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   1. Introduction. 

   Mordell-Well lattices of type E8, E, and Es are closely related to del Pezzo 

surfaces of degree 1, 2 and 3 respectively ([S2], [S3]). In this paper, we study 

the relation between Mordell-Weil lattices of type D5 ([U]) and del Pezzo 

surfaces of degree 4. 
   Let f : S-->P' be a rational elliptic surface which has a section (0) and 

only one reducible singular fibre, of type 14: f -1(to)=O0U01U02U03. Then 

the (narrow) Mordell-Weil lattice of this surface is the root lattice D5 ([0-S]).

   Using surface theory, we can blow down (0), Oo and 03 in this order, and 

we get a smooth del Pezzo surface of degree 3, which we call S3. By blowing 

down one more rational curve 02, we get a smooth del Pezzo surface of degree 

4, which we call S4. In this situation, lines (exceptional curves of the first 

kind) on S3 and S4 are obtained from sections of f : S-~P1. 

   The contents of this paper are as follows. In section 2, starting from the 

elliptic curve which we have considered in [U] and [S-U] ("the excellent family 

of type D5"), we describe the elliptic surface S explicitly, namely we represent 

S by gluing smooth surfaces defined by explicit equations. In section 3, we

Figure 1.
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realize S3 as a smooth cubic surface in P3, and S4 as a complete intersection 

of two quadrics in P4 by writing down the defining equations for them. Finally 

in section 4, we give the equations of 27 lines on S3 and 16 lines on S4. 

   2. Description of the Kodaira-Neron model. 

   We consider the elliptic curve 

             E : y2+p5xy - x3-f-p4tx2+(p8t2+p2t3)x+ fi6t4+t5 

defined over K=k(t), where k is the algebraic closure of Q(A)=Q(p2, p4, p5, pe, p8). 
Let 

                         f: S -*P' 

denote the associated elliptic surface (the Kodaira-Neron model) of E/K. The 

theory of Mordell-Weil lattices says that the Mordell-Well group E(K) has a 

lattice structure ([S1]). 

    We assume the following two conditions on the parameter A=(p2, , Ps): 

(q) p5 0 and p~ p6- pg 0. 

(#) f : S--P' has no reducible singular fibres other than f '(O). 

   Then f has only one reducible singular fibre, at t=0, which is of type 14. 
In this case we have E(K)°D5 and E(K)NDb as lattices ([U, Theorem 1]). 

    We describe the surface S explicitly. Let T°, T 1 and T 2 be the surfaces 

defined as follows : 

    T ° = {(x0: Yo :z0, s) P2XA'yz0+p5sx0y0z0 

           x0+p4sxOz0+(p8s2+p2s)x0z0+(p6s2+s)zg} 

    T1 - {(x1 : y1 :z1, t) P2XA1 yiz1+p5xly1z1 

         = txl+p4txlz1+(p8t+p2t2)xlzl+(p6t2+t3)zl, (x1 : y1 : z1, t) (0 : 0 : 1, 0)1 

    7,2 = {(x2 : y2 :z2, t, u) P2 X A2 I uz2 = tx2i y2+ p5x2y2 

         = tux2+p4tx2+(p8+p2t)x2z2+(p6+t)z2}. 

N Let S be the surface obtained by gluing T°, T1 and T2 according to the follow-

ing rules : 

1       (x1: y1: z1i t) = (sxo: y0 : s2z°, - when s ~ 0 and t 0, 

s 

                            1 X0       (
x2: Y2: z2, t, u) = sx° : y0 : sz°i 

s' _ sz when sz° ~ 0 and t 0, 

° 

                                        x1      (x2: Y2: z2i t, u) = (xi: y1 : tz1, t, zl when z1 ~ 0 and (t, u) ~ (0, 0).
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                       N /V 

We define f : S--P' by 

                      (x0: Yo: z°i s) - (1: s), 

                       (x1: y1 : z1, t) -~ (t: 1), 

                      (x2: y2 : z2, t, u) --~ (t: 1) . 

