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Introduction.

In Introduction of [14], H.L. Resnikoff and Y.-S. Tai summarized known
results about the structure of the graded ring of modular forms. They stated
there as follows: Freitag [4] studied the Hermitian modular group of genus 2
(i.e., acting on the complex 4-dimensional Hermitian tube domain) associated
with the ring Z[:] of Gaussian integers and constructed the 6 generators of the
graded ring of symmetric Hermitian modular forms of even weight in terms of
theta nullwerte, but the relation they satisfy is not yet known ([14], p. 98).
The main purpose of this note is to give the explicit relation. Let H, be the
Hermitian upper half space of degree 2. The theta constant on H, with
characteristic m is defined by
1 1+7

e —(Z{g+w—a}+2 Re

142
aeszzE(Z[iJ) [ 2 2

2

On(Z)=O(Z; a, b) = ‘bg)], ZeH,,

where mz(g), a, beM,,(Z), A{B}='BAB and e[s]=e*** for s€C. Denote
by & the set of even characteristics of degree 2 mod 2 (cf. § 1.2). Define

’ .— 1 4k
$u(2)i= T T OK2),

W(Z) = s G~ 92D,

Xo(2) =211 0(Z),
meé

To(2)1= 275 S (On(2) Oni(Z) ++ On 2,
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X(2):= 2’“’f fZ (Om(2)0m(Z)0m(Z)0n(2)), Z € H,,
ifteen
where the summation in the definition of X,, (resp. X, is extended over the
set of fifteen complements of syzygous quadruples (resp. fifteen azygous quad-
ruples). Moreover, put

£1:(Z) 1= 11¢%(Z)— 13824 ( Z)Xs( Z)+608256X,5(Z) — I¢15(Z) .

Denote by [I':(Q(z)), £]® the vector space of symmetric Hermitian modular
forms for the modular group 7I,(Q®)) (cf. §1.1).

THEOREM. ¢y, Xs, X10, Xis, &1z, Xis ave symmetric Hermitian modular forms
for I'(QQ), i.e., Xic[[(Q®), k1® (=8, 10, 12, 16), P.[1':(Q7)), 4] and
Enes[(Q®), 12]1®. Moreover, they form a set of generators of the graded
ring Preez[[(Q(E)), E]® and satisfies the relation

2(PiXs+6¢p K12 +4032X5—T2X16)* = (Puki+ 12X X 15+ 36X30)E 12 -

The method of proof we used here is based on Freitag’s argument [4]. In
addition to this, we need explicit calculation of the Fourier coefficients. But
his generators are not convenient to calculate them. So, we rewrite his
generators as above and then calculate the Fourier coefficients. The recent
progress of the theory of Maass space for SU(2, 2) and the theory of Siegel-
Eisenstein series enable us to calculate the Fourier coefficients of Hermitian
modular forms of degree 2 (e.g., cf. Kojima [9], Gritsenko [6], Sugano [16],
Krieg [10], Nagaoka [12]).

The author would like to thank Professor T. Sugano and the referee for
their helpful comments.

NOTATION. For a ring RCC, we denote by M,...(R) the R-module of all
mXn matrices with entries in K. We put M,,(R)=M,,»(R). If X is a matrix,
tX, det(X), and tr(X) stand for its transpose, determinant, and trace. For a
complex matrix X, we denote X the conjugate matrix. We let Symn,(R) (resp.
Her,(R)) denote the space of symmetric (resp. Hermitian) matrices in M, (R).
For appropriate size matrices A, B, we write by A{B}='BAB. The identity
and zero elements of M, (R) are denoted by E, and O, (when m needs to be
stressed). We write as e[s]=e?** for s=C.

§1. Hermitian modular forms.

1.1. Hermitian modular forms.
The Hermitian upper half space of degree n is defined by

(1.1) H,:= {Z € M,(C)|(2) (Z—*Z) > 0}.
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The subset
(1.2) S, :=Sym,(C) "\ H,
is called the Siegel upper half space of degree n. Define

(13) fui= {Me M1 T M =T, Jo=(_) 2},

(1.4) 2, := Q."M(R).

The group 2, (resp. 2.) acts on H, (resp. S,) by
A B)

Z > M(ZY = (AZ+BYCZ+D)", M= <c e

Let /" be a subgroup of 2, (resp. £,) and v is an abelian character of [
A complex valued function F on H, (resp. S,) is called an automorphic form of
weight & for I with multiplier system » if F satisfies the following properties :

(i) F is holomorphic on H, (resp. S,),

(if) FIIM]s = uM)-F for Me T,
where
(1.5) FIIM1:(Z) := det(CZ+ D) *F(M{(Z>), M = (é g) er.

Let K be an imaginary quadratic number field with discriminant dgx. The
Hermitian modular group of degree n over K is defined by

(1.6) rn(K) = QanZn(OK)y

where Ok is the ring of integers of K. The Siegel modular group of degree n
is defined by

(L.7) Ini=Q2."\Myn(Z).

