal sum of primitive idempotents $e_{i \alpha}$, choosing the double index (i, α) in the following way:

$$
e_{i \alpha}(V) \cong U_{i}(1 \leqq i \leqq n) ; \quad e^{\prime}=\Sigma e_{i}^{\prime}, \quad e^{\prime \prime}=\sum e_{i}^{\prime \prime}
$$

where e_{i}^{\prime} (resp. $e_{i}^{\prime \prime}$) is the sum $\sum e_{i \alpha}$ over $1 \leqq \alpha \leqq n_{i}^{\prime}$ (resp. $n_{i}^{\prime}<\alpha \leqq n_{i}$). Then put $e_{i}=e_{i}^{\prime}+e_{i}^{\prime \prime}$, and $\boldsymbol{e}=\left\{e_{i} ; 1 \leqq i \leqq n\right\}$.
2.1.1. First, we look at the set of idempotents \boldsymbol{e}, and put $B_{i j}=e_{i} B e_{j}$, $B_{i}=B_{i i}$. Then each element $b \in B$ is uniquely written as $b=\sum b_{i j}$ with $b_{i j}=$ $e_{i} b e_{j} \in B_{i j}$. The multiplication with $b^{\prime}=\Sigma b_{i j}^{\prime}$ is given as $b b^{\prime}=\Sigma c_{i j}$ with $c_{i j}=$ $\sum_{k} b_{i k} b_{k j}^{\prime}$. Suggestively said, the correspondence $b \mapsto\left(b_{i j}\right)$ gives B the structure of n by n matrix algebra with entries in $B_{i j}$. In particular, if the pair (B, \boldsymbol{e}) has the property
(a) $b=\Sigma b_{i j} \in B^{\times} \Rightarrow b_{i i} \in B_{i}^{\times}$,
then B^{\times}can be diagonalized by $E_{e}(B), B^{\times}=E_{e}(B) \Pi B_{i}^{\times}$.
2.1.2 Lemma. (B, \boldsymbol{e}) of 2.1 has the property (a).

Proof. It obviously suffice to see:
(a^{\prime}) If $i \neq k, B_{i k} B_{k i} \subset \operatorname{rad} B_{i}=e_{i}(\operatorname{rad} B) e_{i}$.
To see this, we first observe:

$$
\begin{equation*}
e_{i \alpha} B e_{k \beta} B e_{i \alpha} \subset \operatorname{rad}\left(e_{i \alpha} B e_{i \alpha}\right)=e_{i \alpha}(\operatorname{rad} B) e_{i \alpha} . \tag{1}
\end{equation*}
$$

Indeed, if $x \in e_{i \alpha} B e_{k \beta}, x^{\prime} \in e_{k \beta} B e_{i \alpha}$ and $x x^{\prime} \notin \operatorname{rad}\left(e_{i \alpha} B e_{i \alpha}\right)$, then since $e_{i \alpha} B e_{i \alpha} \cong$ $\operatorname{End}_{A} U_{i}$ is a local ring, $x x^{\prime} \in\left(e_{i \alpha} B e_{i \alpha}\right)^{x} \cong \operatorname{Aut}_{A} U_{i}$. Hence the A-injection
$x^{\prime}: e_{i \alpha}(V) \rightarrow e_{k \beta}(V)$ splits, contradicting $U_{i} \neq U_{k}$. Since $e_{i r}(V) \cong e_{i \alpha}(V) \cong U_{i}$, there is some $y \in B^{\times}$such that $y e_{i \gamma} B=e_{i \alpha} B$. Multiplying (1) by y, we have $e_{i \gamma} B e_{k \beta} B e_{i \alpha} \subset e_{i \gamma}(\operatorname{rad} B) e_{i \alpha}$ for any γ. This implies (a^{\prime}).
2.1.3. $\left(B_{P}\right)^{x}=E_{e}\left(B_{P}\right) \cdot \Pi\left(B_{i, P}\right)^{x}$.