   PROPOSITION 1. f : S-~P' is the Kodaira-Neron model of E/K. 

   PROOF. By the uniqueness of the Kodaira-Neron model, we have only to 
show that S is a nonsingular projective surface with generic fibre E and that 
no fibre has exceptional curves of the first kind. Since T° is obtained from E 

N by letting (x, y, t)=(x°/s2z°, y°/s3z°, 1/s), the generic fibre of f is E. 

   Let S be the surface in P2 X Al defined by the equation 

        Y2Z+p5XYZ = X3+p4tX2Z+(p8t2+p2t3)XZ2+(p6t4+t5)Z3. 

S is obtained from E by letting (x, y)=(X/Z, Y/Z). 

   It is known that the only singularities of the surface obtained by gluing S 

and T° are rational double points, and that S is the minimal resolution of the 
surface (cf. [K]). So the condition () implies that S- f -1(0)~T °. Then T ° is 

N nonsingular and when t~O, f -1(t) has no exceptional curves of the first kind. 
   To show that S is nonsingular, we have only to show that T1 and T2 are 
nonsingular at the points satisfying t=0. 
   First we show that T1 is nonsingular at the points satisfying t=o. Let 

  g(x1, yl, z1, t) = ylz1+p5x1 y1z1-(txl+p4txlz1+(p8t+p2t2)x14+(p6t2+t3)z1) . 

If (x1: y1: z1, 0)ET1 is a singular point, then we have 

               ag                            -- = p5y1z1= O (1)                            ax
, t=° 

               ag 
                       ay1 =° = 2ylz1+p5x1z1 = O (2) 

r 

                    ag =yi+p5x1y1 = O (3)                            a
z1 t=° 

               ag                                _ _xi-p4xizl_p8xiz1 = o. (4 ) 

   If z1=0, then x1=0 by (4), and y1=0 by (3). If z1~0, then y1=0 by (1) 

and (q), and x1=o by (2) and (q). But (x1: y1: z1, t)=(0: 0:1, 0) is not a point 
on T'. So T 1 is nonsingular. 

   Next we show that T2 is nonsingular at the points satisfying t=0. Let
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Then

h1(x2, y2, Z2, 

/22(x2, y2, z2, 

the Jacobian

                  H. Usui 

t, u) = uz2-tx2, 

t, u) - y2+p5x2y2-(tux2+ p4tx2-~ (p8 

matrix is

+ p2t)x2z2+(p6+t)z2) .

   When z2=0, we have x2+0 by h2=0. If (ah2/ax2)r_o=0, we have y2=0 by 

(h), then (ah2/ay2)t=o~0. Since (ah1/dt)t=o=-x2 0, the rank of the Jocobian 
matrix is 2. 

   When z2+0, if (ah2/ax2)t=o=(dh2/dy2)ry0=0, then we have 

                      ah2 -2                          - = -p 8. p y2-`2p6z2                           dz
2 r=o 5 

                        -2 
                                     P8.- P8 z2~2p6z2                             p

5 p5 

                          = 2 2(p8-plp6)z2. p 

6 This is not equal to 0 by (q). Since (ah1/au)t=5=z2~0, the rank of the Jacobian 

matrix is 2. So T2 is nonsingular. 

N 

   Lastly we show that f -1(0) has no exceptional curves of the first kind. We 

have 

                      J -1(0) _ e0Ue1Ue2Ue3, 

where Oo is the rational curve {z1=0}, O1 is the rational curve obtained by 

gluing {y5 =O, x10} and {z2=y2=0} by u=x1/zl, 02 is the rational curve 
{u=o, y2+psxsy2=psxsz2+psz2}, 03 is the rational curve obtained by gluing 

N {y5+p5x1=0, x1 0} and {z2=y2+p5x2=0} by u=x1/z5. If 1-1(0) has an ex-
ceptional curve of the first kind, then we can blow it down and get a smooth 
model whose number of components of the fibre at t=0 is less than 4. On the 
other hand we know that the Kodaira-Neron model has a reducible singular 

N fibre of type 14 at t=0. So f -1(0) has no exceptional curves of the first kind,
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      N N 

and f : S--*P1 is the Kodaira-Neron model of E/K. q.e.d. 

