
J. Math. Soc. Japan
Vol. 48, No. 4, 1996

On a normal integral bases problem
over cyclotomic $Z_{p}$-extensions

By Humio ICHIMURA

(Received Oct. 28, 1994)

\S 1. Introduction.

Let $P$ be a prime number and $K$ be a number field containing a primitive
p-th root of unity. Let $\mathcal{H}(K)$ be the subgroup of $K^{x}/K^{\cross p}$ consisting of elements
$[\alpha](\in K^{\cross}/K^{\cross p})$ for which the extension $K(\alpha^{1/p})$ is unramified over $K$, and $\Re(K)$

be the subset of $\mathcal{H}(K)$ consisting of elements $[\alpha](\in \mathcal{H}(K))$ for which the
unramified cyclic extension $K(\alpha^{1/p})/K$ has a relative normal integral bases. Here,

we say that a Galois extension $L/E$ of a number field $E$ has a relative normal
integral bases (an RNIB, for short) when the integer ring $O_{L}$ of $L$ is free over
the group ring $O_{B}[Ga1(L/E)]$ . In [3], Childs gave a criterion for a cyclic
extension $L/K$ of degree $P$ to be unramified and have an RNIB (see Lemma 5
in \S 4), from which it follows that $\Re(K)$ is a subgroup of $\mathcal{H}(K)$ . He raised the
question “what is the quotient group $\mathcal{H}(K)/J^{c}l(K)$ ?”. We have been investigating
this problem for certain abelian fields ([14], [15]) in connection with power
series associated to certain $P$-adic $L$ -functions. A similar study is also given in
Taylor [24] when $K$ is the p-th cyclotomic field $Q(\mu_{p})$ . In this paper, we shall
continue these investigations.

Let $P$ be an odd prime number and $k$ be an imaginary abelian field satisfying
the following conditions:

(C1) $k$ contains a Primitive p-th root of unity.
(C2) $p$ I $[k : Q]$ .
(C3) There is only one prime ideal of $k$ over $p$ .

Let $k_{\infty}/k$ be the cyclotomic $Z_{P}$-extension and $k_{n}(n\geqq 0)$ be its n-th layer. We
write, for brevity, $\mathcal{H}_{n}=\mathcal{H}(k_{n})$ and $\Re_{n}=\Re(k_{n})$ . The Galois groups $\Delta=Ga1(k/Q)$

and $\Gamma=Ga1(k_{\infty}/k)$ act on these groups in a natural way. In particular, we
may decompose these groups by the action of complex conjugation $\rho(\in\Delta)$ ;
$\mathcal{H}_{n}=\mathcal{H}_{n}^{+}\oplus \mathcal{H}_{n}^{-}$ , $yl_{n}=\Re_{n}^{+}\oplus\Re_{n}^{-}$ . AS far as normal integral bases problem is
concerned, we have nothing to consider on the “odd“ part, because we already

know that SUE $=\{1\}$ (Brinkhuis [1]). As for the “even” part, we have described,
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in the previous papers [14], [15], the $\Gamma$-module structure of the quotient group
$\mathcal{H}_{n}^{+}/\Re_{n}^{+}$ in terms of power series associated to certain $P$ -adic $L$ -functions under
the assumption $p$ I $h(k^{+})$ (see Theorem 5 in \S 6). Here, $h(k^{+})$ denotes the class
number of the maximal real subPeld $k^{+}$ of $k$ . As its application, we have
obtained the following

THEOREM 1 ([15, Thm. 2]). Let $k$ be an imaginary abelian field satisfying
(C1), (C2) and (C3). If $p$ I $h(k^{+})$ , then, $\mathcal{H}_{n}^{+}=\Re_{n}^{+}$ for all suficiently large $n$ .

Motivated by this assertion, we shall give some further results on the
triviality of $\mathcal{H}_{n}^{+}/\Re_{n}^{+}$ for large $n$ without the assumption $p1h(k^{+})$ . First, we
give a “weak version” of the converse of this theorem. Namely, we prove that
if $\mathcal{H}_{n}^{+}=\Re_{n}^{+}$ for all sufficiently large $n$ , then, the Iwasawa $\lambda$-invariant of the ideal
class group of the maximal real subfield $k_{\infty}^{+}$ of $k_{\infty}$ vanishes (Theorem 2). Next,

we give, under some assumptions, a necessary and sufficient condition for
$\mathcal{H}_{n}^{+}=\Re_{n}^{+}$ for all sufficiently large $n$ in terms of special values of certain p-adic
$L$ -functions (Theorem 3). Finally, returning back to the case $P\parallel h(k^{+})$ , we
give a more “precise” version (Theorem 4) of Theorem 1.

\S 2. Statement of results.

Let $k$ be an imaginary abelian field satisfying (C1), (C2) and (C3). First,
we give a “weak version“ of the converse of Theorem 1. Let $A_{n}$ be the Sylow
$P$-subgroup of the ideal class group of $k_{n}$ , and let $A_{\infty}=LmA_{n}$ be the projective
limit w.r. $t$ . the relative norms. Let $\Psi$ be a character of $\Delta$ defined and irreducible
over $Q_{p}$ , which we call a $Q_{p}$ -character. We fix an irreducible comPonent $\psi$ of
$\Psi$ over a fixed algebraic closure $\Omega_{p}$ of $Q_{p}$ . We say that $\Psi$ is even when
$\psi(\rho)=1,$ $\rho$ being the complex conjugation in $\Delta$ . Let $e_{\Psi}$ be the idempotent of
the group ring $Z_{p}[\Delta]$ corresponding to $\Psi$ . Denote by $O$ the subring of $\Omega_{p}$

generated over $Z_{p}$ by the image of $\psi$ . We identify the subring $e_{\Psi}Z_{p}[\Delta]$ with
$O$ by the correspondence $e_{\Psi}\sigmarightarrow\psi(\sigma)(\sigma\in\Delta)$ . Let $\gamma$ be the topological generator
of $\Gamma$ such that $\zeta^{\gamma-}\zeta^{1+q}$ for all $p^{a}$-th roots $\zeta$ of unity $(a\geqq 1)$ , where $q$ is the
least common multiple of $P$ and the conductor of $\psi$ . We identify, as usual, the
completed group ring $oI\Gamma\ovalbox{\tt\small REJECT}$ with the power series ring $\Lambda=oIt\ovalbox{\tt\small REJECT}$ by the corre-
spondence $\gammarightarrow 1+t$ . Thus, for a module $X$ over $Z_{p}[\Delta]\square \Gamma\ovalbox{\tt\small REJECT}(e.g.,$ $\mathcal{H}_{n},$ $\Re_{n},$ $A_{n}$ ,
$A_{\infty})$ , its $\Psi$-component $X(\Psi)=e_{\Psi}X$ is a module over $\Lambda$ . By Iwasawa [19, Thm.
5], $A_{\infty}(\Psi)$ is finitely generated and torsion over $\Lambda$ , hence one can define its
characteristic power series. It is the product of a distinguished polynomial and
a unit, respectively, of $\Lambda$ by the theorem of Ferrero-Washington [5] on Iwasawa
$\mu$-invariants and the Weierstrass preparation theorem. We denote the degree of
this distinguished polynomial by $\lambda_{\Psi}$ . It is conjectured that $\lambda_{\Psi}=0$ when $\Psi$ is
even ([19, page 316], Greenberg [11]).
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THEOREM 2. Let $k$ be an imaginary abelian field satisfying (C1), (C2), (C3)

and let $\Psi$ be a nontrivial even $Q_{p}$ -character of $\Delta$ . If $\mathcal{H}_{n}(\Psi)=\Re_{n}(\Psi)$ for all
sufficiently large $n$ , then, we have $\lambda_{\Psi}=0$ .

