Mordell-Weil lattices of type D_{5} and del Pezzo surfaces of degree four

By Hisashi UsuI

(Received July 27, 1994)

1. Introduction.

Mordell-Weil lattices of type $\mathrm{E}_{8}, \mathrm{E}_{7}$ and E_{6} are closely related to del Pezzo surfaces of degree 1,2 and 3 respectively ([S2], [S3]). In this paper, we study the relation between Mordell-Weil lattices of type D_{5} ([U]) and del Pezzo surfaces of degree 4.

Let $f: S \rightarrow \boldsymbol{P}^{1}$ be a rational elliptic surface which has a section (O) and only one reducible singular fibre, of type $I_{4}: f^{-1}\left(t_{0}\right)=\Theta_{0} \cup \Theta_{1} \cup \Theta_{2} \cup \Theta_{3}$. Then the (narrow) Mordell-Weil lattice of this surface is the root lattice D_{5} ([O-S]).

Figure 1.
Using surface theory, we can blow down $(O), \Theta_{0}$ and Θ_{3} in this order, and we get a smooth del Pezzo surface of degree 3 , which we call S_{3}. By blowing down one more rational curve Θ_{2}, we get a smooth del Pezzo surface of degree 4, which we call S_{4}. In this situation, lines (exceptional curves of the first kind) on S_{3} and S_{4} are obtained from sections of $f: S \rightarrow \boldsymbol{P}^{1}$.

The contents of this paper are as follows. In section 2, starting from the elliptic curve which we have considered in [U] and [S-U] ("the excellent family of type D_{5} "), we describe the elliptic surface S explicitly, namely we represent S by gluing smooth surfaces defined by explicit equations. In section 3 , we
realize S_{3} as a smooth cubic surface in \boldsymbol{P}^{3}, and S_{4} as a complete intersection of two quadrics in P^{4} by writing down the defining equations for them. Finally in section 4, we give the equations of 27 lines on S_{3} and 16 lines on S_{4}.

2. Description of the Kodaira-Néron model.

We consider the elliptic curve

$$
E: y^{2}+p_{5} x y=x^{3}+p_{4} t x^{2}+\left(p_{8} t^{2}+p_{2} t^{3}\right) x+p_{6} t^{4}+t^{5}
$$

defined over $K=k(t)$, where k is the algebraic closure of $\boldsymbol{Q}(\lambda)=\boldsymbol{Q}\left(p_{2}, p_{4}, p_{5}, p_{6}, p_{8}\right)$. Let

$$
f: S \longrightarrow \boldsymbol{P}^{1}
$$

denote the associated elliptic surface (the Kodaira-Néron model) of E / K. The theory of Mordell-Weil lattices says that the Mordell-Weil group $E(K)$ has a lattice structure ([S1]).

We assume the following two conditions on the parameter $\lambda=\left(p_{2}, \cdots, p_{8}\right)$:
(4) $p_{5} \neq 0$ and $p_{5}^{2} p_{6}-p_{8}^{2} \neq 0$.
(\#) $f: S \rightarrow \boldsymbol{P}^{1}$ has no reducible singular fibres other than $f^{-1}(0)$.
Then f has only one reducible singular fibre, at $t=0$, which is of type I_{4}. In this case we have $E(K)^{0} \cong D_{5}$ and $E(K) \cong D_{5}^{*}$ as lattices ([U, Theorem 1]).

We describe the surface S explicitly. Let T^{0}, T^{1} and T^{2} be the surfaces defined as follows:

$$
\begin{aligned}
T^{0}= & \left\{\left(x_{0}: y_{0}: z_{0}, s\right) \in \boldsymbol{P}^{2} \times \boldsymbol{A}^{1} \mid y_{0}^{2} z_{0}+p_{5} s x_{0} y_{0} z_{0}\right. \\
& \left.=x_{0}^{3}+p_{4} s x_{0}^{2} z_{0}+\left(p_{8} s^{2}+p_{2} s\right) x_{0} z_{0}^{2}+\left(p_{6} s^{2}+s\right) z_{0}^{3}\right\} \\
T^{1}= & \left\{\left(x_{1}: y_{1}: z_{1}, t\right) \in \boldsymbol{P}^{2} \times \boldsymbol{A}^{1} \mid y_{1}^{2} z_{1}+p_{5} x_{1} y_{1} z_{1}\right. \\
& \left.=t x_{1}^{3}+p_{4} t x_{1}^{2} z_{1}+\left(p_{8} t+p_{2} t^{2}\right) x_{1} z_{1}^{2}+\left(p_{6} t^{2}+t^{3}\right) z_{1}^{3},\left(x_{1}: y_{1}: z_{1}, t\right) \neq(0: 0: 1,0)\right\} \\
T^{2}= & \left\{\left(x_{2}: y_{2}: z_{2}, t, u\right) \in \boldsymbol{P}^{2} \times \boldsymbol{A}^{2} \mid u z_{2}=t x_{2}, y_{2}^{2}+p_{5} x_{2} y_{2}\right. \\
& \left.=t u x_{2}^{2}+p_{4} t x_{2}^{2}+\left(p_{8}+p_{2} t\right) x_{2} z_{2}+\left(p_{6}+t\right) z_{2}^{2}\right\}
\end{aligned}
$$

Let \widetilde{S} be the surface obtained by gluing T^{0}, T^{1} and T^{2} according to the following rules:

$$
\begin{array}{ll}
\left(x_{1}: y_{1}: z_{1}, t\right)=\left(s x_{0}: y_{0}: s^{2} z_{0}, \frac{1}{s}\right) & \text { when } s \neq 0 \text { and } t \neq 0 \\
\left(x_{2}: y_{2}: z_{2}, t, u\right)=\left(s x_{0}: y_{0}: s z_{0}, \frac{1}{s}, \frac{x_{0}}{s z_{0}}\right) & \text { when } s z_{0} \neq 0 \text { and } t \neq 0 \\
\left(x_{2}: y_{2}: z_{2}, t, u\right)=\left(x_{1}: y_{1}: t z_{1}, t, \frac{x_{1}}{z_{1}}\right) & \text { when } z_{1} \neq 0 \text { and }(t, u) \neq(0,0)
\end{array}
$$

We define $\tilde{f}: \tilde{S} \rightarrow \boldsymbol{P}^{1}$ by

$$
\begin{aligned}
\left(x_{0}: y_{0}: z_{0}, s\right) & \longrightarrow(1: s), \\
\left(x_{1}: y_{1}: z_{1}, t\right) & \longrightarrow(t: 1), \\
\left(x_{2}: y_{2}: z_{2}, t, u\right) & \longrightarrow(t: 1) .
\end{aligned}
$$

Proposition 1. $\tilde{f}: \tilde{S} \rightarrow \boldsymbol{P}^{1}$ is the Kodaira-Néron model of E / K.

