On polynomials which determine holomorphic mappings

By Manabu Shirosaki

(Received Apr. 28, 1995)

§ 1. Introduction.

We say that two meromorphic functions f and g on \boldsymbol{C} share the value a if the zeros of $f-a$ and $g-a(1 / f$ and $1 / g$ if $a=\infty)$ are the same. In [N], R. Nevanlinna showed the following two results:

Theorem A. If two distinct nonconstant meromorphic functions on \boldsymbol{C} share four values by counting multiplicities, then one is a Möbius transformation of the other.

Theorem B. If two nonconstant meromor phic functions on \boldsymbol{C} share five values, then they are identical.

These results are interesting from the viewpoint of determining meromorphic or holomorphic functions but it is troublesome to check four or five pairs of values of meromorphic or holomorphic functions. Also there are results in [F1] and [F2] which show the uniqueness of holomorphic mappings into complex projective spaces.

Recently, H.-X. Yi proved the following :
Theorem C. Let n and m be two positive integers such that n and m have no common factor and $n>2 m+4$. Let a and b be two nonzero constants such that the algebraic equation $P(w)=w^{n}+a w^{n-m}+b=0$ has no multiple roots. If two nonconstant entire functions f and g satisfy $P(g)=\alpha P(f)$ for some entire function α without zeros, then $f=g$.

In this, it is enough for determining holomorphic functions to check only one pair of holomorphic functions. So, the author asks the following two questions:

QUESTION 1. Do there exist polynomials P_{n} of variables z_{1}, \cdots, z_{n} with the property:
if two algebraically nondegenerate holomorphic mappings f and g of \boldsymbol{C}
$(P) \quad$ into C^{n} satisfy $P_{n}(g)=\alpha P_{n}(f)$ for some entire function α without zeros, then $f=g$.

QUESTION 2. Do there exist homogeneous polynomials H_{n} of variables w_{0}, \cdots, w_{n} with the following property:
if two algebraically nondegenerate holomorphic mappings f and g of \boldsymbol{C} (H) into $\boldsymbol{P}^{n}(\boldsymbol{C})$ with reduced representations \tilde{f} and \tilde{g} respectively satisfy $H_{n}(\tilde{g})=\alpha H_{n}(\tilde{f})$ for some entire function α without zeros, then $f=g$.

Though the explanation of the terminologies in the above statements is left to the next section, we see that Yi's result shows the existence of P_{1}. In this paper, we shall show the existence of H_{n}, which makes the existence of P_{n} trivial.

It is assumed that the reader is familier with the fundamental concepts of the value distribution theory (or Nevanlinna theory) of meromorphic functions (see [H]).

§ 2. Basic results in the value distribution theory.

We begin to explain terminologies. For a holomorphic mapping f of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$, its representation is a holomorphic mapping $\tilde{f}=\left(f_{0}, \cdots, f_{n}\right)$ of \boldsymbol{C} into \boldsymbol{C}^{n+1} such that $\tilde{f}(\boldsymbol{C}) \neq\{\mathbf{0}\}$ and $f(z)=\left(f_{0}(z): \cdots: f_{n}(z)\right.$) for each $z \in \boldsymbol{C}-\tilde{f}^{-1}(\mathbf{0})$, where $\left(w_{0}: \cdots: w_{n}\right)$ is a homogeneous coordinate system of $\boldsymbol{P}^{n}(\boldsymbol{C})$. If $\tilde{f}^{-1}(\mathbf{o})=\varnothing$, we say that \tilde{f} is reduced.

DEfinition 1. Let f be a holomorphic mapping of \boldsymbol{C} into \boldsymbol{C}^{n}. If there exists no nonzero polynomial P of variables z_{1}, \cdots, z_{n} such that $P(f) \equiv 0$, then it is said that f is algebraically nondegenerate.

Definition 2. Let f be a holomorphic mapping of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$ with a representation \tilde{f}.
(i) If there exists no nonzero homogeneous polynomial H of variables w_{0}, \cdots, w_{n} such that $H(\tilde{f}) \equiv 0$, then it is said that f is algebraically nondegenerate.
(ii) If there exists no nonzero linear homogeneous polynomial L of variables w_{0}, \cdots, w_{n} such that $L(\tilde{f}) \equiv 0$, then it is said that f is linearly nondegenerate.

