# A lower bound for sectional genus of quasi-polarized manifolds 

By Yoshiaki Fukuma

(Received Aug. 18, 1994)
(Revised May 10, 1995)

## Introduction.

Let $X$ be a smooth projective variety over $C$ with $\operatorname{dim} X=n$, and $L$ an ample (resp. a nef and big) Cartier divisor. Then ( $X, L$ ) is called a polarized (resp. a quasi-polarized) manifold.

For this ( $X, L$ ), the sectional genus of $L$ is defined to be a non negative integer valued function by the following formula ([Fj2]):

$$
g(L)=1+\frac{1}{2}\left(K_{X}+(n-1) L\right) L^{n-1}
$$

where $K_{X}$ is the canonical divisor of $X$.
Then there is the following conjecture:
Conjecture 1 (p. 111 in [Fj3]). Let ( $X, L$ ) be a quasi-polarized manifold. Then $g(L) \geqq q(X)$, where $q(X)=h^{1}\left(X, \mathcal{O}_{X}\right)$ (called the irregularity of $X$ ).

In [Fk1], we treat $\operatorname{dim} X=2$ case. But if $\operatorname{dim} X \geqq 3$, the problem seems difficult. So we consider the following conjecture:

Conjecture 2. Let $(X, L)$ be a quasi-polarized manifold, $Y$ a normal projective variety with $1 \leqq \operatorname{dim} Y<\operatorname{dim} X$, and $f: X \rightarrow Y$ a surjective morphism with connected fibers. Then $g(L) \geqq h^{1}\left(\mathcal{O}_{Y^{\prime}}\right)$, where $Y^{\prime}$ is a resolution of $Y$.

Of course Conjecture 2 follows from Conjecture 1. The hypothesis of Conjecture 2 is natural because $X$ has a fibration in many cases (Albanese fibration, Iitaka fibration, etc.).

In this paper, we consider Conjecture 2. In particular, we study $\operatorname{dim} Y=1$ or some special cases of $\operatorname{dim} Y \geqq 2$. Using some results with respect to Conjecture 2, we study Conjecture 1 .

The author would like to express his hearty gratitude to Professor Takao Fujita for giving him useful advice and teaching him the proof of Theorem B in Appendix. The author also would like to thank the referee for giving many valuable comments and suggestions and pointing out Theorem $\mathrm{A}^{\prime}$ in Appendix.

## § 0. Notations and conventions.

In this paper, we shall study mainly a smooth projective variety $X$ over $\boldsymbol{C}$. $\mathcal{O}(D)$ : invertible sheaf associated with a Cartier divisor $D$ on $X$.
$\mathcal{O}_{X}$ : the structure sheaf of $X$.
$\chi(\mathscr{I})$ : Euler-Poincaré characteristic of a coherent sheaf $\mathscr{F}$.
$\chi(X)=\chi\left(\mathcal{O}_{X}\right)$
$h^{i}(\mathcal{F})=\operatorname{dim} H^{i}(X, \mathscr{F})$ for a coherent sheaf $\mathscr{F}$ on $X$.
$h^{i}(D)=h^{i}(\mathcal{O}(D))$ for a divisor $D$.
$\left.D\right|_{C}$ : the restriction of $D$ to $C$.
$|D|$ : the complete linear system associated with a divisor $D$.
$K_{X}$ : the canonical divisor of $X$.
$p_{g}(X)$ (or $p_{g}$ ): the geometric genus $h^{0}\left(K_{X}\right)$ of $X$.
$p_{m}(X)$ (or $\left.p_{m}\right)$ : the $m$-genus $h^{0}\left(m K_{X}\right)$ of $X$.
$q(X)$ (or $q$ ): the irregularity $h^{1}\left(\mathcal{O}_{X}\right)$ of a smooth projective variety $X$.
If $X$ is a normal projective variety over $C$, then we define $q(X)=h^{1}\left(\mathcal{O}_{X}\right)$, where $X^{\prime}$ is a resolution of $X$. We remark that $q(X)$ is independent of a resolution of $X$.
$\kappa(D)$ : Iitaka dimension of a Cartier divisor $D$ on $X$.
$\kappa(X)$ : Kodaira dimension of $X$.
$\boldsymbol{P}_{Y}(\mathcal{E})$ : the $\boldsymbol{P}^{r-1}$-bundle associated with a locally free sheaf $\mathcal{E}$ of rank $r$ over $Y$.
$\mathcal{O}_{\boldsymbol{P}_{Y}(\mathcal{\varepsilon})}(1)$ : the tautological invertible sheaf of $\boldsymbol{P}_{Y}(\mathcal{E})$.
$\sim$ (or $=$ ): linear equivalence.
$\equiv$ : numerical equivalence.
For $r \in \boldsymbol{R}$, we define $[r]=\max \{t \in \boldsymbol{Z}: t \leqq r\},\lceil r\rceil=-[-r]$.
( $f, X, Y, L$ ) is called a polarized (resp. quasi-polarized) fiber space if $X$ is a smooth projective variety, $Y$ is a smooth or normal projective variety with $1 \leqq \operatorname{dim} Y<\operatorname{dim} X, f: X \rightarrow Y$ is a surjective morphism with connected fibers, and $L$ is an ample (resp. a nef and big) Cartier divisor on $X$.

We say that two quasi-polarized fiber spaces $(f, X, Y, L)$ and ( $h, X, Y^{\prime}, L$ ) are isomorphic if there is an isomorphism $\delta: Y \rightarrow Y^{\prime}$ such that $h=\delta \circ f$. In this case we write $(f, X, Y, L) \cong\left(h, X, Y^{\prime}, L\right)$.

We say that $(f, X, Y, L)$ is a scroll if $Y$ is smooth, $f: X \rightarrow Y$ is $\boldsymbol{P}^{t}$-bundle, and $\left.L\right|_{F}=\mathcal{O}(1)$ where $F$ is a fiber of $f$ and $t=\operatorname{dim} X-\operatorname{dim} Y$.

We say that $(X, L)$ has a structure of scroll over $Y$ if there exists a surjective morphism $f: X \rightarrow Y$ such that $\left(F,\left.L\right|_{F}\right) \cong\left(P^{n-m}, \mathcal{O}(1)\right)$ for any fiber $F$ of $f$, where $\operatorname{dim} X=n$, and $\operatorname{dim} Y=m$.

We say that a Cartier divisor $D$ on a projective variety $X$ is pseudo-effective if there is a big Cartier divisor $H$ such that $\kappa(m D+H) \geqq 0$ for any natural number $m$.

A general fiber $F$ of $f$ for a quasi-polarized fiber space ( $f, X, Y, L$ ) means a fiber of a point of the set which is intersection of at most countable many Zariski open sets.

Let $D$ be an effective divisor on $X$. We call $D$ a normal crossing divisor if $D$ has regular components which intersect transversally.

## § 1. $\operatorname{dim} Y=1$ case.

In this section, we consider a lower bound for $g(L)$ under the following condition:
(*): Let $(f, X, Y, L)$ be a (quasi-)polarized fiber space with $\operatorname{dim} X=n$, where $Y$ is a smooth projective curve.

1-1. The nefness of $K_{X / Y}+t L$.
We study the nefness of $K_{X / Y}+t L$ for $t=n, n-1, n-2$, where $K_{X / Y}=K_{X}$ $-f * K_{Y}$. Here Theorem A in Appendix plays an important role. (See Appendix for the statement of Theorem A and its proof.)

Theorem 1.1.1 (cf. Theorem 1 in [ $\mathbf{F j} \mathbf{2} \mathbf{2}$ ). Let $(f, X, Y, L)$ be a polarized fiber space with $\operatorname{dim} X=n \geqq 2, \operatorname{dim} Y=1$.

Then $K_{X / Y}+n L$ is nef.
Proof. If $K_{X / Y}+n L$ is not $f$-nef, there exists an extremal rational curve $l$ such that $\left(K_{X / Y}+n L\right) \cdot l<0$ and $f(l)=$ point. Let $\varphi: X \rightarrow Z$ be the contraction morphism of $l$.

Then there exists a morphism $g: Z \rightarrow Y$ such that $f=g \circ \varphi$ (Theorem 3-2-1 in [KMM]. In particular $\operatorname{dim} Z \geqq \operatorname{dim} Y=1$.

But by the proof of Theorem 1 in $[\mathbf{F j} 2], \operatorname{dim} Z=0$. This contradicts $\operatorname{dim} Z$ $\geqq \operatorname{dim} Y=1$. Hence $K_{X / Y}+n L$ is $f$-nef.

On the other hand, $\left(K_{X / Y}+n L\right)-K_{X}$ is $f$-ample. By the base point free theorem (Theorem 3-1-1 in [KMM]),

$$
\begin{equation*}
f^{*} f_{*} \mathcal{O}\left(m\left(K_{X / Y}+n L\right)\right) \longrightarrow \mathcal{O}\left(m\left(K_{X / Y}+n L\right)\right) \tag{1.1.1.1}
\end{equation*}
$$

is surjective for any $m \gg 0$.
By Theorem A in Appendix, $f_{*} \mathcal{O}\left(m\left(K_{X / Y}+n L\right)\right)$ is semipositive ( $[\mathbf{F j 1} 1]$ ) and by (1.1.1.1) $\mathcal{O}\left(m\left(K_{X / Y}+n L\right)\right)$ is nef. Therefore $K_{X / Y}+n L$ is nef.

Theorem 1.1.2 (cf. Theorem 2 in [ $\mathbf{F j} \mathbf{j} \mathbf{2}$ ). Let $(f, X, Y, L)$ be as in Theorem 1.1.1. Then $K_{X / Y}+(n-1) L$ is nef unless $(f, X, Y, L)$ is a scroll.

Proof. If $K_{X / Y}+(n-1) L$ is not $f$-nef, there exists an extremal rational curve $l$ such that $\left(K_{X}+(n-1) L\right) \cdot l=\left(K_{X / Y}+(n-1) L\right) \cdot l<0$ and $f(l)=$ point. Let $\varphi: X \rightarrow Z$ be the contraction morphism of $l$.

Then there exists a morphism $g: Z \rightarrow Y$ such that $f=g \circ \varphi$. In particular $\operatorname{dim} Z \geqq \operatorname{dim} Y=1$.

By ((2.7) proof of Theorem 2 in [Fj2]), $\varphi$ is not birational and $\operatorname{dim} Z=1$. Then ( $\varphi, X, Z, L$ ) is a scroll by the proof of Theorem 2 in [Fj2]. On the other hand, $Z \cong Y$ because $f$ has connected fibers. Hence $(f, X, Y, L)$ is a scroll.

If $K_{X / Y}+(n-1) L$ is $f$-nef, $K_{X / Y}+(n-1) L$ is nef by the same argument as in Theorem 1.1.1.