In the rest of this subsection, /" means a subgroup of @, (resp. 2,) which is
commensurable with I",(K) (resp. I',). The Siegel level group [(T) is an
example of group which is commensurable with /",. For the later purpose, we
shall introduce this. Let 7 be an elementary divisor matrix of the type

tl O
T = tz.. |, ,eZ, tj‘tj“,
0o -,

for all ¢, j. Then I'(T) is defined as
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rme= (5 Yran(® 4
(1.8) 0T 0T
Iy i={M e M @I'M(_. WM=(_r o)}

The Hermitian (resp. Siegel) modular form of weight k for rc@, (resp.
I'C,) means an automorphic form of weight £ for I with the ordinary addi-
tional condition at infinity if n=1. Denote by [, k, v] the space of these
modular forms. If v=1, we simply denote as [[', k]. F[[I’, k, v] is called
symmetric if F(Z)=F(Z). The subspace of symmetric modular forms in
[, k, v] is denoted by [, &, v]®.

Each modular form Fe[I',(K), k] admits a Fourier expansion of the form

F(Z)y= 2 ar(He[tr(HZ)]
OsHEAL (K)
where

(1.9) A(K):= {H = (h;;) € Her,(K)|hy; € Z, hi; € 9% (@ + J)}

and 9k is the different ideal of K. Fe[[,, k] has a Fourier expansion of the
form

FZ)= = arTeltr(T2)]

0sTe
where
(1.10) Ani={T=(t:;)) € SymQ)|ts € Z, 2t;; € Z (i + J)}.

Given Fe[I'.(K), k] put
. (Z 0
(1.11) OF)Z,):= mF(O M), Z.cH,_,.

It is known that this induces a linear map @ :[['.(K), k]—[[".-.(K), £]. We
call a cusp form by the element of Ker @ in the class number one case.

Here we introduce notation and results in the case n=2 and K=@Q() for
the later purpose. Given F&[[(Q(7)), k] define a function F, on S, by

1 0
0 144

(cf. [, 44). Put T=(§ J) and define

1.12) Fy(Z):= F(Z{ }) zZeSs,,

AT = I(TYUT(T)NE, M= (‘(l)] o), U= 7%(2 o).
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ProPOSITION 1.1.1 (Freitag [4], Lemma 2). If FE[I'(Q®)), 4k], then F,c
A1 0 '
[F(O 9. 4k].

Given a function F on S,, define a function FY on S;XS, by

z; O
(1.13) FV(z,, z9):= F( 1 ) (21, 22) € 81 X8,
0 E‘Zg

(cf. [4], (58)).

PROPOSITION 1.1.2. Assume that Fe [f’((l) g), Zk]. Then we have

(1) FY(z,, 22)=FV(z3, z1) for any (z:, 2,)E8,XS,.
(2) FV(z, zpe[l', 2RIQLL, 2k].

1.2. Theta constants with characteristic.
For column vectors a, beM,, (Z), the theta constant with characteristic

m=(%) is defined as
(%)

(1.14) 0.(Z)=06(Z;a,b):=

(el e one )]

gEM g% 1(Z[1]) [ 2

The characteristic m:(g) is called even if ‘ab=0 mod 2. There are ten even

Heh i)

characteristics mod 2.

Y

is the set of those characteristics. Using this, put

1
0
0
1

OO
otk pk p—b

(1.15) 0(Z) :zmggﬁfn”(Z), ZeH, k=1.
(1.16) @(Z):zlc:lgﬁm(Z), Z e H,.

THEOREM 1.2.1 (Freitag [4]). (1) ¢ is a symmetric Hermitian modular
form of weight 4k for I'y(Q()), namely, ¢u<[1'y(Q()), 4k1® (k=1).
(2) O=[.(Q®), 101, Moreover, O(Z) has the zeros on the manifold

(1.17) N:= {Z — ( 1t

Wy 2y

)eHglwl-—-iwz}

of first order and each zero of O(Z) is I'\(Q(F))-equivalent to a point in N.

Since N:Sz{((l) 13_2-)}, Theorem 1.2.1, (2) asserts that the kernel of the
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homomorphism P[I(Q{)), 4k]—>€B{f’<(l) (2)), 4k] induced by is a prin-
cipal ideal generated by ©(Z). The following theorem is a main result of [4].

THEOREM 1.2.2 (Freitag [4], Satz 5). Every symmetric Hermitian modular
form for I'y(Q®)) with trivial multiplier system is expressed as an isobaric poly-
nomial of

D4y Vs, @, 77%, ©i12, P16

Namely, the graded ring Pre.z[':(Q7)), k]® is generated by the above six
forms. Here

(L.18) 12) = 2x 11042 ; @, by,

the summation is extended over the set of sixty syzygous triples.

REMARK 1.2.3. The basic terminology on the characteristics, for example,
“syzygous” and “azygous”, should be referred to [7]. In the degree two case,
there are sixty syzygous triples, sixty azygous triples, fifteen syzygous quad-
ruples, and fifteen azygous quadruples. One can find their tables in [7], p. 158.