Proof. By the uniqueness of the Kodaira-Néron model, we have only to show that \tilde{S} is a nonsingular projective surface with generic fibre E and that no fibre has exceptional curves of the first kind. Since T^{0} is obtained from E by letting $(x, y, t)=\left(x_{0} / s^{2} z_{0}, y_{0} / s^{3} z_{0}, 1 / s\right)$, the generic fibre of \tilde{f} is E.

Let \bar{S} be the surface in $\boldsymbol{P}^{2} \times \boldsymbol{A}^{1}$ defined by the equation

$$
Y^{2} Z+p_{5} X Y Z=X^{3}+p_{4} t X^{2} Z+\left(p_{8} t^{2}+p_{2} t^{3}\right) X Z^{2}+\left(p_{6} t^{4}+t^{5}\right) Z^{3}
$$

\bar{S} is obtained from E by letting $(x, y)=(X / Z, Y / Z)$.
It is known that the only singularities of the surface obtained by gluing \bar{S} and T^{0} are rational double points, and that S is the minimal resolution of the surface (cf. [K]). So the condition (\#) implies that $S-f^{-1}(0) \cong T^{0}$. Then T^{0} is nonsingular and when $t \neq 0, \tilde{f}^{-1}(t)$ has no exceptional curves of the first kind.

To show that \tilde{S} is nonsingular, we have only to show that T^{1} and T^{2} are nonsingular at the points satisfying $t=0$.

First we show that T^{1} is nonsingular at the points satisfying $t=0$. Let

$$
g\left(x_{1}, y_{1}, z_{1}, t\right)=y_{1}^{2} z_{1}+p_{5} x_{1} y_{1} z_{1}-\left(t x_{1}^{3}+p_{4} t x_{1}^{2} z_{1}+\left(p_{8} t+p_{2} t^{2}\right) x_{1} z_{1}^{2}+\left(p_{6} t^{2}+t^{3}\right) z_{1}^{3}\right)
$$

If ($\left.x_{1}: y_{1}: z_{1}, 0\right) \in T^{1}$ is a singular point, then we have

$$
\begin{align*}
& \left.\frac{\partial g}{\partial x_{1}}\right|_{t=0}=p_{5} y_{1} z_{1}=0 \tag{1}\\
& \left.\frac{\partial g}{\partial y_{1}}\right|_{t=0}=2 y_{1} z_{1}+p_{5} x_{1} z_{1}=0 \tag{2}\\
& \left.\frac{\partial g}{\partial z_{1}}\right|_{t=0}=y_{1}^{2}+p_{5} x_{1} y_{1}=0 \tag{3}\\
& \left.\frac{\partial g}{\partial t}\right|_{t=0}=-x_{1}^{3}-p_{4} x_{1}^{2} z_{1}-p_{8} x_{1} z_{1}^{2}=0 \tag{4}
\end{align*}
$$

If $z_{1}=0$, then $x_{1}=0$ by (4), and $y_{1}=0$ by (3). If $z_{1} \neq 0$, then $y_{1}=0$ by (1) and (\mathfrak{k}), and $x_{1}=0$ by (2) and (\mathfrak{k}). But $\left(x_{1}: y_{1}: z_{1}, t\right)=(0: 0: 1,0)$ is not a point on T^{1}. So T^{1} is nonsingular.

Next we show that T^{2} is nonsingular at the points satisfying $t=0$. Let

$$
\begin{aligned}
& h_{1}\left(x_{2}, y_{2}, z_{2}, t, u\right)=u z_{2}-t x_{2} \\
& h_{2}\left(x_{2}, y_{2}, z_{2}, t, u\right)=y_{2}^{2}+p_{5} x_{2} y_{2}-\left(t u x_{2}^{2}+p_{4} t x_{2}^{2}+\left(p_{8}+p_{2} t\right) x_{2} z_{2}+\left(p_{6}+t\right) z_{2}^{2}\right)
\end{aligned}
$$

Then the Jacobian matrix is

$$
\left(\begin{array}{l}
\left.\frac{\partial h_{1}}{\partial x_{2}}\right|_{t=0} \\
\left.\frac{\partial h_{2}}{\partial x_{2}}\right|_{t=0} \\
\left.\frac{\partial h_{1}}{\partial y_{2}}\right|_{t=0} \\
\left.\frac{\partial h_{2}}{\partial y_{2}}\right|_{t=0} \\
\left.\frac{\partial h_{1}}{\partial z_{2}}\right|_{t=0} \\
\left.\frac{\partial h_{2}}{\partial z_{2}}\right|_{t=0} \\
\left.\frac{\partial h_{1}}{\partial t}\right|_{t=0} \\
\left.\frac{\partial h_{2}}{\partial t}\right|_{t=0} \\
\left.\frac{\partial h_{1}}{\partial u}\right|_{t=0} \\
\left.\frac{\partial h_{2}}{\partial u}\right|_{t=0}
\end{array}\right)=\left(\begin{array}{cc}
0 & 2 y_{2}+p_{5} x_{2} \\
u & -p_{8} x_{2}-2 p_{6} z_{2} \\
-x_{2} & -u x_{2}^{2}-p_{4} x_{2}^{2}-p_{2} x_{2} z_{2}-z_{2}^{2} \\
z_{2} & 0
\end{array}\right)
$$

When $z_{2}=0$, we have $x_{2} \neq 0$ by $h_{2}=0$. If $\left(\partial h_{2} / \partial x_{2}\right)_{t=0}=0$, we have $y_{2}=0$ by (4), then $\left(\partial h_{2} / \partial y_{2}\right)_{t=0} \neq 0$. Since $\left(\partial h_{1} / \partial t\right)_{t=0}=-x_{2} \neq 0$, the rank of the Jocobian matrix is 2 .