REMARK 1. (1) Let $k$ and $\Psi$ be as above. Then, the condition $P$ I $h(k^{+})$

implies that $P$ I $h(k_{n}^{+})$ for all $n$ by the criterion of Iwasawa [16] on p-divisibility
of class numbers, and hence that $\lambda_{\Psi}=0$ . Therefore, Theorem 2 is regarded as
a weak version of the converse of Theorem 1. But, the converse of Theorem 1
and that of Theorem 2 do not hold in general as we shall see at the end of \S 5.

(2) Let $\Psi_{0}$ be the trivial character of $\Delta$ . It follows that $\mathcal{H}_{n}(\Psi_{0})=\{1\}$ and
$\lambda_{\Psi_{0}}=0$ by the Stickelberger theorem for $p$-cyclotomic fields $Q(\mu_{p^{n}})(n\geqq 1)$ and
the Kummer duality (the formula (6) of \S 4).

Next, let $k$ be an imaginary abelian field satisfying (C1), (C3) and
(C2) the exponent of $\Delta$ is $p-1$ .

Then, a $Q_{p}$-character $\Psi$ of $\Delta$ is of degree one, and hence $\psi=\Psi,$ $\mathcal{O}=Z_{p}$ . Let $\Psi$

be a nontrivial even $Q_{p}$-character of $\Delta$ . We want to give a necessary and
sufficient condition for $\mathcal{H}_{n}(\Psi)=\Re_{n}(\Psi)$ for all sufficiently large $n$ . This problem
is less hard to deal with when the dimension of $\mathcal{H}_{n}(\Psi)$ over the prime field $F_{p}$

is small. Denote by $\Psi*the$ odd $Q_{p}$ -character of $\Delta$ defined by

$\Psi^{*}(\sigma)=\omega(\sigma)\Psi(\sigma^{-1})$ $(\sigma\in\Delta)$ . (1)

Here, $\omega$ is the character of $\Delta$ representing the Galois action on p-th roots of
unity. Recall that (i) $\dim_{p_{p}}\mathcal{H}_{n}(\Psi)$ equals to the $p$ -rank $r(n)$ of $A_{n}(\Psi^{*})$ by the
Kummer duality (see the formula (6) of \S 4), and that (ii) $r(n)\leqq\lambda_{\Psi*}$ for all $n$

and the equality holds for all sufficiently large $n$ (see [25, Cor. 13.29]). In
particular, we have $\mathcal{H}_{n}(\Psi)=\Re_{n}(\Psi)=\{1\}$ when $\lambda_{\Psi*}=0$ . Therefore, from the
above, the case $\lambda_{\Psi*}=1$ is the first nontrivial case we have to consider. We
prove the following

THEOREM 3. Let $k$ be an imaginary abelian field satisfying (C1), (C2), (C3),

and let $\Psi$ be a nontrivial even $Q_{p}$ -character of $\Delta$ such that $\lambda_{\Psi*}=1$ . Then, $\mathcal{H}_{n}(\Psi)$

$=\Re_{n}(\Psi)$ for all sufficiently large $n$ if and only if $L_{p}(1, \psi)/|A_{0}(\Psi)|\equiv 0(mod. p)$ .
Here, $L_{p}(s, \psi)$ is the $P$-adic $L$ -function associated to $\psi$ which we are regarding
as a Primitive Dirichlet character, and $|*|$ denotes the cardinality.

REMARK 2. Let $k$ and $\Psi$ be as in Theorem 3. It is a direct consequence
of Theorems 2 and 3 that $\lambda_{\Psi}=0$ if $L_{p}(1, \psi)/|A_{0}(\Psi)|\equiv 0mod$ . $p$ . A similar
sufficient condition for $\lambda_{\Psi}=0$ is already given in Fukuda-Komatsu [6, Thm. 2],
Kraft [21, Thm. 3] and Taya [23, Thm. 2], but without any connection with
normal integral bases.

Finally, we return back to the situation of Theorem 1. So, the base field
$k$ is an imaginary abelian field satisfying (C1), (C2), (C3) and $p$ I $h(k^{+})$ . Then,
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since $p$ I $h(k_{n}^{+})$ (Remark $1(1)$), we have .ffa $=\Re_{n}^{-}=\{1\}$ from the Kummer duality
(see (6) of \S 4). We prove the following more precise version of Theorem 1.

THEOREM 4. Let $k$ be as above. Then, the homomorPhism $\mathcal{H}_{n}/\Re_{n}arrow$

$\mathcal{H}_{n+1}/\Re_{n+1}$ induced from the inclusion $k_{n}^{x}arrow k_{n+1}^{x}$ is trivial for all $n$ . Namely,
the extension $Lk_{n+1}/k_{n+1}$ does have an RNIB for any unramified cyclic extension
$L/k_{n}$ of degree $P$ and for any $n$ .

REMARK 3. Theorem 1 follows from Theorem 4 since the $p$ -rank of $A_{n}$ is
bounded as $narrow\infty([5])$ .

The content of this paper is as follows. In \S 3, we recall some basic facts
on local units and cyclotomic units, which we need in the later sections. We
prove Theorems 2, 3 and 4 in \S 4, \S 5 and \S 6 respectively.

\S 3. Cyclotomic units and local units.

Let $k$ be an imaginary abelian field satisfying (C1), (C2), (C3), and let $\Psi$ be
a nontrivial even $Q_{p}$ -character of $\Delta$ . It follows that there is exactly one prime
ideal $\mathfrak{p}_{n}$ of $k_{n}$ over $p$ from (C2) and (C3). Let $K_{n}(\subset\Omega_{p})$ be the completion of
$k_{n}$ by the prime $p_{n}$ , and put $K_{\infty}=\cup K_{n}$ . We regard that $k_{n}$ is embedded in
$K_{n}$ . Let $c_{U_{n}}$ be the group of principal units of $K_{n}$ , and let $E_{n}$ and $C_{n}$ be,
respectively, the group of units of $k_{n}$ and the group of cyclotomic units of $k_{n}$

in the sense of Hasse [13] and Gillard [8, \S 2-3]. Denote by $\mathcal{E}_{n}$ and $C_{n}$ the
closures of $E_{n}\cap^{c}U_{n}$ and $C_{n}\cap^{c}U_{n}$ in $c_{U_{n}}$ respectively. Let $c_{U_{arrow}}=1^{C}u_{n}$ and
$C=1imC_{n}arrow$ be the projective limits $w.r.t$ . the relative norms. We identify the
Galois groups $\Delta$ and $\Gamma$ with $Ga1(K_{0}/Q_{p})$ and $Ga1(K_{\infty}/K_{0})$ respectively in an
obvious way. Hence, we may regard the groups $CU_{n},$ $CU$ etc. as modules over
$Z_{p}[\Delta]I\Gamma\ovalbox{\tt\small REJECT}$ . Therefore, the $\Psi$-components $c_{U_{n}(\Psi)}$ $c_{U(\Psi)}$ etc. are regarded as
modules over $\Lambda=\mathcal{O}\beta t\ovalbox{\tt\small REJECT}$ by the manner we mentioned in \S 2. It is known that
$c_{U(\Psi)}$ is free and cyclic over $\Lambda$ (Iwasawa [17], Gillard [10, Prop. 1]). We fix
a generator $u=(u_{n})_{n\geq 0}$ of $c_{U(\Psi)}$ over $\Lambda$ . Iwasawa [18] constructed a power
series $g_{\psi}(t)\in \mathcal{O}\square i$ such that

$g_{\psi}((1+q)^{1-S}-1)=L_{p}(s, \psi)$ . (2)

The following fact due to Iwasawa and Gillard on the quotient $\Lambda$ -modules
$q](\Psi)/C(\Psi)$ and $c_{U_{n}(\Psi)}/c_{n}(\Psi)$ plays an important role in our paper. Put
$\omega_{n}=(1+t)^{p^{n}}-1$ .