Theorem 1.1.3 (cf. Theorem 3 and $3^{\prime}$ in [ $\mathbf{F j 2 ]}$ ). Let $(f, X, Y, L)$ be as in Theorem 1.1.1. Suppose that $\operatorname{dim} X=n \geqq 3$ and $K_{X / Y}+(n-1) L$ is nef. Then $K_{X / Y}+(n-2) L$ is nef except the following cases:
(3-1) There exist a smooth projective variety $X^{\prime}$, a birational morphism $\mu: X \rightarrow X^{\prime}$, and a surjective morphism with connected fibers $f^{\prime}: X^{\prime} \rightarrow Y$ such that $f=f^{\prime} \circ \mu, \mu$ is blowing down of $E \cong P^{n-1},\left.E\right|_{E}=\mathcal{O}(-1)$, and $\left.L\right|_{E}=\mathcal{O}(1)$.
(3-2) ( $f, X, Y, L$ ) is $\boldsymbol{P}^{2}$-bundle and $\left.L\right|_{F}=\mathcal{O}(2)$ for any fiber $F$ of $f$.
(3-3) $F$ is a hyperquadric in $\boldsymbol{P}^{n}$ and $\left.L\right|_{F}=\mathcal{O}(1)$, where $F$ is a general fiber of $f$.
(3-4) $\left(F, L_{F}\right)$ is a scroll over a smooth curve, where $F$ is a general fiber of $f$.
Proof. If $K_{X / Y}+(n-2) L$ is $f$-nef, then $K_{X / Y}+(n-2) L$ is nef by the same argument as in Theorem 1.1.1.

If $K_{X / Y}+(n-2) L$ is not $f$-nef, there exists an extremal rational curve $l$ such that $\left(K_{X / Y}+(n-2) L\right) \cdot l<0$ and $f(l)=$ point. Let $\varphi: X \rightarrow Z$ be the contraction morphism of $l$. Then we have a morphism $g: Z \rightarrow Y$ such that $f=g \circ \varphi$.

Case (A): $\varphi$ is birational.
Then by the proof of Theorem $3^{\prime}$ in [Fj2], $\varphi$ is blowing down of $E \cong \boldsymbol{P}^{n-1}$, $\left.E\right|_{E}=\mathcal{O}(-1)$ and $\left.L\right|_{E}=\mathcal{O}(1)$. We put $\mu=\varphi, f^{\prime}=g$, and $Z=X^{\prime}$. So (3-1) is obtained.

Case (B): $\varphi$ is not birational.
We remark that $\operatorname{dim} Z \geqq \operatorname{dim} Y=1$. By Theorem $3^{\prime}$ in [Fj2], we have the following three types:
(1) $\operatorname{dim} Z=1,\left(F_{\varphi},\left.L\right|_{F_{\varphi}}\right)=\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right)$ for every fiber $F_{\varphi}$ of $\varphi$.
(2) $\operatorname{dim} Z=1, F$ is hyperquadric and $\left.L\right|_{F}=\mathcal{O}(1)$.
(3) $\operatorname{dim} Z=2, Z$ is smooth, and $(\varphi, X, Z, L)$ is scroll.

Case (1)
In this case, $Z \cong Y$ since every fiber of $f$ is connected. So $(f, X, Y, L) \cong$
$(\varphi, X, Z, L)$ and (3-2) is obtained.
Case (2)
By the same argument as in Case (1), $(f, X, Y, L) \cong(\varphi, X, Z, L)$. Hence (3-3) is obtained.

Case (3)
In this case, a general fiber $F$ of $f$ is scroll over a smooth curve. Hence (3-4) is obtained.

1-2. $\quad g(L) \geqq g(Y)$.
Here we shall show that the following theorem.
Theorem 1.2.1. Let $(f, X, Y, L)$ be a polarized fiber space with $\operatorname{dim} Y=1$. Then $g(L) \geqq g(Y)$, where $g(Y)$ is the genus of $Y$.

Proof. First since $2(g(Y)-1) L^{n-1} F=f^{*} K_{Y} L^{n-1}$, we have

$$
\begin{equation*}
g(L)=g(Y)+\frac{1}{2}\left(K_{X / Y}+(n-1) L\right) L^{n-1}+(g(Y)-1)\left(L^{n-1} \cdot F-1\right), \tag{1.2.1.1}
\end{equation*}
$$

where $F$ is a general fiber of $f$.
Case (a): $g(Y)=0$.
$g(L) \geqq g(Y)=0$ by Corollary 1 in [ $\mathbf{F j} 2]$.
Case (b): $g(Y) \geqq 1$.
In this case,

$$
\begin{equation*}
(g(Y)-1)\left(L^{n-1} \cdot F-1\right) \geqq 0 \tag{1.2.1.2}
\end{equation*}
$$

since $L$ is ample.
Case (b)-1: $\quad K_{X / Y}+(n-1) L$ is nef.
By (1.2.1.1) and (1.2.1.2), we have $g(L) \geqq g(Y)$.
Case (b)-2: $K_{X / Y}+(n-1) L$ is not nef.
By Theorem 1.1.2, $(f, X, Y, L)$ is a scroll. Let $\mathcal{E}$ be a locally free sheaf of rank $n$ over $Y$ such that $X=\boldsymbol{P}(\mathcal{E})$ and $L=\mathcal{O}_{\boldsymbol{P}(\mathcal{E})}(1)$. Then $K_{X}=f^{*}\left(K_{Y}+\operatorname{det} \mathcal{E}\right)$ $-\mathcal{O}_{\mathbf{P}(\mathcal{E})}(n)\left((1.3)\right.$ in [Fj3]]. Hence $g(L)=1+\left(K_{X}+(n-1) L\right) L^{n-1} / 2=1+\left(f^{*}\left(K_{Y}+\right.\right.$ $\operatorname{det} \mathcal{E})-L) L^{n-1} / 2=1+(1 / 2) \operatorname{deg} K_{Y}=g(Y)$.

Therefore $g(L) \geqq g(Y)$ is obtained.
Remark 1.2.2. There exists an example of $(f, X, Y, L)$ with $g(L)=g(Y)$. (For example, the case ( $f, X, Y, L$ ) is scroll.)

In 1-4, we shall show that $(f, X, Y, L)$ with $g(L)=g(Y)$ has a structure of scroll over a smooth curve.

By Theorem 1.2, 1 , we have the following Corollary.
Corollary 1.2.3. Let $(X, L)$ be a polarized manifold. Assume that the image of the Albanese map $([\mathbf{U}])$ is a curve. Then $g(L) \geqq q(X)$.

Proof. Let $\alpha: X \rightarrow \operatorname{Alb} X$ be the Albanese map of $X$. By assumption, $\alpha(X)$ is a smooth curve of genus $q(X)$ and $\alpha: X \rightarrow \alpha(X)$ has connected fibers. Hence by Theorem 1.2.1, $g(L) \geqq g(\alpha(X))=q(X)$.
$1-3$. $\kappa(X) \geqq 0$.
Here we treat $\kappa(X) \geqq 0$ case.
Lemma 1.3.1. Let $X$ be a projective variety with $\operatorname{dim} X=n$ and $D$ a pseudo effective Cartier divisor on $X$. Then $D L^{n-1} \geqq 0$ for any nef Cartier divisor $L$.

Proof. By definition of a pseudo effective Cartier divisor (see $\S 0$ or (11.3) in [Mo]), $\kappa(t D+H) \geqq 0$ for any natural number $t$ and a big Cartier divisor $H$ over $X$. Since $L$ is nef, $m L+A$ is ample for any natural number $m$ and an ample Cartier divisor $A$ over $X$. Therefore

$$
\left(D+\frac{1}{t} H\right)\left(L+\frac{1}{m} A\right)^{n-1}=\frac{1}{m^{n-1} t}(t D+H)(m L+A)^{n-1} \geqq 0
$$

Tend $t \rightarrow \infty$ and $m \rightarrow \infty$, we have $D L^{n-1} \geqq 0$.
Remark 1.3.2.
(1) Let $X$ and $Y$ be smooth projective varieties over $C$, and $f: X \rightarrow Y$ a surjective morphism with connected fibers. Let $D$ be a Cartier divisor on $X$ such that $f_{*} O(D) \neq 0$. If $f_{*} O(D)$ is weakly positive (see Appendix), then $D$ is pseudo effective.
(2) Let $\mathcal{E}$ be a locally free sheaf on a normal projective variety $X$. If $\mathcal{E}$ is semipositive ((5.1) in [Mo]), then $\mathcal{E}$ is weakly positive.

Proof.
The proof of (1)
By hypothesis, the natural map

$$
f^{*} f_{*} \mathcal{O}(D) \longrightarrow \mathcal{O}(D)
$$

is non-trivial. If $\mathcal{O}(D-Z)=\operatorname{Im}\left(f^{*} f_{*} \mathcal{O}(D) \rightarrow \mathcal{O}(D)\right)^{* *}$, where $Z$ is an effective divisor on $X$ and ${ }^{* *}$ is double dual, then $f^{*} f_{*} \mathcal{O}(D) \rightarrow \mathcal{O}(D-Z)$ is surjective in codimension 1. By Hironaka theory [Hi], there exists a birational morphism $\mu: X^{\prime} \rightarrow X$ such that

$$
\mu^{*} f^{*} f_{*} \mathcal{O}(D) \longrightarrow \mathcal{O}\left(\mu^{*}(D-Z)-E\right)
$$

is surjective, where $X^{\prime}$ is smooth and $E$ is an exceptional effective divisor over $X^{\prime}$.

By hypothesis, $\mu^{*} f^{*} f_{*} \mathcal{O}(D)$ is weakly positive. Hence $\mathcal{O}\left(\mu^{*}(D-Z)-E\right)$ is weakly positive. By definition, $\mu^{*}(D-Z)-E$ is pseudo effective. Since $Z$ and $E$ are effective, $\mu^{*} D$ is pseudo effective. Hence $D$ is pseudo effective.

The proof of (2)
Since $\mathcal{E}$ is semipositive, $S^{\alpha}(\mathcal{E})$ is also semipositive for any positive integer $\alpha$. Let $\mathscr{H}$ be an ample invertible sheaf on $X$. Then $S^{\alpha}(\mathcal{E}) \otimes \mathscr{H}$ is an ample locally free sheaf ([Ha2]). Hence $\mathcal{E}$ is weakly positive.

Theorem 1.3.3. Let $(f, X, Y, L)$ be a quasi-polarized fiber space with $\operatorname{dim} Y=1, g(Y) \geqq 1$, and $\kappa(F) \geqq 0$, where $F$ is a general fiber of $f$.

Then $g(L) \geqq g(Y)+\left\lceil((n-1) / 2) L^{n}\right\rceil$.
Proof. Since $\kappa(F) \geqq 0$, there exists a Zariski open set $U$ of $Y$ such that for any closed point $y \in U$,
(1) $F_{y}=f^{-1}(y)$ is smooth
(2) $h^{0}\left(m K_{F_{y}}\right)$ is constant and not zero for some fixed $m \in \boldsymbol{N}$.

By Grauert's theorem (see [Ha1]), $f_{*} O\left(m K_{X / Y}\right) \neq 0$. Hence by Lemma 1.3.1, Remark 1.3.2 and the semipositivity of $f_{*} \mathcal{O}\left(m K_{X / Y}\right)$ ([Ka2], [V3]), $K_{X / Y} \cdot L^{n-1} \geqq 0$.

By (1.2.1.1) in Theorem 1.2.1, we have

$$
g(L) \geqq g(Y)+\frac{n-1}{2} L^{n}+(g(Y)-1)\left(L^{n-1} \cdot F-1\right) .
$$

Since $L$ is nef and big, $L_{F}$ is also nef and big. Hence $L_{F}^{n-1} \geqq 1$.
By hypothesis, $g(Y) \geqq 1$. Therefore

$$
g(L) \geqq g(Y)+\left\lceil\frac{n-1}{2} L^{n}\right\rceil
$$

because $g(L)$ is integer.
Theorem 1.3.4. Let $(X, L)$ be a quasi-polarized manifold with $\kappa(X)=1$ and $L^{n} \geqq 2$. Then $g(L) \geqq q(X)$.