When $z_{2} \neq 0$, if $\left(\partial h_{2} / \partial x_{2}\right)_{t=0}=\left(\partial h_{2} / \partial y_{2}\right)_{t=0}=0$, then we have

$$
\begin{aligned}
\left.\frac{\partial h_{2}}{\partial z_{2}}\right|_{t=0} & =-p_{8} \cdot \frac{-2}{p_{5}} y_{2}-2 p_{6} z_{2} \\
& =-p_{8} \cdot \frac{-2}{p_{5}} \cdot \frac{p_{8}}{p_{5}} z_{2}-2 p_{6} z_{2} \\
& =\frac{2}{p_{5}^{2}}\left(p_{8}^{2}-p_{5}^{2} p_{6}\right) z_{2}
\end{aligned}
$$

This is not equal to 0 by (h). Since $\left(\partial h_{1} / \partial u\right)_{t=0}=z_{2} \neq 0$, the rank of the Jacobian matrix is 2 . So T^{2} is nonsingular.

Lastly we show that $\tilde{f}^{-1}(0)$ has no exceptional curves of the first kind. We have

$$
\tilde{f}^{-1}(0)=\Theta_{0} \cup \Theta_{1} \cup \Theta_{2} \cup \Theta_{3}
$$

where Θ_{0} is the rational curve $\left\{z_{1}=0\right\}, \Theta_{1}$ is the rational curve obtained by gluing $\left\{y_{1}=0, x_{1} \neq 0\right\}$ and $\left\{z_{2}=y_{2}=0\right\}$ by $u=x_{1} / z_{1}, \Theta_{2}$ is the rational curve $\left\{u=0, y_{2}^{2}+p_{5} x_{2} y_{2}=p_{8} x_{2} z_{2}+p_{6} z_{2}^{2}\right\}, \Theta_{3}$ is the rational curve obtained by gluing $\left\{y_{1}+p_{5} x_{1}=0, x_{1} \neq 0\right\}$ and $\left\{z_{2}=y_{2}+p_{5} x_{2}=0\right\}$ by $u=x_{1} / z_{1}$. If $\tilde{f}^{-1}(0)$ has an exceptional curve of the first kind, then we can blow it down and get a smooth model whose number of components of the fibre at $t=0$ is less than 4 . On the other hand we know that the Kodaira-Néron model has a reducible singular fibre of type I_{4} at $t=0$. So $\tilde{f}^{-1}(0)$ has no exceptional curves of the first kind,
and $\tilde{f}: \tilde{S} \rightarrow \boldsymbol{P}^{1}$ is the Kodaira-Néron model of E / K. q.e.d.
Remark. The surface T^{1} is obtained from E by letting $(x, y)=\left(t x_{1} / z_{1}, t y_{1} / z_{1}\right)$ and removing the point $(0: 0: 1,0)$. The surface T^{2} is obtained from E by letting $(x, y)=\left(t^{2} x_{2} / z_{2}, t^{2} y_{2} / z_{2}\right)$ and introducing u such that $u z_{2}=t x_{2}$ (cf. [BLR, § 1.5]).

From now on, we identify $f: S \rightarrow \boldsymbol{P}^{1}$ with $\tilde{f}: \tilde{S} \rightarrow \boldsymbol{P}^{1}$.

3. Del Pezzo surfaces obtained from S.

First we define two surfaces S_{3} and S_{4}. The surface S_{3} is obtained from S by blowing down the zero section $(O), \Theta_{0}$ and Θ_{3}. The surface S_{4} is obtained from S by blowing down $(O), \Theta_{0}, \Theta_{3}$ and Θ_{2}. To be exact, S_{3} and S_{4} are obtained as follows.

The zero section (O), which is $\left(x_{0}: y_{0}: z_{0}, s\right)=(0: 1: 0, s)$ in T^{0} and $\left(x_{1}: y_{1}: z_{1}, t\right)=(0: 1: 0, t)$ in T^{1}, is an exceptional curve of the first kind ($[\mathbf{S} 1$, Theorem 2.8]). When we blow it down, we have a birational morphism $\pi_{1}: S \rightarrow S_{1}$. Since $\left(\Theta_{0}^{2}\right)=-2$ and $\left(\Theta_{0} \cdot(O)\right)=1, \pi_{1}\left(\Theta_{0}\right)$ is an exceptional curve of the first kind on S_{1}. Next we blow down $\pi_{1}\left(\Theta_{0}\right)$. Then we have a birational morphism $\pi_{2}: S_{1} \rightarrow S_{2}$, under which $\pi_{1}\left(\Theta_{3}\right)$ is mapped to an exceptional curve of the first kind on S_{2}. Then we blow down $\pi_{2} \circ \pi_{1}\left(\Theta_{3}\right)$ and we have a birational morphism $\pi_{3}: S_{2} \rightarrow S_{3}$. Under this morphism $\pi_{2}{ }^{\circ} \pi_{1}\left(\Theta_{2}\right)$ is mapped to an exceptional curve of the first kind. By blowing it down, we obtain a birational morphism $\pi_{4}: S_{3} \rightarrow S_{4}$.

The surfaces S_{3} and S_{4} are described explicitly as follows.
Theorem 2. Let S_{3} be the surface obtained from S by blowing down (O), Θ_{0} and Θ_{3} as above. Then S_{3} is a smooth del Pezzo surface of degree 3 and it is isomorphic to the cubic surface \tilde{S}_{3} in \boldsymbol{P}^{3} defined by
$\tilde{S}_{3}: \quad Y^{2} Z+p_{5} W X Y=X^{3}+p_{4} W X^{2}+p_{8} W^{2} X+p_{2} W X Z+p_{6} W^{2} Z+W Z^{2}$.
Theorem 3. Let S_{4} be the surface obtained from S by blowing down (O), Θ_{0}, Θ_{3} and Θ_{2} as above. Then S_{4} is a smooth del Pezzo surface of degree 4 and it is isomorphic to the (2, 2)-type complete intersection \tilde{S}_{4} in \boldsymbol{P}^{4} defined by
$\tilde{S}_{4}:$

$$
\left\{\begin{array}{l}
V^{\prime} X^{\prime}=Y^{\prime 2}-p_{6} W^{\prime 2}-W^{\prime} Z^{\prime} \\
V^{\prime} Z^{\prime}=X^{\prime 2}+p_{4} W^{\prime} X^{\prime}+p_{8} W^{\prime 2}+p_{2} W^{\prime} Z^{\prime}-p_{5} W^{\prime} Y^{\prime}
\end{array}\right.
$$

Proof of Theorem 2. S is a smooth rational surface ($[\mathbf{S} 1,(10.14)]$) and S_{3} is obtained from S by a sequence of blowing-down of exceptional curves of the first kind, so S_{3} is a smooth rational surface. Let F be a fibre of f. The canonical divisor of S is $-F$ ([S1, Theorem 2.8]). Let $F_{1}=\pi_{1}(F), F_{2}=\pi_{2}\left(F_{1}\right)$