   REMARK. The surface T 1 is obtained from E by letting (x, y)=(tx1/z1, ty1/z1) 
and removing the point (0: 0:1, 0). The surface T2 is obtained from E by 
letting (x, y)=(t2x2/z2i t2y2/z2) and introducing u such that uz2=tx2 (cf. [BLR, 
§ 1.5]). 

  From now on, we identify f : S--P' with f : 

   3. Del Pezzo surfaces obtained from S. 

   First we define two surfaces 53 and 54. The surface 53 is obtained from 

S by blowing down the zero section (0), 0° and 03. The surface 54 is obtained 

from S by blowing down (0), 0°, 03 and 02. To be exact, 53 and 54 are 

obtained as follows. 

   The zero section (0), which is (x° : y0 : z°i s)=(0 :1: 0, s) in T ° and 

(x1: y1: z1i t)=(0:1: 0, t) in T1, is an exceptional curve o the first kind ([S1, 
Theorem 2.8]). When we blow it down, we have a birational morphism 

7r1: S--S1. Since (0)=-2 and (0°.(0))=1, ?r1(0°) is an exceptional curve of 

the first kind on S1. Next we blow down 2r1(0°). Then we have a birational 
morphism 7r2: S1-S2, under which 2r1(03) is mapped to an exceptional curve of 

the first kind on S2. Then we blow down 7r2o?r1(03) and we have a birational 
morphism 7r3: S2-S3. Under this morphism 7r2~1r1(02) is mapped to an excep-

tional curve of the first kind. By blowing it down, we obtain a birational 

morphism r4. S3-S4. 
   The surfaces S3 and 54 are described explicitly as follows. 

   THEOREM 2. Let S3 be the surface obtained from S by blowing down (0), 

0° and 03 as above. Then S3 is a smooth del Pezzo surface of degree 3 and it 

is isomorphic to the cubic surface S3 in P3 defined by 

S3: Y2Z+p5WXY =X3+p4WX2+p8W2X+p2WXZ+p6W2Z+WZ2. 

   THEOREM 3. Let S4 be the surface obtained from S by blowing down (0), 

0°, 03 and 02 as above. Then S4 is a smooth del Pezzo surface of degree 4 

N and it is isomorphic to the (2, 2)-type complete intersection S4 in P4 defined by 

N V'X' = Y12-p8W'2-W'Z' 

             V'Z' = X'2+p4W'X'+p8W /2+p2W'Z'-p5W'Y'. 

   PROOF OF THEOREM 2. S is a smooth rational surface ([Si, (10.14)]) and 

S3 is obtained from S by a sequence of blowing-down of exceptional curves of 

the first kind, so 53 is a smooth rational surface. Let F be a fibre of f. The 

canonical divisor of S is -F ([S1, Theorem 2.8]). Let F1= r1(F), F2= r2(F1)
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and F3=7r3(F2). The canonical divisor of S3 is -F3 and (F3)=3. If C is an 

irreducible curve on S3, then we have (C F3)>_0 (we may assume that F3 is an 

irreducible curve). Now we assume (C. F3)=0. Then C2=7r3 C is an irreducible 

curve on SZ and (C3. F3)=0, so C1=7r2 C2 is an irreducible curve on S1 and 

(C1. F1)=0, hence Co = r C1 is an irreducible curve on S and (C0. F)=0. So Ca 
is an irreducible component of a fibre of f : S--P1. Since C is a curve, Ca ~ ®o 

and Co ~ 43. If Co=F then (C . F3)=3, if Co=Q1 then (C . F3)=2, and if Co=a2 

then (C . F3)=1. This contradicts the assumption that (C. F3)=0, so we have 

(C F3)>0. This shows that the anti-canonical divisor F3 on S3 is an ample 
divisor, so S3 is a del Pezzo surface of degree 3 ((Fg)=3).