Proof. B_{P}^{\times}is open in B_{P}, and B is dense in B_{P}. Since (B, \boldsymbol{e}) has the property (a), (B_{P}, \boldsymbol{e}) also has the property (a).
2.2. Put $\boldsymbol{e}_{i}=\left\{e_{i \alpha} ; 1 \leqq \alpha \leqq n_{i}\right\}, \tilde{\boldsymbol{e}}=\cup_{i} \boldsymbol{e}_{i}$. We shall further reduce $\Pi\left(B_{i, P}\right)^{x}$ by $E_{\tilde{e}}\left(B_{P}\right)$ to the form of 2.0 . Fixing one arbitrarily chosen P, we simplify the notation by dropping the suffix P, so we mean B_{P} by B. Put $B_{i}^{\prime}=e_{i}^{\prime} B e_{i}^{\prime}=e_{i}^{\prime} B_{i} e_{i}^{\prime}$, $B_{i}^{\prime \prime}=e_{i}^{\prime \prime} B e_{i}^{\prime \prime}$, one of which may be $\{0\}$. Put $C_{i}=\operatorname{End}_{A} U_{i}$.

Since $B_{i} \cong \operatorname{End}_{A} e_{i}(V) \cong \operatorname{End}_{A}\left(n_{i} U_{i}\right) \cong M\left(n_{i}, C_{i}\right)$, there is an isomorphism f_{i} : $B_{i} \rightarrow M\left(n_{i}, C_{i}\right)$ mapping $e_{i \alpha}$ to ε_{α}, the matrix with the α-th diagonal entry 1 and other entries 0 . Then f_{i} maps the diagonal subalgebra $B_{i}^{\prime} \oplus B_{i}^{\prime \prime}$ onto the diagonal subalgebra $M\left(n_{i}^{\prime}, C_{i}\right) \oplus M\left(n_{i}^{\prime \prime}, C_{i}\right), B_{i}^{\times}$to $G L\left(n_{i}, C_{i}\right)$ and $E_{e_{i}}\left(B_{i}\right)$ to $E\left(n_{i}, C_{i}\right)$. Since C_{i} is semi-local, applying the lemma of Bass in 0.1 to $G L\left(n_{i}, C_{i}\right)$, then pulling the result back by f_{i}, we have

$$
B_{i}^{\times}=\left\{\begin{array}{l}
E_{\boldsymbol{e}_{i}}\left(B_{i}\right)\left(\left(B_{i}^{\prime}\right)^{\times} \times\left(B_{i}^{\prime \prime}\right)^{\times}\right) \tag{2}\\
E_{\boldsymbol{e}_{i}}\left(B_{i}\right)\left(\{1\} \times\left(B_{i}^{\prime \prime}\right)^{\times}\right) \quad \text { if } n_{i}^{\prime \prime}>0 .
\end{array}\right.
$$

Since $E_{\tilde{e}}(B) \supset E_{e_{i}}(B)$ and we are identifying as $E_{e_{i}}\left(B_{i}\right)=E_{e_{i}}(B) \subset B^{\times}$, (2) implies that each B_{i}^{\times}(considered as a subgroup of B^{\times}) is contained in $E_{\tilde{e}}(B)\left(\left(B_{i}^{\prime}\right)^{\times} \times\left(B_{i}^{\prime \prime}\right)^{\times}\right)$. Regrouping $\left(B_{i}^{\prime}\right)^{\times \prime}$ s to $\left(B^{\prime}\right)^{\times}$and recovering the suffix P, we have established 2.0.

3. Proof of Theorem 2.

Let $V=K L$ and $B=\operatorname{End}_{A} V$. By the obvious identification $\operatorname{End}_{A}(n V) \cong M(n, B)$, the property (c^{\prime}) in 0.3 is equivalent to:
(c") The map

$$
x \longmapsto\left(\begin{array}{cc}
x & 0 \\
0 & 1_{n-1}
\end{array}\right)
$$

induces an injection from $B^{\times} \backslash(B \otimes \boldsymbol{A})^{\times} / \mathcal{G}(L)$ into $G L(n, B) \backslash G L(n, B \otimes$ A)/ $U(n L)$.