Figure 2.
and $F_{3}=\pi_{3}\left(F_{2}\right)$. The canonical divisor of S_{3} is $-F_{3}$ and $\left(F_{3}^{2}\right)=3$. If C is an irreducible curve on S_{3}, then we have $\left(C \cdot F_{3}\right) \geqq 0$ (we may assume that F_{3} is an irreducible curve). Now we assume $\left(C \cdot F_{3}\right)=0$. Then $C_{2}=\pi_{3}^{*} C$ is an irreducible curve on S_{2} and $\left(C_{2} \cdot F_{2}\right)=0$, so $C_{1}=\pi_{2}^{*} C_{2}$ is an irreducible curve on S_{1} and $\left(C_{1} \cdot F_{1}\right)=0$, hence $C_{0}=\pi_{1}^{*} C_{1}$ is an irreducible curve on S and $\left(C_{0} \cdot F\right)=0$. So C_{0} is an irreducible component of a fibre of $f: S \rightarrow \boldsymbol{P}^{1}$. Since C is a curve, $C_{0} \neq \Theta_{0}$ and $C_{0} \neq \Theta_{3}$. If $C_{0}=F$ then $\left(C \cdot F_{3}\right)=3$, if $C_{0}=\Theta_{1}$ then $\left(C \cdot F_{3}\right)=2$, and if $C_{0}=\Theta_{2}$ then $\left(C \cdot F_{3}\right)=1$. This contradicts the assumption that $\left(C \cdot F_{3}\right)=0$, so we have $\left(C \cdot F_{3}\right)>0$. This shows that the anti-canonical divisor F_{3} on S_{3} is an ample divisor, so S_{3} is a del Pezzo surface of degree $3\left(\left(F_{3}^{2}\right)=3\right)$.

Next we define a morphism $\varphi: S \rightarrow \tilde{S}_{3}$ as follows.

$$
\begin{aligned}
& \left.\varphi\right|_{T 0}:\left(x_{0}: y_{0}: z_{0}, s\right) \longrightarrow(W: X: Y: Z)=\left(s z_{0}: x_{0}: y_{0}: z_{0}\right), \\
& \left.\varphi\right|_{T 1}:\left(x_{1}: y_{1}: z_{1}, t\right) \longrightarrow(W: X: Y: Z)=\left(t z_{1}: t x_{1}: y_{1}: t^{2} z_{1}\right), \\
& \left.\varphi\right|_{T 2}:\left(x_{2}: y_{2}: z_{2}, t, u\right) \longrightarrow(W: X: Y: Z)=\left(z_{2}: t x_{2}: y_{2}: t z_{2}\right) .
\end{aligned}
$$

This definition is compatible with the gluing, so the morphism is well-defined. Under this morphism, $(O), \Theta_{0}$ and Θ_{3} are mapped to one point $P_{0}=(0: 0: 1: 0)$. Let us show the isomorphism $S^{\prime}:=S-\left((O) \cup \Theta_{0} \cup \Theta_{3}\right) \cong \widetilde{S}_{3}-\left\{P_{0}\right\}$. By the defining equation of \tilde{S}_{3}, for the point of $\tilde{S}_{3}-\left\{P_{0}\right\}$, we have $W \neq 0$ or $Z \neq 0$. When $Z \neq 0$, let $\alpha_{1}:\{Z \neq 0\} \rightarrow T^{0}-(O)$ be the morphism defined by

$$
\left(x_{0}: y_{0}: z_{0}, s\right)=\left(X: Y: Z, \frac{W}{Z}\right) .
$$

The morphism $\varphi \circ \alpha_{1}$ is the identity morphism on $\{Z \neq 0\}$. When $W \neq 0$, let α_{2} : $\{W \neq 0\} \rightarrow T^{2}-\Theta_{3}$ be the morphism defined by

$$
\left(x_{2}: y_{2}: z_{2}, t, u\right)=\left(X: \frac{Y Z}{W}: Z, \frac{Z}{W}, \frac{X}{W}\right)
$$

When $X=Z=0,(X: Z)=\left(Y^{2}-p_{6} W^{2}: p_{8} W^{2}-p_{6} W Y\right)$. By the condition (q), we have $\left(Y^{2}-p_{6} W^{2}, p_{8} W^{2}-p_{5} W Y\right) \neq(0,0)$, so α_{2} is a well-defined morphism on $\{W \neq 0\}$. The morphism $\varphi \circ \alpha_{2}$ is the identity morphism on $\{W \neq 0\}$. We can check that $\alpha_{1}=\alpha_{2}$ on $\{W \neq 0\} \cap\{Z \neq 0\}$, so by gluing them we get a morphism $\alpha: \widetilde{S}_{3}-\left\{P_{0}\right\} \rightarrow S^{\prime}$. The morphism $\left.\alpha^{\circ} \varphi\right|_{S^{\prime}}$ is the identity morphism on S^{\prime}, so $\left.\varphi\right|_{s^{\prime}}: S^{\prime} \rightarrow \widetilde{S}_{3}-\left\{P_{0}\right\}$ is the isomorphism. This shows the isomorphism $S_{3}-\left\{\pi_{3} \circ \pi_{2} \circ \pi_{1}\left((O) \cup \Theta_{0} \cup \Theta_{3}\right)\right\} \cong \tilde{S}_{3}-\left\{P_{0}\right\}$. If we let

$$
\begin{aligned}
& m(W, X, Y, Z) \\
= & Y^{2} Z+p_{5} W X Y-\left(X^{3}+p_{4} W X^{2}+p_{8} W^{2} X+p_{2} W X Z+p_{6} W^{2} Z+W Z^{2}\right),
\end{aligned}
$$

then

$$
\left.\frac{\partial m}{\partial Z}\right|_{P_{0}} \neq 0
$$

This shows the non-singularity of \tilde{S}_{3} at P_{0}, and we get $S_{3} \cong \widetilde{S}_{3}$. q.e.d.
In T^{2}, the curve Θ_{1} is $\left\{\left(x_{2}: y_{2}: z_{2}, t, u\right)=(1: 0: 0,0, u)\right\}$. By the defining equation of T^{2}, we have

$$
\frac{y_{2}}{x_{2}} \frac{y_{2}}{z_{2}}+p_{5} \frac{y_{2}}{z_{2}}=u^{2}+p_{4} u+p_{8}+p_{2} t+\left(p_{6}+t\right) \frac{z_{2}}{x_{2}} .
$$