In order to find a connection with the Siegel modular case, we shall intro-
duce Igusa’s structure theorem on the graded ring Dic.z[l:, £]. We first
define the Eisenstein series on S, by
(1.19) G™M(Z) = N det(CZ+D)*, Ze&8S,,

(& ¥)eln, 0\
(‘é g)el’nlC:O}. If k>n+1 is even, the series converges to
an element of [/7,, £#]. An explicit formula for the Fourier coefficients of G{?
is obtained by Kaufhold [8], Maass [11]. For simplicity, we put G{»=G,.
Next, we define the theta constant on S; with characteristic similar to (1.14).
Put

where I, ::Jl

(1.20)  9n(Z)=HZ; a, b):= geMZE“(Z)e[%<Z{g+%a}+‘bg>], ZeS,,

m:(‘é). The relation between 6(Z ; a, b) and 9(Z ; a, b) is as follows.

LEMMA 1.2.4 ([4], p. 7, ¢). O(Z;a, b)=9%Z;a, b) for Z<8S,.
According to [7], we define
(L.21) X1(Z): =211 9%(2),

msé

(1.22) Xi(2):=27" 2 (Im(Z) - Il 2))',

fifteen
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Z &8, and the summation is extended over the set of complements of syzygous
quadruples (cf. Remark 1.2.3).

THEOREM 1.2.5 (Igusa [6], [7]). X, and X,, are cusp forms respective
weight 10, 12 and G,, Gy, X190, X12 form a set of generators of the graded ring
Dreezl L, k1.

REMARK 1.2.6. The constant factors of the definition of X,, X, are
selected as the Fourier expansions satisfy

1 1

1 0 1 0
Ax,, 1 =0ax,, 1 =1.

7 1 7 1

Some of Fourier coefficients of X, X,» have been calculated by Resnikoff and

Saldafia [13].

REMARK 1.2.7. It is known classically that Prez[[(K), k]1=Prezl s, k]
is generated by the Eisenstein series G{V, G{’. Here we express the image
O(p:) (=4, 8, 12, 16) as a polynomial of G{V, G{".

D(ps) = 4G, D(ps) = 4G{V)* = 4GP
(1.23) D (1) = %(Gil))(i__g_(Gél))Z.

64 172
Dpr) = — 0 GL(GEON+ 5 (GE)
1.3. [Eisenstein series.
In this subsection, we define an Eisenstein series for I",(K), which becomes
a Hermitian modular form. We also introduce an explicit formula for the
Fourier coefficients. Put

A B

F"(K)"::{ C D

)€ I'(K)|C :0}.
Let k& be an integer such that 2=0 mod wg, where wg is the order of the unit
group of K. We define a kind of Eisenstein series:
(1.24) E™(Z, s) = Dy det(CZ+D) *|det(CZ+D)| 3,

(G B)ernxy\a (K>
where (Z, s)eH,XC. It is known that this series is absolutely convergent if
Re(s)+k>2n (cf. [1], [15]). Moreover, it follows from Shimura’s result
that E{™(Z, s) is holomorphic in s at s=0 if k=n and E{(Z, 0) is holomorphic
in Z if k>n+1 or k=n. This shows
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(1.25) EM(Z):= E{M(Z, 0) € [I'u(K), k]

if at least k=n-+2. We mainly treat the case n=2. So we write as E,(Z)=
E®(Z) simply. An explicit formula for Fourier coefficients of E, has been
obtained by Krieg (also, cf. Nagaoka [12]). Now we introduce this formula
in the case that the class number is one. Let Xx be the Kronecker symbol of
K. Define, for s€C, x<Z,

(1.26) 0o 1x(0):= S Ax(d),

dizx

(1.27) 0% (%) 1= 2 Xx(x/d)d".

dix

These functions appear in the Fourier coefficients of Hecke’s Eisenstein series
of neben-type (I'y(|dk|), Xk).
Introduce

1

(1.28) GK(S, N) = mx—Ki(W

(08, ZK(N)+U§<, ZK(_N)) ’

where (s, N eCXZ. Given He A,(K) with det H=0 put
(1.29) y(H):=det(v|dg|H) € Z.
Given non-zero He A,(K), also put

(1.30) eH):=max{me Z\m'He A4,K)} € Z,.

THEOREM 1.3.1 ([10], [12]). Assume that the class number of K is one. Let
k be an integer such that k=4 and kewgZ. If

EWZ)= 2 awHeltr(HZ)]

0sHeA9(K)
is the Fourier expansion of E (Z)=E{®(Z), then

1 ZfH:OZ.

k .
(1.31)  ax(H)= "‘%;01:-1(6(1‘1)) if rank H=1,

AREZY e g (h—2, y(H)/dY) if rank H =2,
BeBisxg a st

where B, (resp. B, ) is the m-th Bernoulli (resp. generalized Bernoulli) number

and 04(x)=2<arz d*.

REMARK 1.3.2. The above formula asserts that a.(H) (H+#0) satisfies so-
called “the Maass relation” and E.=[[(K), £1®. Numerical examples of
a,.(H) will be given in § 1.5.
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1.4. New generators.

In this subsection, we introduce new generators for the graded ring
Dreazl I 2(Q1), £1® (cf. [Theorem 1.2.2) and study their properties. Numerical
examples of the Fourier coefficients of these generators will be given in §1.5.

