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Introduction.

One of the old questions about exceptional minimal sets of codimension-one
$C^{2}$-foliations of compact manifolds reads (compare [La]): Is the Lebesgue
measure $|\mathscr{M}|$ of any exceptional minimal set ,St equal to $0$ ? The answer in
general is still unknown. The class of Markov minimal sets was introduced
by John Cantwell and Lawrence Conlon [CC] in the context of this question.
Among the other results, they proved that $|\mathscr{M}|=0$ if $\mathscr{M}$ is a Markov exceptional
minimal set. The same result in the particular case of a Markov exceptional
minimal set with holonomy generated by two maps defined on a common interval
was obtained in [Mat].

In $[LaW]$ , while studying relations between different invariants describing
the dynamics of foliations, the authors observed that the question about the
Hausdorff dimension $\dim_{H}$ of exceptional minimal sets is also of some interest.
Since the inequality

(1) $\dim_{H}$ (.SJt) $<\dim M$ ,

$M$ being the foliated manifold, implies that .fiit $|=0$ , Markov exceptional minimal
sets seem to be good candidates to satisfy (1). In fact, this is our result here.

THEOREM. If $\mathscr{M}$ is a Markov excePtional minimal set of a codimenston-one
$C^{2}$-foliation $\mathscr{F}$ of a compact manifold $M$, then $\mathscr{M}$ satisfies inequality (1).

The Theorem follows immediately from the description of Markov excep-
tional minimal sets given in [CC] and the following.

PROPOSITION. If $\Gamma$ is a finitely generated Markov PseudogrouP of local $C^{2}-$

diffeomorphisms of the real line $R$ and $Z_{0}$ is its Markov invariant set, then

(1) $\dim_{H}(Z_{0})<1$ .

The idea of the proof of the Proposition is very similar to that of Theorem
3 in [CC]. We use several preparatory Lemmas of [CC] as well as some subtle
estimates of [Mat]. However, we believe that the result itself as well as
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several details which differ the case of the Hausdorff dimension from that of
Lebesgue measure justify writing down a short article.

1. Hausdorff dimension.

Let us recall (see $[HuW]$ , [Ed], etc.) that the Hausdorff dimension $\dim_{H}X$

of a metric space $X$ is defined by

(3) $\dim_{H}X=\inf\{s>0;\mathcal{H}^{\iota}(X)=0\}$ ,

where

(4) $\mathcal{H}^{s}(X)=\lim_{\epsilonarrow 0}\mathcal{H}_{e}^{s}(X)=\sup_{\epsilon}\mathcal{H}_{\epsilon}^{s}(X)$ ,

(5)
$\mathcal{H}_{\epsilon}^{s}(X)=\inf_{\{\cup\in C(\epsilon)}H^{s}(\mathcal{A})$ ,

$C(\epsilon)$ is the family of all countable coverings of $X$ by sets of diameter less than
$\epsilon$ and

(6)
$H^{s}( \mathcal{A})=\sum_{A\in J\iota}(diam A)^{S}$ .

The following facts are known quite well and follow immediately from the
definition.

LEMMA 1. (i) If $X$ admits a sequence $(\mathcal{A}_{n})$ of countable coverings such that

(7) diam $\mathcal{A}_{n}arrow 0$ and $H^{s}(\mathcal{A}_{n})arrow 0$ as $narrow\infty$ ,

then $\dim_{H}X\leqq s$ .
(ii) If $X\subset Y$ , then $\dim_{H}X\leqq\dim_{H}Y$ .
(iii) If $X=X_{1}\cup X_{2}\cup\cdots$ , then

(8) $\dim_{H}X=\sup_{m}\dim_{II}X_{7l\iota}$ .

(iv) If $X$ is countable, then $\dim_{H}X=0$ .
(v) If metnc spaces $X$ and $Y$ are quast-isometnc, then

(9) $dm_{H}X=\dim_{H}Y$ . $\square$

REMARK. In the sequel, we consider subspaces of the real line $R$ only.
In this case diam $(A)$ in (6) can be replaced by the Lebesgue measure $|A|$ when-
ever $\mathcal{A}$ consists of intervals.

