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Introduction.

Let $X$ be a smooth projective variety over $C$ with $\dim X=n$ , and $L$ an
ample (resp. a nef and big) Cartier divisor. Then (X, $L$ ) is called a polarized
(resp. a quasi-polarized) manifold.

For this (X, $L$ ), the sectional genus of $L$ is defined to be a non negative
integer valued function by the following formula $([Fj2])$ :

$g(L)=1+ \frac{1}{2}(K_{X}+(n-1)L)L^{n-1}$ ,

where $K_{X}$ is the canonical divisor of $X$ .
Then there is the following conjecture:

CONJECTURE 1 (p. 111 in [Fj3]). Let (X, $L$ ) be a quasi-polarized manifold.
Then $g(L)_{-}q(X)$ , where $q(X)=h^{1}(X, O_{X})$ (called the irregularity of $X$).

In [Fkl], we treat $\dim X=2$ case. But if $\dim X\geqq 3$, the problem seems
difficult. So we consider the following conjecture:

CONJECTURE 2. Let (X, $L$ ) be a quasi-polarized manifold, $Y$ a normal pro-
jective variety with lSdim $Y<\dim X$ , and $f:Xarrow Y$ a surjective morphism with
connected fibers. Then $g(L)\geqq h^{1}(O_{Y’})$ , where $Y’$ is a resolution of $Y$ .

Of course Conjecture 2 follows from Conjecture 1. The hypothesis of Con-
jecture 2 is natural because $X$ has a fibration in many cases (Albanese fibration,
Iitaka fibration, etc.).

In this paper, we consider Conjecture 2. In particular, we study $\dim Y=1$

or some special cases of $\dim Y\geqq 2$ . Using some results with respect to Conjec-
ture 2, we study Conjecture 1.

The author would like to express his hearty gratitude to Professor Takao
Fujita for giving him useful advice and teaching him the proof of Theorem $B$

in Appendix. The author also would like to thank the referee for giving many
valuable comments and suggestions and pointing out Theorem $A’$ in Appendix.
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\S 0. Notations and conventions.

In this paper, we shall study mainly a smooth projective variety $X$ over $C$ .
$\mathcal{O}(D)$ : invertible sheaf associated with a Cartier divisor $D$ on $X$ .
$o_{X}$ : the structure sheaf of $X$ .
$\chi(\mathscr{F})$ : Euler-Poincar\’e characteristic of a coherent sheaf $\mathscr{F}$ .
$\chi(X)=x(o_{X})$

$h^{i}(\mathscr{F})=\dim H^{i}(X, \mathscr{F})$ for a coherent sheaf $\mathscr{F}$ on $X$ .
$h^{i}(D)=h^{i}(O(D))$ for a divisor $D$ .
$D|_{C}$ : the restriction of $D$ to $C$ .
$|D|$ : the complete linear system associated with a divisor $D$ .
$K_{X}$ : the canonical divisor of $X$ .
$p_{g}(X)$ (or $p_{g}$): the geometric genus $h^{0}(K_{X})$ of $X$ .
$p_{m}(X)$ (or $p_{m}$): the $m$-genus $h^{0}(mK_{X})$ of $X$ .
$q(X)$ (or $q$): the irregularity $h^{1}(O_{X})$ of a smooth projective variety $X$ .

If $X$ is a normal projective variety over $C$ , then we define $q(X)=h^{1}(O_{X’})$ , where
$X’$ is a resolution of $X$ . We remark that $q(X)$ is independent of a resolution
of $X$ .
$\kappa(D)$ : Iitaka dimension of a Cartier divisor $D$ on $X$ .
$\kappa(X)$ : Kodaira dimension of $X$ .
$P_{Y}(\mathcal{E})$ : the $P^{r-1}$-bundle associated with a locally free sheaf $\mathcal{E}$ of rank $r$ over $Y$ .
$O_{P_{Y}(\mathcal{E})}(1)$ : the tautological invertible sheaf of $P_{Y}(\mathcal{E})$ .
$\sim$ (or $=$): linear equivalence.
$\equiv$ : numerical equivalence.

For $r\in R$, we define $[r]= \max\{t\in Z:t\leqq r\},$ $\lceil r\rceil=-[-r]$ .
$(f, X, Y, L)$ is called a polarized (resp. quasi-polarized) fiber space if $X$ is a
smooth projective variety, $Y$ is a smooth or normal projective variety with
ISdim $Y<\dim X,$ $f:Xarrow Y$ is a surjective morphism with connected fibers, and
$L$ is an ample (resp. a nef and big) Cartier divisor on $X$ .

We say that two quasi-polarized fiber spaces $(f, X, Y, L)$ and $(h, X, Y’, L)$

are isomorphic if there is an isomorphism 6: $Yarrow Y’$ such that $h=\delta\circ f$. In this
case we write $(f, X, Y, L)\cong(h, X, Y’, L)$ .

We say that $(f, X, Y, L)$ is a scroll if $Y$ is smooth, $f:Xarrow Y$ is $P^{t}$-bundle,
and $L|_{F}=O(1)$ where $F$ is a fiber of $f$ and $t=\dim X-\dim Y$ .

We say that (X, $L$ ) has a structure of scroll over $Y$ if there exists a sur-
jective morphism $f:Xarrow Y$ such that $(F, L|_{F})\cong(P^{n-m}, \mathcal{O}(1))$ for any Pber $F$ of
$f$ , where $\dim X=n$ , and $\dim Y=m$ .
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We say that a Cartier divisor $D$ on a projective variety $X$ is pseudo-effective
if there is a big Cartier divisor $H$ such that $\kappa(mD+H)\geqq 0$ for any natural
number $m$ .

A general fiber $F$ of $f$ for a quasi-polarized fiber space $(f, X, Y, L)$ means
a fiber of a point of the set which is intersection of at most countable many
Zariski open sets.

Let $D$ be an effective divisor on $X$ . We call $D$ a normal crossing divisor
if $D$ has regular components which intersect transversally.

\S 1. $\dim Y=1$ case.

In this section, we consider a lower bound for $g(L)$ under the following
condition:
$(*)$ : Let $(f, X, Y, L)$ be a $(quasi-)polarized$ fiber space with $\dim X=n$ , where
$Y$ is a smooth projective curve.

1-1. The nefness of $K_{x/Y}+tL$ .
We study the nefness of $K_{x/Y}+tL$ for $t=n,$ $n-1,$ $n-2$ , where $K_{X/Y}=K_{X}$

– $f^{*}K_{Y}$ . Here Theorem A in Appendix plays an important role. (See Appendix
for the statement of Theorem A and its proof.)

THEOREM 1.1.1 (cf. Theorem 1 in [Fj2]). Let $(f, X, Y, L)$ be a polarized

fiber space with $\dim X=n\geqq 2,$ $\dim Y=1$ .
Then $K_{x/Y}+nL$ is $nef$.
PROOF. If $K_{x/Y}+nL$ is not $f$-nef, there exists an extremal rational curve

$l$ such that $(K_{x/Y}+nL)\cdot l<0$ and $f(l)=point$ . Let $\varphi:Xarrow Z$ be the contraction
morphism of $l$ .

Then there exists a morphism $g:Zarrow Y$ such that $f=g\circ\varphi$ (Theorem 3-2-1
in [KMM] $)$ . In particular $\dim Z\geqq\dim Y=1$ .

But by the proof of Theorem 1 in [Fj2], $\dim Z=0$ . This contradicts $\dim Z$

$\geqq\dim Y=1$ . Hence $K_{X/Y}+nL$ is $f$-nef.
On the other hand, $(K_{x/Y}+nL)-K_{X}$ is $f$-ample. By the base point free

theorem (Theorem 3-1-1 in [KMM]),

(1.1.1.1) $f^{*}f_{*}\mathcal{O}(m(K_{x/Y}+nL))arrow \mathcal{O}(m(K_{x/Y}+nL))$

is surjective for any $m\gg O$ .
By Theorem A in Appendix, $f_{*}\mathcal{O}(m(K_{X/Y}+nL))$ is semipositive $([Fj1])$ and

by (1.1.1.1) $O(m(K_{X/Y}+nL))$ is nef. Therefore $K_{X/Y}+nL$ is nef. $\square$

THEOREM 1.1.2 (cf. Theorem 2 in [Fj2]). Let $(f, X, Y, L)$ be as in Theo-
rem 1.1.1. Then $K_{X/Y}+(n-1)L$ is $nef$ unless $(f, X, Y, L)$ is a scroll.
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PROOF. If $K_{x/Y}+(n-1)L$ is not $f$-nef, there exists an extremal rational
curve $l$ such that $(K_{X}+(n-1)L)\cdot l=(K_{x/Y}+(n-1)L)\cdot l<0$ and $f(l)=point$ . Let
$\varphi:Xarrow Z$ be the contraction morphism of 1.

Then there exists a morphism $g:Zarrow Y$ such that $f=g\circ\varphi$ . In particular
$\dim Z\geqq\dim Y=1$ .

By ((2.7) proof of Theorem 2 in [Fj2]), $\varphi$ is not birational and $\dim Z=1$ .
Then $(\varphi, X, Z, L)$ is a scroll by the proof of Theorem 2 in [Fj2]. On the
other hand, $Z\cong Y$ because $f$ has connected fibers. Hence $(f, X, Y, L)$ is a
scroll.

If $K_{x/Y}+(n-1)L$ is $f$-nef, $K_{x/Y}+(n-1)L$ is nef by the same argument as
in Theorem 1.1.1. $\square$

THEOREM 1.1.3 (cf. Theorem 3 and 3’ in [Fj2]). Let $(f, X, Y, L)$ be as in
Theorem 1.1.1. Suppose that $\dim X=n\geqq 3$ and $K_{X/Y}+(n-1)L$ is $nef$ . Then
$K_{x/Y}+(n-2)L$ is $nef$ except the following cases:

(3-1) There exist a smooth projective variety $X’$ , a birational morphism
$\mu:Xarrow X’$ , and a surjective morphism with connected fibers $f’:X’arrow Y$ such
that $f=f’\circ\mu,$ $\mu$ is blowing down of $E\cong P^{n-1},$ $E|_{E}=\mathcal{O}(-1)$ , and $L|_{E}=O(1)$ .