LEMMA 1, (1) [10, Tbm. 1] $V(\Psi)/C(\Psi)\cong\Lambda/(g_{\psi})$ .
(2) [10, Prop. 1, 2 and Thm. 2] By the correspondence $u_{n}^{g}rightarrow g$ , we have

isomorphisms :
$c_{U_{n}\wp)}\cong\Lambda/(\omega_{n})$ and $C_{n}(\Psi)\cong(g_{\psi}, \omega_{n})/(\omega_{n})$ .
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Let $c_{U_{n}^{(1)}}$ be the subgroup of $c_{U_{n}}$ consisting of local units $u$ of $c_{U_{n}}$ such that
$u\equiv 1$ modulo the ideal $(\zeta_{0}-1)$ , $\zeta_{0}$ being a primitive p-th root of unity in $K_{0}$ .
Denote by $I_{n}(n\geqq 1)$ the ideal of $\Lambda$ generated by $p^{n}$ and $p^{n-1-j}\cdot r^{p^{j}}$ (O:$j\leqq n-- $l$ ),

and let $I_{0}=\Lambda$ . It follows that $I_{n}$ contains the ideal $(\omega_{n})$ from a simple fact
([15, Lemma 4]) on binomial coefficients.

LEMMA 2 ([15, Prop. 1]). By the corresPondence in the above lemma, $we$

have $c_{U_{n}^{(1)}(\Psi)}\cong I_{n}/(\omega_{n})$ .

By means of the group $C_{n}$ of cyclotomic units in the sense of Hasse and
Gillard, we have the following analytic class number formula ([8, \S 2-3])
analogous to the classical one:

$[E_{n} : C_{n}]=h(k_{n}^{+})\cross c_{n}$ .

Here, $c_{n}$ is an explicitly given integer depending only on the grouP $Ga1(k_{n}/Q)$ ,

which, because of (C2), is not divisible by $P$ (see [8, \S 2-3 and \S 1]). Hence,
we obtain the formula $|A_{n}^{+}|=|\mathcal{E}_{n}/C_{n}|$ . Then, it is quite natural to ask “is the
$\Delta$ -decomposed version of this formula valid ?”. As a consequence of the Iwasawa
main conjecture (proved by Mazur-Wiles [22]), Greenberg [12, Prop. 9] (resp.

Gillard [9, Thm. 3] $)$ proved it when $n=0$ (resp. when $n$ is arbitrary and the
$\Lambda$ -module $A_{\infty}(\Psi^{*})$ is pseudo-isomorphic to $\Lambda/(h)$ for some $h\in\Lambda$ ). In particular,
we have the following

LEMMA 3. Under the above notations, $|A_{n}(\Psi)|$ equals to the index [ $\mathcal{E}_{n}(\Psi)$ :
$C_{n}(\Psi)]$ when $n=0$ or $\lambda_{\Psi*}=1$ .

\S 4. Proof of Theorem 2.

Let $k$ be an imaginary abelian field satisfying (C1), (C2) and (C3). Let
$M$ be the maximal pro-P abelian extension over $k_{\infty}$ unramified outside $p$ , and
$L$ be the maximal unramified pro-p abelian extension over $k_{\infty}$ . Put $F=$

$k_{\infty}(\epsilon^{1/p^{n}}|\epsilon\in E_{\infty}’, n\geqq 1)$ . Here, $E_{\infty}’$ is the group of $P$ -units of $k_{\infty}$ . The Galois
groups of these extensions over $k_{\infty}$ can be viewed as modules over $Z_{p}[\Delta]\beta\Gamma\ovalbox{\tt\small REJECT}$ .
For a $Q_{p}$-character $\Psi$ of $\Delta$ , let $M(\Psi)$ be the intermediate field of $M/k_{\infty}$ fixed
by $\Phi$ -component $Ga1(M/k_{\infty})(\Phi)$ for all $Q_{p}$ -characters $\Phi$ of $\Delta$ different from $\Psi$ .
Then $Ga1(M(\Psi)/k_{\infty})=Ga1(M/k_{\infty})(\Psi)$ . Define $L(\Psi)$ , $F(\Psi)$ and $(L\cap F)(\Psi)$ in a
similar way. In the following, let $\Psi$ be a nontrivial even $Q_{p}$-character of $\Delta$

and $\Psi*$ be the odd $Q_{p}$ -character associated to $\Psi$ by the relation (1). By the
assumptions (C1), (C2) and (C3), we see that the unique prime ideal $\mathfrak{p}_{n}$ of $k_{n}$

over $P$ is principal. Therefore, $A_{n}$ coincides with the Sylow $P$ -subgroup of the
$P$ -ideal class group of $k_{n}$ . Hence, by [19, Thm. 16], the $\Lambda$ -modules
$Ga1(M/F)(\Psi^{*})$ and $Hom(\lim_{arrow}A_{n}(\Psi), \mu_{p}\infty)$ are isomorphic. Here, $\varliminf A_{n}$ is the
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inductive limit $w.r.t$ . the inclusion map $k_{n}arrow k_{m}(n<m)$ , and $\mu_{p}\infty$ is the group
of all $P$-power roots of unity in $k_{\infty}$ . It is known that $\lambda_{\Psi}=0$ if and only if
$\lim_{arrow}A_{n}(\Psi)=\{1\}$ ( $[11$ , Prop. 2]). Therefore, to prove Theorem 2, it suffices to
show that $M(\Psi^{*})=F(\Psi^{*})$ .

Let $G=Ga1(L/k_{\infty})$ and $H=Ga1((L\cap F)/k_{\infty})$ . To prove that $M(\Psi^{*})=F(\Psi^{*})$ ,

we need the following

LEMMA 4. Under the notations as above, both $O$-modules $G(\Psi^{*})$ and $H(\Psi^{*})$

are finitely generated and torsion free.
PROOF. The assertion for $G(\Psi^{*})$ is well known (see [25, Cor. 13.29]). So,

we prove the assertion only for $H(\Psi^{*})$ . By class field theory, $Ga1(M/L)(\Psi^{*})$ is
isomorphic over $\Lambda$ to the projective limit $\varliminf(^{c}U_{n}/\mathcal{E}_{n})(\Psi^{*})w.r.t$ . to the relative
norms ([4, Thm. 1.1]). Since $\Psi^{*}$ is odd and $\Psi^{*}\neq\omega$ , we have $\mathcal{E}_{n}(\Psi^{*})=\{1\}$ by
the fact ([25, Thm. 4.12]) on units of a CM-field. Hence, the $\Lambda$ -module
$Ga1(M/L)(\Psi^{*})$ is isomorphic to $q$] $(\Psi^{*})$ . But, by [10, Prop. 1], the latter module
is free and cyclic over $\Lambda$ . Thus $Ga1(M/L)(\Psi^{*})\cong\Lambda$ . But, since $Ga1(M/F)(\Psi^{*})$

is torsion over $\Lambda$ ([19, Thm. 16]), we see that

$Ga1(M/L)(\Psi^{*})\cap Ga1(M/F)(\Psi^{*})=\{1\}$ .