2. Markov pseudogroups.

Following [CC], we define Markov pseudogroups as pseudogroups $\Gamma$ of local
$C^{2}$-diffeomorphisms of the real line $R$ generated by finite sets $\Gamma_{0}=\{h_{1}, \cdots , h_{m}\}$ ,
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$m>1$ , of maps between closed bounded intervals $I_{\alpha}$ and $K_{a},$ $h_{\alpha}$ : $I_{\alpha}arrow K_{\alpha}$ , satisfy-
ing the following conditions:

(i) $K_{\alpha}\cap K_{\beta}=\emptyset$ when $\alpha\neq\beta$ ,
(ii) either $K_{a}\subset I_{\beta}$ or $K_{\alpha}\cap I_{\beta}=\emptyset$ .

(Since the maps $h_{a}$ are differentiable of class $C^{2}$ , they can be extended to $C^{2}-$

maps $\tilde{h}_{a}$ : $1_{\alpha}arrow\tilde{K}_{a}$ between larger open intervals $I_{\alpha}\supset I_{a}$ and $\tilde{K}_{a}\supset K_{\alpha}$ satisfying
analogous conditions.)

Let us say that the Markov property involved here is that the result of the
“experiment” of building composed maps of the form $h_{\gamma_{1}}\circ\cdots\circ h_{\gamma_{n}}$ depends only
on the existence of the compositions $h_{\gamma_{i}}\circ h_{\gamma_{i+_{1}}}$ of consecutive maps.

For any sequence $\gamma=(\gamma_{1}, \cdots , \gamma_{n}),$ $\gamma_{i}\in\{1, \cdots , m\}$ , set $|\gamma|=n,$ $h_{\gamma}=h_{\gamma_{1}}\circ\cdots\circ h_{\gamma_{n}}$

and $K_{\gamma}=h_{\gamma}(I_{\gamma_{n}})$ whenever the composition exists. Let $\Gamma_{+}=\{h_{\gamma}\},$ $\Gamma_{n}=\{h_{\gamma}$ ; $|\gamma|$

$=n\}$ ,

(10) $Z= \bigcap_{n=}^{\infty}\bigcup_{|\gamma|=n}K_{\gamma}$ and $Z_{0}=Z \backslash \inf(Z)$ .

We shall say that $Z_{0}$ is the Markov invariant set of $\Gamma$. In typical situations
(but not always) it is a minimal $\Gamma$-invariant Cantor set. On $Z_{0}$ , the local homeo-
morphism $\tau:Z_{0}arrow Z_{0}$ is well defined by

(11) $\tau(x)=h_{a}^{-1}(x)$ whenever $x\in K.$ .

The map $\tau$ is said to be the subshift of $\Gamma$ .
It is known ([CC], [In]) that any Markov pseudogroup can be realized as

the holonomy pseudogroup of a codimension-one $C^{2}$-foliation of a compact mani-
fold in a neighbourhood of an exceptional minimal set. Such an exceptional
minimal set is said to be Markov as well.

3. Good and bad points.

Let $Z_{0}$ be the Markov invariant set of a Markov pseudogroup $\Gamma$ . For any
set $A\subset Z_{0}$ let $A_{\infty}$ denote the set of all the points $x\in Z_{0}$ such that $\tau^{n}(x)\in A$ for
infinitely many exponents $n$ . A point $x\in Z_{0}$ is said to be good if there exists
its neighbourhood $V$ open in $Z_{0}$ and such that $\dim_{H}(V_{\infty})<1$ . Let $G$ be the set
of all the good points and $B=Z_{0}\backslash G$ . The points of $B$ are said to be bad.
Obviously, $G$ is open while $B$ compact.

LEMMA 2. If $A\subset G$ is comPact, then $\dim_{H}A_{\infty}<1$ .

PROOF. There are points $x_{1},$ $\cdots,$ $x_{n}$ of $A$ and their neighbourhoods $V_{1},$
$\cdots,$

$V_{n}$

such that $A\subset V_{1}\cup\cdot$ .. $\cup V_{n}$ and $\dim_{H}(V_{i})_{\infty}<1$ for $i=1$ , $\cdot$ . , $n$ . The statement of
the Lemma follows immediately from Lemma 1, (ii) and (iii), and the relation
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(12) $A_{\infty}\subset(V_{1}\cup\cdots\cup V_{n})_{\infty}=(V_{1})_{\infty}\cup\cdots\cup(V_{n})_{\infty}$ . $\square$

LEMMA 3. $\dim_{H}Z_{0}<1$ if and only if $B=\emptyset$ .

