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\S 1. Introduction.

We say that two meromorphic functions $f$ and $g$ on $C$ share the value $a$

if the zeros of $f-a$ and $g-a$ ($1/f$ and $1/g$ if $a=\infty$ ) are the same. In [N],

R. Nevanlinna showed the following two results:

THEOREM A. If two distinct nonconstant meromorphic functions on $C$ share
four values by counting multiplicities, then one is a Mobius transformation of the
other.

THEOREM B. If two nonconstant meromorphic functions on $C$ share five values,
then they are identical.

These results are interesting from the viewpoint of determining meromorphic
or holomorphic functions but it is troublesome to check four or five pairs of
values of meromorphic or holomorphic functions. Also there are results in [F1]

and [F2] which show the uniqueness of holomorphic mappings into complex
projective spaces.

Recently, H.-X. Yi proved the following:

THEOREM C. Let $n$ and $m$ be two positive integers such that $n$ and $m$ have
no common factor and $n>2m+4$ . Let $a$ and $b$ be two nonzero constants such that
the algebraic equation $P(w)=w^{n}+aw^{n-m}+b=0$ has no multiple roots. If two
nonconstant entire functions $f$ and $g$ satisfy $P(g)=\alpha P(f)$ for some entire function
$a$ without zeros, then $f=g$ .
In this, it is enough for determining holomorphic functions to check only one
pair of holomorphic functions. So, the author asks the following two questions:

QUESTION 1. Do there exist polynomials $P_{n}$ of variables $z_{1},$ $\cdots,$ $z$. with the
$P^{ro}P^{erty:}$

if two algebraically nondegenerate holomorphic mappings $f$ and $g$ of $C$

$(P)$ into $C^{n}$ satisfy $P.(g)=aP_{n}(f)$ for some entire function $\alpha$ without zeros,
then $f=g$ .

QUESTION 2. Do there exist homogeneous polynomials $H_{n}$ of variables $w_{0}$ ,
$\ldots$ $w_{n}$ with the following property:
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if two algebraically nondegenerate holomorphic mappings $f$ and $g$ of $C$

$(H)$ into $P^{n}(C)$ with reduced rePresentations $f$ and $\tilde{g}$ respectively satisfy
$H_{n}(g)=aH_{n}e)$ for some entire function $\alpha$ without zeros, then $f=g$ .

Though the explanation of the terminologies in the above statements is left
to the next section, we see that Yi’s result shows the existence of $P_{1}$ . In this
paper, we shall show the existence of $H_{n}$ , which makes the existence of $P_{n}$

trivial.
It is assumed that the reader is familier with the fundamental concepts of

the value distribution theory (or Nevanlinna theory) of meromorphic functions
(see [H]).

\S 2. Basic results in the value distribution theory.

We begin to explain terminologies. For a holomorphic mapping $f$ of $C$ into
$P^{n}(C)$ , its representation is a holomorphic mapping $\tilde{f}=(f_{0}, \cdots, f_{n})$ of $C$ into $C^{n+1}$

such that $\tilde{f}(C)\neq\{0\}$ and $f(z)=(f_{0}(z)$ :... : $f_{n}(z))$ for each $z\in C-\tilde{f}^{-1}(0)$ , where
$(w_{0}$ : $\cdots$ : $w_{n})$ is a homogeneous coordinate system of $P^{n}(C)$ . If $\tilde{f}^{-1}(0)=\emptyset$ , we
say that $\tilde{f}$ is reduced.

DEFINITION 1. Let $f$ be a holomorphic mapping of $C$ into $C^{n}$ . If there
exists no nonzero polynomial $P$ of variables $z_{1},$ $\cdots,$ $z_{n}$ such that $P(f)\equiv 0$ , then
it is said that $f$ is algebraically nondegenerate.

DEFINITION 2. Let $f$ be a holomorphic mapping of $C$ into $P^{n}(C)$ with a
representation $\tilde{f}$.