(3-2) $(f, X, Y, L)$ is $P^{2}$-bundle and $L|_{F}=\mathcal{O}(2)$ for any fiber $F$ of $f$ .
(3-3) $F$ is a hyperquadric in $P^{n}$ and $L|_{F}=O(1)$ , where $F$ is a general fiber

of $f$ .
(3-4) $(F, L_{F})$ is a scroll over a smooth curve, where $F$ is a general fiber of $f$ .

PROOF. If $K_{x/Y}+(n-2)L$ is $f$-nef, then $K_{X/Y}+(n-2)L$ is nef by the same
argument as in Theorem 1.1.1.

If $K_{X/Y}+(n-2)L$ is not $f$-nef, there exists an extremal rational curve 1
such that $(K_{X/Y}+(n-2)L)\cdot l<0$ and $f(l)=point$ . Let $\varphi:Xarrow Z$ be the contrac-
tion morphism of 1. Then we have a morphism $g:Zarrow Y$ such that $f=g\circ\varphi$ .

Case (A): $\varphi$ is birational.
Then by the proof of Theorem 3’ in [Fj2], $\varphi$ is blowing down of $E\cong P^{n-1}$ ,

$E|_{E}=\mathcal{O}(-1)$ and $L|_{E}=\mathcal{O}(1)$ . We put $\mu=\varphi$ , $f’=g$ , and $Z=X’$ . So (3-1) is
obtained.

Case (B): $\varphi$ is not birational.
We remark that $\dim Z\geqq\dim Y=1$ . By Theorem 3’ in [Fj2], we have the

following three types:

(1) $\dim Z=1,$ $(F_{\varphi}, L|_{F_{\varphi}})=(P^{2}, O(2))$ for every fiber $F_{\varphi}$ of $\varphi$ .
(2) $\dim Z=1,$ $F$ is hyperquadric and $L|_{F}=\mathcal{O}(1)$ .
(3) $\dim Z=2,$ $Z$ is smooth, and $(\varphi, X, Z, L)$ is scroll.

Case (1)

In this case, $Z\cong\}’$ since every fiber of $f$ is connected. So $(f, X, Y, L)\cong$
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$(\varphi, X, Z, L)$ and (3-2) is obtained.
Case (2)

By the same argument as in Case (1), $(f, X, Y, L)\cong(\varphi, X, Z, L)$ . Hence
(3-3) is obtained.

Case (3)

In this case, a general fiber $F$ of $f$ is scroll over a smooth curve. Hence
(3-4) is obtained. $\square$

1-2. $g(L)\geqq g(Y)$ .
Here we shall show that the following theorem.

THEOREM 1.2.1. Let $(f, X, Y, L)$ be a polarized fiber space with $\dim Y=1$ .
Then $g(L)\geqq g(Y)$ , where $g(Y)$ is the genus of $Y$ .

PROOF. First since $2(g(Y)-1)L^{n-1}F=f^{*}K_{Y}L^{n-1}$ , we have

(1.2.1.1) $g(L)=g(Y)+ \frac{1}{2}(K_{x/Y}+(n-1)L)L^{n-1}+(g(Y)-1)(L^{n-1}\cdot F-1)$ ,

where $F$ is a general fiber of $f$ .
Case (a): $g(Y)=0$ .
$g(L)\geqq g(Y)=0$ by Corollary 1 in [Fj2].

Case (b): $g(Y)\geqq 1$ .
In this case,

(1.2.1.2) $(g(Y)-1)(L^{n-1}\cdot F-1)\geqq 0$

since $L$ is ample.
Case $(b)- 1$ : $K_{X/Y}+(n-1)L$ is nef.
By (1.2.1.1) and (1.2.1.2), we have $g(L)\geqq g(Y)$ .
Case $(b)- 2$ : $K_{Y/Y}+(n-1)L$ is not nef.
By Theorem 1.1.2, $(f, X, Y, L)$ is a scroll. Let $\mathcal{E}$ be a locally free sheaf

of rank $n$ over $Y$ such that $X=P(\mathcal{E})$ and $L=\mathcal{O}_{P(\mathcal{E})}(1)$ . Then $K_{X}=f^{*}(K_{Y}+\det \mathcal{E})$

$-O_{P(8)}(n)$ ( $(1.3)$ in [Fj3]). Hence $g(L)=1+(K_{X}+(n-1)L)L^{n-1}/2=1+(f^{*}(K_{Y}+$

$\det \mathcal{E})-L)L^{n-1}/2=1+(1/2)\deg K_{Y}=g(Y)$ .
Therefore $g(L)\geqq g(Y)$ is obtained. $\square$

REMARK 1.2.2. There exists an example of $(f, X, Y, L)$ with $g(L)=g(Y)$ .
(For example, the case $(f,$ $X,$ $Y,$ $L)$ is scroll.)

In 1-4, we shall show that $(f, X, Y, L)$ with $g(L)=g(Y)$ has a structure of
scroll over a smooth curve.

By Theorem 1.2.1, we have the following Corollary.

COROLLARY 1.2.3. Let (X, $L$ ) be a polarized manifold. .’lssume $l/\iota at$ the
image of the Albanese map $([U])$ is a curve. Then $g(L)\geqq q(X)$ .
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PROOF. Let $\alpha:Xarrow AlbX$ be the Albanese map of $X$ . By assumption,
$\alpha(X)$ is a smooth curve of genus $q(X)$ and $\alpha:Xarrow\alpha(X)$ has connected fibers.
Hence by Theorem 1.2.1, $g(L)\geqq g(\alpha(X))=q(X)$ . $\square$

1-3. $\kappa(X)\geqq 0$ .
Here we treat $\kappa(X)\geqq 0$ case.

LEMMA 1.3.1. Let $X$ be a projective variety with $\dim X=n$ and $D$ a pseudo

effective Cartier $dimSor$ on X. Then $DL^{n-1}\geqq 0$ for any $nef$ Cartier divisor $L$ .

PROOF. By definition of a pseudo effective Cartier divisor (see \S 0 or (11.3)

in [Mo] $)$ , $\kappa(tD+H)\geqq 0$ for any natural number $t$ and a big Cartier divisor $H$

over $X$ . Since $L$ is nef, $mL+A$ is ample for any natural number $m$ and an
ample Cartier divisor $A$ over $X$ . Therefore

$(D+ \frac{1}{t}H)(L+\frac{1}{m}A)^{n-1}=\frac{1}{m^{n-1}t}(tD+H)(mL+A)^{n-1}\geqq 0$ .

Tend $tarrow\infty$ and $marrow\infty$ , we have $DL^{n-1}\geqq 0$ . $\square$

REMARK 1.3.2.
(1) Let $X$ and $Y$ be smooth projective varieties over $C$ , and $f:Xarrow Y$ a

surjective morphism with connected fibers. Let $D$ be a Cartier divisor on $X$

such that $f_{*}o(D)\neq 0$ . If $f_{*}\mathcal{O}(D)$ is weakly positive (see Appendix), then $D$ is
pseudo effective.

(2) Let $\mathcal{E}$ be a locally free sheaf on a normal projective variety $X$ . If $\mathcal{E}$

is semipositive ((5.1) in [Mo]), then $\mathcal{E}$ is weakly positive.

PROOF.
The proof of (1)

By hypothesis, the natural map

$f^{*}f_{*}\mathcal{O}(D)arrow \mathcal{O}(D)$

is non-trivial. If $\mathcal{O}(D-Z)={\rm Im}(f^{*}f_{*}\mathcal{O}(D)arrow \mathcal{O}(D))^{**}$ , where $Z$ is an effective
divisor on $X$ and ** is double dual, then $f^{*}f_{*}\mathcal{O}(D)arrow O(D-Z)$ is surjective in
codimension 1. By Hironaka theory [Hi], there exists a birational morphism
$\mu:X’arrow X$ such that

$\mu^{*}f^{*}f_{*}\mathcal{O}(D)arrow \mathcal{O}(\mu^{*}(D-Z)-E)$

is surjective, where $X’$ is smooth and $E$ is an exceptional effective divisor
over $X’$ .

By hypothesis, $\mu^{*}f^{*}f_{*}\mathcal{O}(D)$ is weakly positive. Hence $\mathcal{O}(\mu^{*}(D-Z)-E)$ is
weakly positive. By definition, $\mu^{*}(D-Z)-E$ is pseudo effective. Since $Z$ and
$E$ are effective, $\mu^{*}D$ is pseudo effective. Hence $D$ is pseudo effective.
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The proof of (2)

Since $\mathcal{E}$ is semipositive, $S^{\alpha}(\mathcal{E})$ is also semipositive for any positive integer
$\alpha$ . Let $\mathcal{H}$ be an ample invertible sheaf on $X$ . Then $S^{a}(\mathcal{E})\otimes \mathcal{H}$ is an ample
locally free sheaf $([Ha2])$ . Hence $\mathcal{E}$ is weakly positive. $\square$

THEOREM 1.3.3. Let $(f, X, Y, L)$ be a quasi-polarized fiber space with
$\dim Y=1,$ $g(Y)\geqq 1$ , and $\kappa(F)\geqq 0$ , where $F$ is a general fiber of $f$ .

Then $g(L)\geqq g(Y)+\lceil((n-1)/2)L^{n}\rceil$ .

PROOF. Since $\kappa(F)\geqq 0$ , there exists a Zariski open set $U$ of $Y$ such that
for any closed point $y\in U$ ,

(1) $F_{y}=f^{-1}(y)$ is smooth
(2) $h^{0}(mK_{\Gamma_{y}})$ is constant and not zero for some fixed $m\in N$

By Grauert’s theorem (see [Hal]), $f_{*}\mathcal{O}(mK_{X/Y})\neq 0$ . Hence by Lemma 1.3.1,
Remark 1.3.2 and the semipositivity of $f_{*}O(mK_{x/Y})$ ( $[Ka2]$ , [V3]), $K_{x/Y}\cdot L^{n-1}\geqq 0$ .

By (1.2.1.1) in Theorem 1.2.1, we have

$g(L) \geqq g(Y)+\frac{n-1}{2}L^{n}+(g(Y)-1)(L^{n-1}\cdot F-1)$ .