PROOF. The implication $\Rightarrow$ is obvious. Since $Z_{0}$ is compact, the converse
follows immediately from Lemma 2. $\square$

4. Sacksteder estimates.

Let $\Gamma_{0}$ be a finite set of local $C^{2}$-diffeomorphisms of the real line $R$ gen-
erating a pseudogroup $\Gamma$ . If $g_{k}=h_{k}\circ h_{k-1}\circ\cdots\circ h_{1}\in\Gamma$ for $k=1,$ $\cdots$ , $l,$ $h_{1},$ $\cdots$ , $h_{l}$

$\in\Gamma_{0},$ $x$ and $y\in R$ , and the interval $[x, y]$ is contained in the domain of $g_{l}$ ,

then

(13) $|g_{l}’(x)|$ $ $|g_{l}’( y)|\cdot\exp(\theta\cdot\sum_{j=0}^{l-1}|g_{j}(x)-g_{j}(y)|)$ ,

where

(14) $\theta=\max\{||(h‘ 1)’’|| ; h\in\Gamma_{0}\}\cdot\max\{||(h^{\pm 1})’|| ; h\in\Gamma_{0}\}$

and $||\cdot||$ is the supremum norm ([Sa], $P$ . 81). Hereafter, $g_{0}$ is the identity map.
If $C$ is a closed $\Gamma$-invariant set, $J$ is a gap of $C$ (i.e., $J$ is a connected

component of $R\backslash C$ ) and $x_{0}\in\partial J$, then there exist constants $\sigma=\sigma(J)$ and $\delta=\delta(J)$

such that

(15) $\sum_{j=0}^{\iota}|g_{J}’(y_{j})|\leqq\sigma$

whenever $|y_{j}-x_{0}|<\delta,$ $g_{l}\in\Gamma_{+}$ is defined on the interval $(x_{0}-\delta, x_{0}+\delta)\cup J$ and
the intervals $J,$ $g_{1}(J),$ $\cdots$ , $g_{t}(J)$ are mutually disjoint ([Sa], p. 82; compare
[Mat], p. 85, for the particular case).

We shall denote by $\Gamma_{+}^{J}$ the set of all $g=g_{l}\in\Gamma_{+}$ which satisfy the conditions
above.

If $\Gamma$ is a Markov pseudogroup, $a>1$ is any fixed real number, $\mu=\sum|I_{\alpha}|$

and $C=Z_{0}$ , then the constants

(16) $\delta(J)=\frac{|J|\cdot\log a}{a\theta\mu e^{\theta\mu}}$ and $\sigma(J)=\frac{a\mu e^{\theta\mu}}{|J|}$

do work.
The following generalizes Proposition 6 of [Mat].

LEMMA 4. If $s\leqq 1,$ $K\subset(x_{0}-\delta, x_{0}+\delta)$ is a closed nmdegenerate interval and
$X=\{L_{1}, \cdots , L_{p}\},$ $p>1$ , is a finite family of Pairwise disjoznt closed intervals
contained in $K$, then there exists $\lambda_{s}=\lambda_{s}(K, \mathcal{L})>0$ such that for any $g\in\Gamma_{+}^{J}$ the
inequality
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(17) $\sum_{i}|g(L_{l}^{K})|^{s}\leqq\lambda_{s}\cdot|g(K)|^{s}$ ,

holds. If $s>s_{0}$ , where

(18) $s_{0}=s_{0}(K, X)=\frac{\log p}{\log(p\kappa+p-1)-\log\kappa}$

then we can choose $\lambda_{s}$ to satisfy $\lambda_{s}<1$ .

Observe that $s_{0}<1$ for any $p>1$ and $\kappa>0$ .