Proof. In general, there is the following fibration (called litaka fibration [Ii1]) if $\kappa(X) \geqq 1$ :

There exist a birational morphism $\mu: X^{\prime} \rightarrow X$ and a surjective morphism with connected fibers $f: X^{\prime} \rightarrow Y$ such that $\operatorname{dim} Y=\kappa(X)$ and $\kappa(F)=0$ for a general fiber $F$ of $f$, where $X^{\prime}$ and $Y$ are smooth projective varieties.

We remark that $q(X)=q\left(X^{\prime}\right)$ and $g(L)=g\left(L^{\prime}\right)$, where $L^{\prime}=\mu^{*} L$.
So we may assume that there is a fibration $f: X \rightarrow Y$, where $Y$ is a smooth projective variety.

Here $\operatorname{dim} Y=1$.
If $g(Y) \geqq 1$, then we apply Theorem 1.3.3 for this $(f, X, Y, L)$. Hence $g(L) \geqq g(Y)+\left\lceil((n-1) / 2) L^{n}\right\rceil$. By hypothesis, $\left\lceil((n-1) / 2) L^{n}\right\rceil \geqq n-1$. Since $\kappa(F)$ $=0, q(F) \leqq \operatorname{dim} F=n-1$ by Kawamata's theorem ([Ka1]). So we have $g(L) \geqq$ $g(Y)+(n-1) \geqq g(Y)+q(F)$.

On the other hand, by Theorem B in Appendix, $q(F)+g(Y) \geqq q(X)$. Therefore $g(L) \geqq q(X)$.

If $g(Y)=0$, then $g(L)=1+\left(K_{X}+(n-1) L\right) L^{n-1} / 2 \geqq 1+n-1 \geqq 1+q(F)>g(Y)+$ $q(F) \geqq q(X)$.

By Kawamata's theorem, we have the following theorem.
Theorem 1.3.5. Let $(X, L)$ be a quasi-polarized manifold with $\kappa(X)=0$ and $L^{n} \geqq 2$. Then $g(L) \geqq q(X)$.

Proof. Since $\kappa(X)=0, q(X) \leqq \operatorname{dim} X=n$ by Kawamata's theorem.
Hence

$$
\begin{aligned}
g(L) & =1+\frac{1}{2}\left(K_{X}+(n-1) L\right) L^{n-1} \\
& \geqq 1+\frac{n-1}{2} L^{n} \\
& \geqq n \\
& \geqq q(X)
\end{aligned}
$$

1-4. Classification of $(f, X, Y, L)$ with $g(L)=g(Y)$.
Here we shall classify $(f, X, Y, L)$ with $\operatorname{dim} Y=1$ and $g(L)=g(Y)$.
LEMMA 1.4.1. If $f_{*} \mathcal{O}(D)$ is ample, then $D L^{n-1}>0$ for any ample line bundle $L$ on $X$.

PROOF. By hypothesis, given any coherent sheaf $\mathscr{F}$ on $Y$, there exists a natural number $m_{0}$ such that for every $m \geqq m_{0}, \mathscr{F} \otimes S^{m}\left(f_{*}(D)\right)$ is generated by the global sections. Hence $f^{*} \nsubseteq \otimes S^{m}\left(f^{*} \circ f_{*}(D)\right)$ is generated by the global sections. We put $\mathcal{F}=\mathcal{O}(-A)$, where $\mathcal{O}(A)$ is an ample invertible sheaf on $Y$. Then $m D-f^{*} A$ is effective and $L^{n-1}\left(m D-f^{*} A\right) \geqq 0$. Hence $L^{n-1} D>0$.

Theorem 1.4.2. Let $(f, X, Y, L)$ be a polarized fiber space with $\operatorname{dim} X=$ $n \geqq 3$ and $\operatorname{dim} Y=1$. Suppose that $g(L)=g(Y)$. Then $(f, X, Y, L)$ is a scroll.

Proof. First we have

$$
\begin{equation*}
g(L)=g(Y)+\frac{1}{2}\left(K_{X / Y}+(n-1) L\right) L^{n-1}+\left(L^{n-1} F-1\right)(g(Y)-1) \tag{1.4.2.1}
\end{equation*}
$$

Case (1): $g(Y) \geqq 1$
If $f_{*} \mathcal{O}\left(K_{X / Y}+(n-1) L\right) \neq 0$, then $f_{*} \mathcal{O}\left(K_{X / Y}+(n-1) L\right)$ is ample by Theorem 2.4 and Corollary 2.5 in [E-V], so by Lemma 1.4.1,

$$
\left(K_{X / Y}+(n-1) L\right) L^{n-1}>0
$$

By (1.4.2.1), $g(L)>g(Y)$. Hence we may assume $f_{*} O\left(K_{X / Y}+(n-1) L\right)=0$. If
$K_{X / Y}+(n-1) L$ is not nef, then $(f, X, Y, L)$ is a scroll by Theorem 1.1.2. Hence we may assume that $K_{X / Y}+(n-1) L$ is nef.

By hypothesis, there are two possible cases:

$$
\begin{array}{ll}
\left(K_{X / Y}+(n-1) L\right) L^{n-1}=0, & g(Y)=1 \\
\left(K_{X / Y}+(n-1) L\right) L^{n-1}=0, & L^{n-1} F=1 \tag{B}
\end{array}
$$

Case (A)
Since $g(L)=g(Y)=1$, we have
(A-1) $(X, L)$ is a del Pezzo variety
(A-2) $(X, L)$ is a scroll over an elliptic curve
by Fujita's classification of $g(L)=1$. ([Fj2])
If $(X, L)$ is the case (A-1), then since $-K_{X}$ is ample, $q(X)=0$, which contradicts $q(Y) \geqq 1$. Next we consider that ( $X, L$ ) is the case (A-2). Let $\pi: X \rightarrow C$ be a $P^{n-1}$-bundle with $L_{F}=\mathcal{O}(1)$, where $C$ is an elliptic curve and $F$ is a fiber of $f$. Since $\boldsymbol{P}^{n-1}$ has no fibration over a curve for $n \geqq 3$, there is a morphism $\mu: C \rightarrow Y$ such that $f=\mu \circ \pi$ ((4.4) in [EGA] III). Since $f$ has connected fibers, $\mu$ is an isomorphism ((7.1) in [Mu]). Therefore ( $f, X, Y, L$ ) is a scroll.

Case (B)
In this case we can exclude $g(Y)=1$, which implies $g(Y) \geqq 2$. Since ( $K_{X / Y}$ $+(n-2) L) L^{n-1}+L^{n}=0, K_{X / Y}+(n-2) L$ is not nef. Hence we can apply Theorem 1.1.3 to this case.

Case (B-1): ( $f, X, Y, L$ ) is the type (3-1) in Theorem 1.1.3.
This case cannot occur. Indeed, let $E \cong \boldsymbol{P}^{n-1}$ be as in (3-1) in Theorem 1.1.3. Either $E$ cannot be a fiber of $f$, or the restriction of $f$ to $E$ cannot be a surjection since $P^{n-1}$ has no fibration over a curve. If $E$ is in a fiber of $f$, the fiber is not irreducible and $L^{n-1} F>1$, which is a contradiction.

Case (B-2): ( $f, X, Y, L$ ) is the type (3-2) or the type (3-3) in Theorem 1.1.3.
In these cases, $L^{n-1} F>1$ which are contradictions.
Case (B-3): ( $f, X, Y, L$ ) is the type (3-4) in Theorem 1.1.3.
Let $F=\boldsymbol{P}_{C}(\mathcal{E}), L_{F}=\mathcal{O}_{\boldsymbol{P}(\mathcal{E})}(1)$, and $\pi: \boldsymbol{P}_{C}(\mathcal{E}) \rightarrow C$ the projection, where $\mathcal{E}$ is a locally free sheaf of rank $n-1$ over a smooth curve $C$.

We may assume that $\mathcal{E}$ is ample. det $\mathcal{E}$ is also ample.
By Riemann-Roch formula on $C$ and vanishing theorem,

$$
\begin{aligned}
h^{0}\left(K_{C}+\operatorname{det} \mathcal{E}\right) & =\chi\left(K_{C}+\operatorname{det} \mathcal{E}\right) \\
& =g(C)-1+\operatorname{deg}(\operatorname{det} \mathcal{E}) .
\end{aligned}
$$

If $h^{0}\left(K_{C}+\operatorname{det} \mathcal{E}\right)=0$, then we have $g(C)=0$ and $\operatorname{deg}(\operatorname{det} \mathcal{E})=1$.
Then

$$
\mathcal{E}=\mathcal{O}\left(a_{1}\right) \oplus \mathcal{O}\left(a_{2}\right) \oplus \cdots \oplus \mathcal{O}\left(a_{n-1}\right)
$$

by Grothendieck's theorem.
Since $\mathcal{E}$ is ample, $a_{i}>0$ for any $i$. Hence

$$
\operatorname{deg}(\operatorname{det} \mathcal{E}) \geqq n-1 \geqq 2
$$

since $n \geqq 3$. This contradicts $\operatorname{deg}(\operatorname{det} \mathcal{E})=1$.
Therefore by the formula $K_{F / C}=\mathcal{O}_{\boldsymbol{P}(\mathcal{E})}(-(n-1)) \otimes \pi^{*} \operatorname{det} \mathcal{E}$,

$$
\begin{aligned}
h^{0}\left(K_{F}+(n-1) L_{F}\right) & =h^{0}\left(\pi^{*}\left(K_{C}+\operatorname{det} \mathcal{E}\right)\right) \\
& =h^{0}\left(K_{C}+\operatorname{det} \mathcal{E}\right)>0
\end{aligned}
$$

But by Grauert's theorem, $f_{*} \mathcal{O}\left(K_{X / Y}+(n-1) L\right) \neq 0$.
This contradicts the assumption.
Therefore this case cannot occur.
Case (1) is complete.
Case (2): $g(Y)=0$, i.e., $Y \cong \boldsymbol{P}^{1}$
In this case, $g(L)=0$. So by Fujita's classification of $(X, L)$ with $g(L)=0$ ( $[\mathbf{F j} \mathbf{2}]),(X, L)$ is one of the following three possible types:
(A) $(X, L)=\left(\boldsymbol{P}^{n}, \mathcal{O}(1)\right)$.
(B) $X$ is a hyperquadric in $P^{n+1}, L=\mathcal{O}_{X}(1)$.
(C) $(X, L)$ is a scroll over $\boldsymbol{P}^{1}$.

Note that $X$ with $\operatorname{Pic} X \cong \boldsymbol{Z}$ has no fibration over a curve.
Case (A)
This case cannot occur since $X$ has no fibration over a curve.
Case (B)
Since $n \geqq 3$, Pic $X \cong \boldsymbol{Z}$ by Lefschetz's Theorem ((7.1) in [Fj3]). Hence this case cannot occur.

Case (C)
Let $h: X \rightarrow \boldsymbol{P}^{1}$ be the structure morphism of scroll, and $F_{h}\left(\cong \boldsymbol{P}^{n-1}\right)$ any fiber of $h$, which has no fibration over a curve for $n \geqq 3$.

Then $\operatorname{dim} f\left(F_{h}\right)=0$.
Hence there is a morphism $\mu: \boldsymbol{P}^{1} \rightarrow Y$ such that $f=\mu \circ h$ ((4.4) in [EGA] III). Since $f$ has connected fibers, $\mu$ is isomorphism ((7.1) in [Mu]).

Therefore $(f, X, Y, L)$ is a scroll.
When $\operatorname{dim} X=2$, we obtain the following.
Proposition 1.4.3. Let $(f, X, Y, L)$ be a polarized fiber space, $X$ a surface, and $Y$ a curve. Assume that $g(L)=g(Y)$ and $(f, X, Y, L)$ is not a scroll.