Construction of ¢,: By the definition of ¢,; (cf. [1.15)), the constant term
of the Fourier expansion of ¢, is 4. Normalizing this, we put

(1.32) Gur 1= Fou € [TQU), 419, k=1,

Here we introduce some property of ¢,. Iyanaga’s matrix
2 —1—11
i 2 1

i1 2
1 1

(1.33) I=

DO = o,

is a representative of the unique class of unimodular positive Hermitian matrices
of degree 4 which are even integral over Z[7]. Define a theta series associated
with 1I:

(1.34) 007 I):= Lo rixy z], zen,.

e[
XeM pZrin L2

Then 8(Z ; e[(Q®), 41 (e.g., cf. [2]). Moreover, the Fourier expansion
is given as follows.

06Z;H= X A(H; Deltr(HZ)],
(1.35) 0sHEA(Q (1))

AH; I) = #{X € M (Z[[])|1{X} =2H}.

Since dim¢['(Q®)), 4]*°=1, we have the following result.

PROPOSITION 1.4.1. (1) ¢, satisfies
(1.36) do=E,=0(Z;1) € [I'(QG), 4]1.
(2) In particular, the Fourier coefficient A(H; I) is given by

A(H; I) = ay(H)

for any He A(Q()), H=0 (cf. (1.31)).

Construction of ¥;: Since D(E)=G{=(GM)2=Q(E?), Ef—Es is a cusp

form in [I5(Q(®)), 81°. Normalizing this form, we put

(1.37) Xs: 61

= oanang (Ei— B9 € [T(Q()), 81
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PROPOSITION 1.4.2, (1) X is a cusp form in [I'y(Q@)), 8.
(2) XA satisfies
(1.38) EE’“SO?ZXS == ¢8'
(3) Xs is vanishing on S,, namely ¥;3|S,=0.

ProoOF. The identity is obtained by comparing the Fourier coefficients
of the both sides. Some examples of the Fourier coefficients of X;, ¢3 are given
in § 1.5, Table I, IV. The fact in (3) was already stated in [4], p 30. q.e.d.

REMARK 1.4.3. [Proposition 1.4.2, (3) is equivalent to the following fact.
For any fixed a, b, ceZ (a, b=0),

c+di
2
(1.39) D, el g =0.
4abzc2+d?2 b

2

Construction of Z,,: All the Fourier coefficients of @ (cf. are rational
integral and divisible by 2'2, Define

(1.40) Xio:= 271260 & [I,(Q3)), 10]™.

PROPOSITION 1.4.4. (1) Xy, s a cusp form in [1'5(Q()), 101,
(2) The restriction X,,|S. coincides with Igusa’s Siegel cusp form X,, introduced
in (1.21). Namely %1,|S:=X1.
() (Xio)o=0 (cf. (1.12)).

PRrROOF. By the definition of 6(Z; a, b) (cf. (1.14)), for example, Q)(B(Z ;
(i), (%))):0 Hence @(X,,)=0. This shows (1). The statement of (2) is a

consequence of The vanishing property (3) is nothing but Theo-
rem 1.2.1, (2). q.e.d.

REMARK 1.4.5. As we stated in Remark 1.2.6, some of the Fourier coeffi-
cients of X,, were calculated by Resnikoff and Saldafia [13]. By
1.4.4, (2), we have

c c+di
a — a _
a 2)= > a 2
*10 ¢ b igz f1 c—di b
2 (=G0 s2 €GP 1%)z0 2

Numerical examples of ay, (H) (cf. §1.5, Table II) and a routine calculation of
the above formula also give the values ax (7). For example,
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14-di
2 1 2
- dg—zaxm _},:dl’ 2

= 1+0—-18+0+1 = —16.

[\CHE ST

1
Ax,, 1
2 2

REMARK 1.4.6. For a, b, meZ and Fe[[',(K), k], define

c+di
(1.41) Sla, b, m; F):= 3 ap . 2 ,
¢, d c—ds;
c+d=m - b

2
where ar(H) is the Fourier coefficient of F. The Fourier coefficients of F, can

be expressed by those of F, namely,

(1.42) F(2)= 3 S(a, b, m; F)e[tr(m(jz ";22)2]

Therefore (X,),=0 implies S(a, b, m; X,,)=0 for all possible a, b, meZ. For
example,

I E
S(1, 2, 1; %) = ay,, 1 +ay,, ; +ay, 1
2 "7 ° 7 °
1 2—;1
+ay,, 91 =1+18—18—1=0.
o 2

Construction of ¢, and X;2: ¢, has been already defined as ¢,,=(1/4)¢p:.
(cf. [1.32)). On the other hand, X, is defined by

(1.43) Xpp:=271 3 (0m10m2 0m6)27

fifteen

where the summation is extended over the set of fifteen complements of syzy-
gous quadruples.

PROPOSITION 1.4.7. (1) by, Xio=[I5(Q(7)), 121, In particular, X, is a
cusp form and

(L.44) D) = 5 (G — (G

(2) X2 has an expression :

(1.45) x12 = AE12+B¢12+C¢2+D¢4XS,
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_satooml o 50521
T 1838550528000 7 1634267136
. l1des7 o, 625441

~ 229818816000 ° 2659940 °

(3) The following identities hold.