Figure 2.
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   Next we define a morphism cp : S-~S3 as follows. 

         cP I ro . (x0 . y0 . z0i s) --- (W . X . Y . Z) = (sz0 : x° : y0 : z0), 

         cp l T1 : (xl : y 1 : zl, t) --~ (W : X : Y : Z) = (tz1 : tx1 : y1 : t2z1), 

         W I r2 : (x2 : y2 : z2i t, u) --- > (W : X : Y : Z) = (z2 : tx2 : y2 : tz2). 

This definition is compatible with the gluing, so the morphism is well-defined. 

Under this morphism, (0), 00 and 03 are mapped to one point P0=(0: 0:1: 0). 
Let us show the isomorphism S' :=S-((0)UDOU03)3- {PO}, By the defining 

            N N 

equation of S3, for the point of 53-- PO}, we have W ~ 0 or Z ~ 0. When Z ~ 0, 

let al: 1Z~O}-~T°-(0) be the morphism defined by 

W                     (
xo : yo : zo, s) = X : Y : Z, Z _ . 

The morphism c ° al is the identity morphism on {Z ~ 0} . When W ~ 0, let a2 : 

{W ~O} -T2---63 be the morphism defined by 

                           YZ Z X                  (
x2:y2:z2it,u)= X: W :Z,,-

When WW      X=Z=O, (X: Z)=(Y2- p6W2 : p8YV 2- p5WY). By the condition (h), we 

have (Y2- p6W2, p8W2- p5WY) ~(0, 0), so a2 is a well-defined morphism on 

{W ~ 0} . The morphism cp ° a2 is the identity morphism on {W *O} . We can 
check that a1=a2 on {W ~0} n {Z~0}, so by gluing them we get a morphism 

h a : S3- {P0} -~S'. The morphism a°cp s' is the identity morphism on S', so 

N cP I s: S'-->S3- {P0} is the isomorphism. This shows the isomorphism 
S3_ 1~3°r2°2r1((0)Uo0J03)} ...S3_ {P0}. If we let 

        m(W, X, Y, Z) 

      = Y2Z+p5WXY-(X3+ p4WX2+ p8W2X+ p2WXZ+ p6W2Z+WZ2), 

then 
                       am 

~ 0.                              aZ F'0 

This shows the non-singularity of S3 at P0, and we get S3NS3. q.e.d. 

   In T2, the curve ~1 is {(x2: Y2: z2i t, u)=(1: 0: 0, 0, u)}. By the defining 

equation of T2, we have 

            y2 y-+P5-= yu2+ p4u+p8+p2t+(p6+t) z2 
                  x2 z2 z2 x2 

When (x2: Y2: z2i t, u)=(1: 0: 0, 0, u), we have
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                        p6 y+ = u2+ p4u+ p8 . 
                               z2 

Since 

2 

            W(x2 : Y2. z2, t, u) _ (z2: tx2 : Y2: tz2) = (i: u : z : t , 

2 the image of O1 is in the curve {p6WY=X2+p4WX+p8W2, Z=0}. When Who, 

a2 is the inverse morphism of co. When W=O, the curve { p6WY=X 2+ p4WX + 

p8W2, Z=0} has only one point P0=(0 : 0: 1: 0), and this is the image of the point 
01-01nT2. So O1 is mapped to the curve { p6WY=X2+ p4WX + p8W2, Z=0}. 

   The curve O2 is {yz+psx2y2=p8x2z2+psz2i t=u=0}. Since 

                   W(x2 : Y2: z2i t, u) _ (z2: tx2 : Y2: tz2), 

the image is in the curve {X=Z=O}. When WHO, a2 is the inverse morphism 

of cp. When W=O, the curve {X=Z=O} has only one point PO=(0: 0:1: 0), 

and this is the image of the point (1: -p5: 0, 0, 0). So 02 is mapped to the 
curve {X=Z=O}. 