Then $(f, X, Y, L) \cong\left(\pi, \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, \boldsymbol{P}^{1}, L\right)$ as a polarized fiber space, where $\pi$ is one projection such that $L F_{\pi} \geqq 2$, where $F_{\pi}$ is a fiber of $\pi$.

Proof. Let $F$ be a general fiber of $f$.

Case (1): $g(Y) \geqq 1$.
Case (1)-1: $\quad g(F) \geqq 2$.
In this case, by Theorem 5.5 in [Fk1], $g(L) \geqq g(Y)+1$.
Hence this case is excluded.
Case (1)-2: $\quad g(F)=1$.
In this case, $\kappa(X) \leqq \kappa(F)+\operatorname{dim} Y=1$ ([Ii1]). Let $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ be the relatively minimal model of ( $f, X, C, L$ ) and $\mu: X \rightarrow X^{\prime}$ its birational morphism, where $L^{\prime}=\mu_{*} L$ in the sense of cycle theory. By the canonical bundle formula for elliptic fibrations ([BPV]), $K_{X} \cdot L \geqq K_{X^{\prime}} \cdot L^{\prime} \geqq 2 g(Y)-2$. Hence taking it into account that $g(L)$ is an integer, we have $g(L) \geqq g(Y)+1$, which is a contradiction.

Case (1)-3: $\quad g(F)=0$.
In this case, $\kappa(X) \leqq \kappa(F)+\operatorname{dim} Y=-\infty$. Then $g(L) \geqq q(X)$ ([Fk1]). Since $g(L)=g(Y)$, we have $g(L)=g(Y)=q(X)$. Thus by the classification [L-P] and [Fk1], $(X, L)$ is one of the following two types.
(A) $\left(\boldsymbol{P}^{2}, \mathcal{O}(r)\right), r=1$ or 2 .
(B) $X$ is a $\boldsymbol{P}^{1}$-bundle over a smooth curve $C$ and $\left.L\right|_{F^{\prime}}=\mathcal{O}(1)$, where $F^{\prime}$ is a fiber of the projection $\pi: X \rightarrow C$.

Case (A) is excluded, since $P^{2}$ has no fibration over a curve.
Case (B)
Since $\pi$ is a $\boldsymbol{P}^{1}$-bundle and $g(Y) \geqq 1$, there is a morphism $\mu: C \rightarrow Y$ such that $f=\mu \circ \pi$ ((4.4) in EGA] III). Since $f$ has connected fibers, $\mu$ is isomorphism ( 7.1 ) in Mu$]$ ).

Hence ( $f, X, Y, L$ ) is a scroll.
Case (2): $g(Y)=0$.
By hypothesis, $g(L)=g(Y)=0$. By the classification [L-P], [Fj2] and [Fj3], $(X, L)$ is one of (A) and (B) of the previous Case (1)-3. Hence $(X, L)$ has a structure of scroll, since (A) never becomes a polarized fiber space as remarked previously.

Let $\pi_{1}: X \rightarrow C \cong \boldsymbol{P}^{1}$ be the $\boldsymbol{P}^{1}$-bundle such that ( $\pi_{1}, X, C, L$ ) is a scroll. We put $X=\boldsymbol{P}_{C}(\mathcal{E})$ and $\mathcal{E}=\mathcal{O}_{c} \oplus \Theta_{C}(-e)$, where $e \geqq 0$. Let $H$ be the $-\infty$ section of $\pi_{1}$ which is a member of the complete linear system associated to the tautological invertible sheaf $\mathcal{O}_{\boldsymbol{P}(\mathcal{E})}(1)$ over $X$ and $F_{1}$ a fiber of $\pi_{1}$. We remark that $H^{2}=-e$ ([Ha1]). Let $F_{f}$ be a fiber of $f$. Then we can write $F_{f} \equiv a H+b F_{1}$ for some $a, b \in \boldsymbol{Z}$. Since $F_{f}^{2}=0,-a^{2} e+2 a b=0$. If $a=0, F_{f}=b F_{1}$ and $b>0 . f$ factors through $\pi_{1}$, which is an isomorphism since $f$ has connected fibers. Hence we can prove $(f, X, Y, L) \cong\left(\pi_{1}, X, C, L\right)$, which is a scroll against hypothesis. Thus $a \neq 0,2 b-a e=0$ and $F_{f} \equiv a H+(a e / 2) F_{1}$. Since $F_{f}$ is nef, we have $F_{f} \cdot F_{1}$ $=a>0$ and $H \cdot F_{f}=-a e / 2 \geqq 0$. Therefore $e=0, X \cong \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and let $\pi_{1}$ be one projection and $\pi_{2}$ the other projection. Then $H$ is a fiber of $\pi_{2}$. Since $F_{f} \equiv a H$
for some $a \in \boldsymbol{N}$, there exists a morphism $\theta: \boldsymbol{P}^{1} \rightarrow Y$ such that $f=\theta \circ \pi_{2}$. Since $f$ has connected fibers, $\theta$ is an isomorphism. Hence $(f, X, Y, L) \cong\left(\pi_{2}, \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}\right.$, $\boldsymbol{P}^{1}, L$ ).

Example 1.4.4. Let $X=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, p_{i}: \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \rightarrow \boldsymbol{P}^{1}$ the $i$-th projection, and $F_{i}$ a fiber of $p_{i}$. Then $K_{X} \equiv-2 F_{1}-2 F_{2}$. We put $L \equiv 2 F_{1}+F_{2}$. We remark that $L$ is ample and $g(L)=0$.

Then ( $p_{1}, X, \boldsymbol{P}^{1}, L$ ) is a scroll, but ( $p_{2}, X, \boldsymbol{P}^{1}, L$ ) is not a scroll.

## § 2. Some special cases of $\operatorname{dim} Y \geqq 2$.

In this section, we shall consider some special cases.
First by Lemma 1.3.1 we can prove the following lemma:
Lemma 2.1. Let $(f, X, Y, L)$ be a quasi-polarized fiber space with $\operatorname{dim} X>$ $\operatorname{dim} Y \geqq 1$ and $\kappa(F) \geqq 0$, where $F$ is a general fiber of $f$. Then $K_{X / Y} L^{n-1} \geqq 0$.

Proof. Since $\kappa(F) \geqq 0$, we have $f_{*} \mathcal{O}\left(t K_{X / Y}\right) \neq 0$ for $t \gg 0$.
By Viehweg's $\mathbf{V}$ theorem ([V3]), $f_{*} \odot\left(t K_{X / Y}\right)$ is weakly positive. Hence by Lemma 1.3.1 and Remark 1.3.2, $K_{X / Y} L^{n-1} \geqq 0$.

Theorem 2.2. Let $(f, X, Y, L)$ be a quasi-polarized fiber space with $\kappa(X) \geqq 0$ and $\operatorname{dim} X=n \geqq 3$, where $Y$ is a normal projective variety with $\operatorname{dim} Y=m$ and $\kappa(Y)=0$ or 1 . Then $g(L) \geqq q(Y)+\left\lceil((n-1) / 2) L^{n}\right\rceil-m+1$. In particular, $g(L) \geqq q(Y)$ holds if $L^{n} \geqq 2$.

Proof. Note that a quasi-polarized fiber space ( $f, X, Y, L$ ) with $Y$ a normal projective variety can be replaced to a quasi-polarized fiber space ( $f^{\prime}, X^{\prime}, Y^{\prime}, L^{\prime}$ ) with $X^{\prime}$ and $Y^{\prime}$ smooth projective varieties and with $g(L)=g\left(L^{\prime}\right)$ and $X^{\prime}$ and $Y^{\prime}$ are birational to $X$ and $Y$, respectively. Hence we omit the prime. Indeed, let $\mu: Y^{\prime} \rightarrow Y$ be a resolution of $Y$. By Hironaka theory [Hi], there exist a birational morphism $\lambda: X^{\prime} \rightarrow X$, and a surjective morphism with connected fibers $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ such that $f \circ \lambda=\mu \circ f^{\prime}$.

We remark that ( $f^{\prime}, X^{\prime}, Y^{\prime}, L^{\prime}$ ) is a quasi-polarized fiber space and $g(L)=$ $g\left(L^{\prime}\right)$, where $L^{\prime}=(\lambda) * L$.

Case (1): $\kappa(Y)=0$.
By Kawamata's theorem, $q(Y) \leqq \operatorname{dim} Y=m$.
Hence by Lemma 2.1,

$$
\begin{aligned}
g(L) & =1+\frac{1}{2} K_{X / Y}(L)^{n-1}+\frac{n-1}{2}(L)^{n}+\frac{1}{2} f^{*} K_{Y}(L)^{n-1} \\
& \geqq 1+\frac{n-1}{2}(L)^{n}+\frac{1}{2} f^{*} K_{Y}(L)^{n-1} .
\end{aligned}
$$

Since $f^{*} K_{Y}(L)^{n-1} \geqq 0$, and $g(L) \in \boldsymbol{Z}$, we have

$$
\begin{aligned}
g(L) & \geqq m+\left\lceil\frac{n-1}{2} L^{n}\right\rceil-m+1 \\
& \geqq q(Y)+\left\lceil\frac{n-1}{2} L^{n}\right\rceil-m+1 .
\end{aligned}
$$

Case (2): $\kappa(Y)=1$.
By litaka theory ([Ii1]), there exists a fiber space $g: Y \rightarrow C$ onto a curve $C$ with a general fiber $F$ of $\kappa(F)=0$.

By Theorem B in Appendix and Kawamata's theorem, $q(Y) \leqq g(C)+q(F) \leqq$ $g(C)+\operatorname{dim} F \leqq g(C)+m-1$.

Hence if $g(C)=0, q(Y) \leqq m-1$.
Hence

$$
\begin{aligned}
g(L) & \geqq 1+\left\lceil\frac{n-1}{2} L^{n}\right\rceil \\
& >m-1+\left\lceil\frac{n-1}{2} L^{n}\right\rceil-m+1 \\
& \geqq q(Y)+\left\lceil\frac{n-1}{2} L^{n}\right\rceil-m+1 .
\end{aligned}
$$

If $g(C) \geqq 1$, applying Theorem 1.3 .3 to ( $g \circ f, X, C, L$ ), we have $g(L) \geqq g(C)+$ $\left\lceil((n-1) / 2) L^{n}\right\rceil$, since $\kappa(F)+\operatorname{dim} C \geqq \kappa(X) \geqq 0([\mathbf{I i 1}])$.

Hence

$$
\begin{aligned}
g(L) & \geqq g(C)+m-1+\left\lceil\frac{n-1}{2} L^{n}\right\rceil-m+1 \\
& \geqq q(Y)+\left\lceil\frac{n-1}{2} L^{n}\right\rceil-m+1 .
\end{aligned}
$$

Next we prove that Conjecture 2 is true if $\kappa(X) \geqq 0, \kappa(Y) \leqq 1$, and $\operatorname{dim} Y=2$.
Theorem 2.3. Let $(f, X, Y, L)$ be a quasi-polarized fiber space with $\kappa(X) \geqq 0$ and $\operatorname{dim} X=n \geqq 3$, where $Y$ is a normal projective surface over $C$ with $\kappa(Y) \leqq 1$.