When $\left(x_{2}: y_{2}: z_{2}, t, u\right)=(1: 0: 0,0, u)$, we have

$$
p_{5} \frac{y_{2}}{z_{2}}=u^{2}+p_{4} u+p_{8}
$$

Since

$$
\varphi\left(x_{2}: y_{2}: z_{2}, t, u\right)=\left(z_{2}: t x_{2}: y_{2}: t z_{2}\right)=\left(1: u: \frac{y_{2}}{z_{2}}: t\right)
$$

the image of Θ_{1} is in the curve $\left\{p_{5} W Y=X^{2}+p_{4} W X+p_{8} W^{2}, Z=0\right\}$. When $W \neq 0$, α_{2} is the inverse morphism of φ. When $W=0$, the curve $\left\{p_{5} W Y=X^{2}+p_{4} W X+\right.$ $\left.p_{8} W^{2}, Z=0\right\}$ has only one point $P_{0}=(0: 0: 1: 0)$, and this is the image of the point $\Theta_{1}-\Theta_{1} \cap T^{2}$. So Θ_{1} is mapped to the curve $\left\{p_{5} W Y=X^{2}+p_{4} W X+p_{8} W^{2}, Z=0\right\}$.

The curve Θ_{2} is $\left\{y_{2}^{2}+p_{5} x_{2} y_{2}=p_{8} x_{2} z_{2}+p_{6} z_{2}^{2}, t=u=0\right\}$. Since

$$
\varphi\left(x_{2}: y_{2}: z_{2}, t, u\right)=\left(z_{2}: t x_{2}: y_{2}: t z_{2}\right)
$$

the image is in the curve $\{X=Z=0\}$. When $W \neq 0, \alpha_{2}$ is the inverse morphism of φ. When $W=0$, the curve $\{X=Z=0\}$ has only one point $P_{0}=(0: 0: 1: 0)$, and this is the image of the point $\left(1:-p_{5}: 0,0,0\right)$. So Θ_{2} is mapped to the curve $\{X=Z=0\}$.

Proof of Theorem 3. In the same way as in the proof of Theorem 2, we can show that the surface S_{4} is a smooth del Pezzo surface of degree 4.

We define a morphism $\psi: \widetilde{S}_{3} \rightarrow \widetilde{S}_{4}$ by

$$
\left(V^{\prime}: W^{\prime}: X^{\prime}: Y^{\prime}: Z^{\prime}\right)=\left(Y^{2}-p_{6} W^{2}-W Z: W X: X^{2}: X Y: X Z\right)
$$

When $X=0$, by the defining equation of \widetilde{S}_{3}, we have $\left(Y^{2}-p_{6} W^{2}-W Z\right) Z=0$. If $Z \neq 0$ then

$$
\begin{aligned}
& \left(Y^{2}-p_{6} W^{2}-W Z: W X: X^{2}: X Y: X Z\right) \\
= & \left(X^{2}+p_{4} W X+p_{8} W^{2}+p_{2} W Z-p_{5} W Y: W Z: X Z: Y Z: Z^{2}\right) .
\end{aligned}
$$

If $X=Z=0$, by the condition (4), we have

$$
\left(Y^{2}-p_{6} W^{2}-W Z, X^{2}+p_{4} W X+p_{8} W^{2}+p_{2} W Z-p_{5} W Y\right) \neq(0,0)
$$

so the line $\{X=Z=0\}$ is mapped to the point $Q_{0}=(1: 0: 0: 0: 0)$. When $\left(V^{\prime}: W^{\prime}: X^{\prime}: Y^{\prime}: Z^{\prime}\right) \neq Q_{0},(W: X: Y: Z)=\left(W^{\prime}: X^{\prime}: Y^{\prime}: Z^{\prime}\right)$ defines the inverse morphism of $\left.\psi\right|_{\tilde{S}_{3}-\{X=Z=01}$, so $\widetilde{S}_{3}-\{X=Z=0\} \cong \widetilde{S}_{4}-\left\{Q_{0}\right\}$. Since $\{X=Z=0\}=\varphi\left(\Theta_{2}\right)$, we have the isomorphism $S_{4}-\left\{\pi_{4} \circ \pi_{3} \circ \pi_{2} \circ \pi_{1}\left((O) \cup \Theta_{0} \cup \Theta_{3} \cup \Theta_{2}\right)\right\} \cong \widetilde{S}_{4}-\left\{Q_{0}\right\}$. If we let

$$
\begin{aligned}
& n_{1}\left(V^{\prime}, W^{\prime}, X^{\prime}, Y^{\prime}, Z^{\prime}\right)=V^{\prime} X^{\prime}-\left(Y^{\prime 2}-p_{6} W^{\prime 2}-W^{\prime} Z^{\prime}\right) \\
& n_{2}\left(V^{\prime}, W^{\prime}, X^{\prime}, Y^{\prime}, Z^{\prime}\right)=V^{\prime} Z^{\prime}-\left(X^{\prime 2}+p_{4} W^{\prime} X^{\prime}+p_{8} W^{\prime 2}+p_{2} W^{\prime} Z^{\prime}-p_{5} W^{\prime} Y^{\prime}\right)
\end{aligned}
$$

then the Jacobian matrix at Q_{0} is

$$
\left(\begin{array}{ll}
\left.\frac{\partial n_{1}}{\partial V^{\prime}}\right|_{Q_{0}} & \left.\frac{\partial n_{2}}{\partial V^{\prime}}\right|_{Q_{0}} \\
\left.\frac{\partial n_{1}}{\partial W^{\prime}}\right|_{Q_{0}} & \left.\frac{\partial n_{2}}{\partial W^{\prime}}\right|_{Q_{0}} \\
\left.\frac{\partial n_{1}}{\partial X^{\prime}}\right|_{Q_{0}} & \left.\frac{\partial n_{2}}{\partial X^{\prime}}\right|_{Q_{0}} \\
\left.\frac{\partial n_{1}}{\partial Y^{\prime}}\right|_{Q_{0}} & \left.\frac{\partial n_{2}}{\partial Y^{\prime}}\right|_{Q_{0}} \\
\left.\frac{\partial n_{1}}{\partial Z^{\prime}}\right|_{Q_{0}} & \left.\frac{\partial n_{2}}{\partial Z^{\prime}}\right|_{Q_{0}}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) .
$$

This shows the non-singularity of \widetilde{S}_{4} at Q_{0}, and we have $S_{4} \cong \widetilde{S}_{4}$. q.e.d.