   PROOF OF THEOREM 3. In the same way as in the proof of Theorem 2, 

we can show that the surface S4 is a smooth del Pezzo surface of degree 4. 
                               N N 

   We define a morphism ~l': S3-* S4 by 

       (V':W':X':Y': Z')=(Y2-psW2-WZ:WX :X2:XY:XZ). 

N When X=O, by the defining equation of S3, we have (Y2-psW2-WZ)Z=O. If 
Z ~ 0 then 

             (Y2-psW2-WZ : WX : X2: XY : XZ) 

            (X2+p4WX+psW2+p2WZ-p6WY : WZ : XZ : YZ : Z2). 

If X=Z=O, by the condition (q), we have 

        (Y2-psW2-WZ, X2+p4WX+p8W2+p2WZ-p6WY) * (0, 0), 

so the line {X=Z=O} is mapped to the point QO=(1:0:0:0:0). When 

(V' : W' : X' : Y' : Z')~QO, (W : X : Y : Z)=(W' : X' : Y' : Z') defines the inverse 
morphism of cb ( 3_{x=z=O}, so S3- {X=Z=O} =S4- {Q0}. Since {X=Z=O} =cp(02), 
we have the isomorphism S4 - {,r4o~3o~2o~1((0)JO0UO3UO2)} --NS4- {Q0}. If we 
let 

    n1(V', W', X', Y', Z') = V'X'-(Y'2-p6W'2-W'Z') 

    n2(V', W', X', Y', Z') = V'Z'-(X'2+p4W'X'+ p8W,2+ p2W'Z'-p6W'Y'), 

then the Jacobian matrix at QO is
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This shows the non-singularity of S4 at Q0, and we have S4~S4. q.e.d. 

   4. Lines on S3 and S4. 

   There are 27 lines on a del Pezzo surface of degree 3, and they are 
exceptional curves of the first kind. A section of f : S-~P1 is an exceptional 
curve of the first kind on S ([S1]). If a section (P) does not meet (0), Oo nor 
03, by 7c3 ° 2c2 7r1, (P) is mapped to an exceptional curve of the first kind on S3. 
Such a section is one of the following two types : 

   i) (P) such that ((P).(0))=0 and ((P).02)=1. It is of the form 

                J x = gt2 
                      y = ht3+ct2 g, h, c k. 

   ii) (P) such that ((P).(0))=0 and ((P).01)-=1. It is of the form 

                  5 x = gt2+at                     S 
y=ht3+ct2 g, a,h,c~k, a~0. 

There are 10 sections of type i) and 16 sections of type ii) ([U]). 

   The curve 02 is also mapped to an exceptional curve of the first kind on 

N S3. So a line on S3 is one of the following three types : 

   i ) ~o((P)) for (P) of type i) 

   ii) cp((P)) for (P) of type ii) 
   iii) co(02). 

   If the section (P) of type i) is 

                5 x=gt2 
                       y = ht3+ct2 g, h, c E k,
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then cp((P)) is the line 

                  5 X=gZ                     S 
Y = hZ+cW. 

If the section (P) of type ii) is 

                  5 x =gt2+at 
                        y = ht3+ct2 g, a, h, c k, 

then cp((P)) is the line 

                    5 X = gZ+aW 
                       Y = hZ+cW. 

cp(02) is the line 

                   X=0 

                         Z=O. 

   There are 16 lines on a del Pezzo surface of degree 4, and they are 

exceptional curves of the first kind. If (P) is a section of type ii), by r4° rc3 7r2 ° 7r1, 

N (P) is mapped to an exceptional curve of the first kind on S4. 5o a line on S4 
is cb°cp((P)) for a section (P) of type ii). 

  If (P) is 

                  5 x =gt2+at 
                        y = ht3+ct2 g, a, h, c k, 

then cboco((P)) is the line 

                   X' = gZ'+aW' 

                   Y' = hZ'+cW' 

                   V' = g2Z'+(2ag+ p4g+ p2- p5h)W'. 

   Now we obtain the following corollary by [U, Theorem 4]. 

