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1. Introduction.

A pointed space $X$ with a base point preserving map $\mu:X\cross Xarrow X$ is said
to be a Hopf space if the restriction of $\mu$ to $XX$ is homotopic to the folding
map V. A pointed $Z/2Z$ space $X$ is said a Hopf space with involution if $X$ is
a Hopf space and the structure map $\mu:X\cross Xarrow X$ is equivariant and the
restriction of $\mu$ to $XX$ is equivariantly homotopic to the folding map V.

The concept of a Hopf space came from that of a topological group and a
topological group $G$ has an involution $\tau$ defined by $\tau(g)=g^{-1}$ for $g\in G$ . The
product of $G$ is not equivariant but it has the property

$\tau(xy)=\tau(y)\tau(x)$ .

This leads us to the definition of Hopf space with anti involution. That is,

a $Z/2Z$ space $X$ which is a Hopf space is said to be a Hopf space with anti
involution if the structure map $\mu:X\cross Xarrow X$ is equivariant with respect to the
involution $\tilde{\tau}$ defined by $\tilde{\tau}(x, y)=(\tau y, \tau x)$ , and the restriction of $\mu$ to $X\vee X$ is
equivariantly homotopic to V.

Adams showed that $S^{n}$ has a structure of Hopf space if and only if
$n=0,1,3,7$ . In [4], Iriye showed that the unit sphere of a orthogonal repre-
sentation space $V$ of $Z/2Z$ admits a structure of a Hopf space with involution
if and only if $V$ is $R^{1}$ 1 $R^{2}gR^{4,4},$ $R^{0,1},$ $R^{02},$ $R^{0.4}$ or $R^{0.8}$ .

In this paper we shall show that a $Z/2Z$ homology sphere with involution
of which ‘ type ‘ has a structure of Hopf space with involution or anti involution.
From Quillen’s localization theorem (see \S 4) we have that the fixed point set
of a $Z/2Z$ homology sphere with involution is also a $Z/2Z$ homology sphere.
Therefore we say that a $Z/2Z$ homology $n$ sphere whose fixed point set is a
$Z/2Z$ homology $m$ sphere is of type $(n, m)$ .

THEOREM. Let $d=1,2$ or 4. There exis $ts$ a $Z/2Z$ space $X$ of type $(2d-1, p)$

which is a Hopf space with involutim, if and only if $p=d-1,2d-1$ . There exists
a $Z/2Z$ space $X$ of type $(2d-1, p)$ which is a Hopf space anth anti involution, if
and only if $p=0,$ $d$ .
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This paper is organized as follows: In \S 2 we define Hopf space with
involution or anti involution and offer examples. In \S 3 we introduce the Hopf
construction of a Hopf space with involution or anti involution and show that
its Hopf invariant is one. Also localization theorem plays an important role
in this paper. Thus we refer to this theorem in \S 4. Then in \S 5, we shall
show when an equivariant map from $S^{4d-1}$ to $S^{zcl}$ with involutions has Hopf
invariant one. This leads us to previous theorem.

The author wishes to express his hearty thanks to Professor Akira Kono
for his advices and encouragement.

2. Hopf space with involution, anti involution.

Let (X, $\mu$) be a Hopf space. Suppose that $X$ has an involution $\tau$ , that is, $X$

is a $Z/2Z$ space.
If $\tau\mu(x, y)=\mu(\tau x, \tau y)$ for all $x,$ $y\in X$ and the restriction of $\mu$ to $X\vee X$ is

equivariantly homotopic to $\nabla$ , then we say (X, $\mu,$
$\tau$) is a Hopf space with

involution.
If $\tau\mu(x, y)=\mu(\tau y, \tau x)$ for all $x,$ $y\in X$ and the restriction of $\mu$ to $XX$ is

equivariantly homotopic to V where the involution of $X\cross X$ is defined by

$\tau\sim(x, y)=(\tau y, \tau x)$ ,

then we say (X, $\mu,$
$\tau$ ) is a Hopf space with anti involution.

EXAMPLE 2.1. The unit sPheres of $R^{1}1R^{2,2},$ $R^{4}$ 4 are Hopf spaces with
lnvolution. See Iriye [4].

EXAMPLE 2.2. Let $G$ be a Lie group. Then the ordinary product of $G$

makes $G$ a Hopf space. $G$ has an involution $\tau:Garrow G$ defined by $\tau(x)=x^{-1}$ .
Thus $G$ with $\tau$ is a Hopf space with anti involution.

EXAMPLE 2.3. $GL(n, K)$ with the involution $\tau:GL(n, K)arrow GL(n, K)$ de-
fined by $\tau(A)={}^{t}A$ is a Hopf space with anti involution by the ordinary product.