(i) If there exists no nonzero homogeneous polynomial $H$ of variables $w_{0}$ ,
$\ldots$

$w_{n}$ such that $H(\tilde{f})\equiv 0$ , then it is said that $f$ is algebraically nondegenerate.
(ii) If there exists no nonzero linear homogeneous polynomial $L$ of variables

$w_{0},$ $\cdots,$ $w_{n}$ such that $L(f)=0$ , then it is said that $f$ is linearly nondegenerate.

REMARK. For holomorPhic mappings into $C$ or $P^{1}(C)$ , algebraic non-
degeneracy coincides with nonconstantness.

For a meromorphic function $\varphi$ and a positive integer $p,$ $N^{p}(r, \varphi)$ represents
the truncated counting function of $N(r, \varphi)$ by $P$ as $\overline{N}(r, \varphi),$ $i.e.$ ,

$N^{p}(r, \varphi)=\int_{r_{0}}^{r}\frac{n^{p}(t,\varphi)}{t}dt$ $(r>r_{0})$ ,

where $n^{p}(t, \varphi)$ is the sum of minimum of $p$ and multiplicity of pole of $\varphi$ at
each point $z$ in $\{z;|z|<t\}$ and $r_{0}$ is a fixed positive number. The following is
fundamental:

$N^{p}(r, \varphi)\leqq N(r, \varphi)\leqq T(r, \varphi)+O(1)$ . (2.1)
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Furthermore, for a holomorphic mapping $f$ of $C$ into $P^{n}(C)$ and a hyper-
plane $H$ in $P^{n}(C)$ represented by the equation of homogeneous coordinates
$a_{0}w_{0}+\cdot$ . $+a_{n}w_{n}=0$ , we use $T_{f}(r),$ $N_{f,H}(r),$ $Nfp_{H}(r)$ and $S_{f}(r)$ . We explain these.
Let $f=(f_{0}, \cdots, f_{n})$ be a reduced representation of $f$ . Then $T_{f}(r)$ and $N_{f,H}(r)$

are given for $r>r_{0}$ by

$T_{f}(r)= \frac{1}{2\pi}\int_{0}^{2\pi}\log||f(re^{i\theta})||d\theta-\frac{1}{2\pi}\int_{0}^{2\pi}\log||f(r_{0}e^{i\theta})||d\theta$

and
$N_{f,H}(r)=N(r, 1/F)$

for $r>r_{0}$ if $F:=a_{0}f_{0}+\cdots+a_{n}f_{n}\not\equiv 0$ , where $||\cdot||$ is the $L^{2}$-norm in $C^{n+1}$ . We
also define

$N_{f.H}^{p}(r)=N^{p}(r, 1/F)$ .
The correspondence to (2.1) is

$N_{f.H}^{p}(r)\leqq N_{f.H}(r)\leqq T_{f}(r)+O(1)$ . (2.2)

Finally, $S_{f}(r)$ represents quantities such that

$S_{f}(r)=o(T_{f}(r))$ $(rarrow\infty, r\not\in E)$ ,

where $E$ is an exceptional set of $(r_{0}, \infty)$ with finite linear measure.

THEOREM $D$ ([C], [Sh], [St]). Let $f$ be a linearly nondegenerate holomorPfuc
mapping of $C$ into $P^{n}(C)$ and $H_{1},$

$\cdots,$
$H_{q}$ hyperplanes in general $po\alpha tion$ in

$P^{n}(C)$ . Then

$(q-n-1)T_{f}(r) \leqq\sum_{j=1}^{q}N_{f.H_{j}}^{n}(r)+S_{f}(r)$ .

Also, we will need the following

THEOREM $E([C], [M])$ . Let $f$ be a nonconstant meromorphic function on $C$

and $a_{1},$ $\cdots,$ $a_{q}$ distinct complex numbers. If
multiplicity at least $m_{j}$ , where $m_{j}$ are arbitrarily fixed Posrtive integers $(1\leqq j\leqq q)$ ,
then

$\sum_{j=1}^{q}(1-\frac{1}{m_{j}})\leqq 2$ .

PROOF. In the situation Theorem $E$ , the inequality of Theorem $D$ becomes

$(q-2)T_{f}(r) \leqq\sum_{f\approx 1}^{q}N^{1}(r, 1/(f-a_{j}))+S_{f}(r)$ .