Therefore, we obtain
$M(\Psi^{*})=F(\Psi^{*})L(\Psi^{*})$ (3)

and
$Ga1(F(\Psi^{*})/(F\cap L)(\Psi^{*}))\cong Ga1(M/L)(\Psi^{*})\cong\Lambda$ . (4)

By [19, Thm. 15], we have an injective homomorphism of $Ga1(F/k_{\infty})(\Psi^{*})$ into
$\Lambda$ with a finite cokernel. Therefore, by (4), we see that there is an (injective)
embedding of $H(\Psi^{*})$ into $\Lambda/(h)$ with a finite cokernel for some $h\in\Lambda$ . Since the
characteristic power series of $G(\Psi^{*})$ is not divisible by $P([5])$ and it is divisible
by $h,$ $h$ is not divisible by $p$ . Hence, the $O$-module $H(\Psi^{*})$ is finitely generated
and torsion free. $\square$

NOW, let us prove Theorem 2. Let $\tilde{L}$ be the maximal unramified abelian
extension over $k_{\infty}$ whose Galois group is of exponent $p$ . We have clearly
$Ga1(\tilde{L}/k_{\infty})=G/G^{p}$ and $Ga1((\tilde{L}\cap F)/k_{\infty})=H/H^{p}$ . Define $\check{L}(\Psi^{*})$ and $(\acute{\grave{L}}\cap F)(\Psi^{*})$

similarly to $L(\Psi^{*})$ and $(L\cap F)(\Psi^{*})$ . Hence, we have

$Ga1(L(\Psi^{*})/k_{\infty})=(G/G^{p})(\Psi^{*})$ and $Ga1((\tilde{L}\cap F)(\Psi^{*})/k_{\infty})=(H/H^{p})(\Psi^{*})$ .
Let $\mathcal{H}_{\infty}$ be the subgroup of $k_{\infty}^{x}/k_{\infty}^{xp}$ consisting of classes $[\alpha](\alpha\in k_{\infty}^{x})$ for which
the extension $k_{\infty}(\alpha^{1/p})/k_{\infty}$ is unramified. By the Kummer pairing

$Ga1(\check{L}/k_{\infty})\cross \mathcal{H}_{\infty}arrow t^{\ell_{p}}$ ,
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we obtain (cf. [25, Chap. 10])

$\tilde{L}(\Psi^{*})=k_{\infty}(\alpha^{1/p}|[\alpha]\in \mathcal{H}_{\infty}(\Psi))$ (5)

and
$A_{\infty}(\Psi^{*})/A_{\infty}(\Psi^{*})^{p}\cong Ga1(L(\Psi^{*})/k_{\infty})\cong Hom(\mathcal{H}_{\infty}(\Psi), \mu_{p})$ . (6)

The first isomorphism in (6) is due to class field theory. Similarly, we obtain

$A_{n}(\Psi^{*})/A_{n}(\Psi^{*})^{p}\cong Hom(\mathcal{H}_{n}(\Psi), \mu_{p})$ . (6)

Since the $p$-rank of $A_{n}$ is bounded as $narrow\infty([5])$ , we see from (6) and (6)

that $\mathcal{H}_{\infty}(\Psi)=\mathcal{H}_{n}(\Psi)$ for all sufficiently large $n$ under the natural inclusion
$\mathcal{H}_{m}arrow \mathcal{H}_{\infty}$ induced by $k_{m}^{x}arrow k_{\infty}^{\cross}$ . Therefore, by the assumption of Theorem 2, we
have $\mathcal{H}_{\infty}(\Psi)=x_{n}(\Psi)$ for sufficiently large $n$ . But, by the following lemma
(Lemma 5), we have

$\Re_{n}(\Psi)\subset(E_{n}k_{n}^{\cross p}/k_{n}^{xp})\Psi)$ .
Therefore, we obtain $\tilde{L}(\Psi^{*})=(\tilde{L}\cap F)(\Psi^{*})$ by (5). Hence, $(G/G^{p})(\Psi^{*})$ and
$(H/H^{p})(\Psi^{*})$ have the same dimension over $F_{p}$ . So, by Lemma 4, we get $G(\Psi^{*})$

$=H(\Psi^{*})$ and hence $L(\Psi^{*})\subset F(\Psi^{*})$ . Therefore, by (3), we obtain $M(\Psi^{*})=F(\Psi^{*})$

and hence $\lambda_{\Psi}=0$ . $\square$

LEMMA 5 ([3, Tbm. $B]$ ). Let $K$ be a number field containing a primitive
p-th root $\zeta_{0}$ of unity. Then, a cyclic extension $L/K$ of degree $p$ is unramified
and has an RNIB if and only if $L$ is obtained by adjoining to $K$ a p-th root of
a unit $\epsilon$ of $K$ such that $\epsilon\equiv 1$ modulo the ideal $(\zeta_{0}-1)^{p}$ .

We need in \S 5 the following fact which follows from the above lemma.

LEMMA 6. Let $k$ be an imaginary abelian field satisfying $(C1)$ , (C2), (C3),

and let $\Psi$ be a $Q_{p}$ -character of $\Delta$ . If $A_{0}(\Psi)=\{1\}$ , then, $\mathcal{H}_{0}(\Psi)=\Re_{0}(\Psi)$ .

PROOF. Let $Jl_{0}^{*}$ be the subgroup of $k^{\cross}/k^{\cross p}$ consisting of classes $[\epsilon]$ with
$\epsilon\in E_{0}$ for which the extension $k(\epsilon^{1/p})/k$ is unramified. Clearly, we have
$\Re_{0}\subset\Re_{0}^{*}\subset \mathcal{H}_{0}$ . Let $\epsilon$ be a unit of $k$ such that $k(\epsilon^{1/p})/k$ is unramified. Let $p=p_{0}$

be the unique prime of $k$ over $p$ . Replacing $\epsilon$ by $\epsilon^{1-N\mathfrak{p}}$ if necessary, we may
assume $\epsilon\equiv 1$ modulo $\mathfrak{p},$ $i.e.,$ $\epsilon\in^{c}U_{0}$ . It follows that $p=(\zeta_{0}-1)$ by (C1), (C2) and
(C3). Hence, $c_{U_{0}=^{C}U_{0}^{(1)}}$ . Further, since $k(\epsilon^{1/p})/k$ is unramified and $\mathfrak{p}$ is principal,
we get $e=u^{p}$ for some $u\in q]_{0}=^{c}U_{0}^{(1)}$ by class field theory. Hence, we have $\epsilon\equiv 1$

modulo $(\zeta_{0}-1)^{p}$ . Therefore, $\Re_{0}^{*}=\Re_{0}$ by Lemma 5. For each element $[\alpha]$ of $\mathcal{H}_{0}$ ,

there exists an ideal 1I of $k$ such that $\mathfrak{U}^{p}=(\alpha)$ . Then, by mapping each $[\alpha]$

$(\in \mathcal{H}_{0})$ to the ideal class of $\mathfrak{U}$ with $\mathfrak{U}^{p}=(\alpha)$ , we obtain an exact sequence com-
patible with the Galois action:

$\{1\}arrow X_{0}^{*}arrow \mathcal{H}_{0}arrow A_{0}$ .
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Therefore, if $A_{0}(\Psi)=\{1\}$ , we have $\mathcal{H}_{0}(\Psi)=\Re_{0}^{*}(\Psi)$ , and hence $\mathcal{H}_{0}(\Psi)=\Re_{0}(\Psi)$ as
desired. $\square$

REMARK 4. AS we mentioned in \S 1, we have $\Re_{n}^{-}=\{1\}$ as a consequence
of [1]. This fact also follows from Lemma 5 and the fact [25, Thm. 4.12] on
units of a CM-field.