EXAMPLE 2.4. We regard $S^{3}$ (resP. $S^{7}$ ) as the unit sphere in $H$ (resp. the
Cayley numbers $O$ ). Then the involution $\tau$ defined by $\tau(x)=\overline{x}$ makes $S^{3}$ (resP.
$S^{7})$ a Hopf space with anti involution by the ordinary product in $H$ (resp. $O$).

3. Hopf construction with involution.

Given a map $\mu:A\cross Barrow C$ , the Hopf construction $H(\mu):A*Barrow\Sigma C$ is
defined by $H(\mu)(a, t, b)=(t, \mu(a, b))$ , where $a\in A,$ $b\in B,$ $t\in[0,1]$ .

Suppose that (X, $\mu,$
$\tau$) is a Hopf space with involution or anti involution.

We introduce involutions to $X*X,$ $\Sigma X$ so as to make $H(\mu)$ : $X*Xarrow\Sigma X$ equi-
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variant. We define involutions $\tau_{0}’,$ $\tau_{1}’$ : $X*Xarrow X*X$ and $\tau_{0}’’,$ $\tau_{1}’’$ : $\Sigma Xarrow\Sigma X$ as
follows:

$\tau_{0}’(x, t, y)=(\tau x, t, \tau y)\tau_{1}’(x, t, y)=(\tau y, 1-t, \tau x)$ $x,$ $y\in X,$ $t\in[0,1]$

$\tau_{0}’’(t, x)=(t, \tau x)\tau_{1}’’(t, x)=(1-t, \tau x)$ $x\in X,$ $t\in[0,1]$ .

If (X, $\mu,$
$\tau$) is a Hopf space with involution then $H(\mu):(X*X, \tau_{0}’)arrow(\Sigma X, \tau_{0}’’)$ is

equivariant. If (X, $\mu,$
$\tau$) is a Hopf space with anti involution then $H(\mu)$ :

$(X*X, \tau_{1}’)arrow(\Sigma X, \tau_{1}’’)$ is equivariant.
NOW (X, $\mu$) is a Hopf space and let $f=H(\mu)$ . In the following we use

$Z/2Z$ as tbe coefficient ring of cohomology rings unless mentioned.

THEOREM 3.5 (E. Thomas [6]). Let (X, $\mu$ ) be a Hopf space and $C_{f}$ be the
mapping cone of $f=H(\mu)$ . Consider the next exact sequence:

— $H^{*}(\Sigma(X*X))arrow H^{*}(C_{f})arrow H^{*}(\Sigma X)arrow H^{*}(X*X)$ .

If $u,$ $v\in H^{*}(X)$ are classes such that $\Sigma u,$ $\Sigma v\in H^{*}(\Sigma X)$ pull back to $H^{*}(C_{f})$ then
$\Sigma u\cup\Sigma v\in H^{*}(C_{f})$ comes from $\Sigma(u*v)\in H^{*}(\Sigma(X*X))$ which is isomorPhic to
$H^{*}(C_{f}, \Sigma X)$ .

THEOREM 3.6. If a is a $Z/2Z$ homology $n-1$ sphere and $(\sigma^{n-1}, \mu)$ is a
Hopf space, then

$H^{*}(C_{f})=\{$

$Z/2Z[x]/(x^{3})$ $n>1$

$Z/2Z[x]/(x^{3})$ or $Z/2Z$ $n=1$ .

PROOF. Consider the next exact sequence:

$arrow\tilde{H}^{*}(\Sigma(\sigma^{n-1}*\sigma^{n- 1}))arrow\tilde{H}^{*}(C_{f})arrow\tilde{H}^{*}(\Sigma\sigma^{n- 1})arrow\tilde{H}^{*}(\sigma^{n-1}*\sigma^{n- 1})$ .

And remark $H^{*}(\sigma^{n-1}*\sigma^{n-1})\cong H^{*}(S^{2n-1})$ , $H^{*}(\Sigma\sigma^{n-1})\cong H^{*}(S^{n})$ , $n\neq 2n-1$ . Then
we have

$H^{*}(C_{f})\cong\{$

$Z/2Z$ $*=0,$ $n,$ $2n$

$0$ otherwise.

Let $u$ be the generator of $H^{n-1}(\sigma^{n}$ “1
$)$ then $\Sigma u$ comes from $x$ the generator of

$H^{n}(C_{f})$ and, by Theorem 3.5, $x\cup x$ comes from $\Sigma(u*u)$ the generator of
$H^{2n}(\Sigma(\sigma^{n}*\sigma^{n}))$ . Hence $x\cup x$ is the generator of $H^{2n}(C_{f})$ .