By the assumption of multiplicity of zeros of $f-a_{j}$ and (2.2), we have
$N^{1}(r, 1/(f-a_{j}))\leqq N(r, 1/(f-a_{j}))/m_{j}\leqq T_{f}(r)/m_{j}+O(1)$ . Hence, we get
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$q$ 1
$(q-2)T_{f}(r) \leqq\sum_{j=1\overline{m_{j}}}T_{f}(r)+S_{f}(r)$ .

This induces the inequality required.

\S 3. Existence of $H_{1}$ .
THEOREM 1. Let $p$ and $d$ be two positive integers with $d>2p+8$ and $p\geqq 2$

which have no common factors. Then $H_{1}(w_{0}, w_{1})=w_{0}^{a}+w_{0}^{p}W_{1}^{(}l-p+W_{1}^{(}f$ has the
property $(H)$ .

We prove a more precise result:

THEOREM 2. Let $H_{1}$ be the homogeneous polynomial as in Theorem 1. Let
$f$ and $g$ be algebraically nondegenerate holomorphic mappings of $C$ into $P^{1}(C)$

with reduced representations $f=(f_{0}, f_{1})$ and $\tilde{g}=(g_{0}, g_{1})$ respectively. If
$H_{1}(g_{0}, g_{1})=\alpha H_{1}(f_{0}, f_{1})$ (3.1)

holds for some entire function $\alpha$ wzthout zeros, then

$g_{0}=\beta f_{0}$ and $g_{1}=\beta f_{1}$ ,

where $\beta$ is an entire function such that $\beta^{d}=a$ .
PROOF. Consider the holomorphic mapping $F$ of $C$ into $P^{2}(C)$ with the

reduced representation $F_{=(g_{0}}(f(g_{0^{p}}+g_{1}^{p})g_{1}^{d-p}, af_{0}^{f}()$ . Since there exist positive
constants $C_{1}$ and $C_{2}$ such that the inequalities

$1+|w^{a-p}+w^{a}|^{2}$ 1111 $C_{1}(1+|w^{d}|^{2})\geqq C_{2}(1+|w|^{2})^{ti}$

hold for all $w\in C$ , we get $||F||\geqq\sqrt{C_{2}}||\tilde{g}||^{d}$ and

$||F||^{2} \geqq\frac{1}{2}\{|g_{0}^{a}+(g_{0^{p}}+g_{1}^{p})g_{1}^{\dot{a}-p}-\alpha f_{0^{d}}|^{2}+|\alpha f_{0^{d}}|^{2}\}$

$= \frac{1}{2}$ { $|$ a $(f_{0^{p}}+f_{1}^{p})f_{1}^{d-p}|^{2}+|af_{0^{d}}|^{2}$ }

$\geqq\frac{C_{2}}{2}(|a|\cdot||;||^{a})^{2}$ .

These induce
$\log||\hat{F}||\geqq\frac{d}{2}(\log||f||+\log||\tilde{g}||)+\frac{1}{2}\log|a|+O(1)$

and
$T_{F}(r) \geqq\frac{d}{2}(T_{f}(r)+T_{g}(r))+O(1)$ . (3.2)
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Also, by considering the hyperplanes $H_{j}$ : $w_{0}+a_{j}w_{1}=0(1\leqq_{J}\leqq d)$ in $P^{1}(C)$ , where
$a_{j}$ are defined by the factorization $w_{0}^{a}+w_{0}^{p}w_{1}^{a-p}+w_{1^{d}}=\Pi_{j=1}^{a}(w_{0}+a_{j}w_{1})$ , we
have, by Theorem $D$ and (2.2),

$(d-2)T_{g}(r) S\sum_{j=1}^{d}N_{g.H_{j}}(r)+S_{g}(r)$

$= \sum_{j=1}^{a}N(r,$ $\frac{1}{g_{0}+a_{j}g_{1}})+S_{g}(r)$

$= \sum_{j=1}^{a}N(r,$ $\frac{1}{f_{0}+a_{j}f_{1}})+S_{g}(r)\leqq dT_{f}(r)+S_{g}(r)$ (3.3)

and, similarly,

$(d-2)T_{f}(r)\leqq dT_{g}(r)+S_{f}(r)$ . (3.4)