Remark. For holomorphic mappings into \boldsymbol{C} or $\boldsymbol{P}^{\mathbf{1}}(\boldsymbol{C})$, algebraic nondegeneracy coincides with nonconstantness.

For a meromorphic function φ and a positive integer $p, N^{p}(r, \varphi)$ represents the truncated counting function of $N(r, \varphi)$ by p as $\bar{N}(r, \varphi)$, i.e.,

$$
N^{p}(r, \varphi)=\int_{r_{0}}^{r} \frac{n^{p}(t, \varphi)}{t} d t \quad\left(r>r_{0}\right),
$$

where $n^{p}(t, \varphi)$ is the sum of minimum of p and multiplicity of pole of φ at each point z in $\{z ;|z|<t\}$ and r_{0} is a fixed positive number. The following is fundamental:

$$
\begin{equation*}
N^{p}(r, \varphi) \leqq N(r, \varphi) \leqq T(r, \varphi)+O(1) . \tag{2.1}
\end{equation*}
$$

Furthermore, for a holomorphic mapping f of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$ and a hyperplane H in $\boldsymbol{P}^{n}(\boldsymbol{C})$ represented by the equation of homogeneous coordinates $a_{0} w_{0}+\cdots+a_{n} w_{n}=0$, we use $T_{f}(r), N_{f, H}(r), N_{f, H}^{p}(r)$ and $S_{f}(r)$. We explain these. Let $\tilde{f}=\left(f_{0}, \cdots, f_{n}\right)$ be a reduced representation of f. Then $T_{f}(r)$ and $N_{f, H}(r)$ are given for $r>r_{0}$ by

$$
T_{f}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|\tilde{f}\left(r e^{i \theta}\right)\right\| d \theta-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|\tilde{f}\left(r_{0} e^{i \theta}\right)\right\| d \theta
$$

and

$$
N_{f, H}(r)=N(r, 1 / F)
$$

for $r>r_{0}$ if $F:=a_{0} f_{0}+\cdots+a_{n} f_{n} \not \equiv 0$, where $\|\cdot\|$ is the L^{2}-norm in \boldsymbol{C}^{n+1}. We also define

$$
N_{f, H}^{p}(r)=N^{p}(r, 1 / F) .
$$

The correspondence to (2.1) is

$$
\begin{equation*}
N_{f, H}^{p}(r) \leqq N_{f, H}(r) \leqq T_{f}(r)+O(1) . \tag{2.2}
\end{equation*}
$$

Finally, $S_{f}(r)$ represents quantities such that

$$
S_{f}(r)=o\left(T_{f}(r)\right) \quad(r \rightarrow \infty, r \notin E),
$$

where E is an exceptional set of $\left(r_{0}, \infty\right)$ with finite linear measure.
Theorem $\mathrm{D}([\mathbf{C}],[\mathbf{S h}],[\mathbf{S t}])$. Let f be a linearly nondegenerate holomorphic mapping of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$ and H_{1}, \cdots, H_{q} hyperplanes in general position in $\boldsymbol{P}^{n}(\boldsymbol{C})$. Then

$$
(q-n-1) T_{f}(r) \leqq \sum_{j=1}^{q} N_{f, H_{j}}^{n}(r)+S_{f}(r) .
$$

Also, we will need the following
Theorem E ([C], [M]). Let f be a nonconstant meromorphic function on \boldsymbol{C} and a_{1}, \cdots, a_{q} distinct complex numbers. If all the zeros of $f-a_{j}$ have the multiplicity at least m_{j}, where m_{j} are arbitrarily fixed positive integers $(1 \leqq j \leqq q)$, then

$$
\sum_{j=1}^{q}\left(1-\frac{1}{m_{j}}\right) \leqq 2 .
$$

Proof. In the situation Theorem E , the inequality of Theorem D becomes

$$
(q-2) T_{f}(r) \leqq \sum_{j=1}^{q} N^{1}\left(r, 1 /\left(f-a_{j}\right)\right)+S_{f}(r) .
$$

By the assumption of multiplicity of zeros of $f-a_{j}$ and (2.2), we have $N^{1}\left(r, 1 /\left(f-a_{j}\right)\right) \leqq N\left(r, 1 /\left(f-a_{j}\right)\right) / m_{j} \leqq T_{f}(r) / m_{j}+O(1)$. Hence, we get

$$
(q-2) T_{f}(r) \leqq \sum_{j=1}^{q} \frac{1}{m_{j}} T_{f}(r)+S_{f}(r)
$$

This induces the inequality required.