For the latter part of the theorem, consider the same exact sequence and
remark that $n=2n-1=1$ :

$arrow\tilde{H}^{*}(\Sigma(\sigma^{n-1}*\sigma^{n-1}))-\tilde{H}^{*}(C_{f})arrow\tilde{H}^{*}(\Sigma\sigma^{n-1})arrow\tilde{H}^{*}(\sigma^{n-1}*\sigma^{n-1})$ .

We obtain that $f^{*}$ is a $0$ map or an isomorphism. Hence, $H^{*}(C_{f})=Z/2Z[x]/(x^{3})$

or $Z/2Z$ respectively.
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4. Localization theorem.

For a compact Lle group $G$ and a $G$ space $X$ with a fixed base point $*$ we
define $H\delta(X;\Lambda)$ as follows. Let $PGarrow BG$ be the universal $G$ bundle

$H_{G}^{*}(X;\Lambda)\equiv H^{*}(PG\cross_{G}X;\Lambda)$

where $\Lambda$ is a ring. The reduced equivariant cohomology $\tilde{H}_{G}^{*}(X;\Lambda)$ is defined
as follows:

$\tilde{H}\delta(X;\Lambda)\equiv H^{*}(PGx_{G}X, PG\cross_{c*} ; \Lambda)$

$=kers^{*}$

where $s$ is the section of $PG\cross_{G}Xarrow BG$ defined by

$s(x)=(y, *)$ where $x\in BG,$ $y\in p^{-1}(x)$ .

In the following we only consider the case $G=Z/2Z$ and $\Lambda=Z/2Z$. In
that case, $H_{G}^{*}\equiv H^{*}(BG)=Z/2Z[t]$ .

REMARK. If $G$ acts on $X$ trivially, then $PG\cross_{G}X=BGxX$ . Hence $H\not\in(X)$

$=H^{*}(X)\otimes_{Z/2Z}H_{G}^{*}$ .

We refer to the next theorem (Quillen [3]).

THEOREM 4.7 (Localization Theorem). If $X$ is a compact $G$ space, then the
inclusion $i$ of the fixed point set $X^{G}$ into $X$ induces an isomorphism

$\tilde{H}_{G}^{*}(X)[t^{-1}]arrow\sim H\not\in(X^{G})[t^{-1}]$

where $\tilde{H}\not\geq(X)[t^{-1}]$ means the localization of $\tilde{H}\xi(X)$ by $t^{-1}$ .
From Localization Theorem we obtain two propositions.

PROPOSITION 4.8. If $X$ is a compact $G$ space and $H^{*}(X;Z/2Z)\cong H^{*}(S^{l}$ ;
$Z/2Z)$ for some $1\geqq 0$ and $X^{G}\neq\emptyset$ , then $H^{*}(X^{G})\cong H^{*}(S^{m})$ for some $m\leqq l$ .

PROOF. See Bredon [2].

PROPOSITION 4.9 Let $X$ be a compact $G$ space. If $X^{G}\neq\emptyset$ and $H^{*}(X;Z/2Z)$

is generated by one element as a graded $Z/2Z$ algebra, then

$i^{*}:$ $\tilde{H}_{G}^{*}(X)arrow\tilde{H}\delta(X^{G})$ is monic.

PROOF. First we prove that $\tilde{H}\delta(X)$ is a free $H_{G}^{*}$ module. Consider the
Serre spectral sequence $E_{i}^{j,k}$ of the fiber space $PG\cross_{G}Xarrow BG$ .

Let $x$ denote the generator of $H^{*}(X)$ and the degree of $x$ be $m$ . Then

$E_{2}^{pq}=0$ $(q\not\in mZ)$ .
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Also, $X$ has a fixed point and $P$ : $PG\cross_{G}Xarrow BG$ has a section $s$ . Thus $P^{*}:$

$H^{*}(BG)arrow H^{*}(PG\cross_{G}X)$ is monic. The image of $p*$ is $\oplus_{p\geqq 0}$ Egg $0$ Therefore
we have that

$d_{m}^{0,m}(1\otimes x)=0$ .
Since $\chi$ generates $H^{*}(X)$ , the Serre spectral sequence is trivial. Therefore
$H5(X)$ is a free $H\mathfrak{F}$ module. $\tilde{H}_{G}^{*}(X)$ is a submodule of $H_{G}^{*}(X)$ and it follows
that $\tilde{H}\delta(X)$ is a free $H\not\in$ module.

Then consider the following commutative diagram

$\tilde{H}\xi(X)$ $-\tilde{H}_{G}^{*}(X)[t^{-1}]$

$\downarrow i^{*}$ $\cong\downarrow i^{*}$

$\tilde{H}_{G}^{*}(X^{G})arrow\tilde{H}\mathfrak{F}(X)[t^{-1}\negarrow$ .