Assume that $F$ is linearly nondegenerate and consider hyperplanes

$\tilde{H}_{1}:w_{0}=0$ , $\tilde{H},$ $:w_{1}=0$ , $\tilde{H}_{3}:w_{2}=0$

and
$\tilde{H}_{4}$ : $w_{0}+w_{1}-w_{l}=0$

in $P^{2}(C)$ . Then by Theorem $D$ , we have

$T_{F}(r) \leqq\sum_{j=1}^{4}N_{F.\overline{H}_{j}}^{2}(r)+S_{F}(r)$

$=N^{2}(r,$ $\frac{1}{g_{0^{d}}})+N^{2}(r,$ $\frac{1}{(g_{0}^{p}+g_{1}^{p})g_{1}^{d-p}})$

$+N^{2}(r,$ $\frac{1}{af_{0}^{a}})+N^{2}(r,$ $\frac{1}{\alpha(f_{0^{p}}+f_{1}^{p})f_{1}^{a-p}})+S_{F}(r)$

$\leqq 2(N(r,$ $\frac{1}{g_{0}})+N(r,$ $\frac{1}{g_{1}})+N(r,$ $\frac{1}{f_{0}})+N(r,$ $\frac{1}{f_{1}}))$

$+N(r,$ $\frac{1}{g_{0^{p}}+g_{1}^{p}})+N(r,$ $\frac{1}{f_{0^{p}}+f_{1}^{p}})+S_{F}(r)$

$\leqq(p+4)(T_{f}(r)+T_{g}(r))+S_{F}(r)$ . (3.5)

It follows from (3.2), (3.3), (3.4) and (3.5) that $S_{F}(r)$ is $S_{f}(r)$ and also $S_{g}(r)$ , and
that $d/2\leqq p+4$, which contradicts to $d>2p+8$. Hence we conclude that $F$ is
linearly degenerate. So there exist constants $c_{0},$ $c_{1}$ and $c_{2}$ such that $(c_{0}, c_{1}, c_{2})$

$\neq(0,0,0)$ and that

$c_{0}g_{0^{d}}+c_{1}(g_{0^{p}}+g_{1}^{p})g_{1}^{a-p}+c_{2}af_{0^{d}}=0$ . (3.6)

Because $g$ is nonconstant, $c_{2}\neq 0$ .
First, we assume that $c_{1}=0$ . In this case, noting $c_{2}\neq 0$, we have
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$\frac{c_{0}}{c_{l}}g_{0}^{d}=-af_{0}^{a}$ . (3.7)

By adding this to (3.1) on each side, we have also

$(1+ \frac{c_{0}}{c_{2}})g_{0}^{d}+(g_{0^{p}}+g_{1}^{p})g_{1}^{d-p}=a(f_{0^{p}}+f_{1}^{p})f_{1}^{d-p}$ . (3.8)

Furthermore, if $1+c_{0}/c_{2}\neq 0$ , then consider the nonconstant holomorphic mapping
$h=((1+c_{0}/c_{2})g_{0^{d}} : (g_{0^{p}}+g_{1}^{p})g_{1}^{d-p})$ of $C$ into $P^{1}(C)$ and hyperplanes

$\hat{H}_{1}$ : $w_{0}=0$ , $\hat{H}_{2}$ : $w_{1}=0$ and $H_{3}$ : $w_{0}+w_{1}=0$

in $P^{1}(C)$ . By Theorem $D$ , we have

$dT_{h}(r)+O(1)=dT_{g}(r)$

$\leqq N^{1}(r,$ $\frac{1}{g_{0}^{a}})+N^{1}(r,$ $\frac{1}{(g_{0^{p}}+g_{1}^{p})g_{1}^{a-p}})$

$+N^{1}(r,$ $\frac{1}{(f_{0}^{p}+f_{1}^{p})f_{1}^{a}}\overline{-p})+S_{g}(r)$

$\leqq N(r,$ $\frac{1}{g_{0}})+N(r,$ $\frac{1}{g_{0}^{p}+g_{1}^{p}})+N(r,$ $\frac{1}{g_{1}})$

$+N(r,$ $\frac{1}{f_{0^{p}}+f_{1}^{p}})+N(r,$ $\frac{1}{f_{1}})+S_{g}(r)$

$\leqq(1+p)T_{f}(r)+(2+p)T_{g}(r)+S_{g}(r)$ .