\S 5. Proof of Theorem 3.

\S 5-1. TWO Propositions on $\mathcal{H}_{n}/\Re_{n}$ .
In this subsection, we give two propositions on $\mathcal{H}_{n}/\Re_{n}$ , from which Theorem

3 follows immediately. The subsections \S 5-2 AJ \S 5-4 are devoted to the proof of
the propositions.

Let $k$ be an imaginary abelian field satisfying (C1), (C2) and $(C3)$ , and let
$\Psi$ be a nontrivial even $Q_{p}$ -character of $\Delta$ . Then, $\Psi$ is of degree one, and
hence $\psi=\Psi,$ $\mathcal{O}=Z_{p}$ and $\Lambda=Z_{p}It\ovalbox{\tt\small REJECT}$ . Assume that $\lambda_{\Psi*}=1$ . Then, the $P$-rank of
$A_{n}(\Psi^{*})$ is one for all $n$ by [25, Cor. 13.29 and Prop. 13.26] and $0=Z_{p}$ . There-
fore, $\dim_{p_{p}}\mathcal{H}_{n}(\Psi)=1$ for all $n$ by (6) of \S 4. Hence, for each integer $n_{0}$ , we
have $\mathcal{H}_{n}(\Psi)=\Re_{n}(\Psi)$ for all $n\geqq n_{0}$ if and only if $\mathcal{H}_{n_{0}}(\Psi)=\Re_{n_{0}}(\Psi)$ , or equivalently
if and only if $\dim_{F_{p}}3l_{n_{0}}(\Psi)=1$ . We prove the following

PROPOSITION 1. Let $k$ be an imaginary abelian field satisfying $(C1\rangle, (C2’)$ ,

and (C3), and let $\Psi$ be a nontrivial even $Q_{p}$ -character of $\Delta$ such that $\lambda_{\Psi*}-1$ .
Then, $\mathcal{H}_{n}(\Psi)=\Re_{n}(\Psi)$ for all sufficiently large $n$ if and only if $\mathcal{H}_{0}(\Psi)=\Re_{0}(\Psi)$ .

We give a necessary and sufficient condition for $\dim_{F_{P}}\Re_{0}(\Psi)=1$ (without the
assumption $\lambda_{\Psi*}=1$ ). Such a condition is already obtained by [24, Thm. 2] when
$k=Q(\mu_{p})$ . The following is its generalization.

PROPOSITION 2. Let $k$ be an imaginary abelian field satisfying (C1), (C2‘)
and $(C3)$ , and let $\Psi$ be a nontrivial even $Q_{p}$ -character of $\Delta$ . Then, $\dim_{F_{p}}\Re_{0}(\Psi)\leqq 1$ .
Further, $\dim_{F_{p}}\Re_{0}(\Psi)=1$ if and only if $L_{p}(1, \psi)/|A_{0}(\Psi)|\equiv 0mod$ . $p$ .

\S 5-2. A preliminary lemma.

Let $k$ be an imaginary abelian field satisfying (C1), $(C2’),$ $(C3)$ , and let $\Psi$

be a nontrivial even $Q_{p}$-character of $\Delta$ . If $\lambda_{\Psi}=0$ , then, any ideal of $k$ repre-
senting an ideal class in $A_{0}(\Psi)$ is capitulated in $k_{s}$ for some $s$ ( $[11$ , Prop. 2]).

LEMMA 7. Let $k$ and $\Psi$ be as above. Assume that $\lambda_{\Psi*}=1,$ $\lambda_{\Psi}=0$ and $A_{0}(\Psi)$

$\cong Z/p^{a}z$ with $a\geqq 1$ . Let $r$ be the least nonnegative integer such that any ideal
of $k$ representing an ideal class of order $P$ in $A_{0}(\Psi)$ is capitulated in $k_{r+1}$ .
Then, we have $A_{n}(\Psi)\cong Z/p^{a+\mathcal{R}}Z$ (resp. $Z/p^{a+r}z$ ) when $0\leqq n\leqq r$ (resp. $n\geqq r+1$ ).
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PROOF. Though this assertion seems to be more or less known to special-
ists, we give its proof because we could not find an appropriate reference.
First, we give some remarks which follow from the assumptions. Let $M$ and
$L$ be as in \S 4, and let $M_{n}$ (resp. $L_{n}$ ) be the maximal abelian extension of $k_{n}$

contained in $M$ (resp. $L$ ). Denote by $M_{n}(\Psi)$ the intermediate field of $M_{n}/k_{\infty}$

fixed by $Ga1(M_{n}/k_{\infty})(\Phi)$ for all $Q_{p}$ -characters $\Phi$ of $\Delta$ with $\Phi\neq\Psi$ . Define $L_{n}(\Psi)$

in a similar way. From the assumption $\lambda_{\Psi*}=1$ , it follows that the $\Lambda$ -module
$Ga1(M(\Psi)/k_{\infty})$ is isomorphic to $\Lambda/(t-\alpha)$ for some $\alpha\in Z_{p}$ with $p|\alpha$ (cf. [21,

Thm. 1]). Hence, we have

$Ga1(M_{n}(\Psi)/k_{\infty})\cong Z_{p}\ovalbox{\tt\small REJECT} t\ovalbox{\tt\small REJECT}/(t-\alpha, \omega_{n})\cong Z_{p}/\alpha p^{n}Z_{p}$ . (7)

We must have $\alpha\neq 0$ because $[M_{0}(\Psi) : k_{\infty}]$ is finite (see [11, page 266]) by the
Leopoldt conjecture for $k$ and $p$ (proved by Brumer [2]). Let $p^{e}(e\geqq 1)$ be the
highest power of $p$ dividing $\alpha$ . By class field theory and the assumptions (C2),

(C3), there is the canonical isomorphism:

$Ga1(L_{n}(\Psi)/k_{\infty})\cong A_{n}(\Psi)$ . (8)

Hence, by (7) and $L_{n}(\Psi)\subset M_{n}(\Psi)$ , we see that $A_{n}(\Psi)$ is cyclic. Similarly, we
have $a\leqq e$ . For $n<m$ , denote by $c_{n,m}$ the homomorphism $A_{n}(\Psi)arrow A_{m}(\Psi)$ induced
by the inclusion $k_{n}arrow k_{m}$ . From the definition of $r$ and the cyclicity of $A_{n}(\Psi)$ ,

we see that $c_{n.m}$ is injective when $0\leqq n<m\leqq r$ but $c_{r.r+1}$ is not. Further, we
have