In the diagram the arrows which goes down means $i^{*}$ and the arrows
which goes across are monic since $\tilde{H}\#(X)$ and $\tilde{H}_{G}^{*}(X^{G})$ are free $H\not\in$ modules.
Hence by localization theorem we have that $i^{*}:$ $\tilde{H}_{G}^{*}(X)arrow\tilde{H}_{G}^{*}(X^{G})$ is monic.

5. Proof of main theorem.

Let $S^{n,m}$ mean the set of $G$ isomorphism classes of all $Z/2Z$ homology $n$

spheres which are compact $G$ spaces and whose fixed point sets are $Z/2Z$

homology $m$ spheres. (Proposition 4.8 says that if $X$ is a compact $Z/2Z$ space
and at the same time a $Z/2Z$ homology $n$ sphere, then $X\in S^{n,m}$ for some $m.$ )

THEOREM 5.10. Let $d=1,2$ or 4. There exist $a"-1q\in S4d-1q$ $\sigma^{2dq^{r}}\in S^{2iq’}($

and a continuous $G$ map $f:a^{4d-1q}arrow\sigma^{2d,q’}$ such that

$H^{*}(C_{f})=Z/2Z[x]/(x^{3})$ where $|x|=2d$ ,

that is, the Hopf invariant is me, if and $mlyif(q, q’)=(4d-1,2d)$ or $(2d-1, d)$

or $(2d-1,0)$ .
REMARK. Adams’ theorem of Hopf invariant one tells us that the assump-

tions on dimensions in Theorems 5.10 and 5.11 are inessential.

PROOF. First we assume that there is a continuous $G$ map $f$ : $\sigma^{4d-1,q}arrow$

$\sigma^{2dq’}$ such that $H^{*}(C_{f})=Z/2Z[x]/(x^{3})$ , $x|=2d$ , where $\sigma^{4d-1q}\in S^{4f-1.q}$( and
$a^{2d,q’}\in S^{2d,q’}$

By the proof of Proposition 4.9, $\tilde{H}_{G}^{*}(C_{f})$ and $\tilde{H}_{G}^{*}(C_{f}^{G})$ are free $H_{G}^{*}$ modules
and from the localization theorem the ranks of $\tilde{H}_{G}^{*}(C_{f})$ and $\tilde{H}\not\in(C_{f}^{G})$ are same.
Note that $\tilde{H}_{G}^{*}(C_{f}^{G})\cong\tilde{H}^{*}(C_{f^{G}})\otimes H_{G}^{*}$ . Therefore we have that

$\tilde{H}^{*}(C_{f^{G}})\cong Z/2Z\oplus Z/2Z$ . (1)
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Denotes the restricted map of $f$ to G-fixed-point-set by $f^{G}$ . Then we have
the following exact sequence:

$arrow H_{(\sigma^{2dq^{\prime G^{\underline{\Sigma f^{G*}}}}}}*\Sigma^{0.1})\tilde{H}^{*}(\Sigma^{0,14d-1q^{G^{k*}}}\sigma)arrow H*(C_{f^{G}})$

$arrow\hat{H}^{*}(\sigma^{2dq^{\prime G^{f^{G*}}}})arrow\tilde{H}^{*}(\sigma^{4d-1q^{G}})J^{*}$

Here $\Sigma^{0,1}\sigma^{2d.q^{\prime G}}$ , $\Sigma^{0,1}\sigma^{4d-1q^{G}}$ , $\sigma^{2d,q^{\prime(r}}$ and $\sigma^{4t-1q^{G}}$( are $Z/2Z$ homology $q’+1$ ,
$q+1,$ $q’,$ $q$ spheres respectively and $C_{f^{G}}=C_{f}^{G}$ . Then from (1) $f^{G*}$ and $\Sigma f^{G}$

‘

are $0$ maps. Now we obtain tbat
$\hat{H}^{*}(C_{f^{G}})\equiv H^{q+1}(\Sigma^{0,1}\sigma^{4\dot{a}-1.q^{G}})\oplus H^{q’}(\sigma^{2dq^{\prime O}})$ .

Let $y$ be the image of the generator of $H^{q+1}(\Sigma^{0}1\sigma 4d-1q^{G})$ and $y’$ be a pull
back of the generator of $\tilde{H}^{q’}(\sigma^{2lq^{\prime G}}()$ . Therefore $\tilde{H}^{*}(C_{J^{G}})$ is a $Z/2Z$ vector
space generated by $y$ and $y’$ . We consider $y$ and $y’$ to be elements of $\tilde{H}_{G}^{*}(C_{f}^{G})$

by the isomorphism $\tilde{H}_{G}^{*}(C_{f}^{G})\cong\tilde{H}^{*}(C_{f^{G}})\otimes H\S$ as an algebra over the $mod 2$

Steenrod algebra.
And also we can consider $x,$

$x^{2}$ to be elements of $\tilde{H}_{G}^{*}(C_{f})$ by the isomor-
phisms

$\tilde{H}_{G}^{*}(C_{f})\cong\bigoplus_{q>0,p\geqq 0}E_{\infty}^{pq}\cong\bigoplus_{q>0p\geqq 0}E_{2}^{pq}$ as an $H\not\in$ module

$\bigoplus_{q>0}E_{2}^{0.q}$ or $\tilde{H}^{*}(C_{f})$ as a $Z/2Z$ module.