Then $g(L) \geqq q(Y)+\left\lceil((n-1) / 2) L^{n}\right\rceil-1$.
Proof. As in the proof of Theorem 2. $2,(f, X, Y, L)$ is replaced by $\left(f^{\prime}, X^{\prime}, Y^{\prime}, L^{\prime}\right)$. If $k(Y)=0$ or 1 , then, by Theorem 2.2, $g(L) \geqq q(Y)+$ $\left.\Gamma((n-1) / 2) L^{n}\right\rceil-1$ holds.

So we may assume that $\kappa(Y)=-\infty$.
If $q(Y)=0$, it is obviously proved. Since $\kappa(X) \geqq 0$ and $g(L)$ is an integer,

$$
g(L) \geqq 1+\left\lceil\frac{n-1}{2} L^{n}\right\rceil .
$$

If $q(Y) \geqq 1$, there exists an Albanese map $\pi: Y \rightarrow C$ where $C$ is a smooth curve of genus $q(Y)$. Hence $h=\pi \circ f: X \rightarrow C$ is a fiber space. Since $\kappa\left(F_{h}\right)+\operatorname{dim} C \geqq$ $\kappa(X) \geqq 0$ and $g(C) \geqq 1$, applying Theorem $1.3,3$ to $(\pi \circ f, X, C, L)$, we have

$$
g(L) \geqq g(C)+\left\lceil\frac{n-1}{2} L^{n}\right\rceil>q(Y)-1+\left\lceil\frac{n-1}{2} L^{n}\right\rceil
$$

where $F_{h}$ is a general fiber of $h$.

## Appendix.

First we shall prove the following theorem by the same method as [V3].
TheOrem A. Let $X$ and $Y$ be smooth quasi-projective varieties over $\boldsymbol{C}, \mathcal{L}$ a semiample invertible sheaf over $X, f: X \rightarrow Y$ a projective surjective morphism, and $\omega_{X / Y}=\omega_{X} \otimes f^{*} \omega_{\bar{Y}}^{-1}$. Then for any positive integer $k, f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)$ is weakly positive in the sense of Viehweg [V3].

REMARK. If $\mathcal{L}$ is semiample over $f^{-1}(U)$ for an open set $U \subset Y$, then we can prove that for any positive integer $k, f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)$ is weakly positive by the same method as the following argument.

We use the same notations as in [V3].
Let $\mathscr{F}$ be a torsion free coherent sheaf over $Y$ and $\mathscr{F} * *$ the double dual of $\mathscr{F}$. Let $\hat{S}^{\beta} \mathscr{F}$ denote the double dual of the $\beta$-th symmetric power of $\mathcal{F}$.

Definition. The sheaf $\mathscr{F}$ is said to be generated over an open set $U$ by global section if the canonical map

$$
\mathcal{O}_{U} \otimes H^{0}(Y, \mathscr{F}) \longrightarrow \mathscr{F}_{U}
$$

is a surjection and $U$ is an open set dense in $Y$. An invertible sheaf $\mathcal{L}$ is said to be semiample over $U$ if some tensor power of $\mathcal{L}$ is generated over $U$ by global sections. Note that $\mathcal{F}=0$ is said to be generated over $Y$ by global sections. $\mathcal{F}$ is said to be weakly generated over an open set $U$ if the double dual of some symmetric power of $\mathscr{F}$ is generated over $U$ by global sections.

Note that letting $i: Y(\mathscr{F}) \subset Y$ be the biggest open set such that $\mathcal{F}$ is locally free, $\widehat{S}^{k}(\mathscr{F})=i_{*} S^{k}\left(i^{*} \mathscr{F}\right)$.

Definition (Viehweg [V3]). The sheaf $\mathscr{F}$ is said to be weakly positive if there exist an ample invertible sheaf $\mathscr{H}$ over $Y$ and an open set $U$ such that for any positive integer $\alpha, S^{\alpha}(\mathscr{F}) \otimes \mathscr{H}$ is weakly generated over an open set $U$ by global sections.

Note that $\mathscr{F}=0$ is weakly positive and that since $\mathscr{F}$ is torsion free, $\mathscr{F}$ is locally free in codimension one. Hence $H^{0}\left(Y, \hat{S}^{\beta}(\mathscr{F})\right)=H^{0}\left(Y(\mathcal{F}), S^{\beta}(\mathscr{F})\right)$. Hence to prove $f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)$ is weakly positive, we may replace $Y$ by $Y-S$ over which $f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)$ is locally free with $\operatorname{codim}(Y-S) \geqq 2$.

At first we shall prove the following lemmata.
LEMMA A.1. $f_{*}\left(\omega_{X / Y} \otimes \mathcal{L}\right)$ is weakly positive.
Proof. Since $\mathcal{L}$ is semiample, for some $N \geqq 2$

$$
\mathcal{L}^{\otimes N}=\mathcal{O}\left(\sum_{j} \nu_{j} D_{j}\right)
$$

where $D_{j}$ are non-singular prime divisors with $\nu_{j}=1$.
Let $\mathcal{L}^{(i)}=\mathcal{L}^{\otimes i}\left(-\Sigma_{j}\left[i \cdot \nu_{j} / N\right] D_{j}\right)$. By Lemma 5.1 in [V3], $f_{*}\left(\mathcal{L}^{(i)} \otimes \boldsymbol{\omega}_{X / Y}\right)$ is weakly positive. But since $N \geqq 2$, we have $\mathcal{L}^{(1)}=\mathcal{L}$. Therefore

$$
f_{*}\left(\omega_{X / Y} \otimes \mathcal{L}^{(1)}\right)=f_{*}\left(\omega_{X / Y} \otimes \mathcal{L}\right)
$$

is weakly positive.
Lemma A.2. Let $f, X, Y$ be as above and $\mathcal{L}$ a semiample invertible sheaf over $X$.
(1) Let $\mathcal{A}$ be an invertible sheaf over $X$ and $\sum_{j} e_{j} E_{j}$ an effective divisor's irreducible decomposition such that for $N>0, \mathcal{A}^{\otimes N}=\mathcal{O}_{X}\left(\sum_{j} e_{j} E_{j}\right)$. Suppose that the support of $\sum_{j} e_{j} E_{j}$ is normally crossing over $f^{-1}(U)$ for a dense open set $U \subset Y$.

Then, for $0 \leqq i \leqq N-1$, the sheaf $f_{*}\left(\mathcal{A}^{\otimes i}\left(-\Sigma_{j}\left[i \cdot e_{j} / N\right] E_{j}\right) \otimes \omega_{X / Y} \otimes \mathcal{L}\right)$ is weakly positive. (Therefore for $0 \leqq i \leqq N-1$, the sheaf $f_{*}\left(\mathcal{H}^{\otimes i}\left(-\Sigma_{j} g_{j} E_{j}\right) \otimes \omega_{X / Y} \otimes \mathcal{L}\right)$ is weakly positive if

$$
f_{*}\left(\mathcal{A}^{\otimes i}\left(-\sum_{j}\left[\frac{i \cdot e_{j}}{N}\right] E_{j}\right) \otimes \omega_{X / Y} \otimes \mathcal{L}\right) \longrightarrow f_{*}\left(\mathcal{A}^{\otimes i}\left(-\sum_{j} g_{j} E_{j}\right) \otimes \omega_{X / Y} \otimes \mathcal{L}\right)
$$

is an isomorphism over a dense open subset of $Y$.)
(2) Let $\because$ be an invertible sheaf over $X$ which is generated over $f^{-1}(U)$ by global sections for an open set $U \subset Y$. Then $\Re=\mathcal{O}_{X}\left(B+\sum_{j} d_{j} D_{j}\right)$ as the irreducible decomposition such that $B$ is nonsingular over $f^{-1}(U)$ and the support of $\sum_{j} d_{j} D_{j}$ is contained in $f^{-1}(Y-U)$.

## Proof.

(1) We take a blowing up $\mu: T \rightarrow X$ which is an isomorphism over $f^{-1}(U)$ such that $\left(\mu^{*} \mathcal{A}\right)^{\otimes N}=\mathcal{O}_{X}\left(\sum_{j, k} f_{j, k} F_{j, k}\right)$ with the support of the irreducible decomposition $\sum_{j, k} F_{j, k}$ normally crossing. Note that $e_{j} \mid f_{j, k}$, and the centers of the blowing up never meet the points where $\sum_{j} E_{j}$ is normally crossing. Let $d$ be a composite of a desingularization $Z \rightarrow \operatorname{Spec}\left(\bigoplus_{i=0}^{N-1}\left(\mu^{*} A\right)^{-i}\right)$ and the structure
morphism $\operatorname{Spec}\left(\oplus_{i=0}^{N-1}\left(\mu^{*} \mathcal{A}\right)^{-i}\right) \rightarrow T$. Then by (2.3) in [V3], we have

$$
d_{*} \omega_{Z / Y}=\bigoplus_{i=0}^{N-1}\left(\left(\mu^{*} \mathcal{A}\right)^{(i)} \otimes \omega_{T / X}\right) .
$$

Hence

$$
f_{*^{\circ}} \mu_{*^{\circ}} d_{*}\left(\omega_{Z / Y} \otimes d^{*}{ }_{\circ} \mu^{*} \mathcal{L}\right)=\bigoplus_{i=0}^{N-1} f_{*^{\circ}} \mu_{*}\left(\left(\mu^{*} \mathcal{A}\right)^{(i)} \otimes \omega_{T / Y} \otimes \mu^{*} \mathcal{L}\right) .
$$

By Lemma A.1,

$$
f_{*^{\circ}} \mu_{*^{\circ}} d_{*}\left(\omega_{Z / Y} \otimes d^{*}{ }^{\circ} \mu^{*} \mathcal{L}\right)
$$

is weakly positive. Hence

$$
f_{*^{\circ}} \mu_{*}\left(\left(\mu^{*} \mathcal{A}\right)^{(i)} \otimes \omega_{T / Y} \otimes \mu^{*} \mathcal{L}\right)=f_{*^{\circ}} \mu_{*}\left(\left(\mu^{*} \mathcal{A}\right)^{\otimes i}\left(-\sum_{j, k}\left[\frac{i \cdot f_{j, k}}{N}\right] F_{j, k}\right) \otimes \omega_{T / Y} \otimes \mu^{*} \mathcal{L}\right)
$$

is weakly positive. The following natural map is an isomorphism over $U$

$$
\begin{aligned}
& f_{*^{\circ}} \mu_{*}\left(\left(\mu^{*} \mathcal{A}\right)^{\otimes i}\left(-\sum_{j, k}\left[\frac{i \cdot f_{j, k}}{N}\right] F_{j, k}\right) \otimes \omega_{T / Y} \otimes \mu^{*} \mathcal{L}\right) \\
\rightarrow & f_{*^{\circ}} \mu_{*}\left(\left(\mu^{*} \mathcal{A}\right)^{\otimes i}\left(-\Sigma^{\prime}\left[\frac{i \cdot f_{j, k}}{N}\right] F_{j, k}\right) \otimes \omega_{T / Y} \otimes \mu^{*} \mathcal{L}\right)
\end{aligned}
$$

if in the last term the sum $\Sigma^{\prime}$ tends over $F_{j, k}$ 's intersecting on $(f \circ \mu)^{-1}(U)$. Hence the last term is weakly positive. On the other hand $\mathcal{O}\left(\Sigma_{j}\left[i \cdot e_{j} / N\right] \mu^{*} E_{j}\right)$ $=\mathcal{O}\left(\Sigma^{\prime}\left[i \cdot f_{j, k} / N\right] F_{j, k}\right)$ over $(f \circ \mu)^{-1}(U)$.