    COROLLARY 4. Take u1, • • •, u6 ~ 0 such that ui, • • •, us are mutually distinct 
and for any choice of signs, 

                                ±u1± .•. ±u5~0. 
Let 

1                 P
2 

                       1 12                             p
4 -- ~~4-Zp2
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              ) 1 1                      p
s = 4 ss+ Z p2p4 

                        1 12                        p
8--4~8+4p4 

                                ps = ulu2u3u4u5. 

Here ~Zv is the v-th elementary symmetric function of ui, •• , u5. 
   Then 27 lines on the cubic surface 

S3. Y2Z+ p5WXY = X3 +p4WX 21_ p8W 2X + p2WX Z+ p6W2Z+W Z2 

are given as follows : 

   i) 5 lines 
                     X = uj 2Z 

                    Y = u~ 3Z+ciW (i =1, 2, 3, 4, 5), 
       where 

                     ci = (p4ui 1+ p2ui+ui_ p5ui 2) . 2 

      5 lines 

                X = ui2Z 

               Y = -ui 3Z-(p5ui 2+ci)W (i =1, 2, 3, 4, 5), 

       where 

3 

                    ci = Z (p4u1                                  i +poui+ui-pou2                                       i ) • 

   ii) 16 lines 
                            X = u-2Z+aW 

                           Y = u~3Z+cW. 

        Here u=Q(uo), a=a(a0), c=a(c0) are the transforms of u0, a0, 

        under the sign change d of even number of u1, •• , us. 

                      u0 = 1(u1+ ... +u5), 2 

8 

                    a8 = uu 1 II (ui-u0), 
                                                 ~=1 

                    c0 = 1(3a0uo l+p4uo 1+p2u0+uo-peu0 2) 

2 

  iii) 1line 
                      X=0 

                            Z=O.

361

c0 below
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   COROLLARY 5. Under the same assumption as Corollary 4, 16 lines on the 

del Pezzo surface o f degree 4 

                 V'X' = Y'2- p6W,2-W,Z, 
S4: 

                V'Z' = X'2+p4W'X'+ p8W,2+ p2W'Z'_ p5W'Y, 

are given as follows : 

                 X' = u-2Z'+aW' 

                  Y' = u-3Z'+cW' 

                   Y' = u 4Z'+(2au-2+p4u-2_Lp2-p5u-3)W', 

where u, a and c are the same as in Corollary 4. 

   If we take u1, • • , u5cQ, then we get a del Pezzo surface of degree 3 and 

27 lines on it defined over Q, and a del Pezzo surface of degree 4 and 16 lines 

on it defined over Q. 

N 

   EXAMPLE 1. If we take (u1, • • , u5)=(1, 2, 3, 4, 5), then S3 and the 27 lines 
on it are as follows : 

                 1067 210375 55 S
3. Y2Z+12OWXY = X3+- --WX2 ----W2X-----WXZ+ 2475                                               2 W2Z+WZ2.                   8 256 2 32

X=Z, 

X= 1Z, 

4 X= 1Z, 

9 

     =Z, x= 
   16 

1 X 
= 

25 Z, 

X = Z, 

X = 1 Z, 

4 X= 1Z, 

9 X = 161 Z, 

1 X = 25 Z,

Y = -^0~W+Z      16 

Y=-165W+1Z 
     32 8 

Y=_195W+-1Z      16 27 

    645 
46 Y=--4W+-61Z 

Y = 75-W+ 1- Z 
   16 125 

   1815 Y 
= -

16 W-Z 

Y=_725W-1Z 
     32 8 

Y = --W--Z     55 48 27 

Y=165W_1Z    64 64 

Y = - 759 W- 1--Z 
     80 125
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x = - 3003 W-i- +-Z, 
     16 225 

X--3675W+4Z      16 9 

X = -6075-16 --W+4Z, 

X = 1701 W+4Z     16 

   1925 X = 
16 W+4Z, 

X=-539W+4Z, 
     16 9 

X=-81691W+ 4 Z, 
         25 

    - 14175 _ 4 X = -
208 W+ 19z, 

x= 325W+4Z     16 9 

     91 4 X
= 

     1053 4 

    2025 4 

X = 143 W + 4- Z, 
   48 81 

   175 4 , X=-4
8 W+817, 

   675 4 X- 
112W+49Z, 

X = - 27 W+ + Z, 
     16 25 

x=0,

Y_781W+ 8 Z    10 3375 

Y _ 355 .~- 8 Z     2 2? 