Here $x,$
$x^{2}$ are the basis of $Hx(C_{f})$ as an $H\not\in$ module.

$\tilde{H}_{G}^{*}(C_{f})\ni\{$

$x$ $*=2d$

$x^{2}$ $*=4d$

$H\not\in(C_{f^{G}})\ni\{$

$y$ $*=q’$

$y’$ $*=q+1$ .
First, it is easily seen that $y^{\prime 2}=0$ since

$y^{f2}=(k^{*}((k^{*})^{-1}y))^{2}$

$=k^{*}((k^{*})^{-1}y)^{2}$

$=k^{*}0=0$ .

NOW suppose $i^{*}(x)=at^{2d-d’}y+bt^{2d-\{q+1)}y’$ where $a,$ $b\in Z/2Z,$ $H_{G}^{*}=Z/2Z[t]$ ,
$i:C_{f^{G}}arrow C_{f}$ . Then we have that

$i^{*}(x^{2})=i^{*}(x)^{2}$

$=at^{4d-2q’}y^{2}+bt^{4d-2(q+1)}y^{\prime 2}$

$=at^{4d-2q’}y^{2}$ .
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While Proposition 4.9 says $i^{*}$ is monic. Hence $a\neq 0$ and $y^{2}\neq 0$ . Thus we have

$a=1$ and 2 $\deg y=q’$ or $q+1$ .

First case. We consider the first case 2 $\deg y=q’$ that implies $q’=0$ .
If we assume $b=0$ ,

$i^{*}(x)=t^{2d}y$

$i^{*}(x^{2})=t^{4d}y^{2}=t^{4d}y$ .
Thus ${\rm Im} i^{*}$ is contained in the $H\not\in$ pure submodule generated by $y$ which con-
tradicts to the fact that $i^{*}:$ $\tilde{H}\not\in(C_{f})[t^{-1}]arrow\tilde{H}\delta(C_{f}^{G})[t^{-1}]$ is an isomorphism.
Therefore $b=1$ and we have that

$i^{*}(x)=t^{2d}y+t^{2d-(q+1)}y’$ in $H\not\in(C_{f}^{G})$ .

Here $2d>q+1,$ $sq(y’)=y’,$ $Sq(y)=y$ and $Sq(t)=t+t^{2}$ . Assuming that $q+1$

$\neq 2d$ , we shall be led to a contradiction. That is

$Sq^{2d-(q+1)}(i^{*}x)=\sum_{t+j=2d-(q+1)}Sq^{i}(t^{2d})Sq^{j}(y)+t^{4d-2(q+1)}y’$

$=t^{4d-2(q+1)}y’$ , since $2d$ is a power of 2,

while $i^{*}(Sq^{2d-(q+1)}x)=i^{*}$ ( $0$ or $t^{2d-(q+1)}x$ )

$=0$ or $t^{4a-(q+1)}y+t^{4a-2(q+1)}y’$ .

Hence we have $q+1=2d$ , that is, $q’=0,$ $q=2d-1$ .
Second case. Next we assume $2q’=q+1>0$ . Then $(q+1)-q’=q’\leqq 2d,$ $y^{2}=y’$

and $i^{*}(x)=t^{2a-q’}y+bt^{2d-2q’}y^{2}$ .
a) NOW assume that $b=0$ , i.e., $i^{*}(x)=t^{2d-q^{r}}y$ . Then

$i^{*}(Sq^{q’}(x))=Sq^{q’}(i^{*}x)$

$=Sq^{q’}(t^{2d-q’}y)$

$=(\begin{array}{l}2d-q’q’\end{array})t^{2d}y+t^{2d-q’}y^{2}$ . (2)

Here if we suppose that $q’\neq 2d(0\leqq q^{f}<2d)$ , then $Sq^{q’}(x)=0$ or $t^{q’}x$ . Thus

$i^{*}(Sq^{q’}x)=0$ or $t^{2d}y$

and this contradicts to (2). Therefore we obtain

$q’=2d$ , $q=4d-1$ .

b) The last case is that $i^{*}(x)=t^{2d-q’}y+t^{2d-2q’}y^{2}$ . Here $2d-2q’\geqq 0$ , that is,
$d\geqq q’$ and $2q’=q+1$ .
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In thls case, let us consider the following sequence