(1.46) X12)o (21, 29) = 124(21)A(z,),

11 2
(1.47) P12|S, = —9~G2——§G§+67584X,2,
(1.48) xmisz = X12r |

where 4(z)=q IIz-1(1—q™)*, g=e[z], is a cusp form in [I'}, 12].

PrOOF. The fact ¢y, Xios[1'(Q)), 121 follows from the “transformation
formula” of the theta constants. The identity X,,|S,=X,, is derived from the
definition of X5, X, and Lemma 1.2.4. This also shows @(X,,)=0(X,,)=0. (1.47)
is obtained by a direct calculation. is nothing but one of [1.23]. The
expression is obtained by comparing the Fourier coefficients of five
modular forms X, Eis ¢, Ei, EXg (cf. §1.5, TableI, I, ). Finally, we
shall prove [1.46). If FE[I's(Q()), k], then Fy(z, z,) is expressed by a power
series in C[[q., ¢.1], where ¢,=e[z;] (/=1, 2). More precisely, we have

FY(z,, z) = 3 canqiqs,
0sa,.bdbeZ

(1.49)
cen=zar(® *),

where the last summation is extended over all possible (Z Z)eAZ(Q(z')) and

ar(H) is the Fourier coefficient of F. By [Proposition 1.1.2, (2), (X,)y is an
element of [I'y, 12]JQ[I";, 12]. The structure theorem for @P,cz[I"), k] asserts
that (X;,)s can be expressed by an isobaric polynomial in G{(z,)G{"(z,), 4(z,)4(zs).
By (1.49), we have

(xlz):)/(zly 25) = 12(]102—288(11(15“‘2880%(12‘*‘ e

ThiS ShOWS (xlgx)/(zl, Zz):].ZA(Zl)A(Zz). q.e.d.

Construction of X;4: Put

(1.50) Xigt=27" 33 (OmOmOmOm,)’,

fifteen

where the summation is extended over the set of fifteen azygous quadruples.
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PROPOSITION 1.4.8. (1) X6 7s a cusp form in [I'2(Q(7)), 161,
(2) X,¢ has an expression:

(1-51) Lie = A¢16+B¢4¢12+C¢3+>D¢§xs+E9b4x12+Fx§ ’
1 1 5
A=t B~ "ogs0i © = Tseasz’
3 1
D=—io, E=—3, F=-12.

(3) The following identities hold :
(1.52) (X16)s (21, 22) = GV (20)4(2))G{P (22)4(22)
(1.53) Xi6| S, = 2_2'3_1(G4X12—‘G6X10) .

PrOOF. We first show that X,, is a cusp form. Put

(1.54) i=2"1% 3 (19m1"9m2’9m3"9M4)8’

fifteen

where the summation is extended over the set of fifteen azygous quadruples.
It is known that X,, is a Siegel cusp form of weight 16 and it satisfies

(1.55) Xie= 2—3'3—1(G4X12_G6X10)y

(e.g., cf. [7], p. 153). The identity X,¢|S.=X,s implies [1.53). Moreover, we
have @(X;)=®@(X,s)=0. The identities [I.5I) and are obtained by direct
calculations (cf. § 1.5, Table I, II, ). q.e.d.

1.5. Numerical examples of Fourier coeflicients.

In this subsection we shall give numerical examples of the Fourier coeffi-
cients of Hermitian modular forms defined in 1.2-1.4. We use the following
abbreviation.

. c+di
di 2 .
(1.56) (e, 25 0)=| e 4,Q0)).
Lo

2

Table 1: Fourier coefficients of Eisenstein series.

C4‘aE4(H) cs-ag(H) sz'aEm(H) C1e°@g,(H)
(1, 1'2“ , 1) 3 63 1023 16383
(L —;- 1) 8 798 50048 4782968

(1,0,1) 15 4095 1048575 268435455
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(1, —1% 2) 40 47320 60524200 78368930680
(1, % 2) 48 117648 982475248 678223072848
a, o0, 2 63 262143 1073741823 4398046511103
@2, 144, 2) 87 270207 1075836927 4398583349247
(1, }.:2’1 3) 78 984438 9990235398 99993896500758
(1, % 3) 120 1771560 25937424600  379749833583240
1, 0, 3) 136 2982616 61916374696  1283918200896376
@, 1,2 200 3075800 62037305000  1284074929191800
(1, i“;—’ 4) 240 7647120 289537129200  11112685048614480
(1, -é— 4) 208 11375728 576640684048  29192919926657968
1, 0, 4) 255 16777215 1099511627775  72057594037927935
@, 0, 2) 375 17301375 1101659109375  72066390130917375
_ 1 _ 6l _ 69150521 _ 3617-199360981
C4=960 7 *T 1920 T 262080 T 65280
Table I: Fourier coefficients of cusp forms.
a;(H) axw(H) azm(H) ay,(H)
1+i
(1, = 1) 1 0 0 0
1
(1, 5 1) —2 1 1 0
(1,0, 1) 4 0 8 1
144
(1, o 2) —8 0 —32 12
1
(1, 5 2) 20 —18 —2% 32
1,0, 2 —48 0 9% 36
@, 144, 2) 80 0 —9% 36
(L _1_24:2_ 3) 10 0 512 —128
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1,0,3)
@ 1,2

