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1. Introduction.

Riemannian spin manifolds carry an important natural operator, for Dirac
operator. The Dirac operator is an elliptic differential operator of first order
acting on spinor fields, hence its spectrum is discrete point spectrum if the
underlying manifold is compact. An excellent introduction to the general theory
of Dirac operators can be found in [15]. The relation between the spectrum
and the geometry of the manifold is currently an object of intense research.
Explicit calculation of the spectrum is possible only for very nice manifolds.
For example, for homogeneous spaces the calculation can be reduced to repre-
sentation theoretic computations which still can be very hard, see [2]. To the
author’s knowledge the first explicit calculation was done by Friedrich in [9]

for the flat torus to demonstrate the dependence of the Dirac spectrum on the
choice of spin structure.

In this paper we study the Dirac spectrum of the sphere and of its quotients.
Ikeda obtained analogous results for the Laplace operator on spherical space
forms in a series of papers $[10]-[14]$ . In [10] he calculates the spectrum of
the Laplace operator acting on functions, in [14] he does the same for the
Laplace operator acting on $p$ -forms. In [12] and [13] he constructs non-isometric
examples with the same Laplace spectrum.

We begin with the calculation of the Dirac spectrum on the standard sphere.
Sulanke already did this in her unpublished thesis [17] using the representation
theoretic methods mentioned above. But the necessary computations in her
work are lengthy and it seemed desirable to find a simpler way to do it. Our
main tool is the use of Killing sPinors. Killing spinors are spinor fields satis-
fying a certain highly over-determined differential equation. Generically, they
do not exist, but on the standard sphere they can be used to trivialize the spinor
bundle. In this trivialization the calculation can be carried out without too
much pain. The eigenvalues on $S^{n}$ turn out to have a very simple form, they
are given by $\pm(n/2+k),$ $k\geqq 0$ (Theorem 1).
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In the tbird section we study quotients of spheres $\Gamma\backslash S^{n}$ . EigensPinors on
the quotient correspond to $\Gamma$-invariant eigenspinors on the sphere. Therefore
the quotient has the same eigenvalues as the sphere, but the multiplicities will
in general be smaller. We define certain power series with such multiplicities
as coefficients and express them in terms of $\Gamma$ and the spin structure (Theorem

2). This way of encoding the spectrum of quotients had already been used by
Ikeda for the Laplace operator.

AS a direct consequence we obtain a formula for the dimension of the space
of Killing spinors (Theorem 3). We show that a manifold with many Killing
spinors in a sense to be made precise has to be either the sphere or in certain
dimensions it can also be real projective space (Theorem 4). This improves a
result by Franc [7, Thm. 2].

In the last section we construct non-isometric spherical space forms with
metacyclic fundamental groups baving the same Dirac spectrum. Therefore we
see that the Dirac spectrum does not carry enough information to determine
the isometry class of such a space form.

2. Dirac eigenvalues of $S^{n}$ .
Let $S^{7l}$ be the $n$ -dimensional sphere carrying the standard metric of con-

stant sectional curvature 1, $n\geqq 2$ . The classical Dirac operator acting on spinor
fields over $S^{\prime\iota}$ is denoted by $D$ and $\nabla$ is the Levi-Civita connection acting on
vector fields or on spinor fields. In this section we will calculate the spectrum
of $D$ . This can be performed by regarding $S^{n}=Spin(n+l)/Spin(n)$ as a homo-
geneous space and using representation theoretic methods, see S. Sulanke’s
thesis [17]. The necessary calculations however are lengthy and by now there
is a much simpler way to do it using Killing spinors.

Let $\mu==^{1/2}$ . A Killing $sPinor$ with Killing constant $\mu$ is a spinor field $\Psi$

satisfying the equation
$\tilde{\nabla}_{X}\Psi:=\nabla_{X}\Psi-\mu\cdot X\cdot\Psi=0$ (1)

for all tangent vectors $X$ . Killing sPinors are useful in this context because of
the following well known lemma.

LEMMA 1. The $sPinor$ bundle $\sum S^{n}$ can be tnvialized by Killing sffinors for
$\mu=1/2$ as well as for $\mu=-1/2$ .