Since $L$ is nef and big, $L_{F}$ is also nef and big. Hence $L_{F}^{n-1}\geqq 1$ .
By hypothesis, $g(Y)\geqq 1$ . Therefore

$g(L) \geqq g(Y)+\lceil\frac{n-1}{2}L^{n}\rceil$

because $g(L)$ is integer. $\square$

THEOREM 1.3.4. Let (X, $L$ ) be a quasi-polarized manifold wzth $\kappa(X)=1$ and
$L^{n}\geqq 2$ . Then $g(L)\geqq q(X)$ .

PROOF. In general, there is the following fibration (called Iitaka fibration
[Iil] $)$ if $\kappa(X)\geqq 1$ :

There exist a birational morphism $\mu:X’arrow X$ and a surjective morphism
with connected fibers $f$ . $X’arrow Y$ such that $\dim Y=\kappa(X)$ and $\kappa(F)=0$ for a general
fiber $F$ of $f$ , where $X’$ and $Y$ are smooth projective varieties.

We remark that $q(X)=q(X’)$ and $g(L)=g(L’)$ , where $L’=\mu^{*}L$ .
So we may assume that there is a fibration $f:Xarrow Y$ , where $Y$ is a smooth

projective variety.
Here $\dim Y=1$ .
If $g(Y)\geqq 1$ , then we apply Theorem 1.3.3 for this $(f, X, Y, L)$ . Hence

$g(L)\geqq g(Y)+\lceil((n-1)/2)L^{n}\rceil$ . By hypothesis, $\lceil((n-1)/2)L^{n}\rceil\geqq n-1$ . Since $\kappa(F)$

$=0,$ $q(F)\leqq\dim F=n-1$ by Kawamata’s theorem $([Ka1])$ . So we have $g(L)\geqq$

$g(Y)+(n-1)\geqq g(Y)+q(F)$ .
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On the other hand, by Theorem $B$ in Appendix, $q(F)+g(Y)\geqq q(X)$ . There-
fore $g(L)\geqq q(X)$ .

If $g(Y)=0$ , then $g(L)=1+(K_{X}+(n-1)L)L^{n-1}/2\geqq 1+n-1\geqq 1+q(F)>g(Y)+$

$q(F)\geqq q(X)$ . $\square$

By Kawamata’s theorem, we have the following theorem.

THEOREM 1.3.5. Let (X, $L$ ) be a quasi-polarized manifold with $\kappa(X)=0$ and
$L^{n}\geqq 2$ . Then $g(L)\geqq q(X)$ .

PROOF. Since $\kappa(X)=0$ , q(X);$dim $X=n$ by Kawamata’s theorem.
Hence

$g(L)=1+ \frac{1}{2}(K_{X}+(n-1)L)L^{n-1}$

$\geqq 1+\frac{n-1}{2}L^{n}$

$\geqq n$

$\geqq q(X)$ . $\square$

1-4. Classification of $(f, X, Y, L)$ with $g(L)=g(Y)$ .
Here we shall classify $(f, X, Y, L)$ with $\dim Y=1$ and $g(L)=g(Y)$ .
LEMMA 1.4.1. If $f_{*}O(D)$ is ample, then $DL^{n-1}>0$ for any ample line bundle

$L$ on $X$ .
PROOF. By hypothesis, given any coherent sheaf EF on $Y$ , there exists a

natural number $m_{0}$ such that for every $m\geqq m_{0},$ $\mathscr{F}\otimes S^{m}(f_{*}(D))$ is generated by
the global sections. Hence $f^{*}\mathscr{F}\otimes S^{m}(f^{*}\circ f_{*}(D))$ is generated by the global
sections. We put $\mathscr{F}=\mathcal{O}(-A)$ , where $\mathcal{O}(A)$ is an ample invertible sheaf on $Y$ .
Then $mD-f^{*}A$ is effective and $L^{n-1}(mD-f^{*}A)\geqq 0$ . Hence $L^{n-1}D>0$ . $\square$

THEOREM 1.4.2. Let $(f, X, Y, L)$ be a polarized fiber space with $\dim X=$

$n\geqq 3$ and $\dim Y=1$ . Suppose that $g(L)=g(Y)$ . Then $(f, X, Y, L)$ is a scroll.

PROOF. First we have

(1.4.2.1) $g(L)=g(Y)+ \frac{1}{2}(K_{x/Y}+(n-1)L)L^{n-1}+(L^{n-1}F-1)(g(Y)-1)$ .

Case (1): $g(Y)\geqq 1$

If $f_{*}O(K_{X/Y}+(n-1)L)\neq 0$ , then $f_{*}O(K_{x/Y}+(n-1)L)$ is ample by Theorem 2.4
and Corollary 2.5 in [E-V], so by Lemma 1.4.1,

$(K_{X/Y}+(n-1)L)L^{n-1}>0$ .

By (1.4.2.1), $g(L)>g(Y)$ . Hence we may assume $f_{*}O(K_{X/Y}+(n-1)L)=0$. If
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$K_{x/Y}+(n-1)L$ is not nef, then $(f, X, Y, L)$ is a scroll by Theorem 1.1.2. Hence
we may assume that $K_{x/Y}+(n-1)L$ is nef.

By hypothesis, there are two possible cases:

(A) $(K_{X/Y}+(n-1)L)L^{n-1}=0$ , $g(Y)=1$

(B) $(K_{X/Y}+(n-1)L)L^{n-1}=0$ , $L^{n-1}F=1$

Case (A)

Since $g(L)=g(Y)=1$ , we have

(A-1) (X, $L$ ) is a del Pezzo variety
(A-2) (X, $L$ ) is a scroll over an elliptic curve

by Fujita’s classification of $g(L)=1$ . $([Fj2])$

If (X, $L$ ) is the case (A-1), then since $-K_{X}$ is ample, $q(X)=0$ , which con-
tradicts $q(Y)\geqq 1$ . Next we consider that (X, $L$ ) is the case (A-2). Let $\pi:Xarrow C$

be a $P^{n-1}$-bundle with $L_{F}=O(1)$ , where $C$ is an elliptic curve and $F$ is a fiber
of $f$ . Since $P^{n-1}$ has no fibration over a curve for $n\geqq 3$ , there is a morphism
$\mu$ : $Carrow Y$ such that $f=\mu^{\circ}\pi$ ((4.4) in [EGA] III). Since $f$ has connected fibers,
$\mu$ is an isomorphism((7.1) in [Mu]). Therefore $(f, X, Y, L)$ is a scroll.

Case (B)

In this case we can exclude $g(Y)=1$ , which implies $g(Y)\geqq 2$ . Since $(K_{X/Y}$

$+(n-2)L)L^{n-1}+L^{n}=0,$ $K_{x/Y}+(n-2)L$ is not nef. Hence we can apply Theo-
rem 1.1.3 to this case.

Case (B-1): $(f, X, Y, L)$ is the type (3-1) in Theorem 1.1.3.
This case cannot occur. Indeed, let $E\cong P^{n-1}$ be as in (3-1) in Theorem 1.1.3.

Either $E$ cannot be a fiber of $f$ , or the restriction of $f$ to $E$ cannot be a sur-
jection since $P^{n-1}$ has no fibration over a curve. If $E$ is in a fiber of $f$ , the
fiber is not irreducible and $L^{n-1}F>1$ , which is a contradiction.

Case (B-2): $(f, X, Y, L)$ is the type(3-2) or the type(3-3) in Theorem 1.1.3.
In these cases, $L^{n-1}F>1$ which are contradictions.
Case (B-3): $(f, X, Y, L)$ is the type(3-4) in Theorem 1.1.3.
Let $F=P_{C}(\mathcal{E}),$ $L_{F}=O_{P(\mathcal{E})}(1)$ , and $\pi:P_{C}(\mathcal{E})arrow C$ the projection, where $\mathcal{E}$ is a

locally free sheaf of rank $n-1$ over a smooth curve $C$ .
We may assume that $\mathcal{E}$ is ample. $\det \mathcal{E}$ is also ample.
By Riemann-Roch formula on $C$ and vanishing theorem,

$h^{0}(K_{c}+\det \mathcal{E})=\chi(K_{C}+\det \mathcal{E})$

$=g(C)-1+\deg(\det \mathcal{E})$ .
If $h^{0}(K_{C}+\det \mathcal{E})=0$ , then we have $g(C)=0$ and $\deg(\det \mathcal{E})=1$ .

Then
$\mathcal{E}=\mathcal{O}(a_{1})\oplus \mathcal{O}(a_{l})\oplus\cdots\oplus O(a_{n-1})$
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by Grothendieck’s theorem.
Since $\mathcal{E}$ is ample, $a_{i}>0$ for any $i$ . Hence

$\deg(\det \mathcal{E})\geqq n-1\geqq 2$

since $n\geqq 3$ . This contradicts $deg(\det \mathcal{E})=1$ .
Therefore by the formula $K_{F/C}=\mathcal{O}_{P(\mathcal{E})}(-(n-1))\otimes\pi^{*}\det \mathcal{E}$ ,

$h^{0}(K_{F}+(n-1)L_{F})=h^{0}(\pi^{*}(K_{C}+\det \mathcal{E}))$

$=h^{0}(K_{c}+\det \mathcal{E})>0$ .

But by Grauert’s theorem, $f_{*}\mathcal{O}(K_{x/Y}+(n-1)L)\neq 0$ .
This contradicts the assumption.
Therefore this case cannot occur.
Case (1) is complete.
Case (2): $g(Y)=0,$ $i.e.,$ $Y\cong P^{1}$

In this case, $g(L)=0$ . So by Fujita’s classification of (X, $L$ ) with $g(L)=0$

$([Fj2]),$ $(X, L)$ is one of the following three possible types:

(A) (X, $L$ ) $=(P^{n}, O(1))$ .
(B) $X$ is a hyperquadric in $P^{n+1},$ $L=O_{X}(1)$ .
(C) (X, $L$ ) is a scroll over $P^{1}$ .

Note that $X$ with Pic $X\cong Z$ has no fibration over a curve.
Case (A)

This case cannot occur since $X$ has no fibration over a curve.
Case (B)

Since $n\geqq 3$ , Pic $X\cong Z$ by Lefschetz’s Theorem ((7.1) in [Fj3]). Hence this
case cannot occur.