Hence we get $d\leqq(d/(d-2))(p+1)+(p+2)$ by (3.4). This and $d>2p+8$ induce

$d< \frac{d}{d-2}(1+\frac{d-8}{2})+2+\frac{d-8}{2}=d-4-\frac{4}{d-2}<d$ ,

which is a contradiction. Hence $1+c_{0}/c_{2}=0$ . So we get two identities

$(g_{0^{P}}+g_{1}^{P})g_{1}^{d-p}=\alpha(f_{0^{P}}+f_{1}^{p})f_{1}^{d-p}$ (3.9)

and
$g_{0^{d}}=af_{0^{d}}$ , (3.10)

from (3.7) and (3.8). Put $\varphi=f_{1}/f_{0}$ and $\psi=g_{1}/g_{0}$ , then it follows that from above
two identities that $\varphi^{a-p}+\varphi^{d}=\psi^{d-p}+\psi^{a}$ . In the deformation

$\frac{(\varphi/\psi)^{d}-1}{(\varphi/\psi)^{a-p}-1}=-\frac{1}{\psi^{p}}$

of this, the multiplicity of each zero of $\varphi/\psi-a$ is a multiple of $p$ , where $a(\neq 1)$

is any dth root of 1 or $(d-p)th$ root of 1. We have used the assumption that $d$

and $d-p$ are relatively prime. If $\varphi/\psi$ is nonconstant, then Theorem $E$ claims
that $(d+(d-p)-2)(1-1/p)\leqq 2$ . However, by the assumptions $d>2p+8$ and $p\geqq 2$ ,
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we see that the left hand side is greater than 2, which is a contradiction.
Hence $\varphi/\psi$ is constant. Since (3.10) gives $g_{0}=a_{0}f_{0}$ , we further get $g_{1}=a_{1}f_{1}$ ,
where $\alpha_{0}^{a}=a$ and $\alpha_{1}$ is a non-zero constant multiple of $a_{0}$ . Substituting these
into (3.1) gives

$(a-\alpha_{0}^{p}a_{1}^{a-p})f_{0^{p}}f_{1}^{d-p}+(a-\alpha_{1}^{a})f_{1}^{a}=0$ .
Since $f$ is nonconstant, we get $\alpha=a_{0^{p}}a_{1}^{a-p}$ and $a=a_{1}^{d}$ . These and $a=a_{0^{d}}$

induce that $a_{0}=a_{1}$ , and so $f=g$ .
Secondly, we consider the case $c_{0}=0$ . We may assume that $c_{1}=1$ without

loss of generality. Then (3.6) becomes

$(g_{0^{p}}+g_{1}^{p})g_{1}^{a-p}+c_{2}\alpha f_{0^{d}}=0$ .
From this we see that the multiplicity of each zero of $g_{1}$ and $g_{0}-ag_{1}$ is a
multiple of $d$ , where $a$ is any pth root of $-1$ . By Theorem $E$ , we get
$(1+p)(1-1/d)\leqq 2$ . However, the left hand side is greater than 2, which is a
contradiction. So $c_{0}=0$ is impossible.

Finally, we consider the case that any $c_{j}\neq 0(]=0,1,2)$ . Consider the
holomorphic mapping $(c_{0}g_{0^{a}} : c_{1}(g_{0^{p}}+g_{1}^{p})g_{1}^{a-p})$ of $C$ into $P^{1}(C)$ . By Theorem
$D$ , we have

$dT_{g}(r)\leqq N^{1}(r,$ $\frac{1}{g_{0}^{d}})+N^{1}(r,$ $\frac{1}{(g_{0^{p}}+g_{1}^{p})g_{1}^{a-p}})+N^{1}(r,$ $\frac{1}{f_{0}^{a}})+S_{g}(r)$

$\leqq N(r,$ $\frac{1}{g_{0}})+N(r,$ $\frac{1}{g_{0^{p}}+g_{1}^{p}})+N(r,$ $\frac{1}{g_{1}})+N(r,$ $\frac{1}{f_{0}})+S_{g}(r)$

$\leqq(2+p)T_{g}(r)+\frac{d}{d-2}T_{g}(r)+S_{g}(r)$ .