PROOF. Slnce $S^{n}$ is simply connected it is enough to show that the curva-
ture of the connection V vanishes.

Let $p\in S^{n}$ , let $X,$ $Y$ be vector fields near $p$ , let $\Psi$ be a spinor field near $p$ .
For simplicity we assume $\nabla X(p)=\nabla Y(p)=0$ . We calculate at $P$
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$\tilde{\nabla}_{X}\tilde{\nabla}_{Y}\Psi=(\nabla_{X}-\mu X)(\nabla_{Y}-\mu Y)\Psi$

$= \nabla_{X}\nabla_{Y}\Psi-\mu 1^{\nearrow}\nabla_{X}\Psi-\mu X\nabla_{Y}\Psi+\frac{1}{4}XY$

from which we deduce

$R^{\tilde{\nabla}}(X, Y) \Psi=R^{\Sigma}(X, Y)\Psi+\frac{1}{4}(XY-YX)\Psi$ . (2)

The curvature $R^{\Sigma}$ of the spinor bundle is related to the curvature $R$ of the
tangent bundle by the formula (see [15, p. 110, Thm. 4.15])

$R^{\Sigma}(X, Y)= \frac{1}{4}\sum_{i,j\Rightarrow 1}^{n}\langle R(X, Y)e_{i}, e_{j}\rangle e_{i}e_{j}$ (3)

where $e_{1},$
$\cdots$ , $e_{n}$ is a local orthonormal basis of the tangent bundle.

Since the sectional curvature is constant 1, $R$ is of the form

$R(X, Y)Z=\langle Y, Z\rangle X-\langle X, Z\rangle Y$ . (4)

Combining (3) and (4) yields

$R^{\Sigma}(X, Y)= \frac{1}{4}$ (YX-XY) (5)

which together with (2) gives $R^{\tilde{\nabla}}=0$ . $\square$

The following Weitzenbock formula relates the connection V over the sphere
to the Dirac operator $D$ .

LEMMA 2. On $S^{n}$ with the standard metric of sectional curvature 1 the fol-
lowing formula holds:

$(D+ \mu)^{2}=\tilde{\nabla}^{*}\tilde{\nabla}+\frac{1}{4}(n-1)^{2}$ .

PROOF. Let $p\in S^{n}$ , let $e_{1},$ $\cdots$ , $e_{n}$ be a local orthonormal frame near $p$ such
that $\nabla e_{i}(p)=0$ . At $P$ we get

$(D+ \mu)^{2}-\tilde{\nabla}^{*}\tilde{\nabla}=(\sum_{i}e_{i}\nabla_{e_{i}}+\mu)(\sum_{j}e_{f}\nabla_{e_{j}}+\mu)+\sum_{j}\forall_{e_{j}}\tilde{\nabla}_{e_{j}}$

$= \sum_{ij}e_{i}e_{j}\nabla_{e_{i}}\nabla_{e_{j}}+2\mu D+\frac{1}{4}+\sum_{j}(\nabla_{e_{j}}-\mu e_{j})(\nabla_{e_{j}}-\mu e_{j})$

$=- \sum_{j}\nabla_{e_{j}}\nabla_{e_{j}}+\sum_{i\triangleleft}e_{i}e_{j}R^{\Sigma}(e_{i}, e_{j})+2\mu D+\frac{1}{4}$

$+ \sum_{j}\nabla_{e_{j}}\nabla_{e_{j}}-2\mu D-\frac{1}{4}n$
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$(6)= \frac{1}{4}ije_{t}e_{j}(e_{f}e_{i}-e_{i}e_{j})-\frac{1}{4}(n-1)$