§ 3. Existence of H_{1}.

Theorem 1. Let p and d be two positive integers with $d>2 p+8$ and $p \geqq 2$ which have no common factors. Then $H_{1}\left(w_{0}, w_{1}\right)=w_{0}{ }^{d}+w_{0}{ }^{p} w_{1}{ }^{d-p}+w_{1}{ }^{d}$ has the property (H).

We prove a more precise result:
Theorem 2. Let H_{1} be the homogeneous polynomial as in Theorem 1. Let f and g be algebraically nondegenerate holomorphic mappings of \boldsymbol{C} into $\boldsymbol{P}^{1}(\boldsymbol{C})$ with reduced representations $\tilde{f}=\left(f_{0}, f_{1}\right)$ and $\tilde{g}=\left(g_{0}, g_{1}\right)$ respectively. If

$$
\begin{equation*}
H_{1}\left(g_{0}, g_{1}\right)=\alpha H_{1}\left(f_{0}, f_{1}\right) \tag{3.1}
\end{equation*}
$$

holds for some entire function α without zeros, then

$$
g_{0}=\beta f_{0} \quad \text { and } \quad g_{1}=\beta f_{1}
$$

where β is an entire function such that $\beta^{d}=\alpha$.
Proof. Consider the holomorphic mapping F of \boldsymbol{C} into $\boldsymbol{P}^{2}(\boldsymbol{C})$ with the reduced representation $\tilde{F}=\left(g_{0}{ }^{d},\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}{ }^{d-p}, \alpha f_{0}{ }^{d}\right)$. Since there exist positive constants C_{1} and C_{2} such that the inequalities

$$
1+\left|w^{d-p}+w^{d}\right|^{2} \geqq C_{1}\left(1+\left|w^{d}\right|^{2}\right) \geqq C_{2}\left(1+|w|^{2}\right)^{d}
$$

hold for all $w \in C$, we get $\|\tilde{F}\| \geqq \sqrt{C_{2}}\|\tilde{g}\|^{d}$ and

$$
\begin{aligned}
\|\tilde{F}\|^{2} & \geqq \frac{1}{2}\left\{\left|g_{0}{ }^{d}+\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}{ }^{d-p}-\alpha f_{0}{ }^{d}\right|^{2}+\left|\alpha f_{0}{ }^{d}\right|^{2}\right\} \\
& =\frac{1}{2}\left\{\left|\alpha\left(f_{0}{ }^{p}+f_{1}{ }^{p}\right) f_{1}{ }^{d-p}\right|^{2}+\left|\alpha f_{0}^{d}\right|^{2}\right\} \\
& \geqq \frac{C_{2}}{2}\left(|\alpha| \cdot\|\tilde{f}\|^{d}\right)^{2} .
\end{aligned}
$$

These induce

$$
\log \|\tilde{F}\| \geqq \frac{d}{2}(\log \|\tilde{f}\|+\log \|\tilde{g}\|)+\frac{1}{2} \log |\alpha|+O(1)
$$

and

$$
\begin{equation*}
T_{F}(r) \geqq \frac{d}{2}\left(T_{f}(r)+T_{g}(r)\right)+O(1) . \tag{3.2}
\end{equation*}
$$

Also, by considering the hyperplanes $H_{j}: w_{0}+a_{j} w_{1}=0(1 \leqq j \leqq d)$ in $\boldsymbol{P}^{1}(\boldsymbol{C})$, where a_{j} are defined by the factorization $w_{0}{ }^{d}+w_{0}{ }^{p} w_{1}{ }^{d-p}+w_{1}{ }^{d}=\Pi_{j=1}^{d}\left(w_{0}+a_{j} w_{1}\right)$, we have, by Theorem D and (2.2),

$$
\begin{align*}
(d-2) T_{g}(r) & \leqq \sum_{j=1}^{d} N_{g, H}(r)+S_{g}(r) \\
& =\sum_{j=1}^{d} N\left(r, \frac{1}{g_{0}+a_{j} g_{1}}\right)+S_{g}(r) \\
& =\sum_{j=1}^{d} N\left(r, \frac{1}{f_{0}+a_{j} f_{1}}\right)+S_{g}(r) \leqq d T_{f}(r)+S_{g}(r) \tag{3.3}
\end{align*}
$$

and, similarly,

$$
\begin{equation*}
(d-2) T_{f}(r) \leqq d T_{g}(r)+S_{f}(r) \tag{3.4}
\end{equation*}
$$