Case (C)

Let $h:Xarrow P^{1}$ be the structure morphism of scroll, and $F_{h}(\cong P^{n-1})$ any
fiber of $h$ , which has no fibration over a curve for $n\geqq 3$ .

Then $\dim f(F_{h})=0$ .
Hence there is a morphism $\mu:P^{1}arrow Y$ such that $f=\mu\circ h$ ((4.4) in [EGA] III).

Since $f$ has connected fibers, $\mu$ is isomorphism ((7.1) in [Mu]).

Therefore $(f, X, Y, L)$ is a scroll. $\square$

When $\dim X=2$ , we obtain the following.

PROPOSITION 1.4.3. Let $(f, X, Y, L)$ be a polarized fiber space, $X$ a surface,
and $Y$ a curve. Assume that $g(L)=g(Y)$ and $(f, X, Y, L)$ is not a scroll.

Then $(f, X, Y, L)\cong(\pi, P^{1}\cross P^{1}, P^{1}, L)$ as a polarized fiber space, where $\pi$

is one projection such that $LF_{\pi}\geqq 2$ , where $F_{\pi}$ is a fiber of $\pi$ .

PROOF. Let $F$ be a general fiber of $f$ .
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Case (1): $g(Y)\geqq 1$ .
Case (1) $- 1$ : $g(F)\geqq 2$ .
In this case, by Theorem 5.5 in [Fkl], $g(L)\geqq g(Y)+1$ .
Hence this case is excluded.
Case (1) $- 2$ : $g(F)=1$ .
In this case, $\kappa(X)\leqq\kappa(F)+\dim Y=1([Ii1])$ . Let $(f’, X’, C, L’)$ be the rela-

tively minimal model of $(f, X, C, L)$ and $\mu:Xarrow X’$ its birational morphism,
where $L’=\mu_{*}L$ in the sense of cycle theory. By the canonical bundle formula
for elliptic fibrations $([BPV]),$ $K_{X}\cdot L\geqq K_{X’}\cdot L’\geqq 2g(Y)-2$ . Hence taking it into
account that $g(L)$ is an integer, we have $g(L)\geqq g(Y)+1$ , wbich is a contra-
diction.

Case (1) $- 3$ : $g(F)=0$ .
In this case, $\kappa(X)\leqq\kappa(F)+\dim Y=-\infty$ . Then $g(L)\geqq q(X)([Fk1])$ . Since

$g(L)=g(Y)$ , we have $g(L)=g(Y)=q(X)$ . Thus by the classification [L-P] and
[Fkl], (X, $L$ ) is one of the following two types.

(A) $(P^{2}, \mathcal{O}(r)),$ $r=1$ or 2.
(B) $X$ is a $P^{1}$ -bundle over a smooth curve $C$ and $L|_{F’}=\mathcal{O}(1)$ , where $F^{J}$ is

a fiber of the projection $\pi:Xarrow C$ .
Case (A) is excluded, since $P^{2}$ has no fibration over a curve.
Case (B)

Since $\pi$ is a $P^{1}$ -bundle and $g(Y)\geqq 1$ , there is a morphism $\mu:Carrow Y$ such
that $f=\mu\circ\pi$ ((4.4) in [EGA] III). Since $f$ has connected fibers, $\mu$ is isomorphism
((7.1) in [Mu]).

Hence $(f, X, Y, L)$ is a scroll.
Case (2): $g(Y)=0$ .
By hypothesis, $g(L)=g(Y)=0$ . By the classification [L-P], [Fj2] and [Fj3],

(X, $L$ ) is one of (A) and (B) of the previous Case (1) $- 3$ . Hence (X, $L$ ) has a
structure of scroll, since (A) never becomes a polarized fiber space as remarked
previously.

Let $\pi_{1}$ : $Xarrow C\cong P^{1}$ be the $P^{1}$-bundle such that $(\pi_{1}, X, C, L)$ is a scroll. We
put $X=P_{C}(\mathcal{E})$ and $\mathcal{E}-\mathcal{O}_{C}\oplus \mathcal{O}_{C}(-e)$ , where $e\geqq 0$ . Let $H$ be the $-\infty$ section of $\pi_{1}$

which is a member of the complete linear system associated to the tautological
invertible sheaf $O_{P(e)}(1)$ over $X$ and $F_{1}$ a fiber of $\pi_{1}$ . We remark that $H^{2}=-e$

$([Ha1])$ . Let $F_{f}$ be a fiber of $f$ . Then we can write $F_{f}\equiv aH+bF_{1}$ for some
$a,$ $b\in Z$. Since $F_{f}^{2}=0,$ $-a^{2}e+2ab=0$ . If $a=0$ , $F_{f}=bF_{1}$ and $b>0$ . $f$ factors
through $\pi_{1}$ , which is an isomorphism since $f$ has connected fibers. Hence we
can prove $(f, X, Y, L)\cong(\pi_{1}, X, C, L)$ , which is a scroll against hypothesis.
Thus $a\neq 0,2b-ae=0$ and $F_{f}\equiv aH+(ae/2)F_{1}$ . Since $F_{f}$ is nef, we have $F_{f}\cdot F_{1}$

$=a>0$ and $H\cdot F_{f}=-ae/2\geqq 0$ . Therefore $e=0,$ $X\cong P^{1}\cross P^{1}$ and let $\pi_{1}$ be one
projection and $\pi_{2}$ the other projection. Then $H$ is a fiber of $\pi_{2}$ . Since $F_{f}\equiv aH$
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for some $a\in N$ there exists a morphism $\theta$ : $P^{1}arrow Y$ such that $f=\theta\circ\pi_{l}$ . Since
$f$ has connected fibers, $\theta$ is an isomorphism. Hence $(f, X, Y, L)\cong(\pi_{2},$ $P^{1}\cross P^{1}$ ,
$P^{1},$ $L)$ . $\square$

EXAMPLE 1.4.4. Let $X=P^{1}\cross P^{1},$ $p_{t}$ : $P^{1}\cross P^{1}arrow P^{1}$ the i-th projection, and
$F_{i}$ a fiber of $p_{i}$ . Then $K_{X}\equiv-2F_{1}-2F_{2}$ . We put $L\equiv 2F_{1}+F_{2}$ . We remark that
$L$ is ample and $g(L)=0$ .

Then $(p_{1}, X, P’, L)$ is a scroll, but $(p_{t}, X, P^{1}, L)$ is not a scroll.

\S 2. Some special cases of $\dim Y\geqq 2$ .
In this section, we shall consider some special cases.
First by Lemma 1.3.1 we can prove the following lemma:

LEMMA 2.1. Let $(f, X, Y, L)$ be a quasi-polarized fiber space with $\dim X>$

$\dim Y\geqq 1$ and $\kappa(F)\geqq 0$ , where $F$ is a general fiber of $f$ . Then $K_{X/Y}L^{n-1}\geqq 0$ .

PROOF. Since $\kappa(F)\geqq 0$ , we have $f_{*}O(tK_{X/Y})\neq 0$ for $t\gg O$ .
By Viehweg’sTtheorem $([V3]),$ $f_{*}O(tK_{x/Y})$ is weakly positive. Hence by

Lemma 1.3.1 and Remark 1.3.2, $K_{X/Y}L^{n-1}\geqq 0$ . $\square$

THEOREM 2.2. Let $(f, X, Y, L)$ be a quasi-polarized fiber space with $\kappa(X)\geqq 0$

and $\dim X=n$ 111;3, where $Y$ is a normal projective variety with $\dim Y=m$ and
$\kappa(Y)=0$ or 1. Then $g(L)\geqq q(Y)+\lceil((n-1)/2)L^{n}\rceil-m+1$ . In particular, $g(L)\geqq q(Y)$

holds if $L^{n}\geqq 2$ .

PROOF. Note that a quasi-polarized fiber sPace $(f, X, Y, L)$ with $Y$ a
normal projective variety can be replaced to a quasi-polarized fiber space
$(f’, X’, Y’, L’)$ with $X’$ and $Y’$ smooth projective varieties and with $g(L)=g(L’)$

and $X’$ and $Y’$ are birational to $X$ and $Y$ , respectively. Hence we omit the
prime. Indeed, let $\mu:Y’arrow Y$ be a resolution of $Y$ . By Hironaka theory [Hi],
there exist a birational morphism $\lambda:X’arrow X$ , and a surjective morphism with
connected fibers $f’$ : $X’arrow Y’$ such that $f\circ\lambda=\mu\circ f’$ .

We remark that $(f’, X’, Y’, L ‘)$ is a quasi-polarized fiber space and $g(L)=$

$g(L^{J})$ , where $L’=(\lambda)^{*}L$ .
Case (1): $\kappa(Y)=0$ .
By Kawamata’s theorem, $q(Y)\leqq\dim Y_{-}m$ .
Hence by Lemma 2.1,

$g(L)-1+ \frac{1}{2}K_{x/Y}(L)^{n-1}+\frac{n-1}{2}(L)^{n}+\frac{1}{2}f^{*}K_{Y}(L)^{n-1}$

I $1+ \frac{n-1}{2}(L)^{n}+\frac{1}{2}f^{*}K_{Y}(L)^{n-}$ .
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Since $f^{*}K_{Y}(L)^{n-1}\geqq 0$, and $g(L)\in Z$, we have

$g(L) \geqq m+\lceil\frac{n-1}{2}L^{n}\rceil-m+1$

$\geqq q(Y)+\lceil\frac{n-1}{2}L^{n}\rceil-m+1$ .

Case (2): $\kappa(Y)=1$ .
By Iitaka theory $([Ii1])$ , there exists a fiber space $g:Yarrow C$ onto a curve

$C$ with a general fiber $F$ of $\kappa(F)=0$ .
By Theorem $B$ in Appendix and Kawamata’s theorem, $q(Y)\leqq g(C)+q(F)\leqq$

$g(C)+\dim F\leqq g(C)+m-1$ .
Hence if $g(C)=0,$ $q(Y)\leqq m-1$ .
Hence

$g(L) \geqq 1+\lceil\frac{n-1}{2}L^{n}\rceil$

$>m-1+ \lceil\frac{n-1}{2}L^{n}\rceil-m+1$

$\geqq q(Y)+\lceil\frac{n-1}{2}L^{n}\rceil-m+1$ .