4. Lines on S_{3} and S_{4}.

There are 27 lines on a del Pezzo surface of degree 3, and they are exceptional curves of the first kind. A section of $f: S \rightarrow \boldsymbol{P}^{1}$ is an exceptional curve of the first kind on S ([S1]). If a section (P) does not meet $(O), \Theta_{0}$ nor Θ_{3}, by $\pi_{3} \circ \pi_{2} \circ \pi_{1},(P)$ is mapped to an exceptional curve of the first kind on S_{3}. Such a section is one of the following two types:
i) (P) such that $((P) \cdot(O))=0$ and $\left((P) \cdot \Theta_{2}\right)=1$. It is of the form

$$
\left\{\begin{array}{l}
x=g t^{2} \\
y=h t^{3}+c t^{2} \quad g, h, c \in k
\end{array}\right.
$$

ii) (P) such that $((P) \cdot(O))=0$ and $\left((P) \cdot \Theta_{1}\right)=1$. It is of the form

$$
\left\{\begin{array}{l}
x=g t^{2}+a t \\
y=h t^{3}+c t^{2} \quad g, a, h, c \in k, a \neq 0 .
\end{array}\right.
$$

There are 10 sections of type i) and 16 sections of type ii) ([U]).
The curve Θ_{2} is also mapped to an exceptional curve of the first kind on S_{3}. So a line on \widetilde{S}_{3} is one of the following three types:
i) $\varphi((P))$ for (P) of type i)
ii) $\varphi((P))$ for (P) of type ii)
iii) $\varphi\left(\Theta_{2}\right)$.

If the section (P) of type i) is

$$
\left\{\begin{array}{l}
x=g t^{2} \\
y=h t^{3}+c t^{2} \quad g, h, c \in k
\end{array}\right.
$$

then $\varphi((P))$ is the line

$$
\left\{\begin{array}{l}
X=g Z \\
Y=h Z+c W
\end{array}\right.
$$

If the section (P) of type ii) is

$$
\left\{\begin{array}{l}
x=g t^{2}+a t \\
y=h t^{3}+c t^{2} \quad g, a, h, c \in k
\end{array}\right.
$$

then $\varphi((P))$ is the line

$$
\left\{\begin{array}{l}
X=g Z+a W \\
Y=h Z+c W
\end{array}\right.
$$

$\varphi\left(\Theta_{2}\right)$ is the line

$$
\left\{\begin{array}{l}
X=0 \\
Z=0
\end{array}\right.
$$

There are 16 lines on a del Pezzo surface of degree 4, and they are exceptional curves of the first kind. If (P) is a section of type ii), by $\pi_{4} \circ \pi_{3} \circ \pi_{2} \circ \pi_{1}$, (P) is mapped to an exceptional curve of the first kind on S_{4}. So a line on \widetilde{S}_{4} is $\psi^{\circ} \varphi((P))$ for a section (P) of type ii).

If (P) is

$$
\left\{\begin{array}{l}
x=g t^{2}+a t \\
y=h t^{3}+c t^{2} \quad g, a, h, c \in k
\end{array}\right.
$$

then $\psi^{\circ} \varphi((P))$ is the line

$$
\left\{\begin{array}{l}
X^{\prime}=g Z^{\prime}+a W^{\prime} \\
Y^{\prime}=h Z^{\prime}+c W^{\prime} \\
V^{\prime}=g^{2} Z^{\prime}+\left(2 a g+p_{4} g+p_{2}-p_{5} h\right) W^{\prime}
\end{array}\right.
$$

Now we obtain the following corollary by [U, Theorem 4].
COROLLARY 4. Take $u_{1}, \cdots, u_{5} \neq 0$ such that $u_{1}^{2}, \cdots, u_{5}^{2}$ are mutually distinct and for any choice of signs,

$$
\pm u_{1} \pm \cdots \pm u_{5} \neq 0
$$

Let

$$
\left\{\begin{array}{l}
p_{2}=-\frac{1}{2} \varepsilon_{2} \\
p_{4}=\frac{1}{2} \varepsilon_{4}-\frac{1}{2} p_{2}^{2}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
p_{6}=\frac{1}{4} \varepsilon_{6}+\frac{1}{2} p_{2} p_{4} \\
p_{8}=-\frac{1}{4} \varepsilon_{8}+\frac{1}{4} p_{4}^{2} \\
p_{5}=u_{1} u_{2} u_{3} u_{4} u_{5}
\end{array}\right.
$$

Here $\varepsilon_{2 \nu}$ is the ν-th elementary symmetric function of $u_{1}^{2}, \cdots, u_{5}^{2}$.
Then 27 lines on the cubic surface
$\tilde{S}_{3}: \quad Y^{2} Z+p_{6} W X Y=X^{3}+p_{4} W X^{2}+p_{8} W^{2} X+p_{2} W X Z+p_{6} W^{2} Z+W Z^{2}$
are given as follows:
i) 5 lines

$$
\left\{\begin{array}{l}
X=u_{\imath}^{-2} Z \\
Y=u_{i}^{-3} Z+c_{i} W \quad(i=1,2,3,4,5)
\end{array}\right.
$$

where

$$
c_{i}=\frac{1}{2}\left(p_{4} u_{i}^{-1}+p_{2} u_{i}+u_{i}^{3}-p_{5} u_{i}^{-2}\right) .
$$

5 lines

$$
\left\{\begin{array}{l}
X=u_{i}^{-2} Z \\
Y=-u_{i}^{-3} Z-\left(p_{5} u_{i}^{-2}+c_{i}\right) W \quad(i=1,2,3,4,5),
\end{array}\right.
$$

where

$$
c_{i}=\frac{1}{2}\left(p_{4} u_{i}^{-1}+p_{2} u_{i}+u_{i}^{3}-p_{5} u_{i}^{-2}\right) .
$$

ii) 16 lines

$$
\left\{\begin{array}{l}
X=u^{-2} Z+a W \\
Y=u^{-3} Z+c W
\end{array}\right.
$$

Here $u=\sigma\left(u_{0}\right), a=\sigma\left(a_{0}\right), c=\sigma\left(c_{0}\right)$ are the transforms of u_{0}, a_{0}, c_{0} below under the sign change σ of even number of u_{1}, \cdots, u_{5}.