Hence we get $d\leqq 2+p+d/(d-2)<p+4$ . This contradicts to $d>2p+8$ .
After all, if (3.1) holds, then

$go=\beta f_{0}$ and $g_{1}=\beta f_{1}$ ,

where $\beta=a_{e}=a_{1}$ with $\beta^{a}=a$ . Q. E. D.

\S 4. Existence of $H_{n}$ .
First, we prove the following lemma:

LEMMA 1. Let $H_{1}$ be the homogeneous polynomial as in Theorem 1. Let $f$

and $g$ be algebraically nondegenerate holomorphic mappings of $C$ into $P^{1}(C)$

with reduced representations $f=(f_{0}, f_{1})$ and $\tilde{g}=(g_{0}, g_{1})$ , respectively. If
$H_{1}(g_{0}, g_{1})=h^{d}H_{1}(f_{0}, f_{1})$ (4.1)
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holds for some meromorphic function $h$ , then $h$ is an entire function without zeros.

PROOF. We can represent $h=A/B$ , where $A$ and $B$ are entire functions
without common zeros. Then (4.1) can be replaced by

$B^{a}(g_{0^{d}}+g_{0^{p}}g_{1}^{a-p}+g_{1}^{a})=A^{d}(f_{0^{d}}+f_{0^{p}}f_{1}^{a-p}+f_{1}^{a})$ . (4.2)

AS in the proof of Theorem 2, let consider the holomorphic mapping $F$ of $C$

into $P^{2}(C)$ with the representation $F=(B^{d}g_{0^{d}}, B^{a}(g_{0}^{p}+g_{1}^{p})g_{1}^{d-p},$ $A^{a}f_{0^{d}})$ which
can be proved to be reduced. Then, we have

$T_{F}(r) \geqq\frac{d}{2}(T_{f}(r)+T_{g}(r)+N(r, 1/A)+N(r, 1/B))+O(1)$ . (4.3)

Assume that $F$ is linearly nondegenerate and consider hyperplanes

$H_{1}:w_{0}=0$ , $H_{2}:w_{1}=0$ , $H_{3}:w_{2}=0$

and
$H_{4}$ : $w_{0}+w_{1}-w_{2}=0$

in $P^{2}(C)$ . Then by Theorem $D$ , we have

$T_{F}(r) \leqq\sum_{j=1}^{4}N_{F.H_{j}}^{2}(r)+S_{F}(r)$

$=N^{2}(r,$ $\frac{1}{B^{a}g_{0}^{d}})+N^{2}(r,$ $\frac{1}{B^{d}(g_{0^{p}}+g_{1}^{p})g_{1}^{a-p}})$

$+N^{2}(r,$ $\frac{1}{A^{a}f_{0}^{p}})+N^{2}(r,$ $\frac{1}{A^{a}(f_{0^{p}}+f_{1}^{p})f_{1}^{a-p}})+S_{F}(r)$

$\leqq 2(N(r, 1/g_{0})+N(r, 1/g_{1})+N(r, 1/f_{0})+N(r, 1/f_{1}))$

$+4(N(r, 1/A)+N(r, 1/B))$

$+N(r,$ $\frac{1}{g_{0^{p}}+g_{1}^{p}})+N(r,$ $\frac{1}{f_{0}^{p}+f_{1}^{p}})+S_{F}(r)$

:$ $(p+4)(T_{f}(r)+T_{g}(r))+4(N(r, 1/A)+N(r, 1/B))+S_{F}(r)$

$\leqq(p+4)(T_{f}(r)+T_{9}(r)+N(r, 1/A)+N(r, 1/B))+S_{F}(r)$ . (4.4)