Assume that F is linearly nondegenerate and consider hyperplanes

$$
\widetilde{H}_{1}: w_{0}=0, \quad \tilde{H}_{2}: w_{1}=0, \quad \tilde{H}_{3}: w_{2}=0
$$

and

$$
\widetilde{H}_{4}: w_{0}+w_{1}-w_{2}=0
$$

in $\boldsymbol{P}^{2}(\boldsymbol{C})$. Then by Theorem D, we have

$$
\begin{align*}
T_{F}(r) \leqq & \sum_{j=1}^{4} N_{F, \tilde{H} j}^{2}(r)+S_{F}(r) \\
= & N^{2}\left(r, \frac{1}{g_{0}{ }^{d}}\right)+N^{2}\left(r, \frac{1}{\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}{ }^{d-p}}\right) \\
& +N^{2}\left(r, \frac{1}{\alpha f_{0}{ }^{d}}\right)+N^{2}\left(r, \frac{1}{\alpha\left(f_{0}{ }^{p}+f_{1}{ }^{p}\right) f_{1}{ }^{d-p}}\right)+S_{F}(r) \\
\leqq & 2\left(N\left(r, \frac{1}{g_{0}}\right)+N\left(r, \frac{1}{g_{1}}\right)+N\left(r, \frac{1}{f_{0}}\right)+N\left(r, \frac{1}{f_{1}}\right)\right) \\
& +N\left(r, \frac{1}{g_{0}{ }^{p}+g_{1}{ }^{p}}\right)+N\left(r, \frac{1}{f_{0}{ }^{p}+f_{1}{ }^{p}}\right)+S_{F}(r) \\
\leqq & (p+4)\left(T_{f}(r)+T_{g}(r)\right)+S_{F}(r) . \tag{3.5}
\end{align*}
$$

It follows from (3.2), (3.3), (3.4) and (3.5) that $S_{F}(r)$ is $S_{f}(r)$ and also $S_{g}(r)$, and that $d / 2 \leqq p+4$, which contradicts to $d>2 p+8$. Hence we conclude that F is linearly degenerate. So there exist constants c_{0}, c_{1} and c_{2} such that (c_{0}, c_{1}, c_{2}) $\neq(0,0,0)$ and that

$$
\begin{equation*}
c_{0} g_{0}{ }^{d}+c_{1}\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}{ }^{d-p}+c_{2} \alpha f_{0}{ }^{d}=0 . \tag{3.6}
\end{equation*}
$$

Because g is nonconstant, $c_{2} \neq 0$.
First, we assume that $c_{1}=0$. In this case, noting $c_{2} \neq 0$, we have

$$
\begin{equation*}
\frac{c_{0}}{c_{2}} g_{0}{ }^{d}=-\alpha f_{0}^{d} . \tag{3.7}
\end{equation*}
$$

By adding this to (3.1) on each side, we have also

$$
\begin{equation*}
\left(1+\frac{c_{0}}{c_{2}}\right) g_{0}^{d}+\left(g_{0}^{p}+g_{1}^{p}\right) g_{1}^{d-p}=\alpha\left(f_{0}^{p}+f_{1}^{p}\right) f_{1}^{d-p} . \tag{3.8}
\end{equation*}
$$

Furthermore, if $1+c_{0} / c_{2} \neq 0$, then consider the nonconstant holomorphic mapping $h=\left(\left(1+c_{0} / c_{2}\right) g_{0}{ }^{d}:\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}{ }^{d-p}\right)$ of \boldsymbol{C} into $\boldsymbol{P}^{1}(\boldsymbol{C})$ and hyperplanes

$$
\hat{H}_{1}: w_{0}=0, \quad \hat{H}_{2}: w_{1}=0 \quad \text { and } \quad \hat{H}_{3}: w_{0}+w_{1}=0
$$