$= \frac{1}{4}n(n-1)-\frac{1}{4}(n-1)$

$=\underline{1}(n-1)^{2}$ . $\square$

TO proceed we choose an orthogonal basis $f_{0}\equiv 1,$ $f_{1},$ $f_{2},$ $\cdots$ of the $L^{2_{-}}func-$

tions on $S^{n},$ $L^{2}(S^{n}, R)$ , consisting of eigenfunctions of the Laplace operator
$\Delta=d^{*}d,$ $\Delta f_{i}=\lambda_{i}f_{i}$ . In view of Lemma 1 we see that $f_{i}\Psi_{j}$ form a basis of the
$L^{2}$-spinor fields, $L^{2}( S", \sum S^{n})$ where $\Psi_{1},$ $\cdots$ , $\Psi_{2[n/2]}$ are a trivialization of the
spinor bundle by Killing spinors with Killing constant $\mu$ . The next lemma tells
us that we found an eigenbasis for the operator $(D+\mu)^{2}$ .

LEMMA 3. $(D+\mu)^{2}(f_{i}\Psi_{j})=(\lambda_{i}+(n-1)^{2}/4)f_{i}\Psi_{j}$ .

PROOF. This follows directly from Lemma 2 and the fact that $\Psi$ , is $\tilde{\nabla}-$

parallel. $\square$

The eigenvalues of the Laplace operator on $S^{n}$ are well known, namely we
have

LEMMA 4. The eigenvalues of the Laplace operator on $S^{n}$ are

$k(n+k-1)$ , $k=0,1,2,$ $\cdots$

with multiplicities

$m_{k}= (\begin{array}{ll}n+k -1k \end{array})\frac{n+2k-1}{n+k-1}$ . $\square$

For a proof see [4, p. $159ff$ ]. Combining Lemma 3 and Lemma 4 yields

COROLLARY. $(D+\mu)^{2}$ has the eigenvalues $k(n+k-1)+(n-1)^{2}/4,$ $k=0,1,2,$ $\cdots$

with multiplicity $2^{[n/2]}\cdot m_{k}$ . $\square$

The next step is the calculation of the eigenvalues of $D+\mu$ First general
remark. If an operator $A$ and a vector $u$ satisfy

$A^{2}u=v^{2}u$ ,

then we get for $v^{\pm}:$ $=\pm\nu u+Au$ :
$Av^{\pm}=\pm\nu v^{\pm}$

Hence if $v^{\pm}\neq 0$ , then $\pm\nu$ is an eigenvalue of $A$ .
In our case $A=D+\mu$ Let us first look at the case $k=0$ , i. e., $u=\Psi_{j}$ and

$\nu=-\mu(n-1)$ .
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$v^{+}=-\mu(n-1)\Psi_{j}+(D+\mu)\Psi_{j}$

$=-2\mu(n-1)\Psi_{j}$ .

Thus $-\mu(n-1)$ is an eigenvalue of $D+\mu$ of multiplicity at least $2^{[n/2]}$ . Since
the multiplicity of the eigenvalue $(n-1)^{2}/4$ of $(D+\mu)^{2}$ is $2^{[n/2]}$ , the eigenvalue
$-\mu(n-1)$ of $D+\mu$ has also exactly multiplicity $2^{[n/2]}$ .

NOW the case $k\geqq 1,$ $i$ . $e.,$ $u=f_{i}\Psi_{j},$ $i\geqq 1$ ,

$\nu=\sqrt{k(n+k-1)+\frac{1}{4}(n-1)^{2}}$

$=k+ \frac{n-1}{2}$ .

NOW we know all the eigenvalues of $D$ , namely $-\mu n$ is an eigenvalue with
multiplicity $2^{[n/2]}$ and the other eigenvalues are $-\mu\pm(k+(n-1)/2),$ $k=1,2,3,$ $\cdots$ .
It remains to determine the other multiplicities.

TO do this let us recall that we may choose $\mu=+1/2$ or $\mu=-1/2$ . We
start with $\mu=-1/2$ . We introduce the following notation for the eigenvalues
of $D$ .

$\lambda_{0}^{+}=\frac{n}{2}$ ,

$\lambda_{k}^{+}=\frac{n}{2}+k$ , $k\geqq 1$ ,

$\lambda_{-k}^{+}=1-\frac{n}{2}-k$ , $k\geqq 1$ .