$\sigma^{4d-1.q^{G}}arrow\sigma^{2d,q^{\prime G}}arrow C_{f^{G}}arrow\Sigma^{0,1}a^{4d-1,q^{G}}arrow\Sigma^{0,1}\sigma^{2fq^{\prime G}}(-\succ$

where $q=2q’-1,$ $H^{*}(C_{f^{G}})=Z/2Z[y]/(y^{3})$ .
By Adams’ theorem of Hopf invariant one, we obtain that $4\geqq d\geqq q’=2^{r}$ for
some $r\geqq 0$ , that is,

$(d, q’)=(4,4),$ $(4,2),$ $(4,1),$ $(2,2),$ $(2,1)$ or $(1, 1)$ . (3)

If we suppose that $q’\neq d(0<q^{f}<d)$ , then $Sq^{2q’}(x)=0$ or $t^{2q’}x$ . And it follows
that

$i^{*}(Sq^{2q’}(x))=0$ or $t^{2d+q’}y+t^{2\phi}y^{2}$ .
On the other hand, $q’\neq d$ means, by (3) and the direct computation,

$i^{*}(Sq^{2q’}(x))=Sq^{2q^{i}}(t^{2d-q’}y+t^{2a-2q’}y^{2})$

$=t^{2d+q’}y$ .
This is contradiction. Thus we obtained that

$q’=d$ , $q=2d-1$ .

NOW we complete the proof of the former part of theorem.
All we have to do is to show the existence of $\sigma^{4\dot{a}-1q}\in S^{4a-1q},$ $a^{2dq’}\in S^{2a}q’$

and a continuous $G$ map $f$ : $\sigma^{4a-1q}arrow\sigma^{2a.q’}$ such that

$H^{*}(C_{f})=Z/2Z[x]/(x^{3})$ where $|x|=2d$ ,

for $(q, q’)=(4d-1,2d),$ $(2d-1, d),$ $(2d-1,0)$ . We construct these in the theorem
5.12, 5.13. Q. E. D.

REMARK. A part of previous theorem can be proved by using Bredon’s
theorem [2, pp. 425-427, Theorem 11.1]. But his proof uses a not obvious fact.
Thus we offered our own proof.

THEOREM 5.11. There exist $a^{}\in S^{1q},$ $a^{1q}‘\in S^{1q’}$ and a continuous $G$ map
$f$ : $a^{1,q}arrow\sigma^{1}q’$ such that

$H^{*}(C_{f})=Z/2Z[x]/(x^{3})$ where $|x|=1$ or $Z/2Z$ .
if and only if $(q, q’)=(1,1)$ or (0 $0)$ .

PROOF. First we assume that there are $a^{1.q}\in S^{1q},$ $a^{}\in S^{1q’}$ and a conti-
nuous $G$ map $f$ : $\sigma^{1.q}arrow a^{1q’}$ such that

$H^{*}(C_{f})=Z/2Z[x]/(x^{3})$ where $|x|=1$ .
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a) We suppose $(q, q’)=(01)$ . Consider the exact sequence

$arrow\tilde{H}^{*}(\Sigma^{0,1}\sigma^{1}1^{G^{\underline{\Sigma f^{G*}}}})\tilde{H}^{*}(\Sigma\sigma)arrow\tilde{H}^{*}(C_{f^{G}})arrow\tilde{H}^{*}(\sigma^{1}1G^{f^{G*}})arrow\tilde{H}^{*}(a^{\iota,0^{G}})$ .

It is easily seen that $f^{*}$ and $\Sigma f^{G*}$ are $0$ maps and that

$H*(C_{f}^{G})\cong\{$

$Z/2Z\oplus Z/2Z$ $*=1$

$0$ otherwise.

Let $y,$ $y’$ be the basis of $\tilde{H}^{1}(C_{f^{G}})$ . Consider $y$ and $y’$ to be elements of
$\tilde{H}\S(C_{f}^{G})$ and $x,$

$x^{2}$ to be elements of $\tilde{H}_{G}^{*}(C_{f})$ as we did in the proof of Theo-
rem 5.10.

Let $i^{*}(x)=ay+by^{f}$ where $a,$ $b\in Z/2Z$. Then $i^{*}(x^{2})=0$ . This contradicts to
Proposition 4.9. Thus $(q, q’)\neq(O, 1)$ .

b) Next we suppose $(q, q’)=(1,0)$ . Consider the exact sequence

$-arrow\tilde{H}^{*}(\Sigma^{01}\sigma^{1}0^{c_{)\tilde{H}^{*}(\Sigma^{0}}^{\Sigma J^{G*}}}arrow 11.1^{G^{k*j*}}\sigma)arrow\tilde{H}^{*}(c_{f}G)arrow\tilde{H}^{*}(a^{1.0^{c_{)arrow\tilde{H}^{*}(\sigma^{1,1^{G}})}^{f^{G*}}}}$ .
It is easily seen that $f^{*}$ and $\Sigma f^{G*}$ are $0$ maps and that

$\tilde{H}^{*}(C_{f}^{G})\cong\{$

$Z/2Z$ $*=0,2$

$0$ otherwise.