$|A_{n}(\Psi)|||A_{n+1}(\Psi)|$ , (9)

since the map $A_{n+1}(\Psi)arrow A_{n}(\Psi)$ induced from the norm map $N_{n+1/n}$ from $k_{n+1}$

to $k_{n}$ is surjective.
NOW, let us prove the first part of the assertion. Assume that $A_{n}(\Psi)\cong$

$Z/p^{a+n}z$ for an integer $n$ with $0\leqq n<r$ . Take a prime ideal 8 of $k_{n+1}$ of
degree one such that its class $[\mathfrak{P}]_{n+1}$ generates the cyclic group $A_{n+1}(\Psi)$ . Here,

for an ideal $\mathfrak{U}$ of $k_{m},$ $[\mathfrak{U}]_{m}$ denotes the ideal class of $k_{m}$ represented by U.
Then, the order of $[\mathfrak{P}]_{n+1}$ is divisible by $p^{a+n}$ by (9) and the assumption of
induction. Put $\mathfrak{p}=N_{n+1/n}\mathfrak{P}$ . Then, the class $[\mathfrak{p}]_{n}$ generates $A_{n}(\Psi)$ , and hence,
the order of $[p]_{n}$ is $p^{a+n}$ . Hence, the order of $[\mathfrak{p}^{0_{n+1}}]_{n+1}$ is $p^{a+n}$ because of the
injectivity of $c_{n.n+1}$ . Here, $O_{m}$ denotes the ring of integers of $k_{m}$ . Assume
that $[\mathfrak{P}]_{n+1}$ is of order $p^{a+n}$ . Then, $[\mathfrak{p}^{0_{n+1}}]_{n+1}=[\mathfrak{P}]_{n+1}^{c}$ for some integer $c$ with
$P$ I $c$ . Applying the norm map $N_{n+1/n}$ , we get $[\mathfrak{p}]_{n}^{p}=[\mathfrak{p}]_{n}^{c}$ . Hence, the order of
$[\mathfrak{p}]_{n}$ is relatively prime to $p$ . This is a contradiction. Assume that the order
of $[\mathfrak{P}]_{n+1}$ is divisible by $p^{a+n+2}$ . Then, we see that $a+1\leqq e$ from (7) and (8),

and that there exists an intermediate field $H$ of $M_{n+1}(\Psi)/k_{\infty}$ such that $H$ is
unramified over $k_{\infty}$ and $[H:k_{\infty}]=p^{a+n+1}$ from (8). By $a+1\leqq e$ and (7), we must
have $H\subset M_{n}(\Psi)$ , and hence $H\subset L_{n}(\Psi)$ . Therefore, we get $p^{a+n+1}||A_{n}(\Psi)|$ from
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(8). This is a contradiction.
Let us deal with the case $n=r+1$ . As we have shown above, we have

$A_{r}\wp)\cong Z/p^{a+r}z$ . Hence, by (9), $p^{a+r}$ divides $|A_{r+1}(\Psi)|$ . Put $|A_{r+1}(\Psi)|=p^{a+r+l}$

with $l\geqq 0$ . We show that $l=0$ . Take a prime ideal 8 of $k_{r+1}$ such that the
class $[\mathfrak{P}]_{r+1}$ generates $A_{r+1}(\Psi)$ . We see that the order of the ideal class
$[N_{r+1/r}\mathfrak{P}]_{\tau+1}$ of $k_{\tau+1}$ divides $p^{a+r-1}$ because the ideal class $[N_{r+1/r}\mathfrak{P}]_{r}$ of $k_{r}$ is of
order $p^{a+\gamma}$ and $t_{r,r+1}$ is not injective. By the identification of $Z_{p}\square \Gamma\ovalbox{\tt\small REJECT}$ with $Z_{p}\square t\ovalbox{\tt\small REJECT}$

via $\gammarightarrow 1+t$ , the norm operator $N_{r+1/r}$ corresponds to the polynomial $\nu=\nu(i)=$

$\omega_{r+1}/\omega_{r}$ . Therefore, the polynomial $P^{a+r-1}\cdot\nu$ annihilates the $\Lambda$ -module $A_{r+1}(\Psi)$ .
By (7) and the canonical isomorphism (8), we see that the element $t$ acts on
$A_{r+1}(\Psi)$ via the multiplication by $\alpha$ . Hence, if $f(t)(\in Z_{p}\ovalbox{\tt\small REJECT} t\ovalbox{\tt\small REJECT})$ annihilates $A_{r+1}(\Psi)$ ,
then, $p^{a+r+l}|f(\alpha)$ because $A_{r+1}(\Psi)\cong Z/p^{a+r+l}z$ . We easily see that $\nu(\alpha)/p$ is a
$P$-adic unit. Therefore, we have $p^{a+r+l}|p^{a+r-1}\cdot p$ , hence $l=0$ .

Finally, let us prove the assertion when $n\geqq r+2$ . Assume that $|A_{n}(\Psi)|$ is
divisible by $p^{a+r+1}$ for some $n\geqq r+2$ . Then, by (8), there exists an intermediate
field $H$ of $M_{n}\wp$) $/k_{\infty}$ such that $H/k_{\infty}$ is unramified and $[H:k_{\infty}]=p^{a+r+1}$ . Then,
we have $H\subset M_{r+1}(\Psi)$ by (7) and a$e. Therefore, $H\subset L_{r+1}(\Psi)$ . Hence, by

$(8)\square$

$p^{a+r+1}||A_{r+1}(\Psi)|$ . This is a contradiction.

\S 5-3. Proof of Proposition 2.

Let $k$ and $\Psi$ be as in Proposition 2. Because of the assumption (C2), we
obtain $\dim_{p_{p}}(E_{0}/E_{0}^{p})(\Psi)=1$ from the theorem of Minkowski on units of a Galois
extension over $Q$ by using a similar argument as in Iwasawa [20, page 119].
Hence, by Lemma 5, we get $\dim_{p_{p}}\Re_{0}(\Psi)\leqq 1$ . Let $\epsilon$ be a unit of $k$ such that
its class in $E_{0}/E_{0}^{p}$ generates the cyclic group $(E_{0}/E_{0}^{p})(\Psi)$ of order $p$ . Replacing
$\epsilon$ by $\epsilon^{1-N\mathfrak{p}}$ if necessary, we may assume $\epsilon\in^{c}U_{0}$ . Here, $\mathfrak{p}$ is the unique prime
ideal of $k$ over $p$ . We see that $\dim_{F_{p}}X_{0}(\Psi)=1$ if and only if $\epsilon^{e_{\Psi}}\in V_{0}(\Psi)^{p}$ by a
similar argument as the first part of the proof of Lemma 6. On the other hand,
we see that $qf_{0}(\Psi)\cong Z_{p}$ by $0=Z_{p}$ and Lemma 1(2). Therefore, we see that
$\dim_{p_{p}}\Re_{0}(\Psi)=1$ if and only if $p|[q]_{0}(\Psi):\mathcal{E}_{0}(\Psi)]$ . Clearly, we have

[ $U_{0}$ (IP‘): $\mathcal{E}_{0}(\Psi)$] $=[^{c}U_{0}(\Psi):c_{0}(\Psi)]/[\mathcal{E}_{0}\Psi):C_{0}(\Psi)]$ . (10)

By the formula (2), Lemma 1(2) and Lemma 3, the right hand side is divisible
by $P$ if and only if so is $L_{p}(1, \psi)/|A_{0}(\Psi)|$ . $\square$

\S 5-4. Proof of Proposition 1.