in $\boldsymbol{P}^{\mathbf{1}}(\boldsymbol{C})$. By Theorem D, we have

$$
\begin{aligned}
d T_{h}(r)+O(1)= & d T_{g}(r) \\
\leqq & N^{1}\left(r, \frac{1}{g_{0}{ }^{d}}\right)+N^{1}\left(r, \frac{1}{\left(g_{0}{ }^{p}+g_{1} p\right) g_{1}^{d-p}}\right) \\
& +N^{1}\left(r, \frac{1}{\left(f_{0}{ }^{p}+f_{1}{ }^{p}\right) f_{1}{ }^{d-p}}\right)+S_{g}(r) \\
\leqq & N\left(r, \frac{1}{g_{0}}\right)+N\left(r, \frac{1}{g_{0}{ }^{p}+g_{1}{ }^{p}}\right)+N\left(r, \frac{1}{g_{1}}\right) \\
& +N\left(r, \frac{1}{f_{0}{ }^{p}+f_{1}{ }^{p}}\right)+N\left(r, \frac{1}{f_{1}}\right)+S_{g}(r) \\
\leqq & (1+p) T_{f}(r)+(2+p) T_{g}(r)+S_{g}(r) .
\end{aligned}
$$

Hence we get $d \leqq(d /(d-2))(p+1)+(p+2)$ by (3.4). This and $d>2 p+8$ induce

$$
d<\frac{d}{d-2}\left(1+\frac{d-8}{2}\right)+2+\frac{d-8}{2}=d-4-\frac{4}{d-2}<d
$$

which is a contradiction. Hence $1+c_{0} / c_{2}=0$. So we get two identities

$$
\begin{equation*}
\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}^{d-p}=\alpha\left(f_{0}^{p}+f_{1}{ }^{p}\right) f_{1}^{d-p} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{0}{ }^{d}=\alpha f_{0}{ }^{d}, \tag{3.10}
\end{equation*}
$$

from (3.7) and (3.8), Put $\varphi=f_{1} / f_{0}$ and $\psi=g_{1} / g_{0}$, then it follows that from above two identities that $\varphi^{d-p}+\varphi^{d}=\psi^{d-p}+\psi^{d}$. In the deformation

$$
\frac{(\varphi / \psi)^{d}-1}{(\varphi / \psi)^{d-p}-1}=-\frac{1}{\psi^{p}}
$$

of this, the multiplicity of each zero of $\varphi / \psi-a$ is a multiple of p, where $a(\neq 1)$ is any d th root of 1 or $(d-p)$ th root of 1 . We have used the assumption that d and $d-p$ are relatively prime. If φ / ψ is nonconstant, then Theorem E claims that $(d+(d-p)-2)(1-1 / p) \leqq 2$. However, by the assumptions $d>2 p+8$ and $p \geqq 2$,
we see that the left hand side is greater than 2 , which is a contradiction. Hence φ / ψ is constant. Since (3.10) gives $g_{0}=\alpha_{0} f_{0}$, we further get $g_{1}=\alpha_{1} f_{1}$, where $\alpha_{0}{ }^{d}=\alpha$ and α_{1} is a non-zero constant multiple of α_{0}. Substituting these into (3.1) gives

$$
\left(\alpha-\alpha_{0}{ }^{p}{\alpha_{1}}^{d-p}\right) f_{0}^{p} f_{1}^{d-p}+\left(\alpha-\alpha_{1}^{d}\right) f_{1}^{d}=0 .
$$

Since f is nonconstant, we get $\alpha=\alpha_{0}{ }^{p} \alpha_{1}{ }^{d-p}$ and $\alpha=\alpha_{1}{ }^{d}$. These and $\alpha=\alpha_{0}{ }^{d}$ induce that $\alpha_{0}=\alpha_{1}$, and so $f=g$.

Secondly, we consider the case $c_{0}=0$. We may assume that $c_{1}=1$ without loss of generality. Then (3.6) becomes

$$
\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}{ }^{d-p}+c_{2} \alpha f_{0}^{d}=0 .
$$

From this we see that the multiplicity of each zero of g_{1} and $g_{0}-a g_{1}$ is a multiple of d, where a is any p th root of -1 . By Theorem E , we get $(1+p)(1-1 / d) \leqq 2$. However, the left hand side is greater than 2 , which is a contradiction. So $c_{0}=0$ is impossible.