If $g(C)\geqq 1$ , applying Theorem 1.3.3 to $(g\circ f, X, C, L)$ , we have $g(L)\geqq g(C)+$

$\lceil((n-1)/2)L^{n}\rceil$ , since $\kappa(F)+\dim C\geqq\kappa(X)\geqq 0([Ii1])$ .
Hence

$g(L) ig(C)+m-1+\lceil\frac{n-1}{2}L^{n}\rceil-m+1$

$\geqq q(Y)+\lceil\frac{n-1}{2}L^{n}\rceil-m+1$ . $\square$

Next we prove that Conjecture 2 is true if $\kappa(X)\geqq 0$, \kappa (Y);$ 1, and $\dim Y=2$ .
THEOREM 2.3. Let $(f, X, Y, L)$ be a quasi-Polarized fiber space with $\kappa(X)\geqq 0$

and $\dim X=n\geqq 3$ , where $Y$ is a normal projective surface over $C$ with $\kappa(Y)\leqq 1$ .
Then $g(L)\geqq q(Y)+\lceil((n-1)/2)L^{n}\rceil-1$ .
PROOF. AS in the proof of Theorem 2.2, $(f, X, Y, L)$ is replaced by

$(f’, X’, Y’, L’)$ . If $\kappa(Y)=0$ or 1, then, by Theorem 2.2, $g(L)\geqq q(Y)+$

$\lceil((n-1)/2)L^{n}\rceil-1$ holds.
So we may assume that $\kappa(Y)=-\infty$ .
If $q(Y)=0$ , it is obviously proved. Since $\kappa(X)\geqq 0$ and $g(L)$ is an integer,

$g(L) i1+\lceil\frac{n-1}{2}L^{n}\rceil$ .
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If $q(Y)\geqq 1$ , there exists an Albanese map $\pi$ : $Yarrow C$ where $C$ is a smooth curve
of genus $q(Y)$ . Hence $h=\pi\circ f:Xarrow C$ is a fiber space. Since $\kappa(F_{h})+\dim C\geqq$

$\kappa(X)\geqq 0$ and $g(C)\geqq 1$ , applying Theorem 1.3.3 to $(\pi\circ f, X, C, L)$ , we have

$g(L) \geqq g(C)+\lceil\frac{n-1}{2}L^{n}\rceil>q(Y)-1+\lceil\frac{n-1}{2}L^{n}\rceil$ ,

where $F_{h}$ is a general fiber of $h$ . $\square$

Appendix.

First we shall prove the following theorem by the same method as [V3].

THEOREM A. Let $X$ and $Y$ be smooth quasi-projective varieties over $C,$ $X$

a semiample invertible sheaf over $X,$ $f:Xarrow Y$ a projective $sur_{J}$ ective morphism,
and $\omega_{X/Y}=\omega_{X}\otimes f^{*}\omega_{Y}^{-1}$ . Then for any positive integer $k$ , $f_{*}((\omega_{X/Y}\otimes X)^{\otimes k})$ is
weakly posrtive in the sense of Viehweg [V3].

REMARK. If $X$ is semiample over $f^{-1}(U)$ for an open set $U\subset Y$ , then we
can prove that for any positive integer $k,$ $f_{*}((\omega_{X/Y}\otimes X)^{\otimes k})$ is weakly positive
by the same method as the following argument.

We use the same notations as in [V3].

Let $\mathscr{F}$ be a torsion free coherent sheaf over $Y$ and $\mathscr{F}^{**}$ the double dual of
$\mathscr{F}$ . Let $\hat{S}^{\beta}\mathscr{F}$ denote the double dual of the $\beta$ -th symmetric power of $\mathscr{F}$ .

DEFINITION. The sheaf $\mathscr{F}$ is said to be generated over an open set $U$ by
global section if the canonical map

$o_{U}\otimes H^{0}(Y, \mathscr{F})arrow \mathscr{F}_{U}$

is a surjection and $U$ is an open set dense in $Y$ . An invertible sheaf $\mathcal{L}$ is said
to be semiample over $U$ if some tensor power of $\mathcal{L}$ is generated over $U$ by
global sections. Note that $\mathscr{F}=0$ is said to be generated over $Y$ by global
sections. $\mathscr{F}$ is said to be weakly generated over an open set $U$ if the double
dual of some symmetric power of $\mathscr{F}$ is generated over $U$ by global sections.

Note that letting $i:Y(\mathscr{F})\subset Y$ be the biggest open set such that $\mathscr{F}$ is locally
free, $\hat{S}^{k}(\mathscr{F})=i_{*}S^{k}(i^{*}\mathscr{F})$ .

DEFINITION (Viehweg [V3]). The sheaf $\mathscr{F}$ is said to be weakly positive if
there exist an ample invertible sheaf $\mathcal{H}$ over $Y$ and an open set $U$ such that
for any positive integer $\alpha,$

$S^{\alpha}(\mathscr{F})\otimes \mathcal{H}$ is weakly generated over an open set $U$

by global sections.
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Note that $\mathscr{F}=0$ is weakly positive and that since $\mathscr{F}$ is torsion free, $\mathscr{F}$ is
locally free in codimension one. Hence $H^{0}(Y,\hat{S}^{\beta}(\mathscr{F}))=H^{0}(Y(\mathscr{F}), S^{\beta}(\mathscr{F}))$ . Hence
to prove $f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k})$ is weakly positive, we may replace $Y$ by $Y-S$ over
which $f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k})$ is locally free with $co\dim(Y-S)\geqq 2$ .

At first we shall prove the following lemmata.

LEMMA A. 1. $f_{*}(\omega_{X/Y}\otimes \mathcal{L})$ is weakly positive.

PROOF. Since $\mathcal{L}$ is semiample, for some $N\geqq 2$

$\mathcal{L}^{\otimes N}=\mathcal{O}(\sum_{j}\nu_{j}D_{j})$ ,

where $D_{j}$ are non-singular prime divisors with $\nu_{j}=1$ .
Let $\mathcal{L}^{(i)}=\mathcal{L}^{\otimes i}(-\Sigma_{j}[i\cdot\nu_{j}/N]D_{j})$ . By Lemma 5.1 in [V3], $f_{*}(\mathcal{L}^{(i)}\otimes\omega_{X/Y})$ is

weakly positive. But since $N\geqq 2$ , we have $\mathcal{L}^{(1)}=\mathcal{L}$ . Therefore

$f_{*}(\omega_{X/Y}\otimes \mathcal{L}^{(1)})=f_{*}(\omega_{X/Y}\otimes X)$

is weakly positive. $\square$

LEMMA A.2. Let $f,$ $X,$ $Y$ be as above and $\mathcal{L}$ a semiample invertible sheaf
over $X$ .

(1) Let $\mathcal{A}$ be an invertible sheaf over $X$ and $\Sigma_{j}e_{j}E_{j}$ an effective divzsor’s
irreducrble decomposition such that for $N>0,$ $\mathcal{A}^{\mathfrak{g}N}=O_{X}(\Sigma_{j}e_{j}E_{j})$ . Suppose that
the support of $\Sigma_{j}e_{j}E_{j}$ is normally crossing over $f^{-1}(U)$ for a dense open set
$U\subset Y$ .

Then, for $0\leqq i\leqq N-1$ , the sheaf $f_{*}(\mathcal{A}^{\otimes i}(-\Sigma_{j}[i\cdot e_{j}/N]E_{j})\mathfrak{U}_{X/Y}\otimes \mathcal{L})$ is weakly
positive. (Therefore for OSi$N-- 1, the sheaf $f_{*}( \mathcal{A}^{\copyright i}(-\sum_{j}g_{j}E_{j})\otimes\omega_{X/Y}\otimes \mathcal{L})$ is
weakly positive if

$f_{*}( \mathcal{A}^{\otimes i}(-\sum_{j}[\frac{i\cdot e_{j}}{N}]E_{j})\mathfrak{U}_{X/Y}\otimes \mathcal{L})arrow f_{*(\mathcal{A}^{\otimes i(-\sum_{j}g_{j}E_{j})\otimes\omega_{X/Y}\otimes \mathcal{L})}}$

is an isomorphism over a dense open subset of $Y.$ )

(2) Let $\Re$ be an invertible sheaf over $X$ which is generated over $f^{-1}(U)$ by
global sections for an open set $U\subset Y$ . Then $\Re=\mathcal{O}_{X}(B+\sum_{j}d_{j}D_{j})$ as the irreduc-
ible decomposition such that $B$ is nonsingular over $f^{-1}(U)$ and the support of
$\Sigma_{j}d_{j}D_{j}$ is contained in $f^{-1}(Y-U)$ .

PROOF.
(1) We take a blowing up $\mu:Tarrow X$ which is an isomorphism over $f^{-1}(U)$

such that $(\mu^{*}\mathcal{A})^{\otimes N}=\mathcal{O}_{X}(\Sigma_{jh}f_{jk}F_{j,k})$ with the $supp0$rt of tbe irreducible decom-
position $\Sigma_{j.k}F_{j}k$ normally crossing. Note that $e_{j}|f_{j}k$ , and the centers of the
blowing up never meet the points where $\Sigma_{j}E_{j}$ is normally crossing. Let $d$ be
a composite of a desingularization $Zarrow Spec(\oplus_{i=0}^{N-1}(\mu^{*}\mathcal{A})^{-i})$ and the structure
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morphism $Spec(\oplus_{\ell=0}^{N-1}(\mu^{*}\mathcal{A})^{-i})arrow T$ . Then by (2.3) in [V3], we have

$d_{*} \omega_{Z/Y}=\bigoplus_{i=0}^{N-1}((\mu^{*}\mathcal{A})^{(i)}\otimes\omega_{T/Y})$ .

Hence

$f_{*} \circ\mu_{*}\circ d_{*}(\omega_{Z/Y}\otimes d^{*}\circ\mu^{*}\mathcal{L})=\bigoplus_{i=0}^{N-1}f_{*}\circ\mu*((\mu^{*}\mathcal{A})^{(i)}\otimes\omega_{T/Y}\otimes\mu^{*}\mathcal{L})$ .