Let $k$ and $\Psi$ be as in ProPosition 1. By the remark in \S 5-1, all we have
to do is to prove that $\mathcal{H}_{n}(\Psi)\neq X_{n}(\Psi)$ for all $n$ (IO) when $\mathcal{H}_{0}(\Psi)\neq\Re_{0}(\Psi)$ . So,
we first pick up the cases where $\mathcal{H}_{0}(\Psi)=X_{0}(\Psi)$ . Let $g_{\psi}(t)$ be as before the
$po$wer series with coefficients in $Z_{p}$ associated by (2) to the $p$-adic L-function
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$L_{p}(s, \psi)$ . By the Iwasawa main conjecture (proved by Mazur-Wiles [22]), the
power series $\dot{g}_{\psi}(t)=g_{\psi}((1+q)(1+t)^{-1}-1)$ is a characteristic power series of the
torsion $\Lambda$ -module $A_{\infty}(\Psi^{*})$ , which is not a multiple of $P$ by the theorem of [5].
Hence, the assumption $\lambda_{\Psi*}=1$ implies that $g_{\psi}$ equals to $t-\beta$ for some $\beta\in Z_{p}$

with $p|\beta$ up to multiPlication by unit of $\Lambda$ . The main conjecture also says
that $g_{\psi}$ is a characteristic power series of $Ga1(M(\Psi)/k_{\infty})$ . Hence, $\beta$ is nothing
but the $\alpha$ in the proof of Lemma 7. As we have seen there, we have $\beta=\alpha\neq 0$ .
Let $p^{e}(e\geqq 1)$ and $p^{a}(a\geqq 0)$ be the highest powers of $P$ dividing $\beta$ and $|A_{0}(\Psi)|$

respectively. By (10), Lemma 1(2) and Lemma 3, we must have $e\geqq a$ . By
Proposition 2 and the remark in \S 5-1, we have $\mathcal{H}_{0}(\Psi)=\Re_{0}(\Psi)$ if and only if
$e>a$ . Further, we have $\mathcal{H}_{0}(\Psi)=\Re_{0}(\Psi)$ when $a=0$ by Lemma 6.

NOW, assume that $e=a\geqq 1$ . We prove $\mathcal{H}_{n}(\Psi)\neq\Re_{n}(\Psi)$ for all $n$ . By Lemma
1(2) (and $0=Z_{p}$ ), we have

$c_{U_{n}(\Psi)/C_{n}(\Psi)}\cong Z_{p}It\ovalbox{\tt\small REJECT}/(t-\beta, \omega_{n})\cong Z/p^{e+n}Z$

$\frac{UJ}{u_{n}^{g}}$

–
$\overline{g}t\cup$

–
$\frac{t\cup}{g(\beta)}$

.
(11)

Here, $u_{n}$ is as in \S 3, and $\overline{x}$ denotes the class represented by $x$ . If $\lambda_{\Psi}\neq 0$ , then,
we see that $\mathcal{H}_{n}(\Psi)\neq\Re_{n}(\Psi)$ for all $n$ by using Theorem 2. Hence, we may
further assume that $\lambda_{\Psi}=0$ . Let $r(\geqq 0)$ be as in Lemma 7 and $n$ be any integer
with $n\geqq r+1$ . Then, by Lemma 3, Lemma 7 and (11), we have

$\mathcal{E}_{n}(\Psi)=c_{U_{n}(\Psi)^{p^{n-r}}\cdot C_{n}(\Psi)}$ and $\mathcal{E}_{n}(\Psi)/c_{n}(\Psi)\cong Z/p^{e+r}Z$ . (12)

In particular, noting that $p|\beta$ , we obtain the following isomorphisms induced
from the correspondence in Lemma 1(2).

$\mathcal{E}_{r+1}(\Psi)$ $-\sim(p, t, \omega_{r+1})/(\omega_{r+1})$
$(u_{r+1}^{g}-\overline{g})$

$\cup$ $\cup$

$\mathcal{E}_{r+1}\Psi)\cap^{c}U_{r+1}\Psi)^{p}-\sim(p, P^{t}, \omega_{r+1})/(\omega_{r+1})$

$\cup$ $\cup$

$\mathcal{E}_{r+1}(\Psi)^{p}$ $-\sim(p^{2}, P^{t}, \omega_{r+1})/(\omega_{r+1})$ .

Therefore, we may and shall take a unit $\epsilon$ of $k_{r+1}$ such that, in $c_{U_{r+1}}$
$\epsilon^{er}$ is

sufficiently close to $u_{r+1}^{p}$ . Then, from the above, we see that the cyclic group
$\mathcal{H}_{\tau+1}(\Psi)$ of order $P$ is generated by the class $[\epsilon]^{e_{\Psi}}$ . Assume $\mathcal{H}_{n}(\Psi)=X_{n}(\Psi)$ for
some $n(\geqq r+1)$ . Then, by Lemma 5, we must have $\epsilon^{e_{\Psi}}/\eta^{p}\equiv 1$ modulo $(\zeta_{0}-1)^{p}$

for some $\eta\in \mathcal{E}_{n}(\Psi)$ . Therefore, we see that

$u_{r+1}=v\cdot\eta$ for some $v\in c_{U_{n}^{(1)}(\Psi)}$ and $\eta\in \mathcal{E}_{n}(\Psi)$ . (13)

We compare the orders of the classes of both hand sides of (13) in the cyclic
group $q]_{n}(\Psi)/C_{n}(\Psi)$ . By the identification of $z_{p}I\Gamma\ovalbox{\tt\small REJECT}$ with $z_{p}It\ovalbox{\tt\small REJECT}$ via $\gammarightarrow 1+t$ ,
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the norm map $N_{n/r+1}$ from $k_{n}^{x}$ to $k_{\tau+1}^{\cross}$ corresponds to the polynomial

$S= \sum_{j=0}^{p^{n-r-1_{-1}}}(1+t)^{p^{\tau+1}j}$ .

In the residue ring $Z_{p}ItJ/(t-\beta, \omega_{n})\cong Z_{p}/p^{e+n}Z_{p}$ , the class of $S$ is decomposed
as the product of $p^{n-r-1}$ and a unit since $S(\beta)$ is $p^{n-r-1}$ times a unit of $Z_{p}$ .
Therefore, since $u_{r+1}=N_{n/r+1}u_{n}=u_{n}^{s}$ , we see that the order of the class $\overline{u}_{r+1}$ in
$c_{U_{n}\Psi)}/C_{n}(\Psi)$ is $p^{e+r+1}$ by (11). On the other hand, we see that the order of
the class $\overline{v}$ divides $p^{e}$ by Lemma 2 and (11) because $p^{n}|p^{n-1-j}\beta^{p^{j}}(0\leqq j\leqq n-1)$ .
Further, the order of the class $\overline{\eta}$ divides $p^{e+\gamma}$ by (12). This is a contradiction.
Therefore, $\mathcal{H}_{n}(\Psi)\neq\Re_{n}(\Psi)$ for all $n\geqq r+1$ . Hence, $\mathcal{H}_{n}(\Psi)\neq X_{n}(\Psi)$ for all $n$ . $\square$

\S 5-5. Examples.