$$
\begin{aligned}
& u_{0}=\frac{1}{2}\left(u_{1}+\cdots+u_{5}\right), \\
& a_{0}=u_{0}^{-1} \prod_{i=1}^{5}\left(u_{i}-u_{0}\right), \\
& c_{0}=\frac{1}{2}\left(3 a_{0} u_{0}^{-1}+p_{4} u_{0}^{-1}+p_{2} u_{0}+u_{0}^{3}-p_{5} u_{0}^{-2}\right) .
\end{aligned}
$$

iii) 1 line

$$
\left\{\begin{array}{l}
X=0 \\
Z=0
\end{array}\right.
$$

Corollary 5. Under the same assumption as Corollary 4, 16 lines on the del Pezzo surface of degree 4
$\tilde{S}_{4}: \quad\left\{\begin{array}{l}V^{\prime} X^{\prime}=Y^{\prime 2}-p_{6} W^{\prime 2}-W^{\prime} Z^{\prime} \\ V^{\prime} Z^{\prime}=X^{\prime 2}+p_{4} W^{\prime} X^{\prime}+p_{8} W^{\prime 2}+p_{2} W^{\prime} Z^{\prime}-p_{5} W^{\prime} Y^{\prime}\end{array}\right.$
are given as follows:

$$
\left\{\begin{array}{l}
X^{\prime}=u^{-2} Z^{\prime}+a W^{\prime} \\
Y^{\prime}=u^{-3} Z^{\prime}+c W^{\prime} \\
V^{\prime}=u^{-4} Z^{\prime}+\left(2 a u^{-2}+p_{4} u^{-2}+p_{2}-p_{5} u^{-3}\right) W^{\prime}
\end{array}\right.
$$

where u, a and c are the same as in Corollary 4.
If we take $u_{1}, \cdots, u_{5} \in \boldsymbol{Q}$, then we get a del Pezzo surface of degree 3 and 27 lines on it defined over \boldsymbol{Q}, and a del Pezzo surface of degree 4 and 16 lines on it defined over \boldsymbol{Q}.

Example 1. If we take $\left(u_{1}, \cdots, u_{5}\right)=(1,2,3,4,5)$, then \tilde{S}_{3} and the 27 lines on it are as follows:
$\tilde{S}_{3}: Y^{2} Z+120 W X Y=X^{3}+\frac{1067}{8} W X^{2}-\frac{210375}{256} W^{2} X-\frac{55}{2} W X Z+\frac{2475}{32} W^{2} Z+W Z^{2}$.

$$
\begin{array}{llrl}
X & =Z, & Y & =-\frac{105}{16} W+Z \\
X & =\frac{1}{4} Z, & Y & =-\frac{165}{32} W+\frac{1}{8} Z \\
X & =\frac{1}{9} Z, & Y & =-\frac{195}{16} W+\frac{1}{27} Z \\
X & =\frac{1}{16} Z, & Y & =-\frac{645}{64} W+\frac{1}{64} Z \\
X & =\frac{1}{25} Z, & Y & =\frac{75}{16} W+\frac{1}{125} Z \\
X & =Z, & Y & =\frac{1815}{16} W-Z \\
X & =\frac{1}{4} Z, & Y & =-\frac{795}{32} W-\frac{1}{8} Z \\
X & =\frac{1}{9} Z, & Y & =-\frac{55}{48} W-\frac{1}{27} Z \\
X & =\frac{1}{16} Z, & Y & =\frac{165}{64} W-\frac{1}{64} Z \\
X & =\frac{1}{25} Z, & Y & =-\frac{759}{80} W-\frac{1}{125} Z
\end{array}
$$

$$
\begin{array}{ll}
X=-\frac{3003}{16} W+\frac{4}{225} Z, & Y=\frac{781}{10} W+\frac{8}{3375} Z \\
X=-\frac{3675}{16} W+\frac{4}{9} Z, & Y=\frac{355}{2} W-\frac{8}{27} Z \\
X=-\frac{6075}{16} W+4 Z, & Y=\frac{1545}{2} W-8 Z \\
X=\frac{1701}{16} W+4 Z, & Y=\frac{411}{2} W+8 Z \\
X=\frac{1925}{16} W+4 Z, & Y=\frac{495}{2} W+8 Z \\
X=-\frac{539}{16} W+\frac{4}{9} Z, & Y=-\frac{209}{6} W+\frac{8}{27} Z \\
X=-\frac{891}{16} W+\frac{4}{25} Z, & Y=-\frac{429}{10} W+\frac{8}{125} Z \\
X=-\frac{14175}{208} W+\frac{4}{169} Z, & Y=-\frac{14835}{338} W-\frac{8}{2197} Z \\
X=\frac{325}{16} W+\frac{4}{9} Z, & Y=\frac{115}{6} W+\frac{8}{27} Z \\
X=-\frac{91}{16} W+\frac{4}{25} Z, & Y=-\frac{129}{10} W+\frac{8}{125} Z \\
X=-\frac{1053}{112} W+\frac{4}{49} Z, & Y=-\frac{1623}{98} W+\frac{8}{343} Z \\
X=-\frac{2025}{176} W+\frac{4}{121} Z, & Y=-\frac{4485}{242} W-\frac{8}{1331} Z \\
X=\frac{143}{48} W+\frac{4}{81} Z, & Y=-\frac{187}{54} W+\frac{8}{729} Z \\
X=\frac{175}{48} W+\frac{4}{81} Z, & Y=-\frac{145}{54} W-\frac{8}{729} Z \\
X=\frac{675}{112} W+\frac{4}{49} Z, & Y=\frac{15}{98} W-\frac{8}{343} Z \\
X=-\frac{27}{16} W+\frac{4}{25} Z, & Y=-\frac{87}{10} W-\frac{8}{125} Z \\
X=0, & Y
\end{array}
$$