PROOF. For any $i=1$ , $\cdot$ .. , $p$ choose a gap $J_{i}$ of $K\backslash \subset$) $\mathcal{L}$ adjacent to $L_{i}$ .
Let $\kappa_{i}=|L_{\iota}|\cdot|J_{t}|^{-1}\cdot\exp(\theta\sigma|K|)$ and $\kappa=\max\kappa_{\ell}$ . Inequalities (13) and (15) together
with the mean value theorem imply that

(19) $\frac{|g(L_{i})|}{|g(J_{i})|}=\frac{|L_{i}|}{|J_{i}|}\cdot\frac{|g’(x_{i})|}{|g’(y_{t})|}$

$\leqq\frac{|L_{i}|}{|J_{i}|}\exp(\theta\sum_{j=0}^{l-1}|g_{j}(x_{i})-g_{j}(y_{t})|)\leqq\frac{|L_{i}|}{|J_{t}|}\exp(\theta\sum_{j}|g_{j}(K)|)$

$=_{J_{t}1}^{t} \frac{|L}{1}|\exp(\theta|K|\sum_{j}|g_{J}’(z_{j})|)$ $ $\frac{|L_{i}|}{|J_{i}|}\exp(\theta\sigma|K|)=\kappa_{i}\leqq$ rc

for any $g=g_{l}\in\Gamma_{+}^{J}$ and some points $x_{i},$ $y_{i}$ and $z_{i}$ of $K$. Since the number $q$ of
gaps of $K\backslash \mathcal{L}$ satisfies the inequality p–l$q\leqq p+l, it follows that

(20) $\sum_{i}|g(L_{i})|\leqq|g(K)|\cdot\frac{p}{p(\kappa+}\frac{\kappa}{1)-1}$ .

This implies (17) with

(21) $\lambda_{s}=p\cdot(\frac{\kappa}{p(\kappa+1)-1})^{s}$ . $\square$

5. One-sided points.

Let $Z_{0}$ be a Markov invariant set, $x_{0}\in Z_{0}$ and $Z_{0}$ accumulates on $x_{0}$ from
at most one side. If $x_{0}$ is isolated in $Z_{0}$ , then obviously $x_{0}\in G$ . Also, if $x_{0}\in I$.
and $x_{0}\in Domain(g)$ only for finitely many $g\in\Gamma_{+}$ , then $(I_{\alpha}\cap Z_{0})_{\infty}=\emptyset$ and $x_{0}\in G$ .
Otherwise, $x_{0}\in\partial J$ for a gap $J$ of $Z_{0}$ and we can find numbers $\delta$ and $\sigma$ satisfy-
ing the conditions of Section 4. To fix ideas, assume that $x_{0}= \inf J$ . Take
$\delta’<\delta(J)$ such that $x_{0}-\delta’\not\in Z$ and let $V=(x_{0}-\delta’, x_{0}]\cap Z_{0}$ .

NOW, if the point $x_{0}$ is non-cyclic (i.e., $\tau^{k}(x_{0})\neq x_{0}$ for $k>0$), choose $n_{0}$ big
enough and cover the set $V$ by a finite family $\mathscr{K}$ of closed intervals $K$ of the
form either $K_{\gamma}$ or $\gamma^{\cap(x_{0}-\delta’}’ x_{0}$], $|\gamma|=n_{0}$ , contained in $(x_{0}-\delta’, x_{0}]$ . For any
$K\in \mathscr{K}$ , let $\mathcal{L}_{K}$ be the family of all the nondegenerate intervals of the form
$K_{\gamma}\cap K$, where $|\tilde{\gamma}|=n_{0}+1$ . The families $\mathcal{A}_{n}=$ { $g(K);g\in\Gamma_{l},$ $l\geqq n$ and $K\in \mathscr{K}$ }
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and $c_{n}=$ { $g(L);g\in\Gamma_{\iota},$ $l\geqq n,$ $L\in X_{K}$ and $K\in \mathscr{K}$ }, $n=1,2,$ $\cdots$ , cover $V_{\infty}$ . More-
over, $V_{\infty}= \bigcap_{n}\cup \mathcal{A}_{n}=\bigcap_{n}\cup C_{n}$ . Inequality (17) yields

(22)
$\mathcal{H}^{s}(V_{\infty})=\lim_{narrow\infty}\sum_{A\in d_{n}}|A|^{s}$ $ $\lambda\cdot\lim_{narrow\infty}\sum_{C\in C_{n}}|C|^{s}=\lambda\cdot \mathcal{H}^{s}(V_{\infty})$

,

where $\lambda=\max\{\lambda_{s}(K, X_{K});K\in \mathscr{K}\}$ . For $s>s_{0} \sim=\max\{s_{0}(K, \mathcal{L}_{K});K\in \mathscr{K}\},$ $\lambda<1$ and
we obtain that $\mathcal{H}^{s}(V_{\infty})=0$ . Therefore, $\dim_{H}$ (V\infty );$ $s_{0}\sim<1$ and $x_{0}\in G$ .