Finally, we consider the case that any $c_{j} \neq 0(j=0,1,2)$. Consider the holomorphic mapping $\left(c_{0} g_{0}{ }^{d}: c_{1}\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}{ }^{d-p}\right)$ of \boldsymbol{C} into $\boldsymbol{P}^{1}(\boldsymbol{C})$. By Theorem D, we have

$$
\begin{aligned}
d T_{g}(r) & \leqq N^{1}\left(r, \frac{1}{g_{0}^{d}}\right)+N^{1}\left(r, \frac{1}{\left(g_{0}^{p}+g_{1}^{p}\right) g_{1}^{d-p}}\right)+N^{1}\left(r, \frac{1}{f_{0}^{d}}\right)+S_{g}(r) \\
& \leqq N\left(r, \frac{1}{g_{0}}\right)+N\left(r, \frac{1}{g_{0}^{p}+g_{1}{ }^{p}}\right)+N\left(r, \frac{1}{g_{1}}\right)+N\left(r, \frac{1}{f_{0}}\right)+S_{g}(r) \\
& \leqq(2+p) T_{g}(r)+\frac{d}{d-2} T_{g}(r)+S_{g}(r) .
\end{aligned}
$$

Hence we get $d \leqq 2+p+d /(d-2)<p+4$. This contradicts to $d>2 p+8$.
After all, if (3.1) holds, then

$$
g_{0}=\beta f_{0} \text { and } g_{1}=\beta f_{1}
$$

where $\beta=\alpha_{0}=\alpha_{1}$ with $\beta^{d}=\alpha$.
Q.E.D.

$\S 4$. Existence of H_{n}.

First, we prove the following lemma:
Lemma 1. Let H_{1} be the homogeneous polynomial as in Theorem 1. Let f and g be algebraically nondegenerate holomorphic mappings of \boldsymbol{C} into $\boldsymbol{P}^{1}(\boldsymbol{C})$ with reduced representations $\tilde{f}=\left(f_{0}, f_{1}\right)$ and $\tilde{g}=\left(g_{0}, g_{1}\right)$, respectively. If

$$
\begin{equation*}
H_{1}\left(g_{0}, g_{1}\right)=h^{d} H_{1}\left(f_{0}, f_{1}\right) \tag{4.1}
\end{equation*}
$$

holds for some meromorphic function h, then h is an entire function without zeros.
Proof. We can represent $h=A / B$, where A and B are entire functions without common zeros. Then (4.1) can be replaced by

$$
\begin{equation*}
B^{d}\left(g_{0}{ }^{d}+g_{0}{ }^{p} g_{1}{ }^{d-p}+g_{1}{ }^{d}\right)=A^{d}\left(f_{0}{ }^{d}+f_{0}{ }^{p} f_{1}{ }^{d-p}+f_{1}{ }^{d}\right) \tag{4.2}
\end{equation*}
$$

As in the proof of Theorem 2, let consider the holomorphic mapping F of C into $\boldsymbol{P}^{2}(\boldsymbol{C})$ with the representation $\tilde{F}=\left(B^{d} g_{0}{ }^{d}, B^{d}\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}{ }^{d-p}, A^{d} f_{0}{ }^{d}\right)$ which can be proved to be reduced. Then, we have

$$
\begin{equation*}
T_{F}(r) \geqq \frac{d}{2}\left(T_{f}(r)+T_{g}(r)+N(r, 1 / A)+N(r, 1 / B)\right)+O(1) \tag{4.3}
\end{equation*}
$$