By the assumption that B has the "strong approximation", $\tilde{E}(B)$ is dense in $\tilde{E}(B \otimes \boldsymbol{A})$, hence it is also dense in $(B \otimes \boldsymbol{A})^{\times} \cap \Pi \tilde{E}\left(B_{P}\right)$. While $E(n, B)$ is always dense in $G L(n, B \otimes A) \cap \Pi E\left(n, B_{P}\right)$ by 1.2.1. In view of 1.2 (ii), what we shall prove is:
$\left(\mathrm{c}^{\prime \prime \prime}\right) \quad(B \otimes \boldsymbol{A})^{\times} \cap G L(n, B) \cup(n L)=B^{\times} \mathscr{U}(L)$.

The left hand side of ($\mathrm{c}^{\prime \prime \prime}$) obviously contains the right hand side of it. Since Γ_{P} is semi-local, by the lemma of Bass, $G L\left(n, \Gamma_{P}\right)=E\left(n, \Gamma_{P}\right)\left(\Gamma_{P}\right)^{x}$ and $\mathcal{U}(n L)$ $=\Pi G L\left(n, \Gamma_{P}\right)=\left(\Pi E\left(n, \Gamma_{P}\right)\right) \Pi\left(\Gamma_{P}\right)^{\times} \subset\left(\Pi E\left(n, B_{P}\right)\right) \cup(L)$. Since B is also semilocal, $G L(n, B)=B^{\times} E(n, B) \subset B^{\times} \Pi E\left(n, B_{P}\right)$. Hence left hand side of (c"') is contained in

$$
(B \otimes \boldsymbol{A})^{\times} \cap B^{\times}\left(\Pi E\left(n, B_{P}\right)\right) \mathcal{U}(L)=B^{\times}\left((B \otimes \boldsymbol{A})^{\times} \cap \Pi E\left(n, B_{P}\right)\right) \mathcal{U}(L) .
$$

Now, by the theorem of Vaserstein in $0.2,\left(B \otimes K_{P}\right)^{\times} \cap E\left(n, B_{P}\right)=\tilde{E}\left(B_{P}\right)$ and $(B \otimes \boldsymbol{A})^{\times} \cap \Pi E\left(n, B_{P}\right) \subset(B \otimes \boldsymbol{A})^{\times} \cap \Pi \tilde{E}\left(B_{P}\right)$. The last group is contained in $B^{\times} \mathcal{U}(L)$ by 1.3 (ii). This showed that the left hand side of ($\mathrm{c}^{\prime \prime}$) is contained in $B^{\times} \mathcal{U}(L)$, completing the proof of Theorem 2.

References

[1] Curtis, C. W. and Reiner, I., Methods of Representation Theory, vol. 1, Interscience, 1981.
[2] Curtis, C.W. and Reiner, I., Methods of Representation Theory, vol. 2, Interscience, 1987.
[3] Drozd, Ju. A., Adeles and integral representations, Math. USSR Izv., 3 (1969), 10191026.
[4] Jacobinski, H., Genera and decomposition of lattices over orders, Acta. Math., 121 (1968), 1-29.
[5] Kneser, M., Starke approximation in algebraishen Gruppen I, J. Reine Angew. Math., 218 (1965), 190-203.
[6] Roiter, A.V., On the integral representation belonging to a genus, Izv. Akad. Nauk SSSR ser. Mat., 30 (1966), 1315-1324; English transl. in AMS Transl. (2) 71 (1968), 49-59.
[7] Swan, R.G., Strong approximation and locally free modules, Ring Theory and Algebra, III (B. McDonald, ed.), Marcel Dekker, New York, 1980, pp. 153-223.
[8] Vaserstein, L.N., On the stabilization of the general linear group over a ring, Math. USSR Sbornik, 8 (1969), 383-400.

Hiroaki Hijıkata
Department of Mathematics
Kyoto University
Kyoto 606-01
Japan