Let $y,$ $y^{f}$ be the generator of $\tilde{H}^{0}(C_{f}^{G})$ and $\tilde{H}^{2}(C_{f}^{G})$ respectively and consider
$y$ and $y’$ to be elements of $H_{G}(C_{f}^{G}),$ $x$ and $x^{2}$ to be elements of $\tilde{H}\mathfrak{F}(C_{f})$ .

Let $i^{*}(x)=aty$ where $a\in Z/2Z$. Then $i^{*}(x^{2})=a^{2}t^{2}y$ . This contradicts to
localization theorem. Thus $(q, q’)\neq(1,0)$ .

Next we assume that there is $\sigma^{1,q}\in S^{1,q},$ $\sigma^{1,q’}\in S^{1,q’}$ and a continuous $G$

map $f:\sigma^{1,q}arrow\sigma^{1,q’}$ such that
$\tilde{H}^{*}(C_{f})=0$ .

$a’)$ We suppose $(q, q’)=(O, 1)$ . Just as we have seen in a),

$H*(C_{f}^{G})\cong\{$

$Z/2Z\oplus Z/2Z$ $*=1$

$0$ otherwise.

Therefore $\tilde{H}\not\in(C_{f}^{G})\neq 0$ . This contradicts to localization theorem.
$b’)$ Next we suppose $(q, q’)=(1,0)$ . Just as b),

$\tilde{H}^{*}(C_{f}^{G})\cong\{$

$Z/2Z$ $*=0,2$

$0$ otherwise.

Therefore $\tilde{H}\delta(C_{f^{G}})\neq 0$ . This contradicts to localization theorem.
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Actually we construct $f:\sigma^{1.q}arrow\sigma^{1.q^{i}}$ for $(q, q^{f})=(1,1),$ $(0,0)$ as follows.
Let $S^{1}=\{z\in C||z|=1\}$ and $\tau$ denote the involution of $S^{1}$ by conjugation. Here
$(S^{1}, id_{S^{1}})\in S^{1.1}$ and $(S^{1}, \tau)\in S^{1,0}$ . Let $f_{0},$ $f_{1}$ be maps from $S^{1}$ to $S^{1}$ defined by

$f_{0}(z)=z$ , $f_{1}(z)=z^{2}$ .
Both of $f_{0},$ $f_{1}$ are equivariant whether $S^{1}$ takes the trivial involution or the
involution $\tau$ .

It follows easily
$C_{f_{0}}\cong D^{2}$ , $C_{f_{1}}\cong RP^{2}$ .

Thus $H^{*}(C_{f_{0}})\cong Z/2Z,$ $H^{*}(C_{f_{1}})\cong Z/2Z[x]/(x^{3})$ where $|x|=1$ .
THEOREM 5.12. Let $d=1,2$ or 4. There exists $\sigma^{2d-1,p}\in S^{2d-1,p}$ which has

a structure of Hopf space with involution, if and only if $p=d-1,2d-1$ .
Actually the unit sphere of $R^{0.2d},$ $R^{a,d}$ have structures of HoPf space with

involution.

PROOF. First we show that the unit spheres of $R^{0,2}$ ’ and $R^{c1}$ d are Hopf
space with involution.

Let $S^{n.m}$ denote the unit sphere of $R^{n,m}$ . It is trivial that $S^{0.2d}$ is a Hopf
space with involution. Hence we consider $S^{d.d}$ .

$R^{d.d}$ is identified with $L_{=}K\oplus K\omega$ where $\omega^{2}=-1,$ $L=C,$ $H$ Cayley numbers
$O,$ $K=R,$ $C,$ $H$ for $d=1,2,4$ resPectively. And also $\tau|_{K}=id,$ $\tau|_{K_{\omega}}=-1$ . With
this involution the natural product $\mu$ of $C,$ $H$ Cayley number $O$ becomes a
equivariant map. And $S^{d}d$ with this product is a Hopf space with involution.
See Iriye [4].