Assume that F is linearly nondegenerate and consider hyperplanes

$$
H_{1}: w_{0}=0, \quad H_{2}: w_{1}=0, \quad H_{3}: w_{2}=0
$$

and

$$
H_{4}: w_{0}+w_{1}-w_{2}=0
$$

in $\boldsymbol{P}^{2}(\boldsymbol{C})$. Then by Theorem D, we have

$$
\begin{align*}
T_{F}(r) \leqq & \sum_{j=1}^{4} N_{F, H_{j}}^{2}(r)+S_{F}(r) \\
= & N^{2}\left(r, \frac{1}{B^{d} g_{0}{ }^{d}}\right)+N^{2}\left(r, \frac{1}{B^{d}\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}{ }^{d-p}}\right) \\
& +N^{2}\left(r, \frac{1}{A^{d} f_{0}{ }^{p}}\right)+N^{2}\left(r, \frac{1}{A^{d}\left(f_{0}{ }^{p}+f_{1}{ }^{p}\right) f_{1}^{d-p}}\right)+S_{F}(r) \\
\leqq & 2\left(N\left(r, 1 / g_{0}\right)+N\left(r, 1 / g_{1}\right)+N\left(r, 1 / f_{0}\right)+N\left(r, 1 / f_{1}\right)\right) \\
& +4(N(r, 1 / A)+N(r, 1 / B)) \\
& +N\left(r, \frac{1}{g_{0}{ }^{p}+g_{1}{ }^{p}}\right)+N\left(r, \frac{1}{f_{0}^{p}+f_{1}{ }^{p}}\right)+S_{F}(r) \\
\leqq & (p+4)\left(T_{f}(r)+T_{g}(r)\right)+4(N(r, 1 / A)+N(r, 1 / B))+S_{F}(r) \\
\leqq & (p+4)\left(T_{f}(r)+T_{g}(r)+N(r, 1 / A)+N(r, 1 / B)\right)+S_{F}(r) . \tag{4.4}
\end{align*}
$$

It follows from (4.4) that $S_{F}(r)$ satisfies

$$
S_{F}(r)=o\left(T_{f}(r)+T_{g}(r)+N(r, 1 / A)+N(r, 1 / B)\right) \quad(r \rightarrow \infty, r \notin E),
$$

where E is a subset of (r_{0}, ∞) with finite linear measure. Hence, we get by (4.3) and (4.4) $d / 2 \leqq p+4$, which contradicts to $d>2 p+8$. Therefore we conclude that F is linearly degenerate. So there exist constants c_{0}, c_{1} and c_{2} such that $\left(c_{0}, c_{1}, c_{2}\right) \neq(0,0,0)$ and that

$$
\begin{equation*}
B^{d}\left(c_{0} g_{0}{ }^{d}+c_{1}\left(g_{0}{ }^{p}+g_{1}{ }^{p}\right) g_{1}{ }^{d-p}\right)+c_{2} A^{d} f_{0}{ }^{d}=0 . \tag{4.5}
\end{equation*}
$$

Since g is nonconstant, $c_{2} \neq 0$.
First, let z_{0} be a point such that $B\left(z_{0}\right)=0$. Since A and B have no common zeros, we have $f_{0}=0$ at z_{0} by (4.5) and $f_{0}{ }^{d}+f_{0}{ }^{p} f_{1}{ }^{d-p}+f_{1}{ }^{d}=0$ at z_{0} by (4.2), However, these imply $f_{0}\left(z_{0}\right)=f_{1}\left(z_{0}\right)=0$, which is impossible. Therefore B has no zeros.

Secondly, let z_{0} be a point such that $A\left(z_{0}\right)=0$. Then, we have $g_{0}{ }^{d}+g_{0}{ }^{p} g_{1}{ }^{d-p}$ $+g_{1}{ }^{d}=0$ and $c_{0} g_{0}{ }^{d}+c_{1}\left(g_{0}{ }^{p} g_{1}{ }^{d-p}+g_{1}{ }^{d}\right)=0$ at z_{0}. Since $g_{0}{ }^{d}$ and $g_{0}{ }^{p} g_{1}{ }^{d-p}+g_{1}{ }^{d}$ have no common zeros, we get $c_{0}=c_{1} \neq 0$. However, we can see from (4.2), (4.5) and $c_{0}=c_{1}$ that f is algebraically degenerate. Therefore A has no zeros. Q.E.D.

Theorem 3. Homogeneous polynomials $H_{n}(n \geqq 2)$ of w_{0}, \cdots, w_{n} with degree d^{n} inductively defined by

$$
H_{n}\left(w_{0}, \cdots, w_{n}\right)=H_{1}\left(H_{n-1}\left(w_{0}, \cdots, w_{n-1}\right), w_{0}^{d^{n-1}-1} w_{n}\right)
$$

have the property (H).
We prove more precisely
Theorem 4. Let f and g be algebraically nondegenerate holomorphic mappings of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$ with representations $\tilde{f}=\left(f_{0}, \cdots, f_{n}\right)$ and $\tilde{g}=\left(g_{0}, \cdots, g_{n}\right)$ respectively. If