0.4

(49
1,0,4
2, 0,2

0.4

6%

049
1, 0,5)

(5

(59
1,0, 6)
(2, 144, 4)

615

(.47
(33 3)

,0,7
2, 1, 4)

(. 159)

(.49

(L, 0,8
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—62

224
—32

80

—20

—448
64

—231
1956

486
40

—248

—676

1408
384

1466
—996

—5370

—2240
320

—80

2704

1280

135

0
512

—~510

1242

o ©

—7038

12645

0
—9216

8280

0

303

320
2368

—3264

—2054

640
17024

9216
9216

8685
—6192

—1504

—21918

6400
2304

—62976
21906

199053

40832
—12416

151744
49400

—99840

—576

—936
—936

—504

3936

8144
40912

16128

16128

—9408
—32022

—121100

—25632

26976
420192

464256

204480

204480

258448
1307024

—909576

—971712

207936

539
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Table IV: Fourier coefficients of ¢;.
a¢4(H) asbs(H) ' a¢12(H) a¢1e(H)

(L %i, 1) 2880 2688 6336 11520
(1 5.1) 7680 21504 84480 215040
1,0, 1) 14400 131712 851136 3022080
(L —1;1 2) 38400 1483776 3801600 13690880
(1, % 2) 46080 3717120 19430400 101068800
a, 0,2 60480 8217216 90737856 668785920
2, 144, 2) 83520 8561280 11664576 42589440
(1, i‘z—*i, 3) 74880 30992640 921807744 2808488448
(1, % 3) 115200 55716864 2297599488 12289751040
1,0, 3 130560 94036992 5424849408 51411118080
@ 1,2 192000 96789504 443097600 3462359040
(1, 1;’ ,4) 230400 240752640 24958061568 460289863680
(1, —;- 1) 199680 358041600 50307941376 1161044676608
1, 0, 4) 244800 527753856 96019467456 2874331618550
@, 0,2 360000 544612992 7462124736

118696500480

It should be remarked that Sugano has already obtained the extended table
of Table II. But our tables are enough to derive the relation that our gener-

ators satisfy.

Now we refer to some phenomena appearing on the above table.

Firstly,

it is very likely that each cusp form X, X, X.. and X,, satisfies the Maass

axls(

alle(

1

For example, by Table II,

2.0
0 2):

40912,

10

0 2)+215.a116( 0 1) = 81441215 — 40912.
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Secondly, X, has many zero Fourier coefficients. In §3, we will show that
these facts are consequences of Sugano’s result on the Maass space for SU(2, 2).

§ 2. Determination of an algebraic relation satisfied by our generators.

In this section, we shall determine an algebraic relation our generators

satisfy. We start from the following result on the graded ring ké.;z[f“((l) (2)), k].

THEOREM 2.1 (Freitag [4], Satz 3). Every modular form in [f“((l) g), k]
of even weight k can be written as an isobaric polynomial of modular forms
fh fG’ h%) h4h€) h%!

respective weight 4, 6, 8, 10, 12. (The definition of these modular forms should be
referred to [4], pp. 31-33).

REMARK 2.2. Both A, and h, are modular forms for I'(T) (T———((l) g))

with non-trivial multiplier system v, (for the definition of v,, see [4], (57)).
Moreover, they have the following properties ([4], p. 33):

(i) hi(z, 2) =0, hi(z, z2) = c-4Y%(2))4"(z.) (¢ # 0).
(ii) If fe[I(T), 2k] satisfies f =0, then
f-hit € [L(T), 2k—4, vo].
(iii) If ge[I(T), 2k, v,], then g has the following expression :

g = prihu+pahs, Pi E [ﬁ(T), 2k—y;] (v =4, v, =6).
Here we quote the following formulas from [4], p. 36.

@ fo= 51(S04)o ’
2.1) (b) fo= ca(ne), (cf. [1.18)),
) (¢) hi= cs(4ps—i)o,
d) hi= (C4¢,2+P((p4, Nes ©s))o s

where P is an isobaric polynomial and c¢,+0.
The following is a key lemma of our main result.

LEMMA 2.3. Let F—F, be the mapping defined in (1.12).
(1) We have the following identities.

(i) (Sngs‘|‘5¢'4x12+4032x§"72x16)0 = ¢1h4hefs,
(ii) (¢4x8+12x12)0 = ¢3hi,
(iii) (Xg)o = c3hi,
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. 1, . 9 ,
(iv) (7¢3—6912¢4x8+304128x,2—~2-¢12)0: clf

for non-zero constants c¢; (7=1, 2, 3, 4).
(2) In particular,

F = 2(JiXs+6¢p,X,, +4032X5—72X,16)°
- xs(¢4x8 ‘I"‘ lleg)( 1 1¢i - 13824¢4Xg +608256x1 27 9¢12)

is a symmetric Hermitian modular form of weight 32 which is vanishing on the
manifold N defined in (1.17).