Y _ 1545 W-8Z 2 

Y = 411 W+SZ 

2 Y _ 495 W +8Z 2 

Y--209W~ 8 1      6 27 

Y _ _:1w+ 429 08 125Z 

   _ _1__4835 8 Y _ - 338 W 2197 Z 

Y-115W+$Z     6 27 

Y _ _ 129 _8    - 10 W+ 15Z 

Y_-1623W+ 8 Z      98 343 

    4485 8 1 _ 242W -13317 

Y _ -1.87 W + 8 --Z      54 729 

  _ 145 8 Y - ! 
54 W _ 729 Z 

   15 8 Y = 98 W - 3
43 Z 

Y = -W- 87 1 5-Z 
     ZO 125 

Z=0.

363

EXAMPLE 2. If we take (u1, • • , u5)=(1, 2, 3, 4, 5), S4 and 16 lines on it are

as follows :
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           V'X' - y'2- 247532 W12-W'Z' 

N 

, S4.                                 55 

          V'Z' = Xi2+ 1067 - 8 W'X'- 210375--256 5 W'2_ 2 W'Z'-120W'Y' 

     3003 4 781 8 16 X= -----yV~- - Z', y' = 781 W'-F - 3 - Z', V' - -4813--W'-~ ----Z'       1
6 225 10 3375 150 50625 

      3675 , 4 , -_ 355 8 , - 821 16   -_ X - 16W+9Z' Y 2W_8 V---6W+81Z                           27 

        075 
, Y, - - 1545 W'-8Z', V- , - - 3 3143 W +16Lr ,   - 6 W +4Z X- - -16 --

X, - 1701 W,+4Z', y, - 411 W'+8Z', V' - 793 W,+16Z'     16 2 2 

  - 1925W +4Z , Y- ,- 495 W +8Z , V- ,-10172W +16Z, X-      - 
16 - 2 - --

     539 4 209 8 607 16 X' - - 
16 W'+ 9 Z', y1 - - Z', V' - -^18 W'+81 Z' 

     891 4 429 8 X' = - -W'+ -Z', y' - - - --W'-+-- - Z', v1 _ 1583 16                                                                              --- - -yV-{- -----Z,      1
6 25 10 125 50 625 

     14175 4 14835 8 119219 16 X' - ------W'-} - 
169-Z', y= - - 338 - --W-- 2197Z V' = - --W'+-28561---Z'      208 4394 

    325 X' - yV1-~-9 Z', 4Z' 115 8 Z' _ 257W'16 Z'     16 , y= --~--lV+
27' V 18 +81 

X- - - 91 W'+4-Z', Y - , - - 129 T4 j, +8125 Z', v1 , - - 783 16 , 
      16 10 50-W+66 

X-_-1053W_4 , - 1623 j, 8_ , - 14369 _16-z'       112 + 49Z' 343-Z ' V - _ -__686 W + 2401 

2025 4 485 8 61573w 16 6 X' - - -- - --W-+----Z1, y - 24
2 4 44 -W' -- -1331 -Z', V' - - 2662 -----+-14641-- Z'            121      176 

    143 4 187 8 10661 16 
     48 81 54 729 486-w,+--1 

X'-175W' 4 145 8 9349 16      - 5 +----Z' , y' yV'---Z', V'=----W'+- _ Z'     48 81 54 729 486 6561 

  -_ 675 4 8801 16 , X 112 W+ 49 Z' Y'= 98 W'-
33Z',                        4V 686 W+ 2401 Z 

X, - - 27 W'+ 4 Z,, y, - - 87 W'- 8 Z', V' - 16 Z'      16 25 10 125 50 625
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