By Lemma A. 1,
$f_{*^{O}}\mu_{*}\circ d_{*}(\omega_{z/Y}\otimes d^{*}\circ\mu^{*}X)$

is weakly positive. Hence

$f_{*} \circ\mu*((\mu^{*}\mathcal{A})^{(i)}\otimes\omega_{T/Y}\otimes\mu^{*}\mathcal{L})=f_{*}\circ\mu*(Qt^{*}\mathcal{A})^{\otimes\iota}(-\sum_{j,k}[\frac{i\cdot f_{j.l}}{N}]F_{j.k})\otimes\omega_{T/Y}\otimes\mu^{*}\mathcal{L})$

is weakly positive. The following natural map is an isomorphism over $U$

$f_{*} \circ\mu*((\mu^{*}\mathcal{A})^{\otimes i}(-\sum_{f,k}[\frac{i\cdot f_{j.k}}{N}]F_{j,\iota})\otimes\omega_{T/Y}\otimes\mu^{*}\mathcal{L})$

$arrow f_{*}\circ\mu*((\mu^{*}\mathcal{A})^{\mathfrak{H}i}(-\Sigma’[\frac{i\cdot f_{j.k}}{N}]F_{j,k})\otimes\omega_{T/Y}\otimes\mu^{*}\mathcal{L})$

if in the last term the sum $\sum’$ tends over $F_{j,k}’ s$ intersecting on $(f\circ\mu)^{-\iota}(U)$ .
Hence the last term is weakly positive. On the other hand $\mathcal{O}(\Sigma_{j}[i\cdot e_{j}/N]\mu^{*}E_{j})$

$=O( \sum’[i\cdot f_{j.k}/N]R_{k})$ over $(f\circ\mu)^{-1}(U)$ .
Hence over $U$

$f_{*} \circ\mu*((\mu^{*}\mathcal{A})^{\otimes i}(-\Sigma’[\frac{i\cdot f_{j.k}}{N}]F_{j.k})\otimes\omega_{T/Y}\otimes\mu^{*}\mathcal{L})$

$=f_{*^{o}} \mu*((\mu^{*}\mathcal{A})^{\otimes i}(-\sum_{j}[\frac{i\cdot e_{j}}{N}]\mu^{*}E_{j})\otimes\omega_{T/Y}\otimes\mu^{*}X)$

$=f_{*}( \mathcal{A}^{\otimes i}(-\sum_{j}[\frac{i\cdot e_{j}}{N}]E_{j})\otimes\omega_{X/Y}\otimes \mathcal{L})$

is weakly positive.
(2) Let $\Re=O_{X}(B+\Sigma_{\mathfrak{i}}d_{i}D_{i})$ , where $D_{t}cf^{-l}(Y-U)$ for each $i$ . Since $yl$ is

generated over $f^{-1}(U)$ by global sections and Si2 $|_{f^{-1}(U)}=O_{X}(B)|_{f^{-1_{(U)}}}$ , a general
section $B$ of $\Re|_{f}-1_{(U)}$ is nonsingular over $f^{-1}(U)$ by Bertini’s theorem. $\square$

LEMMA A.3. Let $X,$ $Y,$ $f,$ $\mathcal{L}$ be as above and $\mathcal{H}$ an ample line bundle on $Y$

such that for given $k>0$ and some $\nu>0$ the sheaf $\hat{S}^{\nu}(f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\Phi k})\otimes \mathcal{H}^{\mathfrak{H}k})$ is
generated over an open set $U$ by global sections.

Then $f_{*}((\omega_{X/Y}\otimes X)^{\otimes k}\otimes f^{*}\mathcal{H}^{\theta k-1})$ is weakly posrtive.
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PROOF. By (1.3 iv) in [V3] we may replace $Y$ by $Y-S$ , as long as $S$ is a
closed subvariety of codimension $\geqq 2$ . Hence we may assume that $f_{*}((\omega_{X/Y}\otimes$

$X\otimes f^{*}\mathcal{H})^{\otimes k})$ is locally free on $Y$ .
We put

$\mathscr{M}={\rm Im}(f^{*}(f_{*}((\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k}))arrow(\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k})^{**}$ ,

where ** denotes the double dual.
Then $\mathscr{M}$ is a line bundle, i.e.,

$\mathscr{M}=(\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k}\mathfrak{U}_{X}(-Z)$ ,

where $Z$ is an effective divisor on $X$ .
Then there exists a blowing up of $X,$

$\rho_{1}$ : $X’arrow X$ such that

$\rho_{1}^{*}\circ f^{*}(f_{*}((\omega_{x/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k}))arrow\rho I((\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\Phi k})\otimes\rho fo(-Z)\mathfrak{U}(-E)$

is surjective, where $E$ is an exceptional effective divisor.
In order to have the support of $\rho_{2}^{*}(\rho_{1}^{*}Z+E)=D$ in a normal crossing divisor,

we take a blowing up $\rho_{2}$ : $X’’arrow X’$ . Here we put $\rho_{1^{Q}}\rho_{2}=\rho$ and $f\circ\rho=g$ .
The pullback of the map above

$\rho^{*}\circ f^{*}(f_{*}((\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k}))arrow\rho^{*}((\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k})\mathfrak{U}(-D)$

is a surjection, whose image we denote by $\Re$ . Note that $g_{*}X\supset f_{*}((\omega_{X/Y}\otimes X\otimes$

$f^{*}\mathcal{H})^{\otimes k})=g*((\omega_{X^{\nu}/Y}\otimes\rho^{*}\mathcal{L})^{\otimes k})\otimes \mathcal{H}^{\otimes k}$ and that $\rho_{*}\omega_{X’}^{\otimes k}=\omega_{X}^{\otimes k}$ . Then we have

$g^{*}(f_{*}((\omega_{x/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k}))=g^{*}(f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\theta k})\otimes \mathcal{H}^{\otimes k})$

$=g^{*}(g_{*}((\omega_{X^{u}/Y}\otimes\rho^{*}\mathcal{L})^{\otimes k})\otimes \mathcal{H}^{\otimes k})$ .
We remark that

$f_{*}((\omega_{x/Y}\otimes \mathcal{L})^{\otimes k})\otimes \mathcal{H}^{\otimes k}\cong g_{*}((\omega_{X^{n}/Y}\otimes\rho^{*}X)^{\otimes k})\otimes \mathcal{H}^{\copyright k}$ ,

and
$S^{\nu}(f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k})\otimes \mathcal{H}^{\otimes k})\cong S^{\nu}(g_{*}((\omega_{X’/Y}\otimes\rho^{*}\mathcal{L})^{\Phi k})\otimes \mathcal{H}^{\otimes k})$ .

Since
$g^{*}(g*((\omega_{X^{n}/Y}\otimes\rho^{*}\mathcal{L})^{\otimes k})\otimes \mathcal{H}^{\otimes k})arrow\rho^{*}((\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k})\mathfrak{U}(-D)$

is surjective,

$g^{*}S^{\nu}(g_{*}((\omega_{Y^{\nu}/Y}\otimes\rho^{*}\mathcal{L})^{\otimes k})\otimes \mathcal{H}^{\otimes k})arrow S^{\nu}(\rho^{*}((\omega_{X/Y}\otimes X\otimes f^{*}\mathcal{H})^{\otimes k})\mathfrak{U}(-D))$

$\cong\rho^{*}((\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{ek\nu})\otimes \mathcal{O}(-\nu D)$

is surjective.
Hence by hypothesis, $X^{\otimes\nu}=\rho^{*}((\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k\nu})\otimes \mathcal{O}(-\nu D)$ is generated

over $g^{-1}(U)$ for an open set $U$ of $Y$ by global sections.
Hence we apply Lemma A.2 to $(\rho^{*}(\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H}))^{\otimes k}=\Re \mathfrak{U}(D)$ .
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Then $g_{*}(\omega_{X’/Y}\otimes\rho^{*}\mathcal{L}\otimes(\rho^{*}(\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H}))^{\otimes k-1}(-[((k-1)/k)D]))$ is weakly
positive.

Since $\rho_{*}\omega_{X^{n}}=\omega_{X}$ , we have

(1) $g_{*}( \omega_{X^{\mu}/Y}\otimes\rho^{*}\mathcal{L}\otimes(\rho^{*}(\omega_{X/Y}\otimes X\otimes f^{*}\mathcal{H}))^{\otimes h-1}(-[\frac{k-1}{k}D]))$

$\subset g_{*}(\omega_{X^{n}/Y}\otimes\rho^{*}X\otimes(\rho^{*}(\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H}))^{\Theta k-1})$

$=f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\emptyset k})\otimes \mathcal{H}^{\otimes k-1}$ ,

and since $\mathcal{O}([((k-1)/k)D])co(D)$ and $\rho^{*}\omega_{X}\subset\omega_{X},,$ ,

(2) $\Re\otimes g^{*}\mathcal{H}^{-1}\subset(\omega_{X’/Y}\otimes\rho^{*}\mathcal{L}\otimes\rho^{*}(\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k-1})(-[\frac{k-1}{k}D])$ .

Since $g_{*}\Re\supset f_{*}((\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k})$ , we have by (1) and (2)

$g_{*} \Re\otimes \mathcal{H}^{-1}\subset g_{*}(\omega_{X^{\pi}/Y}\otimes\rho^{*}\mathcal{L}\otimes\rho^{*}(\omega_{X/Y}\otimes \mathcal{L}\otimes f^{*}\mathcal{H})^{\otimes k-1}(-[\frac{k-1}{k}D]))$

$\subset f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k})\otimes \mathcal{H}^{\otimes k-1}$

three of which all coincide and are weakly positive. $\square$

LEMMA A.4. Let $f,$ $X,$ $Y,$ $\mathcal{L}$ be as in Theorem $A$ , $Y’$ a smooth quast-

projective vanety, $\tau:Y’arrow Y$ a flat projective $morp/usm$ , $S=X\cross_{Y}Y’,$ $S’$ the
normalization of $S$ , and $X’$ a desingularization of $S’$ . We have the following
diagram:

$d$ $\sigma$
$\tau_{2}$

$X’arrow S’arrow$ $S$ $arrow X$

$f’\downarrow$ $\downarrow h’$ $\downarrow h$ $\downarrow f$

$Y’arrow Y’arrow Y’arrow Y$
$id$ $id$ $\tau$

We put $\tau_{1}=\tau_{2^{\circ}}\sigma$ and $\tau’=\tau_{1^{\circ}}d$ .
Assume that $S’$ has only rational singularities.
Then for any $k$ llilO there exists a homomorphism

$i:f_{*}’((\omega_{X’/Y’}\otimes(\tau’)^{*}\mathcal{L})^{\otimes k+1})arrow\tau^{*_{o}}f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k+1})$

$wf\dot{u}ch$ is an isomorPhism over an open subvariety of $Y’$ .