Example 2. If we take $\left(u_{1}, \cdots, u_{5}\right)=(1,2,3,4,5), \widetilde{S}_{4}$ and 16 lines on it are as follows:
$\tilde{S}_{4}: \quad\left\{\begin{array}{l}V^{\prime} X^{\prime}=Y^{\prime 2}-\frac{2475}{32} W^{\prime 2}-W^{\prime} Z^{\prime} \\ V^{\prime} Z^{\prime}=X^{\prime 2}+\frac{1067}{8} W^{\prime} X^{\prime}-\frac{210375}{256} W^{\prime 2}-\frac{55}{2} W^{\prime} Z^{\prime}-120 W^{\prime} Y^{\prime}\end{array}\right.$
$X^{\prime}=-\frac{3003}{16} W^{\prime}+\frac{4}{225} Z^{\prime}, \quad Y^{\prime}=\frac{781}{10} W^{\prime}+\frac{8}{3375} Z^{\prime}, \quad V^{\prime}=-\frac{4813}{150} W^{\prime}+\frac{16}{50625} Z^{\prime}$
$X^{\prime}=-\frac{3675}{16} W^{\prime}+\frac{4}{9} Z^{\prime}, \quad Y^{\prime}=\frac{355}{2} W^{\prime}-\frac{8}{27} Z^{\prime}, \quad V^{\prime}=-\frac{821}{6} W^{\prime}+\frac{16}{81} Z^{\prime}$
$X^{\prime}=-\frac{6075}{16} W^{\prime}+4 Z^{\prime}, \quad Y^{\prime}=\frac{1545}{2} W^{\prime}-8 Z^{\prime}, \quad V^{\prime}=-\frac{3143}{2} W^{\prime}+16 Z^{\prime}$
$X^{\prime}=\frac{1701}{16} W^{\prime}+4 Z^{\prime}, \quad Y^{\prime}=\frac{411}{2} W^{\prime}+8 Z^{\prime}, \quad V^{\prime}=\frac{793}{2} W^{\prime}+16 Z^{\prime}$
$X^{\prime}=\frac{1925}{16} W^{\prime}+4 Z^{\prime}, \quad Y^{\prime}=\frac{495}{2} W^{\prime}+8 Z^{\prime}, \quad V^{\prime}=\frac{1017}{2} W^{\prime}+16 Z^{\prime}$
$X^{\prime}=-\frac{539}{16} W^{\prime}+\frac{4}{9} Z^{\prime}, \quad Y^{\prime}=-\frac{209}{6} W^{\prime}+\frac{8}{27} Z^{\prime}, \quad V^{\prime}=-\frac{607}{18} W^{\prime}+\frac{16}{81} Z^{\prime}$
$X^{\prime}=-\frac{891}{16} W^{\prime}+\frac{4}{25} Z^{\prime}, \quad Y^{\prime}=-\frac{429}{10} W^{\prime}+\frac{8}{125} Z^{\prime}, \quad V^{\prime}=-\frac{1583}{50} W^{\prime}+\frac{16}{625} Z^{\prime}$
$X^{\prime}=-\frac{14175}{208} W^{\prime}+\frac{4}{169} Z^{\prime}, \quad Y^{\prime}=-\frac{14835}{338} W^{\prime}-\frac{8}{2197} Z^{\prime}, \quad V^{\prime}=-\frac{119219}{4394} W^{\prime}+\frac{16}{28561} Z^{\prime}$
$X^{\prime}=\frac{325}{16} W^{\prime}+\frac{4}{9} Z^{\prime}, \quad Y^{\prime}=\frac{115}{6} W^{\prime}+\frac{8}{27} Z^{\prime}, \quad V^{\prime}=\frac{257}{18} W^{\prime}+\frac{16}{81} Z^{\prime}$
$X^{\prime}=-\frac{91}{16} W^{\prime}+\frac{4}{25} Z^{\prime}, \quad Y^{\prime}=-\frac{129}{10} W^{\prime}+\frac{8}{125} Z^{\prime}, \quad V^{\prime}=-\frac{783}{50} W^{\prime}+\frac{16}{625} Z^{\prime}$
$X^{\prime}=-\frac{1053}{112} W^{\prime}+\frac{4}{49} Z^{\prime}, \quad Y^{\prime}=-\frac{1623}{98} W^{\prime}+\frac{8}{343} Z^{\prime}, \quad V^{\prime}=-\frac{14369}{686} W^{\prime}+\frac{16}{2401} Z^{\prime}$
$X^{\prime}=-\frac{2025}{176} W^{\prime}+\frac{4}{121} Z^{\prime}, \quad Y^{\prime}=-\frac{4485}{242} W^{\prime}-\frac{8}{1331} Z^{\prime}, \quad V^{\prime}=-\frac{61573}{2662} W^{\prime}+\frac{16}{14641} Z^{\prime}$
$X^{\prime}=\frac{143}{48} W^{\prime}+\frac{4}{81} Z^{\prime}, \quad Y^{\prime}=-\frac{187}{54} W^{\prime}+\frac{8}{729} Z^{\prime}, \quad V^{\prime}=-\frac{10661}{486} W^{\prime}+\frac{16}{6561} Z^{\prime}$
$X^{\prime}=\frac{175}{48} W^{\prime}+\frac{4}{81} Z^{\prime}, \quad Y^{\prime}=-\frac{145}{54} W^{\prime}-\frac{8}{729} Z^{\prime}, \quad V^{\prime}=-\frac{9349}{486} W^{\prime}+\frac{16}{6561} Z^{\prime}$
$X^{\prime}=\frac{675}{112} W^{\prime}+\frac{4}{49} Z^{\prime}, \quad Y^{\prime}=\frac{15}{98} W^{\prime}-\frac{8}{343} Z^{\prime}, \quad V^{\prime}=-\frac{8801}{686} W^{\prime}+\frac{16}{2401} Z^{\prime}$
$X^{\prime}=-\frac{27}{16} W^{\prime}+\frac{4}{25} Z^{\prime}, \quad Y^{\prime}=-\frac{87}{10} W^{\prime}-\frac{8}{125} Z^{\prime}, \quad V^{\prime}=\frac{49}{50} W^{\prime}+\frac{16}{625} Z^{\prime}$

References

[BLR] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models, Springer-Verlag, 1990.
[K] A. Kas, Weierstrass normal forms and invariants of elliptic surfaces, Trans. Amer. Math. Soc., 225 (1977), 259-266.
[O-S] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul., 40, No. 1 (1991), 83-99.
[S1] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul., 39, No. 2 (1990), 211-240.
[S2] T. Shioda, Theory of Mordell-Weil lattices, Proc. ICM Kyoto 1990, vol. I, 1991, pp. 473-489.
[S3] T. Shioda, Plane quartics and Mordell-Weil lattices of type E_{7}, Comment. Math. Univ. St. Paul., 42, No. 1 (1993), 61-79.
[S-U] T. Shioda and H. Usui, Fundamental invariants of Weyl groups and excellent families of elliptic curves, Comment. Math. Univ. St. Paul., 41, No. 2 (1992), 169-217.
[U] H. Usui, On Mordell-Weil lattices of type D_{5}, Math. Nachr., 161 (1993), 219-232.

Hisashi Usui
Department of Mathematics Rikkyo University Nishi-Ikebukuro, Tokyo 171 Japan
Present Address
Department of Mathematics Gunma College of Technology 580 Toriba, Maebashi, Gunma 371 Japan (e-mail:usui@nat.gunma-ct.ac.jp)