Consider the Hopf constructions with involution of $S^{0,2a},$ $S^{a.d}$ , and we
obtain the existence of $\sigma^{4a-1q}\in S^{4d-1.q},$ $\sigma^{2d}q‘\in S^{2d,q’}$ and a continuous $G$ map
$f$ : $\sigma^{4d-1.q}arrow\sigma^{2d,q’}$ such that

$H^{*}(C_{f})=Z/2Z[x]/(x^{3})$ where $|x|=2d$ ,

for $(q, q’)=(4d-1,2d)$ and $(2d-1, d)$ .
For the former part of the proposition consider the Hopf construction with

involution and apply Theorem 5.10.
Assume that $\sigma^{2d-1,p}\in S^{2d-1.p}$ is a Hopf space with involution. Let $f$ be the

Hopf construction of the Hopf structure $\mu$ .
$f:\sigma^{2d-1.p}*\sigma^{2d-1,p}arrow\Sigma^{0.1}\sigma^{2d-1,p}$ .

Remark that
$\sigma^{2d-1.p}*\sigma^{2d-1.p}\in s^{4I-1.2p+1}($

$\Sigma^{0.1}\sigma^{2d-1.p}\in s^{2d.p+1}$ .
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Hence Theorem 5.10 says

$(2p+1, p+1)=(4d-1,2d)$ or $(2d-1, d)$ or $(2d-1,0)$ .

The possibility lies in cases $p=d-1,2d-1$ .
THEOREM 5.13. Let $d=1,2$ or 4. There exists $\sigma^{2a-1.p}\in S^{2d-1}p$ which is a

Hopf space with anti involutim, if and only if $p=0,$ $d$ .
Actually the unit spheres of $R^{2d-1.1},$ $R^{tl-1.f+1}$( are Hopf spaces with anti

involution.

PROOF. First we show that $S^{2d-1.1},$ $S^{cf-1.d+1}$ have structures of Hopf space
with anti involution.

Identify $R^{2d}$ with $L\cong K\oplus K\omega$ where $\omega^{2}=-1,$ $L=C,$ $H$ Cayley numbers $O$ ,

$K=R,$ $C,$ $H$ for $d=1,2,4$ respectively. We introduce linear involutions $\tau_{0},$ $\tau_{1}$

of $K\oplus K\omega$ as follows

$\tau_{0}(x+y\omega)=\overline{x}+y\omega$

$\tau_{1}(x+y\omega)=\overline{x}-y\omega$ for $x,$ $y\in K$.

Here the standard product of $C,$ $H$ Cayley numbers $O$ has the property

$\tau_{i}(zw)=\tau_{i}(w)\tau_{i}(z)$ for $z,$ $w\in L,$ $i=0,1$ .
Identify $S^{d-1.d+1},$ $S^{2a-1.1}$ with the unit spheres of $(R^{zd}, \tau_{0}),$ $(R^{2d}, \tau_{1})$ respec-

tively and then $S^{d-1.d+1},$ $S^{2el-1.1}$ become Hopf space with anti involution with
the standard product of $L$ .

Consider the Hopf constructions with anti involution of $S^{2d-1,1},$ $S^{d-1,l+1}$ and
we obtain the existence of $\sigma^{4d-1q}\in S^{4a-1}q$ $\sigma^{2d}q’\in S^{2d}Q’$ and a continuous $G$

map $f$ : $\sigma^{4d-1,q}arrow\sigma^{2d.q’}$ such that

$H^{*}(C_{f})=Z/2Z[x]/(x^{3})$ where $|x|-2d$ ,

for $(q, q’)=(2d-1,0)$ and $(2d-1, d)$ .
For the former part of the proposition consider the Hopf construction with

anti involution and apply Theorem 5.10.
Assume that $\sigma^{2d-1.p}\in S^{2d-1.p}$ has a structure of Hopf space with anti

involution. Let $f$ be the Hopf construction of the Hopf structure $\mu$ .
$f$ : $\sigma^{2a-1.p}*\sigma^{2d-1,p}arrow\Sigma^{1,0}\sigma^{2d-1.p}$ .

Remark that

$(\sigma^{2d-1}P_{*\sigma^{2d-1p})^{G}=}\{(\begin{array}{lll} 1 x, \overline{2} \tau x\end{array})\in\sigma^{2d-1.p}*a^{2d-1.p}|x\in\sigma^{2d-1.p}\}$

$\in s^{2d-1.2d-1}$
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$( \Sigma^{1,0}\sigma^{2d- 1.p})^{G}=\{(\frac{1}{2},$ $x)\in\Sigma^{1,0}\sigma^{2d-1,p}|x\in(\sigma^{2d-1,p})^{G}\}\in S^{p}p$

Thus we have that
$\sigma^{2d-1,p}*\sigma^{2d-1,p}\in S^{4d-1.2d-1}$

$\Sigma^{1,0}\sigma^{2f-1.p}(\in S^{2d.p}$ .
Hence Theorem 5.10 says

$(2d-1, p)=(4d-1,2d)$ or $(2d-1, d)$ or $(2d-1,0)$ .
The possibility lies in cases $p=d,$ $0$ .
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