PROOF. Since the linear map [I'y(Q()), 4k]‘”—+[f((1) M. 4k] defined by
F—F, is isomorphic when 4£=38, 12, 16, we can define modular forms ps, 012, s,
o1, satisfying

(1016)0 = h4hsfs, (,012)0 = hi,
(0s)o = hi, (p12)o = f5,

up to constants. By 45— 3=—49152Y,. Combining this and (2.1}, (c),
we can take as ps=X;. Since

(2.2)

hi(zy, z,) = cdV¥z,)4"¥z,), ¢ +# 0 (cf. Lemma 2.2, (i)),
Xi2)o (21, 25) = IZA(Zl)A<Zz) (ct. );

there exists a constant ¢’ such that

Fi= (o—c'h2 e [r((l) g) 12]
satisfies f¥=0. It follows from Remark 2.2 that f is constant multiple of Aif,.
By (a), we can write as p,=7¢@Xs+0X;; with some constants 7, 0. The
constant & is non-zero. In fact, if =0, then (pu.)s=7n(@PXs)s=0. This is a
contradiction. Since (p1:)o=(%%),, we may assume that p;.=7zi; We write pi,
as a polynomial of our generators:

(2.3) ‘012 = 77% - A¢§+B¢4XS—}— CX12+D¢12 .
Since ve|Szst, ¢4|82:G4, xlztSZ':Xlz (Cf. , p. 37), implies
2.4) Gi= A(¢4 ]SZ)3+C(x12 |Sz>+D(¢1z !Sz)

= AG{+CX;+DY s,

where we put Y,,=¢,;|S,. Some of Fourier coefficients of Gi, Gi, X, V.. are
given as follows:
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T aci(T) acd(T) ax,(T) ay,(T)
0 0
(o o) 1 L 0 1
10
(4 o) —1008 720 0 1104
Ly

. 88704 40320 1 97152
5 1

By and this table, we have A=11/2, C=304128, D=—9/2. Hence we can
take as

11 ’ 9
P;z = 7¢2+(0¢’4x8+304128x12_7¢12 .

Since (h,hefs)"=0, pis is a cusp form. So, we can write as a linear combination
of ¢iXs, PXis, X% and X, (note that the terms ¢f and ¢,¢p;. do not appear).
Consequently, we can write as

D16 = ¢3x8+a¢4x12+‘8x§+7’x16 ’
P12 = 77§b4x3+5x12 ,

(2.5) Ps = Xs,
, 11 . 9
P12 = 7¢4+0)¢‘4xs+304128x12—'§¢'12-
Put
(2.6) Jii= P%e, Jei= 108‘012.0;2 .

We can determine a, B3, 7, 9, 0, @ as J:=],—J, satisfies J,=0. Here we recall
the definition of S(a, b, m; F) (cf. [1.41)). We have already known that F,=0
implies S(a, b, m; F)=0 for all possible a, b, m. The examples of Fourier
coefficients given in 1.5 yield S(2, 2, 4; J))=1 and S(2, 2, 4; J.)=%. This shows
n=1. Moreover, we have the following formulas:

{ S@, 2, 3; J) =2a—2),

S(2,2,3; J) =0—4,
(2.7) { S22, 2; J) = 2{@—2+2} +28a+7+H)+2a—2),
S(2, 2, 2; J.) = 2(6—20)+(40+16) = 28,
S, 2, 1; J)) = 6(a—2)+2(a—2)8a+r+4).
{ S2,2,1;J)=—9-28.
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Since 0 is non-zero, we have a=6, y=—72, 6=12. We substitute these values

into [2.5). We also get
S@, 3, 6; J1) = —1104-2+(5472+-28),
{ S@3, 3, 6; J,) = —1248-2+(20736+w),
S@3, 3,5; Ji) = 2(—8904+4-138464),
{ S@, 3, 5; Jo) = 2{—8904-+(6w+179936)} .

(2.8)

These identities imply f8=4032, w=—6912. Substituting all these values into
2.5), we get (1). Simultaneously, this shows (2). gq.e.d.

EXAMPLE 2.4. Set F;=2]; (i=1, 2). Then F=F,—F, becomes the modular
form defined in the above lemma, (2). Of course, F satisfies F,=0. We give
some examples of the Fourier coefficients of F, F,, F,, which cite S(a, b, m; F)
=0.

H ar (H) ar,(H) ax(H)
143
(2, o 2) 0 0 0
2,1, 2) 36 —36 72 52,2 2: F)=0
147
(2, o 2) N —16 128 _ 144
H ar (H) ap,(H) ar(H)
@2, —1+2, 3) 0 0 0
(2 i 3) —16 128 144
2 S, 3,2; F)=0
@, i, 3) —34304 40576 — 74880
(2 }Jz*—’, 3) 24864 125184 150048
H apl(H) apz(H) ap(H)
1454
(3, o 3) 0 0 0
3, 2%, 3) 34304 40576 74880
. S@3, 3, 4: F)=0
(3, —fz—’— 3) 1559488 265216 1294272
3, 1+, 3) 3563904 6002688  —2438784
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H { ar (H) ar,(H) ar(H)
245
(3, 5 ,3) ] 0 0 0
(3, _12+ 4 3) ! 17808 17808 0
" | SG, 3, 3; F)=0.
3 =.3) | o786 —113%16 4718592
3 1—;21 3) | 13248576 17967168 —4718592

Now we note that the function F defined in (2) is divisible by
X%. In fact, by [Theorem 1,2.1, (2), F is divisible by X;,,. Since the weight of
F-Xi¢ is 22, the structure theorem for DL ,(Q®)), 21 asserts that F-Xid is
also divisible by X;,. So we can write as

(2.9) F = X1(Adi+ BoXs+ CXis+Dis)

for some constants A4, B, C, D. By using the above tables, we can determine
these values as follows. Let G be the modular form defined by the right-hand
side of [2.9). Then, we have

ap(? ; =172, aa(? é)z/l—f—[),
(2.10)

ap(? ;) — 74880, aa(? é) = 688A+1072D.