The converse of Theorem 1 and that of Theorem 2 do not hold in general

as we see in the following examples respectively. Let $p=3$ and $k=Q(\sqrt{-}3, \sqrt{d})$

where $d$ is a rational integer with $d\equiv 2(mod. 3)$ . Let $\Psi$ be the unique nontrivial
even $Q_{p}$ -character of $\Delta$ . Then, $\mathcal{H}_{n}(\Psi)=\mathcal{H}_{n}^{+}$ and $\Re_{n}(\Psi)=x_{n}^{+}$ . Assume $\lambda_{\Psi*}=1$ .
Let $\epsilon$ be a fundamental unit of the real quadratic subfield $k^{+}$ . Then, it follows
that $\mathcal{H}_{n}^{+}=\Re_{n}^{+}$ for all sufficiently large $n$ if and only if $\epsilon^{8}\equiv 1$ modulo $(\zeta_{0}-1)^{s}$ from
Proposition 1 (and the remark in \S 5-1) and Lemma 5.

First, consider the case $d=257$ . Then, we have $\epsilon=16+\sqrt 2\overline{57}$ and $\epsilon^{8}\equiv 1$

$(mod. 9)$ . Further, $\lambda_{\Psi*}=1$ by the table of Fukuda [7] on Iwasawa $\lambda$-invariants
of imaginary quadratic fields. But, we have $h(k^{+})=3$ . Next, consider the case
$d=443$ . Then, we have $\epsilon=442+21\sqrt{4}$ and $\epsilon^{8}\not\equiv 1$ modulo $(C_{0}-1)^{3}$ . Further,
$\lambda_{\Psi*}=1$ by [7]. But, we have $\lambda_{\Psi}=0$ by [11, page 282].

\S 6. Proof of Theorem 4.

Let $k$ be an imaginary abelian field satisfying $(C1),$ $(C2)$ , (C3) and $p \int h(k^{+})$ .
Since $\mathcal{H}_{n}(\Psi_{0})=\mathcal{H}_{n}^{-}=\{1\}$ (see \S 2), it suffices to prove that the homomorphism

$\rho_{n}$ : $(\mathcal{H}_{n}/\Re_{n})(\Psi)arrow(\mathcal{H}_{n+1}/\Re_{n+1})(\Psi)$

induced from the inclusion $k_{n}^{x}arrow k_{n+1}^{\cross}$ is trivial for any nontrivial even
$Q_{p}$ -character $\Psi$ . Let $\Psi$ be any such character and $\psi$ be a fixed irreducible
component of $\Psi$ over $\Omega_{p}$ . To prove Theorem 4, we have to recall the main
theorem and a lemma of the preceding paper [15]. Define an ideal $X_{n}$ of $oEt1$

and a $OItJ$ -module $Y_{n}$ by

$X_{n}=\{g\in oIt\ovalbox{\tt\small REJECT}|p\cdot g\in(g_{\psi}, \omega_{n})\}$ ,

$Y_{n}=X_{n}/(X_{n}\cap I_{n}, g_{\psi}, \omega_{n})$ .
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Put $S_{n}=\omega_{n+1}/\omega_{n}$ . We see that $g\cdot S_{n}\in X_{n+1}$ for all $g\in X_{n}$ and that the homo-
morphism

$s_{n}:Y_{n}arrow Y_{n+1}$ , $[g]_{n}arrow[g\cdot S_{n}]_{n+1}$

is well defined (see [15, \S 5-1]). Here, $[g]_{n}$ denotes the element of $Y_{n}$ repre-
sented by $g\in X_{n}$ .

THEOREM 5 ([15, Thm. 1]). Let $k$ and $\Psi$ be as above. Then, there exists
an ixmorphism $c_{n}$ from $(\mathcal{H}_{n}/\Re_{n})(\Psi)$ to $Y_{n}$ as modules over $O\ovalbox{\tt\small REJECT} td$ such that
$c_{n+1}\circ\rho_{n}=s_{n}\circ c_{n}$ for all $n$ .

Therefore, to prove Theorem 4, it suffices to show that the homomorphism $s_{n}$

is trivial. For this purpose, we have to know a set of generators of $Y_{n}$ over
$o\mathbb{I}t\ovalbox{\tt\small REJECT}$ . Let $h_{\psi}$ be the distinguished polynomial of $O[t]$ associated to the power
series $g_{\psi}$ . Since $h_{\psi}$ equals to $g_{\psi}$ times a unit of $O\square t\ovalbox{\tt\small REJECT}([5])$ , we may write $h_{\psi}$

instead of $g_{\psi}$ in the definitions of $X_{n}$ and $Y_{n}$ . Put $\lambda=\deg h_{\psi}$ , which does not
depend on the choice of the irreducible component $\psi$ of $\Psi$ . We have $\lambda=\lambda_{\Psi*}$

by the Iwasawa main conjecture. Therefore, when $\lambda=0$ , we have $\mathcal{H}_{n}(\Psi)=$

$yl_{n}(\Psi)=\{1\}$ by [25, Cor. 13.29] and (6‘) of \S 4. So, we may assume $\lambda\geqq 1$ . We
put

$a_{n}=(h_{\psi}-t^{\lambda-p^{n}}\cdot\omega_{n})/P$ or $(\omega_{n}-t^{p^{\mathcal{R}}-\lambda}\cdot h_{\psi})/p$

according as $p^{n}\leqq\lambda$ or $p^{n}\geqq\lambda$ . Clearly, the polynomial $a_{n}$ is an element of $X_{n}$ .

LEMMA 8 ([15, Lemma 3]). The module $Y_{n}$ is generated over $O[t1$ by the
class of $a_{n}$ .

NOW, we prove Theorem 4. By Theorem 5 and Lemma 8, it suffices to
prove that

$a_{n}\cdot S_{n}\in(X_{n+1}\cap I_{n+1}, h_{\psi}, \omega_{n+1})$ . (14)

We already have $a_{n}\cdot S_{n}\in X_{n+1}$ since $a_{n}\in X_{n}$ . We see that $S_{n}=p+\delta$ for some
$\delta\in I_{n+1}$ and $\omega_{n}\in I_{n+1}$ by the equality

$(1+t)^{p^{n}}=1+t^{p^{n}}+ \sum_{k=0}^{n-1}t^{p^{k}}\cdot\sum B(p^{n}p^{k+1_{-1}}J)t^{j-p^{k}}$

$j=p^{k}$

and a simple fact ([15, Lemma 4]) on binomial coefficients $B(p^{n}, ])$ . Assume
$p^{n}\leqq\lambda$ . Then, since $h_{\psi}\in X_{n+1}$ , we have

$b=a_{n}\cdot S_{n}-h_{\psi}=-t^{\lambda-p^{n}}\cdot\omega_{n}+a_{n}\delta\in X_{n+1}$ . (15)

On the other hand, we have $b\in I_{n+1}$ because $\delta,$ $\omega_{n}\in I_{n+1}$ . Therefore, $b\in X_{n+1}$

$\cap I_{n+1}$ , and hence, we obtain the assertion (14) in this case. When $p^{n}\geqq\lambda$ , we
obtain (14) by a similar argument, using
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$b’=a_{n}\cdot S_{n}+t^{p^{n}-\lambda}\cdot h_{\psi}=\omega_{n}+a_{n}\delta$

in place of $b$ . This completes the proof of Theorem 4. $\square$
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