$$
\begin{equation*}
H_{n}\left(g_{0}, \cdots, g_{n}\right)=\alpha H_{n}\left(f_{0}, \cdots, f_{n}\right) \tag{4.6}
\end{equation*}
$$

holds for some entire function α without zeros, then

$$
g_{j}=\beta f_{j} \quad(0 \leqq j \leqq n),
$$

where β is an entire function such that $\beta^{d^{n}}=\alpha$.
Proof. We proceed the proof by induction on n.
For $n=1$, let A and B be entire functions such that \tilde{f} / A and \tilde{g} / B are reduced. Then, (4.6) changes into the form

$$
B^{d} H_{1}\left(\frac{g_{0}}{B}, \frac{g_{1}}{B}\right)=\alpha A^{d} H_{1}\left(\frac{f_{0}}{A}, \frac{f_{1}}{A}\right)
$$

Lemma 1 says that A / B is an entire function without zeros. Hence, we can use Theorem 1 and obtain

$$
g_{0} / B=\beta_{1} f_{0} / A \quad \text { and } \quad g_{1} / B=\beta_{1} f_{1} / A
$$

where β_{1} is an entire function such that $\beta_{1}{ }^{d}=\alpha(A / B)^{d}$. Put $\beta=\beta_{1} B / A$, then we get the conclusion for $n=1$.

Assume that the result is true for $n-1$ and consider the case for n. Since we can rewrite the identity (4.6) into the form

$$
H_{1}\left(H_{n-1}\left(g_{0}, \cdots, g_{n-1}\right), g_{0}^{d^{n-1}-1} g_{n}\right)=\alpha H_{1}\left(H_{n-1}\left(f_{0}, \cdots, f_{n-1}\right), f_{0}^{d^{n-1}-1} f_{n}\right)
$$

it follows from the above result for $n=1$ that

$$
\begin{equation*}
H_{n-1}\left(g_{0}, \cdots, g_{n-1}\right)=\beta_{1} H_{n-1}\left(f_{0}, \cdots, f_{n-1}\right) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{0}{ }^{d^{n-1}-1} g_{n}=\beta_{1} f_{0} d^{n-1}-1.1 f_{n} \tag{4.8}
\end{equation*}
$$

where β_{1} is an entire function such that $\beta_{1}{ }^{d}=\alpha$. By the assumption of induction and (4.7), we have

$$
\begin{equation*}
g_{j}=\beta f_{j} \quad(0 \leqq j \leqq n-1), \tag{4.9}
\end{equation*}
$$

 we obtain from (4.8)

$$
g_{n}=\beta_{1}\left(f_{0} / g_{0}\right)^{d^{n-1}-1} f_{n}=\beta_{1}(1 / \beta)^{d^{n-1}-1} f_{n}=\beta_{1} \beta(1 / \beta)^{d^{n-1}} f_{n}=\beta f_{n}
$$

Also, we have $\beta^{d^{n}}=\left(\beta^{d^{n-1}}\right)^{d}=\beta_{1}{ }^{d}=\alpha$ by $\beta^{d^{n-1}}=\beta_{1}$ and $\beta_{1}{ }^{d}=\alpha$. Q.E.D.

References

[C] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7 (1933), 5-31.
[F1] H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., 58 (1975), 1-23.
[F2] H. Fujimoto, A uniqueness theorem of algebraically non-degenerate meromorphic maps into $\boldsymbol{P}^{N}(\boldsymbol{C})$, Nagoya Math. J., 64 (1976), 117-147.
[H] W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[M] P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.
[N] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
[Sh] B. Shiffman, Introduction to the Carlson-Griffiths equidistribution theory, Lecture Notes in Math., 981, Springer-Verlag, Berlin, Heiderberg, New York, Tokyo, 1983, pp. 44-89.
[St] W. Stoll, Introduction to value distribution theory of meromorphic maps, Lecture Notes in Math., 950, Springer-Verlag, Berlin, Heiderberg, New York, Tokyo, 1982, pp. 210-359.
[Y] H.-X. Yi, A question of Gross and the uniqueness of entire functions, Nagoya Math. J., 138 (1995), 169-177.

Manabu Shirosaki
Department of Mathematical Sciences
College of Engineering
University of Osaka Prefecture
1-1, Gakuencho
Sakai 593
Japan