This shows A=396, D=—324. Next, the identities

3 144y _ 3 14+iy_ op
@1  ap([” )= 2438784 ao(( ", )= —2B—3434112
implies B=—497664. Finally, we have
3 % 3 3%
212) | o ° |=47189, ad .~ |=D-17178624.
_,21 3 —»-2’»7 3

Hence we get D=21897216. Consequently, we obtain
G = X3y(396¢; —497664¢) X5 +21897216X,,— 324¢;,)
= 36X3,(11¢);—13824¢), X +-608256X,.—9¢;5) .

It should be noted that the last factor already appeared in the definition of F
(2)). Consequently, we have the following theorem.
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THEOREM 2.5. Define
§12 1= 11¢; —13824¢, X5 +608256X,,—9¢,, = [1'(Q(F)), 121,

Then ¢y Xs, Xioy Xis, 1o, Xis form a set of generators of the graded ring
PBrez[[(QQ)), k1™, Moreover, they satisfies the relation

2Pixg+6¢0, X1, +4032X5—T2X,6)* = (PuXs+ 120X 12 +36X30)E 12 .

REMARK 2.6. By several reasons, it is likely that the above generators
have essentially single relation, i.e.,

BLHQM), k1® = CLXy, Xo, Xs, Xy Xs, Xe1/(8)
where
F(X,, X,y X5, X4, X5, Xo)
= 2(X3X,+6X,X,+4032X; - 72X ) — (X, X5+ 12X, X,+36X%) X5 .

§3. Some properties of Fourier coefficients of our generators.

As we stated at the end of §1, our generators have interesting properties.
In this section, we summarize some results on the Fourier coefficients of our
generators without proof.

Denote the Maass space on H, for Q@) in the sense of Sugano (resp.
Krieg [10]) by M5 (resp. M¥). In [16], Sugano constructed an isomorphism
Us: S, .([")y—M;7, where S, (['Y) is the vector space of Jacobi cusp forms of
index 1 and weight & for the Jacobi modular group /'Y over Q(). On the other
hand, Krieg constructed an isomorphism ¥y :ME—GE (1), (i>),

—_ 4 *
where G (I"(4), (———

*

)) is the vector space of elliptic modular forms of neben-
. —4 )
type of weight 2—1 and character XK:(T) on [,(4) such that the Fourier

coefficients a,(n) vanish if (—Tn—4—>:1.

PROPOSITION 3.1. Let E{(z) (2D :=H,XC?) be the Jacobi Eisenstein series
of index 1 and weight k (cf. [16], [12]) and 6,(z) be the theta series defined by
0.(z, wi, W) :lzoz e[Ng(l+pmz+(+pw,+I+pw,],

€0k
(z, Wy, W)ED. We put

6L

fi(2) = 480

(GP(DE{(2)— E{(2)),

f1(2) 1= 7718(2)(01/2(2)_01'/2(2)) s
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fisl2) 1= e (G @) L (2) B2 s (G @ EL(2)— B4z,
fis2) 1= 15 G @ l2)— e G @G @ (2)~ Ed(2)

+%Gél)(2)fs(2): 2=(z, W, W) €D,
where 9(z) is the Dedekind eta function. Then L€, (I'7) and ¥s(fr)=X:
(k=8, 10, 12, 16).
This result is due to Sugano.

COROLLARY 3.2. The Fourier coefficients ay,(H) of Xy, have the following
property .
ay (H)=0 if Xe(y(H)/e(H)?) =0,

where y(H) and e(H) were defined in (1.29), (1.30).

PROPOSITION 3.3. Set

02):= 1423 ¢, F2):= 3 a,(nq",

n: odd

where o,(n)=<aind, g=e[z], z&H,. We also put

8s(2) 1= 0°(2)—1260%(2) F3(2),

g(2) 1= 0%(2)F4(2)—160%(2) F3(2),

gu(2) 1= 20"(2)F¥(2)—320%(2) Fi(2),

81s(2) 1= 0'"(2)Fi(2)—280"(2) F§(2)+1920°(2) F(2) .
Then gr . €GE(N(4), ({';4 )) and ¥x(h)=120i- g3, UxXe)=0/2)g1-1 (k=8 12,
16).

COROLLARY 3.4. Denote by a,,_(n) the Fourier coefficient of gi_,. If
4ab— Ng(a)+#0, then we have

a a/2y 240 . B )
e )= e, B, et o)

a a/2y 1 et N .
R Y- T G

(k=8, 12, 16), x,(:(-i‘;‘l«).
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