If $x_{0}$ is cyclic, then Lemma 5.8 of [CC] implies that

(23) $V_{\infty}=A \cup\bigcup_{i=1}^{p}(f_{i}(V))_{\infty}$ ,

where $A$ is a countable set, $f_{i}\in\Gamma_{+}$ and the points $f_{i}(x_{0})$ are not cyclic. Note
that the elements $f_{i}$ of $\Gamma_{+}$ depend only on $x_{0}$ , not on $V$ . Equality (23) together
with the argument for non-cyclic points and Lemma 1, (iii) and (iv), implies
that $\dim_{H}V_{\infty}<1$ when $\delta’$ is small enough to provide the estimates $\dim_{H}(f_{i}V)_{\infty}$

$<1$ for $i=1$ , $\cdot$ .. , $p$ . Therefore, $x_{0}\in G$ again.
In this way, we proved the following.

LEMMA 5. Any point $x_{0}\in Z_{0}$ such that $Z_{0}$ accumulates on $x_{0}$ from at most
one side is good. $\square$

6. Final arguments.

TO prove the Proposition it is enough to show that $B=\emptyset$ (Lemma 3). As-
sume not and take any $y\in B$ . From Lemma 5 it follows that $Z_{0}$ accumulates
on $y$ from both sides. Therefore, $y\in I_{a}$ for some $\alpha$ and there exists a gap
$J=(a, b)\subset I$. and a multiindex $\gamma=(\gamma_{1}, , \gamma_{n})$ such that $K_{\gamma}=[c, d]\subset I_{\alpha}$ and $a<b$

$<c<y_{0}<d$ , where $y_{0}= \min(B\cap[b, \infty))$ . We may assume that $|K_{\gamma}|$ is as small
as needed, for example that $K_{\gamma}\subset(b^{*}-\delta(J), b^{*}+\delta(J))$ .

Let $n_{0}=|\gamma|$ and $\Gamma_{n_{0}}=\{f_{1}, \cdots , f_{p+r}\}$ , where the enumeration is such that
the range of $f_{i}$ is disjoint from $(a, c)$ if and only if $i\leqq p$ . Write $f_{i}=h_{\alpha_{i^{\circ}}}h_{\gamma_{i}}$ ,
where $|\gamma_{i}|=n_{0}-1$ . Let $f_{i}^{*}=h_{\alpha_{i}}|K_{\gamma_{i}}$ and denote by $\Gamma^{*}$ the pseudogroup gen-
erated by $f_{1}^{*},$ $\cdots$ , $f_{p}^{*}$ . $\Gamma^{*}$ is a Markov pseudogroup again, so we may consider
the corresponding Markov invariant set $Z_{0}^{*}$ . Let $b^{*}$ be the right end point of
this gap $I^{*}$ of $Z_{0}^{*}$ which contains $J$ . Clearly, $b^{*}\in K_{\gamma}$ .

Lemma 5.15 of [CC] shows that for any $V\subset Z_{0}$ one has

(24) $V_{\infty} \subset\bigcup_{1=1}^{r}(A_{i})_{\infty}\cup\bigcup_{k\geqq 0}\tau^{-k}((V\cap Z_{0}^{*})_{\infty*})$ ,

where $A_{i}$ is the range of $f_{p+i}$ and the sets of the form $B_{\infty*}$ are defined analo-
gously to $B_{\infty}$ while replaeing $\tau$ by $\tau^{*}$ , the Markov subshift determimed by $r*$ .
Note that, by the construction, $A_{i}\subset[b, c)\subset G$ for any $i$ .
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AS in [CC] we have to consider three cases:
(i) If $b^{*}=d$ then $(a, d)\cap Z_{0}^{*}=\emptyset$ , so for $V=(a, d)\cap Z_{0}$ one has $V_{\infty}\subset U_{i=1}^{r}(A_{i})_{\infty}$