It follows from (4.4) that $S_{F}(r)$ satisfies

$S_{F}(r)=o(T_{f}(r)+T_{9}(r)+N(r, 1/A)+N(r, 1/B))$ $(rarrow\infty, r\not\in E)$ ,

where $E$ is a subset of $(r_{0}, \infty)$ with finite linear measure. Hence, we get by
(4.3) and (4.4) $d/2\leqq p+4$, which contradicts to $d>2p+8$ . Therefore we conclude
that $F$ is linearly degenerate. So there exist constants $c_{0},$ $c_{1}$ and $c_{2}$ such that
$(c_{0}, c_{1}, c_{2})\neq(0,0,0)$ and that

$B^{d}(c_{0}g_{0^{d}}+c_{1}(g_{0}^{p}+g_{1}^{p})g_{1}^{d-p})+c_{2}A^{d}f_{0^{d}}=0$ . (4.5)
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Since $g$ is nonconstant, $c_{2}\neq 0$ .
First, let $z_{0}$ be a point such that $B(z_{0})=0$ . Since $A$ and $B$ have no common

zeros, we have $f_{0}=0$ at $z_{0}$ by (4.5) and $f_{0^{d}}+f_{0}^{p}f_{1}^{a-p}+f_{1}^{a}=0$ at $z_{0}$ by (4.2).
However, these imply $f_{0}(z_{0})=f_{1}(z_{0})=0$, which is impossible. Therefore $B$ has
no zeros.

Secondly, let $z_{0}$ be a point such that $A(z_{0})=0$ . Then, we have $g_{0^{a}}+g_{0}^{p}g_{1}^{a-p}$

$+g_{1}^{a}=0$ and $c_{0}g_{0}^{a}+c_{1}(g_{0^{p}}g_{1}^{a-p}+g_{1}^{a})=0$ at $z_{0}$ . Since $g_{0^{d}}$ and $g_{0^{p}}g_{1}^{d-p}+g_{1}^{a}$ have
no common zeros, we get $c_{0}=c_{1}\neq 0$ . However, we can see from (4.2), (4.5) and
$c_{0}=c_{1}$ that $f$ is algebraically degenerate. Therefore $A$ has no zeros. Q. E. D.

THEOREM 3. Homogeneous polynomials $H_{n}(n\geqq 2)$ of $w_{0},$ $\cdots$ $w_{n}$ with degree
$d^{n}$ inductively defined by

$H_{n}(w_{0}, \cdots w_{n})=H_{1}(H_{n-1}(w_{0}, \cdots, w_{n-1}), w_{0}^{a^{n-1_{-1}}}w_{n})$

have the proPerty $(H)$ .

We prove more precisely

THEOREM 4. Let $f$ and $g$ be algebraically nondegenerate holomorphic maP-
pings of $C$ into $P^{n}(C)$ with representations $f=(f_{0}, f_{n})$ and $\tilde{g}=(g_{0}, \cdots, g_{n})$

respectively. If
$H_{n}(g_{0}, \cdots g_{n})=\alpha H_{n}(f_{0}, f_{n})$ (4.6)

holds for some entire function $a$ without zeros, then

$g_{j}=\beta f_{j}$ $(0\leqq_{J}\leqq n)$ ,

where $\beta$ is an entire function such that $\beta^{a^{n}}=a$ .

PROOF. We proceed the proof by inductlon on $n$ .
For $n=1$ , let $A$ and $B$ be entire functions such that $\tilde{f}/A$ and $\tilde{g}/B$ are

reduced. Then, (4.6) changes into the form

$B^{a}H_{1}( \frac{g_{0}}{B},$ $\frac{g_{1}}{B})=aA^{a}H_{\iota}(\frac{f_{0}}{A},$ $\frac{f_{1}}{A})$ .

Lemma 1 says that $A/B$ is an entire function without zeros. Hence, we can
use Theorem 1 and obtain

$g_{0}/B=\beta_{1}f_{0}/A$ and $g_{1}/B=\beta_{1}f_{1}/A$ ,

where $\beta_{1}$ is an entire function such that $\beta_{1}^{a}=a(A/B)^{a}$ . Put $\beta=\beta_{1}B/A$ , then
we get the conclusion for $n=1$ .