Hence over $U$

$$
\begin{aligned}
& f_{*^{\circ}} \mu_{*}\left(\left(\mu^{*} \mathcal{A}\right)^{\otimes i}\left(-\Sigma^{\prime}\left[\frac{i \cdot f_{j, k}}{N}\right] F_{j, k}\right) \otimes \omega_{T / Y} \otimes \mu^{*} \mathcal{L}\right) \\
= & f_{*}{ }^{\circ} \mu_{*}\left(\left(\mu^{*} \mathcal{A}\right)^{\otimes i}\left(-\sum_{j}\left[\frac{i \cdot e_{j}}{N}\right] \mu^{*} E_{j}\right) \otimes \omega_{T / Y} \otimes \mu^{*} \mathcal{L}\right) \\
= & f_{*}\left(\mathcal{A}^{\otimes i}\left(-\Sigma_{j}\left[\frac{i \cdot e_{j}}{N}\right] E_{j}\right) \otimes \omega_{X / Y} \otimes \mathcal{L}\right)
\end{aligned}
$$

is weakly positive.
(2) Let $\mathfrak{N}=\mathcal{O}_{X}\left(B+\sum_{i} d_{i} D_{i}\right)$, where $D_{i} \subset f^{-1}(Y-U)$ for each $i$. Since $\mathscr{N}$ is generated over $f^{-1}(U)$ by global sections and $\left.\mathscr{N}\right|_{f^{-1}(U)}=\left.\mathcal{O}_{X}(B)\right|_{f^{-1}(U)}$, a general section $B$ of $\left.\mathscr{N}\right|_{f^{-1}(U)}$ is nonsingular over $f^{-1}(U)$ by Bertini's theorem.

Lemma A.3. Let $X, Y, f, \mathcal{L}$ be as above and $\mathscr{H}$ an ample line bundle on $Y$ such that for given $k>0$ and some $\nu>0$ the sheaf $\hat{S}^{\nu}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{c}^{\otimes k}\right)$ is generated over an open set $U$ by global sections.

Then $f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k} \otimes f^{*} \mathscr{H}^{\otimes k-1}\right)$ is weakly positive.

Proof. By ( 1.3 iv) in [V3] we may replace $Y$ by $Y-S$, as long as $S$ is a closed subvariety of codimension $\geqq 2$. Hence we may assume that $f_{*}\left(\left(\omega_{X / Y} \otimes\right.\right.$ $\left.\mathcal{L} \otimes f^{*} \mathscr{H}\right)^{\otimes k}$ ) is locally free on $Y$.

We put

$$
\mathscr{M}=\operatorname{Im}\left(f^{*}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)^{\otimes k}\right)\right) \longrightarrow\left(\omega_{X / X} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)^{\otimes k}\right)^{* *},
$$

where ${ }^{* *}$ denotes the double dual.
Then $\mathscr{M}$ is a line bundle, i.e.,

$$
\mathscr{M}=\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f * \mathscr{H}\right)^{\otimes k} \otimes \mathcal{O}_{X}(-Z),
$$

where $Z$ is an effective divisor on $X$.
Then there exists a blowing up of $X, \rho_{1}: X^{\prime} \rightarrow X$ such that

$$
\rho_{1}^{*} \circ f^{*}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)^{\otimes k}\right)\right) \longrightarrow \rho_{1}^{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)^{\otimes k}\right) \otimes \rho_{1}^{* O}(-Z) \otimes \mathcal{O}(-E)
$$

is surjective, where $E$ is an exceptional effective divisor.
In order to have the support of $\rho_{2}^{*}\left(\rho_{1}^{*} Z+E\right)=D$ in a normal crossing divisor, we take a blowing up $\rho_{2}: X^{\prime \prime} \rightarrow X^{\prime}$. Here we put $\rho_{1} \circ \rho_{2}=\rho$ and $f \circ \rho=g$.

The pullback of the map above

$$
\rho^{*} \circ f^{*}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)^{\otimes k}\right)\right) \longrightarrow \rho^{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{C}\right)^{\otimes k}\right) \otimes \mathcal{O}(-D)
$$

is a surjection, whose image we denote by 9 . Note that $g_{*} \Re \supset f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes\right.\right.$ $\left.\left.f^{*} \mathscr{H}\right)^{\otimes k}\right)=g_{*}\left(\left(\omega_{X^{\prime \prime} / Y} \otimes \rho^{*} \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{H}^{\otimes k}$ and that $\rho_{*} \omega_{X^{\prime \prime}}^{\otimes k}=\omega_{X}^{\otimes k}$. Then we have

$$
\begin{aligned}
g^{*}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f * \mathscr{H}\right)^{\otimes k}\right)\right) & =g^{*}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{H}^{\otimes k}\right) \\
& =g^{*}\left(g_{*}\left(\left(\omega_{X^{\prime \prime} / Y} \otimes \rho^{*} \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{H} \mathscr{C}^{\otimes k}\right) .
\end{aligned}
$$

We remark that

$$
f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{H}^{\otimes k} \cong g_{*}\left(\left(\omega_{X^{\prime \prime} / Y} \otimes \rho^{*} \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{C}^{\otimes k}
$$

and

$$
S^{\nu}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{H}^{\otimes k}\right) \cong S^{\nu}\left(g_{*}\left(\left(\omega_{X^{\prime \prime} / Y} \otimes \rho^{*} \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{H}^{\otimes k}\right) .
$$

Since

$$
g^{*}\left(g_{*}\left(\left(\omega_{X^{\prime \prime} / Y} \otimes \rho^{*} \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{C}^{\otimes k}\right) \longrightarrow \rho^{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)^{\otimes k}\right) \otimes \mathcal{O}(-D)
$$

is surjective,

$$
\begin{aligned}
g^{*} S^{\nu}\left(g_{*}\left(\left(\omega_{X^{\prime \prime} / Y} \otimes \rho^{*} \mathcal{L}^{\otimes k}\right) \otimes \mathscr{H}^{\otimes k}\right)\right. & \longrightarrow S^{\nu}\left(\rho^{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)^{\otimes k}\right) \otimes \mathcal{O}(-D)\right) \\
& \cong \rho^{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)^{\otimes k \nu}\right) \otimes \mathcal{O}(-\nu D)
\end{aligned}
$$

is surjective.
Hence by hypothesis, $\eta^{\otimes \nu}=\rho^{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f * \mathscr{H}\right)^{\otimes k \nu}\right) \otimes \mathcal{O}(-\nu D)$ is generated over $g^{-1}(U)$ for an open set $U$ of $Y$ by global sections.

Hence we apply Lemma A. 2 to $\left(\rho^{*}\left(\boldsymbol{\omega}_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)\right)^{\otimes k}=\mathscr{N} \otimes \mathcal{O}(D)$.

Then $g_{*}\left(\omega_{X^{\prime \prime} / Y} \otimes \rho^{*} \mathcal{L} \otimes\left(\rho^{*}\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{G}\right)\right)^{\otimes k-1}(-[((k-1) / k) D])\right)$ is weakly positive.

Since $\rho_{*} \omega_{X \prime \prime}=\omega_{X}$, we have

$$
\begin{align*}
& g_{*}\left(\omega_{X^{\prime \prime} / Y} \otimes \rho^{*} \mathcal{L} \otimes\left(\rho^{*}\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)\right)^{\otimes k-1}\left(-\left[\frac{k-1}{k} D\right]\right)\right)  \tag{1}\\
\subset & g_{*}\left(\omega_{X^{\prime \prime} / Y} \otimes \rho^{*} \mathcal{L} \otimes\left(\rho^{*}\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)\right)^{\otimes k-1}\right) \\
= & f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{H}^{\otimes k-1},
\end{align*}
$$

and since $\mathcal{O}([((k-1) / k) D]) \subset \mathcal{O}(D)$ and $\rho^{*} \omega_{X} \subset \omega_{X^{\prime \prime}}$,

$$
\begin{equation*}
\mathfrak{N} \otimes g^{*} \mathscr{H}^{-1} \subset\left(\omega_{X^{\prime \prime} / Y} \otimes \rho^{*} \mathcal{L} \otimes \rho^{*}\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f * \mathscr{H}\right)^{\otimes k-1}\right)\left(-\left[\frac{k-1}{k} D\right]\right) \tag{2}
\end{equation*}
$$

Since $g_{*} \Re \supset f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{G}\right)^{\otimes k}\right)$, we have by (1) and (2)

$$
\begin{aligned}
& g_{*} \mathscr{l} \otimes \mathscr{H}^{-1} \subset g_{*}\left(\omega_{X^{\mu / Y}} \otimes \rho^{*} \mathcal{L} \otimes \rho^{*}\left(\omega_{X / Y} \otimes \mathcal{L} \otimes f^{*} \mathscr{H}\right)^{\otimes k-1}\left(-\left[\frac{k-1}{k} D\right]\right)\right) \\
& \subset f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{H}^{\otimes k-1}
\end{aligned}
$$

three of which all coincide and are weakly positive.
Lemma A.4. Let $f, X, Y, \mathcal{L}$ be as in Theorem A, $Y^{\prime}$ a smooth quasiprojective variety, $\tau: Y^{\prime} \rightarrow Y$ a flat projective morphism, $S=X \times_{Y} Y^{\prime}, S^{\prime}$ the normalization of $S$, and $X^{\prime}$ a desingularization of $S^{\prime}$. We have the following diagram:


We put $\tau_{1}=\tau_{2} \circ \sigma$ and $\tau^{\prime}=\tau_{1} \circ \mathrm{~d}$.
Assume that $S^{\prime}$ has only rational singularities.
Then for any $k \geqq 0$ there exists a homomorphism

$$
i: f_{*}^{\prime}\left(\left(\left(\omega_{X^{\prime} / Y^{\prime}} \otimes\left(\tau^{\prime}\right)^{*} \mathcal{L}\right)^{\otimes k+1}\right) \longrightarrow \tau^{*} \circ f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k+1}\right)\right.
$$

which is an isomorphism over an open subvariety of $Y^{\prime}$.
Proof. By the proof of Lemma 3.2 in [V3],
is an isomorphism over $h^{-1}(U)$ for an open subvariety $U$ of $Y^{\prime}$. Then

$$
\begin{aligned}
\sigma_{*^{\circ}} d_{*}\left(\left(\omega_{X^{\prime} / Y^{\prime}} \otimes\left(\tau^{\prime}\right)^{*} \mathcal{L}\right)^{\otimes k+1}\right) & \cong \sigma_{*^{\circ}} d_{*}\left(\omega_{X^{\prime} / Y^{\prime}}^{\otimes k+1}\right) \otimes \tau_{2}^{*} \mathcal{L}^{\otimes k+1} \\
& \rightarrow \tau_{2}^{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k+1}\right)
\end{aligned}
$$

is an isomorphism over $h^{-1}(U)$.
Hence since $\tau$ is a flat morphism, by the flat base change theorem ([Ha1]),

$$
\begin{aligned}
f_{*}^{\prime}\left(\left(\omega_{X^{\prime} / Y^{\prime}} \otimes\left(\tau^{\prime}\right)^{*} \mathcal{L}\right)^{\otimes k+1}\right) & \cong h_{*^{\circ}} \tau_{2}^{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k+1}\right) \\
& \cong \tau^{*} \circ f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k+1}\right)
\end{aligned}
$$

is an isomorphism over $U$.
Proof of Theorem A. Let $\mathscr{A}$ be any ample line bundle on $Y$.
Only to prove Theorem A, by (1.3 iv) in [V3], we may assume that $f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)$ is locally free on $Y$.

$$
r=\operatorname{Min}\left\{s>0: f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes \mathcal{K}^{\otimes s k-1}: \text { weakly positive }\right\}
$$

Then there exists a positive integer $\nu$ such that

$$
S^{\nu}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)\right) \otimes \mathscr{H}^{\otimes \nu(r k-1)} \otimes \mathscr{G}^{\otimes \nu}
$$

is generated over an open set by global sections.
By Lemma A.3, $f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes \mathcal{H}^{\otimes r(k-1)}$ is weakly positive. Then by the choice of $r,(r-1) k-1<r(k-1)$. Hence we have $r \leqq k$. Hence for any surjective morphism and any $\mathscr{H}, f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes \mathscr{H}^{\otimes k^{2-k}}$ is weakly positive.