and therefore $\dim_{H}V_{\infty}<1$ by Lemmas 1, $(ii)-(iii)$ , and 2. Since $y_{0}\in V,$ $y_{0}\in G$ ,

a contradiction.
(ii) If $b^{*}<d$ but $\tau^{n}(b^{*})$ is not defined for some $n\geqq 1$ , then any neighbour-

hood $V$ of $y_{0}$ contained in $(c, d)\cap Z_{0}$ satisfies $(V\cap Z_{0}^{*})_{\infty*}=\emptyset$ and, as in case (i),

the inequality $\dim_{H}V_{\infty}<1$ follows from (24) and Lemmas 1 and 2. Again,
$y_{0}\in G$ contradicting the choice of $y_{0}$ .

(iii) Finally, assume that $b^{*}<d$ and $\tau^{n}(b^{*})$ is defined for all $n$ . In this case,
we have to apply the argument of Section 5 to the pseudogroup $\Gamma^{*}$ and the
gap $1^{*}$ of $Z_{0}^{*}$ . Since $K_{\gamma}\subset(b^{*}-\delta(J), b^{*}+\delta(J)),$ $|J^{*}|\geqq|J|$ and the corresponding
constants $\mu^{*}$ and $\theta^{*}$ for $\Gamma^{*}$ satisfy the inequalities $\mu^{*}\leqq\mu$ and $\theta^{*}\leqq\theta$ , it follows
from (16) that $\delta^{*}=\delta(J^{*})\geqq\delta(J)$ . Therefore, the estimates analogous to (17) hold
for segments $K\subset K_{\gamma}$ and the canonical extensions of maps of $\Gamma_{+}^{*}$ . (Recall after
Section 4 of [CC] that the canonical extension of a map $h_{f_{1}}^{*}\circ\cdots\circ h_{J_{k}}^{*}\in\Gamma^{*}$ is
defined as $h_{a_{j_{1}}}\circ\cdot$ $\circ h_{a_{j_{k}}}.$ ) Consequently,

(25) $\dim_{H}(V\cap Z_{0}^{*})_{\infty*}<1$

for $V=(c, d)\cap Z_{0}$ . Inequality (25) together with (24) and Lemma 1, (iii) and (v),

implies again that $\dim_{H}V_{\infty}<1$ and $y_{0}\in G$ providing us with a contradiction as
before. $\square$

7. Some remarks.

The classical Denjoy example ([De], compare [Ta]) shows that the assump-
tion of $C^{2}$-differentiability is essential. In the $C^{1}$ case, the equality $\dim_{H}Z_{0}=1$

as well as the inequality $|Z_{0}|>0$ may hold.
More subtle estimates of $\dim_{H}Z_{0}$ from above (as well as from below) should

be possible to obtain in terms of the maps $h_{1},$ $\cdots$ , $h_{m}(i.e.$ , their domains, ranges
and derivatives) generating $\Gamma$. The calculation could be, however, very hard.
(Compare [Bo] to have an idea.) In general, $\dim_{H}Z_{0}$ can be arbitrarily close
to $0$ as well as to 1. In some “degenerate” cases ( $Z_{0}$ finite, for example), the
equality $\dim_{H}Z_{0}=0$ can hold. However, for a typical Markov pseudogroup $\Gamma$,
$Z_{0}$ is of positive Hausdorff dimension and (as well as the corresponding excep-
tional minimal set in a suitable foliated manifold) becomes a fractal in the sense
of Mandelbrot [Man] (compare [Ed], p. 151).

It should be possible to obtain similar results while replacing tbe Hausdorff
dimension by other fractal dimensions like, for example, the packing dimension
$\dim_{P}$ or the lower (resp., upper) entropy dimension dimfO (resp., $\dim_{E}^{u}$) (see [Ba],
[TT] and [Ed], pp. 181-185). This should be still of some interest because of
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the inequalities

(26) $\dim_{H}\leqq\dim_{E}^{l}\leqq\dim_{E}^{u}\leqq\dim_{P}$ .

Another related question is whether the equality

(27) $\dim_{H}Z_{0}=\dim_{P}Z_{0}$

holds for Markov invariant sets. In other words, $is-typically-Z_{0}$ a fractal in
the sense of Taylor?
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