Assume that the result is true for $n-1$ and consider the case for $n$ . Since
we can rewrite the identity (4.6) into the form
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$H_{1}(H_{n-1}(g_{0}, \cdots g_{n-1}),$ $g_{0^{a^{n-1_{-1}}}}g_{n})=\alpha H_{1}(H_{n-1}(f_{0}, \cdots\prime f_{n- 1}),$ $f_{0}^{a^{n-1_{-1}}}f_{n})$ ,

it follows from the above result for $n=1$ that

$H_{n-1}(g_{0}, \cdots g_{n-1})=\beta_{1}H_{n-1}(f_{0}, \cdots, f_{n-1})$ (4.7)

and
$g_{0^{a^{n-1_{-1}}}}g_{n}=\beta_{1}f_{0}^{a^{n-1_{-1}}}f_{n}$ , (4.8)

where $\beta_{1}$ is an entire function such that $\beta_{1}^{a}=a$ . By the assumption of induc-
tion and (4.7), we have

$g_{j}=\beta f_{j}$ $(0\leqq j\leqq n-1)$ , (4.9)

where $\beta$ is an entire function such that $\beta^{a^{n-1}}=\beta_{1}$ . By using (4.9) and $\beta^{a^{n-1}}=\beta_{1}$ ,

we obtain from (4.8)

$g_{n}=\beta_{1}(f_{0}/g_{0})^{a^{n-1_{-1}}}f_{n}=\beta_{1}(1/\beta)^{a^{n-1_{-1}}}f_{n}=\beta_{1}\beta(1/\beta)^{a^{n-1}}f_{n}=\beta f_{n}$ .

Also, we have $\beta^{a^{n}}=(\beta^{a^{n-1}})^{a}=\beta_{1}^{a}=a$ by $\beta^{a^{n-1}}=\beta_{1}$ and $\beta_{1}^{a}=\alpha$ . Q. E. D.

References

[C] H. Cartan, Sur les z\’eros des combinaisons lin\’eaires de p fonctions holomorphes
donn\’ees, Mathematica, 7 (1933), 5-31.

[F1] H. Fujimoto, The uniqueness problem of meromorphic maps into the complex pro-
jective space, Nagoya Math. J., 58 (1975), 1-23.

[F2] H. Fujimoto, A uniqueness theorem of algebraically non-degenerate meromorphic
maps into $P^{N}(C)$ , Nagoya Math. J., 64 (1976), 117-147.

[H] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[M] P. Montel, Legons sur les familles normales de fonctions analytiques et leurs appli-

cations, Gauthier-Villars, Paris, 1927.
[N] R. Nevanlinna, Einige Eindeutigkeitss\"atze in der Theorie der meromorphen Funk-

tionen, Acta Math., 48 (1926), 367-391.
[Sh] B. Shiffman, Introduction to the Carlson-Griffiths equidistribution theory, Lecture

Notes in Math., 981, Springer-Verlag, Berlin, Heiderberg, New York, Tokyo, 1983,
pp. 44-89.

[St] W. Stoll, Introduction to value distribution theory of meromorphic maps, Lecture
Notes in Math., 950, Springer-Verlag, Berlin, Heiderberg, New York, Tokyo, 1982,
pp. 210-359.

[Y] H.-X. Yi, A question of Gross and the uniqueness of entire functions, Nagoya Math.
J., 138 (1995), 169-177.

Manabu SHIROSAKI
Department of Mathematical Sciences
College of Engineering
University of Osaka Prefecture
1-1, Gakuencho
Sakai 593
Japan


	\S 1. Introduction.
	THEOREM A. ...
	THEOREM B. ...
	THEOREM C. ...

	\S 2. Basic results in ...
	THEOREM $D$ ...
	THEOREM $E([C], ...

	\S 3. Existence of $H_{1}$ ...
	THEOREM 1. ...
	THEOREM 2. ...

	\S 4. Existence of $H_{n}$ ...
	THEOREM 3. ...
	THEOREM 4. ...

	References