Next we take $\tau: Y^{\prime} \rightarrow Y:$ a finite surjective morphism such that $\tau^{*} \mathscr{H}=\left(\mathscr{K}^{\prime}\right)^{\otimes d}$ for a Cartier divisor $\mathscr{G}^{\prime}$, where $Y^{\prime}$ is a smooth quasi-projective variety and $d$ is given below. (We can take this. See [B-G], [Ka1], [V3].)

We use the same notations as in Lemma A.4.
We blow up $X$ if necessary, so we may assume that the support of the ramification locus $\Delta\left(S^{\prime} / X\right)$ (see [V2]) is a normal crossing divisor. Then the assumption of Lemma A. 4 is satisfied. (See [V1].)

By the same argument above for $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ and Lemma A.4, we can prove that $\tau^{*} \circ f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes\left(\mathscr{H}^{\prime}\right)^{\otimes k^{2-k}}$ is weakly positive.

Let $\alpha$ be a positive integer, and we put $d=2\left(k^{2}-k\right) \alpha+1$.
For a sufficiently big integer $\beta$,

$$
\begin{align*}
& S^{2 \alpha \beta}\left(\tau^{*} \circ f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right) \otimes\left(\mathscr{G}^{\prime}\right)^{\otimes k^{2-k}}\right) \otimes\left(\mathscr{G}^{\prime}\right)^{\otimes \beta}  \tag{1}\\
\cong & \tau^{*} S^{2 \alpha \beta}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)\right) \otimes\left(\tau^{*} \mathscr{H}\right)^{\otimes \beta}
\end{align*}
$$

is generated over an open set by global sections.
Since the trace map $\tau_{*} \mathcal{O}_{Y^{\prime}} \rightarrow \mathcal{O}_{Y}$ is surjective,

$$
\begin{equation*}
\tau_{*} \cdot \tau^{*}\left(S^{2 \alpha \beta}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)\right) \otimes \mathscr{H}^{\otimes \beta}\right) \longrightarrow S^{2 \alpha \beta}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)\right) \otimes \mathscr{H}^{\otimes \beta} \tag{2}
\end{equation*}
$$

is surjective.

By (1),

$$
\oplus \mathcal{O}_{Y^{\prime}} \longrightarrow \tau^{*} S^{2 \alpha \beta}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)\right) \otimes \tau^{*} \mathscr{H}^{\otimes \beta}
$$

is surjective over a dense open set of $Y^{\prime}$.
Since $\tau$ is finite surjective,

$$
\oplus \tau_{*} \mathcal{O}_{Y^{\prime}} \longrightarrow \tau_{*^{\circ}} \tau^{*}\left(S^{2 \alpha \beta}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)\right) \otimes \mathscr{H}^{\otimes \beta}\right)
$$

is surjective over a dense open set of $Y$.
Hence by (2)

$$
\left(\oplus \tau_{*} O_{Y^{\prime}}\right) \otimes \mathscr{H}^{\otimes \beta} \longrightarrow S^{2 \alpha \beta}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)\right) \otimes \mathscr{H}^{\otimes 2 \beta}
$$

is surjective over a dense open set of $Y$.
For a sufficiently big integer $\beta, \tau_{*} \Theta_{Y}, \otimes \mathscr{H}^{\otimes \beta}$ is generated by global sections.
Hence $S^{2 \alpha \beta}\left(f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)\right) \otimes \mathscr{H}^{\otimes 2 \beta}$ is generated over an open set by global sections. Therefore $f_{*}\left(\left(\omega_{X / Y} \otimes \mathcal{L}\right)^{\otimes k}\right)$ is weakly positive.

We can also prove the following theorem. (This theorem was pointed out by the referee.)

Theorem $\mathrm{A}^{\prime}$. Let $X$ and $Y$ be smooth quasi-projective varieties over $\boldsymbol{C}, \mathcal{L}$ a semiample invertible sheaf over $X$, and $f: X \rightarrow Y$ a projective surjective morphism. Then for any positive integer $k$ and $i, f_{*}\left(\omega_{X \mid Y}^{\otimes k} \otimes \mathcal{L}^{\otimes i}\right)$ is weakly positive.

Proof. Let $\eta: X^{\prime} \rightarrow X$ be a finite cyclic covering defined by the nonsingular divisor $B$ such that $\mathcal{L}^{\otimes N}=\mathcal{O}(B)$. Then $\eta_{*} \omega_{X^{\prime} / Y}=\oplus_{i=0}^{N-1}\left(\omega_{X / Y} \otimes \mathcal{L}^{\otimes i}\right)$. Since $X^{\prime}$ is nonsingular and $\eta$ is affine,

$$
\left(\eta_{*} \omega_{X^{\prime} / Y}\right)^{\otimes k}=\eta_{*}\left(\omega_{\left.X^{\prime} / Y\right)}^{\otimes k}\right) .
$$

Hence we have

$$
(f \circ \eta)_{*}\left(\omega_{X^{\prime} / Y}^{\otimes k}\right)=\stackrel{\oplus}{t=0}_{k(N-1)}^{\ominus} f_{*}\left(\omega_{X Y Y}^{\otimes k} \otimes \mathcal{L}^{\otimes t}\right)^{\oplus \alpha(t)},
$$

which is weakly positive by Viehweg [V3], where $\left(\sum_{i=0}^{N-1} x^{i}\right)^{k}=\sum_{t=0}^{k(N-1)} \alpha(t) x^{t}$. Thus $f_{*}\left(\omega_{X, Y}^{\otimes k} \otimes \mathcal{L}^{\otimes t}\right)$ is also weakly positive for $0 \leqq t \leqq k(N-1)$. Tend $N \rightarrow \infty$ and we complete the proof.

Theorem B. Let $(f, X, Y)$ be a fiber space with $n=\operatorname{dim} X>\operatorname{dim} Y=s$.
Then $q(X) \leqq q(F)+q(Y)$, where $F$ is a general fiber of $f$.
Proof. Note that $H^{0}\left(X, f * \Omega_{Y}^{1}\right)=H^{0}\left(Y, \Omega_{Y}^{1}\right)$ since $(f, X, Y)$ is a fiber space and that there exists the canonical restriction: $H^{0}\left(X, \Omega_{X}^{1}\right) \rightarrow H^{0}\left(F, \Omega_{F}^{1}\right), \phi \rightarrow \phi_{F}$. By the following claim proved soon, we can show the inequality

$$
\operatorname{dim} H^{0}\left(X, \Omega_{X}^{1}\right) / H^{0}\left(X, f^{*} \Omega_{Y}^{1}\right) \leqq \operatorname{dim} H^{0}\left(F, \Omega_{F}^{1}\right)
$$

Indeed let $\left(\phi_{i}\right)_{1 \leq i \leq q}$ be a basis of representative 1-forms of $H^{0}\left(X, \Omega_{X}^{1}\right) / H^{0}\left(X, f^{*} \Omega_{Y}^{1}\right)$. If there exist complex numbers $\left(a_{i}\right)_{1 s i s q}$ such that $\left(\sum_{i=1}^{q} a_{i} \phi_{i}\right)_{F}=0$, by the claim $\sum_{i=1}^{q} a_{i} \phi_{i}=0 \bmod H^{0}\left(X, f^{*} \Omega_{Y}^{1}\right)$, which implies the image of the basis is linearly independent in $H^{0}\left(F, \Omega_{F}^{1}\right)$. It is enough to show the following claim:

Claim. Let $\varphi$ be an element of $H^{0}\left(X, \Omega_{X}^{1}\right)$ such that $\varphi_{F}=0$ for a general fiber $F$ of $f$. Then there is a $\psi \in H^{0}\left(Y, \Omega_{Y}^{\frac{1}{Y}}\right)$ such that $\varphi=f^{*} \psi$, where $\Omega_{X}^{1}$ (resp. $\Omega_{Y}^{1}$ ) is the sheaf of differentials of $X$ (resp. $Y$ ).

Let $Y_{0}$ be a Zariski open set such that $f_{0}: X_{0}=f^{-1}\left(Y_{0}\right) \rightarrow Y_{0}$ is smooth and $\Sigma(f)=Y-Y_{0}$. Let $D$ be irreducible components of $\Sigma(f)$ of codimension 1 in $Y$ and $D=\cup_{i=1}^{t} D_{i}$. Then we may assume that $D$ and $f^{-1}(D)$ are normal crossing divisors. Indeed, if $\bigcup_{i=1}^{t} D_{i}$ is not a normal crossing divisor, then by taking some blowing ups $\mu_{Y}: Y_{1} \rightarrow Y,\left(\mu_{Y}^{*}(D)\right)_{\text {red }}$ is a normal crossing divisor. Then there exist a birational morphism $\mu_{1}: X_{1} \rightarrow X$ and a surjective morphism $f_{1}: X_{1} \rightarrow Y_{1}$ with connected fibers such that $\mu_{Y} \circ f_{1}=f \circ \mu_{1}$. Let $\Sigma\left(f_{1}\right)=\mu_{Y}^{1}(\Sigma(f))$ and $Y_{1,0}=Y_{1}-\Sigma\left(f_{1}\right)$. Then $Y_{1,0}$ is a Zariski open set such that $f_{1}: f_{1}^{-1}\left(Y_{1,0}\right)=$ $X_{1,0} \rightarrow Y_{1,0}$ is smooth. Let $A$ be the union of irreducible components of $\Sigma\left(f_{1}\right)$ of codimension 1 in $Y_{1}$. Then $A$ is a normal crossing divisor. If $\left(f_{1}^{-1}(A)\right)_{\text {red }}$ is not a normal crossing divisor, then we take some blowing ups $\mu_{2}: X_{2} \rightarrow X_{1}$ such that $\left(\left(f_{1} \circ \mu_{2}\right)^{-1}(A)\right)_{\text {red }}$ is a normal crossing divisor. We remark that $f_{2}=$ $f_{1} \circ \mu_{2}: X_{2} \rightarrow Y_{1}$ is a fiber space, $q(X)=q\left(X_{2}\right), q(Y)=q\left(Y_{1}\right)$, and $q(F)=q\left(F_{2}\right)$, where $F$ (resp. $F_{2}$ ) is a general fiber of $f$ (resp. $f_{2}$ ). If we can prove $q\left(X_{2}\right) \leqq q\left(F_{2}\right)+$ $q\left(Y_{1}\right)$, then $q(X) \leqq q(F)+q(Y)$ is proved.
(Step 1)
We remark that there is an exact sequence

$$
0 \longrightarrow f_{0}^{*} \Omega_{Y_{0}}^{1} \longrightarrow \Omega_{X_{0}}^{1} \longrightarrow \Omega_{X_{0} / Y_{0}}^{1} \longrightarrow 0,
$$

where $\Omega_{X_{0} / Y_{0}}^{1}$ is the sheaf of relative differentials of $X_{0}$ over $Y_{0}$.
Hence

$$
0 \longrightarrow H^{0}\left(X_{0}, f_{0}^{*} \Omega_{Y_{0}}^{1}\right) \xrightarrow{\alpha} H^{0}\left(X_{0}, \Omega_{X_{0}}^{1}\right) \xrightarrow{\beta} H^{0}\left(X_{0}, \Omega_{X_{0} / Y_{0}}^{1}\right)
$$

is exact.
Let $\varphi \in H^{0}\left(X, \Omega_{X}^{1}\right)$. We assume that $\varphi_{F_{y}}=0$ for some $y \in Y_{0}$, where $F_{y}$ is the fiber of $f$ over $y$.