PROOF. By the proof of Lemma 3.2 in [V3],

$\sigma_{*}\circ d_{*}(\omega_{X/Y}^{\otimes k+1},)arrow\tau_{2}^{*}(\omega_{X/Y}^{\otimes k+1})$

is an isomorphism over $h^{-1}(U)$ for an open subvariety $U$ of $Y’$ . Then
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$\sigma_{*}\circ d_{*}((\omega_{X’/Y’}\otimes(\tau’)^{*}\mathcal{L})^{\otimes k+1})\cong\sigma_{*}\circ d_{*}(\omega_{X’/Y}^{\otimes k+1},)\otimes\tau_{2}^{*}\mathcal{L}^{\otimes k+1}$

$arrow\tau_{2}^{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k+1})$

is an isomorphism over $h^{-1}(U)$ .
Hence since $\tau$ is a flat morphism, by the flat base change theorem $([Ha1])$ ,

$f_{*}’((\omega_{X’/Y’}\otimes(\tau’)^{*}\mathcal{L})^{\otimes k+1})arrow h_{*^{\circ}}\phi((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k+1})$

$\cong\tau^{*}\circ f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k+1})$

is an isomorphism over U. $\square$

PROOF OF THEOREM A. Let $\mathcal{H}$ be any ample line bundle on Y.
Only to prove Theorem $A$ , by (1.3 iv) in [V3], we may assume that

$f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k})$ is locally free on $Y$ .
$r={\rm Min}$ { $s>0:f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes h})\otimes \mathcal{H}^{\otimes sk-1}$ : weakly positive}.

Then there exists a positive integer $\nu$ such that

$S^{\nu}(f_{*}((\omega_{X/Y}\otimes X)^{\otimes k}))\otimes \mathcal{H}^{\otimes\nu(rk-1)}\otimes \mathcal{H}^{\otimes\nu}$

is generated over an open set by global sections.
By Lemma A.3, $f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k})\otimes \mathcal{H}^{\otimes r(k-1)}$ is weakly positive. Then by the

choice of $r,$ $(r-1)k-1<r(k-1)$ . Hence we have $r\leqq k$ . Hence for any surjec-
tive morphism and any $\mathcal{H},$

$f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k})\otimes \mathcal{H}^{\otimes k^{2-}k}$ is weakly positive.
Next we take $\tau:Y’arrow Y$ : a finite surjective morphism such that $\tau^{*}\mathcal{H}=(\mathcal{H}’)^{\otimes a}$

for a Cartier divisor $\mathcal{H}’$ , where $Y’$ is a smooth quasi-projective variety and $d$

is given below. (We can take this. See [B-G], [Kal], [V3].)

We use the same notations as in Lemma A.4.
We blow up $X$ if necessary, so we may assume that the support of the

ramification locus $\Delta(S’/X)$ (see [V2]) is a normal crossing divisor. Then the
assumption of Lemma A.4 is satisfied. (See [V1].)

By the same argument above for $f’$ : $X’arrow Y’$ and Lemma A.4, we can
prove that $\tau^{*}\circ f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k})\otimes(\mathcal{H}’)^{\otimes k^{2-}k}$ is weakly positive.

Let $\alpha$ be a positive integer, and we put $d=2(k^{2}-k)\alpha+1$ .
For a sufficiently big integer $\beta$ ,

(1) $S^{2\alpha\beta}(\tau^{*}\circ f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k})\otimes(\mathcal{H}’)^{\otimes k^{2}-k})\otimes(\mathcal{H}’)^{\otimes\beta}$

$\cong\tau^{*}S^{2\alpha\beta}(f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k}))\otimes(\tau^{*}\mathcal{H})^{\otimes\beta}$

is generated over an open set by global sections.
Since the trace map $\tau_{*}0_{Y’}arrow O_{Y}$ is surjective,

(2) $\tau_{*^{o}}\tau^{*}(S^{2\alpha\beta}(f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k}))\otimes \mathcal{H}^{\otimes\beta})arrow S^{2\alpha\beta}(f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k}))\otimes \mathcal{H}^{\otimes\beta}$

is surjective.
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By (1),
$\oplus \mathcal{O}_{Y’}arrow\tau^{*}S^{2a\beta}(f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k}))\otimes\tau^{*}\mathcal{H}^{\otimes\beta}$

is surjective over a dense open set of $Y$ ‘.
Since $\tau$ is finite surjective,

$\oplus\tau_{*}O_{Y’}arrow\tau_{*}\circ\tau^{*}(S^{2a\beta}(f_{*}((\omega_{x/Y}\otimes \mathcal{L})^{\emptyset k}))\otimes \mathcal{H}^{\otimes\beta})$

is surjective over a dense open set of Y.
Hence by (2)

$(\oplus\tau_{*}O_{Y’})\otimes \mathcal{H}^{\otimes\beta}arrow S^{2\alpha\beta}(f_{*}((\omega_{x/Y}\otimes \mathcal{L})^{\otimes k}))\otimes \mathcal{H}^{\otimes 2\beta}$

is surjective over a dense open set of $Y$ .
For a sufficiently big integer $\beta,$

$\tau_{*}O_{Y’}\otimes \mathcal{H}^{\otimes\beta}$ is generated by global sections.
Hence $S^{2a\beta}(f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k}))\otimes \mathcal{H}^{\otimes 2\beta}$ is generated over an open set by global

sections. Therefore $f_{*}((\omega_{X/Y}\otimes \mathcal{L})^{\otimes k})$ is weakly positive. $\square$

We can also prove the following theorem. (This theorem was pointed out
by the referee.)

THEOREM $A’$ . Let $X$ and $Y$ be smooth quast-projective vaneties over $C,$ $\mathcal{L}$

a semiample invertible sheaf over $X$ , and $f:Xarrow Y$ a projective surjective
morphism. Then for any Posrtive integer $k$ and $i,$ $f_{*}(\omega_{X/Y}^{\otimes k}\otimes \mathcal{L}^{\emptyset i})$ is weakly
positive.

PROOF. Let $\eta$ : $X’arrow X$ be a finite cyclic covering defined by the nonsingular
divisor $B$ such that $\mathcal{L}^{\Phi N}=\mathcal{O}(B)$ . Then $\eta_{*}\omega_{X’/Y}=\oplus_{i=0}^{N-1}(\omega_{X/Y}\otimes \mathcal{L}^{\Phi i})$ . Sinc$eX’$ is
nonsingular and $\eta$ is affine,

$(\eta_{*}\omega_{X’/Y})^{\Theta k}=\eta_{*}(\omega_{X/Y}^{\otimes k})$ .
Hence we have

$(f \circ\eta)_{*}(\omega_{X/Y}^{\otimes k})=\bigoplus_{t=0}^{kN-1)}f_{*}(\omega_{X/Y}^{\otimes k}\otimes \mathcal{L}^{\otimes t})^{\oplus\alpha(t)}$ ,

which is weakly positive by Viehweg [V3], wbere $(\Sigma_{t=0}^{N-1}x^{i})^{k}=\Sigma_{t=0}^{k(N-1)}\alpha(t)x^{t}$ .
Thus $f_{*}(\omega_{X/Y}^{\otimes k}\otimes \mathcal{L}^{\otimes t})$ is also weakly positive for $0\leqq t\leqq k(N-1)$ . Tend $Narrow\infty$

and we complete the proof. $\square$

THEOREM B. Let $(f, X, Y)$ be a fiber space with $n=\dim X>\dim Y=s$ .
Then $q(X)\leqq q(F)+q(Y)$ , where $F$ is a general fiber of $f$.

PROOF. Note that $H^{0}(X, f^{*}\Omega_{Y}^{1})=H^{0}(Y, \Omega_{Y}^{1})$ since $(f, X, Y)$ is a fiber space
and that there exists the canonical restriction: $H^{0}(X, \Omega_{X}^{1})arrow H^{0}(F, \Omega_{F}^{1}),$ $\phiarrow\phi_{F}$ .
By the following claim proved soon, we can show the inequality

$\dim H^{0}(X, \Omega_{X}^{1})/H^{0}(X, f^{*}\Omega_{Y}^{1})\leqq\dim H^{0}(F, \Omega_{F}^{1})$ .
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Indeed let $(\phi_{i})_{1\leq\ell\leq q}$ be a basis of representative 1-forms of $H^{0}(X, \Omega_{X}^{1})/H^{0}(X, f^{*}\Omega_{Y}^{1})$ .
If there exist complex numbers $(a_{i})_{1Si\leq q}$ such that $(\Sigma_{i=1}^{q}a_{i}\phi_{i})_{F}=0$ , by the claim
$\Sigma_{i=1}^{q}a_{i}\phi_{i}=0mod H^{0}(X, f^{*}\Omega_{Y}^{1})$ , which implies the image of the basis is linearly
independent in $H^{0}(F, \Omega_{F}^{1})$ . It is enough to show the following claim:

CLAIM. Let $\varphi$ be an element of $H^{0}(X, \Omega_{x1})$ such that $\varphi_{F}=0$ for a general

fiber $F$ of $f$. Then there is a $\psi\in H^{0}(Y, \Omega_{Y}^{1})$ such that $\varphi=f^{*}\psi$ , where $\Omega_{X}^{1}$ (resp.
$\Omega_{Y}^{1})$ is the sheaf of differentials of $X$ (resp. $Y$).