Note that

$$
H^{0}\left(X_{0}, \Omega_{X_{0} / Y_{0}}\right)=H^{0}\left(Y_{0}, f_{*} \Omega_{X_{0} / Y_{0}}\right) \cong \operatorname{Hom}\left(\mathcal{O}_{Y_{0}}, f_{*} \Omega_{X_{0} / Y_{0}}\right) .
$$

Hence there corresponds $\Phi: \mathcal{O}_{Y_{0}} \rightarrow f_{*} \Omega_{X_{0} / Y_{0}}$ to the given $\beta\left(\varphi_{X_{0}}\right)$.
By Hodge theory, $\operatorname{dim} H^{0}\left(F_{y}, \Omega_{F_{y}}^{1}\right)$ is constant for any $y \in Y_{0}$. Thus $f_{*} \Omega_{X_{0} / Y_{0}} \otimes \mathcal{O}_{y} / m_{y}=H^{0}\left(F_{y}, \Omega_{F_{y}}^{1}\right)$ for any $y \in Y_{0}$. Hence $\varphi_{F_{y}}=0$ for some $y \in Y_{0}$
implies the following composite map is zero; $\mathcal{O}_{Y_{0}} \rightarrow f_{*} \Omega_{X_{0} / Y_{0}} \otimes \mathcal{O}_{y} / m_{y}$. By NAK lemma, the map $\mathcal{O}_{Y_{0}} \rightarrow f_{*} \Omega_{X_{0} / Y_{0}} \otimes \mathcal{O}_{y}$ is zero and $\Phi: \mathcal{O}_{Y_{0}} \rightarrow f_{*} \Omega_{X_{0} / Y_{0}}$ is zero. Hence $\beta\left(\varphi_{X_{0}}\right)=0$.

Therefore by the above exact sequence there exists $\psi_{0} \in H^{0}\left(X_{0}, f_{0}^{*} Q_{Y_{0}}\right) \cong$ $H^{0}\left(Y_{0}, \Omega_{Y_{0}}^{1}\right)$ such that $f_{0}^{*} \psi_{0}=\varphi$ on $X_{0}$.
(Step 2)
Let $A=Y-\left(D \cup Y_{0}\right)$ and $Y_{1}=A \cup Y_{0}$. Then $A$ is an analytic subspace of $Y_{1}$ and $\operatorname{codim}(A) \geqq 2$ in $Y_{1}$. Hence by Hartog's theorem, there exists $\psi_{1} \in H^{0}\left(X_{1}, f^{*} \Omega_{X}^{1}\right)$ such that $f^{*} \psi_{1}=\varphi$ on $X_{1}=f^{-1}\left(Y_{1}\right)$.
(Step 3)
The following argument is the same as in the proof of Proposition 6.7 of [F-R] p. 975.

Let $D=\bigcup_{i=1}^{t} D_{i}, f^{-1}(D)=W=\bigcup_{j} W_{j}$ and for each $D_{i}$ we take an irreducible component $W_{i}$ of $f^{-1}\left(D_{i}\right)$ such that $f\left(W_{i}\right)=D_{i}$.

Let $M_{i}=\left\{x \in W_{i} \mid f_{W_{i}}: W_{i} \rightarrow D_{i}\right.$ is of maximal rank at $x \in W \backslash \bigcup_{j \neq i} W_{j}$ and $f(x) \notin D_{j}$ for $\left.j \neq i\right\}$, and $N_{i}=\left\{y \in D_{i} \mid y=f(x), x \in M_{i}\right\}$. We remark that $D_{i}$ and $W_{i}$ are smooth by assumption. Let $x \in M_{i}$. Then we take a coordinate system ( $x_{1}, x_{2}, \cdots, x_{n}$ ) on $X$ around $x \in M_{i}$ and a coordinate system ( $y_{1}, y_{2}, \cdots, y_{s}$ ) on $Y$ around $y=f(x)$ such that $W_{i}=\left\{x_{1}=0\right\}, D_{i}=\left\{y_{1}=0\right\}$, and $f$ is defined by $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \rightarrow\left(x_{1}^{\mu}, x_{2}, \cdots, x_{s}\right)=\left(y_{1}, y_{2}, \cdots, y_{s}\right)$ around $x$, where $\mu \in \boldsymbol{N}$. Let $T_{i}(x)$ be the germ of manifold defined by $x_{s+1}=\cdots=x_{n}=0$ around $x$. We will identify $T_{i}(x)$ with a representing neighbourhood of $x$. Then $U_{i}(y)=f\left(T_{i}(x)\right)$ is a neighbourhood of $y$ in $Y$. Let $G$ be the group generated by $g \in \operatorname{Aut}\left(T_{i}(x)\right)$, where $g:\left(x_{1}, x_{2}, \cdots, x_{s}\right) \rightarrow\left(\rho x_{1}, x_{2}, \cdots, x_{s}\right)$ with $\rho=\exp (2 \pi i / \mu)$. Then $f\left(T_{i}(x)\right)$ is the quotient of $T_{i}(x)$ by $G$. By (Step 2), we have $\phi_{2, i}^{y} \in H^{0}\left(U_{i}(y)-D_{i}, \Omega_{Y}^{1}\right)$ such that $\varphi=f^{*} \phi_{2, i}^{y}$ on $f^{-1}\left(U_{i}(y)\right)-f^{-1}\left(D_{i}\right)$. Hence $\varphi_{T_{i}(x)}=g^{*} \varphi_{T_{i}(x)}$ off $W_{i}$, where $\varphi_{T_{i}(x)}$ is the restriction of $\varphi$ to $T_{i}(x)$. This implies that $\varphi_{T_{i}(x)}$ is G-invariant as a holomorphic 1-form. Hence $\varphi_{T_{i}(x)}$ is a pullpack of a holomorphic 1-form $\left(\psi_{2, i}^{y}\right)^{\prime}$ on $U_{i}(y)=f\left(T_{i}(x)\right)=T_{i}(x) / G$. We remark that $\left(\psi_{2, i}^{y}\right)^{\prime}$ is an extension of $\phi_{2, i}^{y}$. Therefore $\varphi=f^{*}\left(\left(\psi_{2, i}^{y}\right)^{\prime}\right)$ on $f^{-1}\left(U_{i}(y)\right)-f^{-1}\left(D_{i}\right)$. Since $\varphi$ and ( $\left.\phi_{2, i}^{y}\right)^{\prime}$ are holomorphic, $\varphi=f^{*}\left(\left(\psi_{2, i}^{y}\right)^{\prime}\right)$ on $f^{-1}\left(U_{i}(y)\right)$.
(Step 4)
Let $Y_{2}=Y_{1} \cup \bigcup_{i=1}^{t}\left(\cup_{y \in N_{i}} U_{i}(y)\right)$. Since $\psi_{1}$ and $\left(\psi_{2, i}^{y}\right)^{\prime}$ are holomorphic, there exists $\psi_{2} \in H^{0}\left(Y_{2}, \Omega_{Y}^{1}\right)$ such that $\varphi=f^{*} \psi_{2}$ on $f^{-1}\left(Y_{2}\right)$ by the above argument. Because $Y-Y_{2}$ is contained in an analytic subset $B$ of $Y$ with $\operatorname{codim}(B) \geqq 2$ in $Y$, by Hartog's theorem, there exists $\psi \in H^{0}\left(Y, \Omega_{Y}^{1}\right)$ such that $\varphi=f^{*} \psi$ on $f^{-1}\left(Y_{2}\right)$. Since $\varphi$ and $\psi$ are holomorphic, $\varphi=f^{*} \psi$ on $X=f^{-1}(Y)$.

## References

[B-G] S. Bloch and D. Gieseker, The positivity of the Chern classes of an ample vector bundle, Invent. Math., 12 (1971), 112-117.
[BPV] W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, 1984, SpringerVerlag.
[EGA] J. Dieudonné and A. Grothendieck, Eléments de Géométrie Algébrique, Publ. Math. Inst. HES., 4, 8, 11, 17, 20, 24, 28, 32.
[E-V] H. Esnault and E. Viehweg, Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compositio Math., 76 (1990), 69-85.
[F-R] T. Fujita and J. Roberts, Varieties with small secant varieties: extremal case, Amer. J. Math., 103 (1981), 953-976.
[Fj1] T. Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan, 30 (1978), 779-794.
[Fj2] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, in Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., 10 (1987), 167-178.
[Fj3] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser., 155, 1990, Cambridge.
[Fk1] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, to appear in Geom. Dedicata.
[Fk2] Y. Fukuma, Master Thesis (in Japanese), (1993).
[H-N] G. Harder and M.S. Narashimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann., 212 (1975), 215-248.
[Ha1] R, Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
[Ha2] R. Hartshorne, Ample subvarieties of Algebraic Varieties, Lecture Notes in Math., 156, 1986, Springer-Verlag.
[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math., 79 (1964), 109-326.
[Ii1] S. Iitaka, On $D$-dimension of algebraic varieties, J. Math. Soc. Japan, 23 (1971), 356-373.
[Ii2] S. Iitaka, Algebraic Geometry, Graduate Texts in Math., 76, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
[lo] P. Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc., 99 (1986), 457-472.
[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, in Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., 10 (1987), 283-360.
[Ka1] Y. Kawamata, Characterization of Abelian varieties, Compositio Math., 43 (1981), 253-276.
[Ka2] Y. Kawamata, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math., 66 (1982), 59-71.
[L-P] A. Lanteri and M. Palleschi, About the adjunction process for polarized algebraic surfaces, J. Reine Angew. Math., 352 (1984), 15-23.
[Mh] K. Maehara, The weak 1-positivity of direct image sheaves, J. Reine Angew. Math., 364 (1986), 112-129.
[Mo] S. Mori, Classification of higher-dimensional varieties, in Algebraic Geometry, Bowdoin 1985, Proc. Sympos. Pure Math., 46 (1987), 269-331.
[Mu] D. Mumford, Algebraic Geometry I Complex projective varieties, 1970, SpringerVerlag.
[O] K. Ohno, Some inequalities for minimal fibrations of surfaces of general types over curves, J. Math. Soc. Japan, 44 (1992), 643-666.
[U] K. Ueno, Classification Theory of Algebraic Varieties, Lecture Notes in Math., 439, 1975, Springer-Verlag.
[V1] E. Viehweg, Rational singularity of higher dimensional schemes, Proc. Amer. Math. Soc., 63 (1977), 6-8.
[V2] E. Viehweg, Klassifikationstheorie algebraischer varietäten der dimension drei, Compositio Math., 41 (1980), 361-400.
[V3] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces, Adv. Stud. Pure Math., 1 (1983), 329-353.

Yoshiaki Fukuma<br>Department of Mathematics<br>Faculty of Science<br>Tokyo Institute of Technology<br>Oh-okayama, Meguro-ku<br>Tokyo 152<br>Japan<br>E-mail: fukuma@math.titech.ac.jp