Let $Y_{0}$ be a Zariski open set such that $f_{0}$ : $X_{0}=f^{-1}(Y_{0})arrow Y_{0}$ is smooth and
$\sum(f)=Y-Y_{0}$ . Let $D$ be irreducible components of $\sum(f)$ of codimension 1 in
$Y$ and $D= \bigcup_{i=1}^{t}D_{i}$ . Then we may assume that $D$ and $f^{-1}(D)$ are normal
crossing divisors. Indeed, if $U_{i=1}^{t}D_{i}$ is not a normal crossing divisor, then by
taking some blowing ups $\mu_{Y}$ : $Y_{1}arrow Y,$ $(\mu_{Y}^{*}(D))_{red}$ is a normal crossing divisor.
Then there exist a birational morphism $\mu_{1}$ : $X_{1}arrow X$ and a surjective morphism
$f_{1}$ : $X_{1}arrow Y_{1}$ with connected fibers such that $\mu_{Y^{\circ}}f_{1}=f\circ\mu_{1}$ . Let $\Sigma(f_{1})=\mu_{Y}^{-1}(\Sigma(f))$

and $Y_{1.0}=Y_{1}-\Sigma(f_{1})$ . Then $Y_{1,0}$ is a Zariski open set such that $f_{1}$ : $f1^{1}(Y_{1,0})=$

$X_{1.0}arrow Y_{1.0}$ is smooth. Let $A$ be the union of irreducible components of $\Sigma(f_{1})$

of codimension 1 in $Y_{1}$ . Then $A$ is a normal crossing divisor. If $(f_{1}^{-1}(A))_{red}$ is
not a normal crossing divisor, then we take some blowing ups $\mu_{2}$ : $X_{2}arrow X_{1}$

such that $((f_{1}\circ\mu_{2})^{-1}(A))_{red}$ is a normal crossing divisor. We remark that $f_{2}=$

$f_{1^{\circ}}\mu_{2}$ : $X_{2}arrow Y_{1}$ is a fiber space, $q(X)=q(X_{2}),$ $q(Y)=q(Y_{1})$ , and $q(F)=q(F_{g})$ , where
$F$ (resp. $F_{2}$) is a general fiber of $f$ (resp. $f_{2}$). If we can prove $q(X_{2})\leqq q(F_{2})+$

$q(Y_{1})$ , then $q(X)\leqq q(F)+q(Y)$ is proved.
(Step 1)

We remark that there is an exact sequence

$0arrow f_{0}^{*}\Omega_{Y_{0}}^{1}arrow\Omega_{X_{0}}^{1}arrow\Omega_{X_{0}/Y_{0}}^{1}arrow 0$ ,

where $\Omega_{x_{0}/Y_{0}}^{1}$ is the sheaf of relative differentials of $X_{0}$ over $Y_{0}$ .
Hence

$0arrow H^{0}(X_{0}, f_{0}^{*}\Omega_{Y_{0}}^{1})arrow H^{0}(X_{0}\alpha\Omega_{X_{0}}^{1})arrow H^{0}(X_{0}\beta\Omega_{x_{0}/Y_{0}}^{1})$

is exact.
Let $\varphi\in H^{0}(X,$ $\Omega_{X}$ . We assume that $\varphi_{F_{y}}=0$ for some $y\in Y_{0}$ , where $F_{y}$ is

the fiber of $f$ over $y$ .
Note that

$H^{0}(X_{0}, \Omega_{x_{0^{1Y_{0}}}})=H^{0}(Y_{0}, f_{*}\Omega_{X_{0}/Y_{0}})\cong Hom(\mathcal{O}_{Y_{0}}, f_{*}\Omega_{X_{0}/Y_{0}})$ .
Hence there corresponds $\Phi$ : $\mathcal{O}_{Y_{0}}arrow f_{*}\Omega_{x_{0}/Y_{0}}$ to the given $\beta(\varphi_{X_{0}})$ .

By Hodge theory, $\dim H^{0}(F_{y}, \Omega_{F_{y}}^{1})$ is constant for any $y\in Y_{0}$ . Thus
$f_{*}\Omega_{x_{0}/Y_{0}}\otimes O_{y}/m_{y}=H^{0}(F_{y}, \Omega_{F_{y}}^{1})$ for any $y\in Y_{0}$ . Hence $\varphi_{F_{y}}=0$ for some $y\in Y_{0}$
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implies the following composite map is zero; $\mathcal{O}_{Y_{0}}arrow f_{*}\Omega_{x_{0}/Y_{0}}\mathfrak{U}_{y}/m_{y}$ . By NAK
lemma, tbe map $\mathcal{O}_{Y_{0}}arrow f_{*}\Omega_{x_{0}/Y_{0}}\mathfrak{U}_{y}$ is zero and $\Phi:0_{Y_{0}}arrow f_{*}\Omega_{x_{0}/Y_{0}}$ is zero.
Hence $\beta(\varphi_{X_{0}})=0$ .

Therefore by the above exact sequence there exists $\psi_{0}\in H^{0}(X_{0}, f_{0}^{*}\Omega_{Y_{0}}^{1})\cong$

$H^{0}(Y_{0}, \Omega_{Y_{0}}^{1})$ such that $f_{0}^{*}\psi_{0}=\varphi$ on $X_{0}$ .
(Step 2)

Let $A=Y-(D\cup Y_{0})$ and $Y_{i}=A\cup Y_{0}$ . Then $A$ is an analytic subspace of $Y_{1}$

and $co\dim(A)\geqq 2$ in $Y_{1}$ . Hence by Hartog’s theorem, there exists $\psi_{1}\in H^{0}(X_{1}, f^{*}\Omega_{X}^{1})$

such that $f^{*}\psi_{1}=\varphi$ on $X_{1}=f^{-1}(Y_{1})$ .
(Step 3)

The following argument is the same as in the proof of Proposition 6.7 of
[F-R] p. 975.

Let $D= \bigcup_{i=1}^{t}D_{i},$ $f^{-1}(D)=W=U_{j}W_{j}$ and for each $D_{i}$ we take an irreducible
component $W_{i}$ of $f^{-1}(D_{i})$ such that $f(W_{i})=D_{i}$ .

Let $M\cdot=\{x\in W_{i}|f_{W_{i}}$ : $W_{i}arrow D_{i}$ is of maximal rank at $x\in W\backslash U_{j\neq i}W_{j}$ and
$f(x)\not\in D_{j}$ for $j\neq i$ }, and $N_{i}=\{y\in D_{\tau}|y=f(x), x\in M_{i}\}$ . We $re$mark that $D_{i}$ and
$W_{i}$ are smooth by assumption. Let $x\in M_{i}$ . Then we take a coordinate system
$(x_{1}, x_{2}, \cdots x_{n})$ on $X$ around $x\in M_{i}$ and a coordinate system $(y_{1}, y_{2}, \cdots y_{s})$ on
$Y$ around $y=f(x)$ such that $W_{i}=\{x_{1}=0\},$ $D_{t}=\{y_{1}=0\}$ , and $f$ is defined by
$(x_{1}, x_{2}, \cdots, x_{n})arrow(x_{1}^{\mu}, x_{2}, \cdots, x_{s})=(y_{1}, y_{2}, \cdots, y_{s})$ around $\chi$ where $\mu\in N$ Let
$T_{i}(x)$ be the germ of manifold defined by $\chi_{S+\perp}=\cdots=x_{n}=0$ around $x$ . We will
identify $T_{\ell}(x)$ with a representing neighbourhood of $x$ . Then $U_{i}(y)=f(T_{i}(x))$

is a neighbourhood of $y$ in $Y$ . Let $G$ be the group generated by $g\in Aut(T_{i}(x))$ ,

where $g$ : $(x_{1}, x_{2}, \cdots , x_{s})arrow(\rho x_{1}, x_{2}, \cdots , x_{s})$ with $\rho=exp(2\pi i/\mu)$ . Then $f(T_{i}(x))$

is the quotient of $T_{i}(x)$ by $G$ . By (Step 2), we have $\psi_{z,i}^{y}\in H^{0}(U_{i}(y)-D_{i}, \Omega_{Y}^{1})$

such that $\varphi=f^{*}\psi_{2,i}^{y}$ on $f^{-1}(U_{i}(y))-f^{-1}(D_{i})$ . Hence $\varphi_{T_{i^{(x)}}}=g^{*}\varphi_{\tau_{t^{(\chi)}}}$ off $W_{i}$ ,

where $\varphi_{\tau_{i^{(x)}}}$ is the restriction of $\varphi$ to $T_{i}(x)$ . This implies that $\varphi_{T_{l}(x)}$ is
$G$-invariant as a holomorphic 1-form. Hence $\varphi_{T_{i}(x)}$ is a pullpack of a holomor-
phic 1-form $(\psi_{2.i}^{y})’$ on $U_{i}(y)=f(T_{i}(x))=T_{i}(x)/G$ . We remark that $(\psi_{2,i}^{y})’$ is an
extension of $\psi_{2.i}^{y}$ . Therefore $\varphi=f^{*}((\psi_{2,i}^{y})’)$ on $f^{-1}(U_{i}(y))-f^{-1}(D_{i})$ . Since $\varphi$ and
$(\psi_{2.i}^{y})’$ are holomorphic, $\varphi=f^{*}((\psi_{2.i}^{y})’)$ on $f^{-1}(U_{i}(y))$ .

(Step 4)

Let $Y_{2}=Y_{1}\cup U_{i=1}^{t}(U_{y\in N_{i}}U_{i}(y))$ . Since $\psi_{1}$ and $(\psi_{2.i}^{y})’$ are holomorphic, there
exists $\psi_{2}\in H^{0}(Y_{2}, \Omega_{Y}^{1})$ such that $\varphi=f^{*}\psi_{2}$ on $f^{-1}(Y_{2})$ by the above argument.
Because $Y-Y_{2}$ is contained in an analytic subset $B$ of $Y$ with $co\dim(B)\geqq 2$ in
$Y$ , by Hartog’s theorem, there exists $\psi\in H^{0}(Y, \Omega_{Y}^{1})$ such that $\varphi=f^{*}\psi$ on $f^{-1}(Y_{2})$ .
Since $\varphi$ and $\psi$ are holomorphic, $\varphi=f^{*}\psi$ on $X=f^{-1}(Y)$ . $\square$
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