We know the multiplicity of $\lambda_{0}^{+}$ , namely $m(n/2)=2^{[n/2]}$ , and from the above
Corollary we know $m(\lambda_{k}^{+})+m(\lambda_{-k}^{+})=2^{(n/23}\cdot m_{k}$ .

Using $\mu=+1/2$ and the notation

$\lambda_{0}^{-}=\frac{n}{2}$

$\lambda_{k}^{-}=-1+\frac{n}{2}+k$ , $k\geqq 1$ ,

$\lambda_{-k}^{-}=-\frac{n}{2}-k$ , $k\geqq 1$

we obtain $m(-n/2)=2^{[n/2]}$ and $m(\lambda_{k}^{-})+m(\lambda_{-k}^{-})=2^{[n/2]}\cdot m_{i}$ .

LEMMA 5.

$m(\lambda_{k}^{+})=m(\lambda_{-k}^{-})=2^{[n/2]}\cdot(\begin{array}{ll}k+n -1k \end{array})$ , $k\geqq 0$ .
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PROOF BY INDUCTION ON $k$ . We saw already that the claim is true for
$k=0$ . Let us carry out the induction step $karrow k+1$ .

$m(\lambda_{k+1}^{+})=2^{[n/2]}\cdot m_{k+1}-m(\lambda_{-k-1}^{+})$

$=2^{[n/2]}\cdot m_{k+1}-m(\lambda_{-k}^{-})$

$=2^{[n/2]} \cdot\{(\begin{array}{l}n+kk+1\end{array})\cdot\frac{n+2k+1}{n+k}-(\begin{array}{ll}k+n -1k \end{array}) \}$

$=2^{[n/2]}\cdot(nk++1)$ $\square$

Summing up everything we get

THEOREM 1. The classical Dirac operator on the sphere $S^{n}$ of constant sec-
tional curvature 1 has the eigenvalues

$\pm(\frac{n}{2}+k)$ , $k\geqq 0$

with multiplicrties

$2^{In/2\rfloor}\cdot(\begin{array}{ll}k+n -1k \end{array})$ . $\square$

3. Space forms.

The group of orientation preserving isometries of $S^{n}$ is given by $Iso^{+}(S^{7l})=$

$SO(n+1),$ $SO(n+1)$ acting from the left by matrix multiplication on $S^{n}\subset R^{n+1}$ .
Oriented compact connected manifolds of constant sectional curvature 1 are of
the form $\Gamma\backslash S^{n}$ where $\Gamma$ is a finite fixed point free subgroup of $SO(n+1)$ .
The special orthogonal group $SO(n+1)$ also forms the total space of the bundle
of oriented orthonormal tangent frames, the projection onto $S^{n}$ given by pro-
jection on the first column vector, say. The action of $SO(n+1)$ on $S^{n}$ lifts to
an action on $SO(n+1)$ , simply given by matrix multiplication. $SO(n)$ acts from
the right on $SO(n+1)$ leaving invariant the first column vector. The total
space of the frame bundle of a quotient $\Gamma\backslash S^{n}$ is given by $\Gamma\backslash SO(n+1)$ .

Let $\Theta:Spin(n+1)arrow SO(n+1)$ be the double covering mapping. Then
SPin $(n+1)$ together with $\Theta$ is the spin structure of $S^{n}$ . SPin $(n)$ acts as struc-
ture group from the right of SPin $(n+1)$ and SPin $(n+1)$ acts by group multi-
plication from the left on the total space of the spin structure. Spinor fields
over $S^{n}$ can be regarded as SPin $(n)$-equivariant mappings from SPin $(n+1)$ to
the spinor space $\Sigma_{n}$ . Spin structures of a quotient $\Gamma\backslash S^{\gamma\}}$ are in 1-1 corre-
spondence with homomorphisms $\epsilon:\Gammaarrow Spin(n+1)$ such that $\Theta\circ\epsilon=id_{/^{V}}$ . The
total space of the spin structure is then given by $\epsilon(\Gamma)\backslash Spin(n+1)$ and spiror
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fields over the quotient correspond to $\epsilon(\Gamma)$-invariant spinor fields over $S^{n}$ .
We only need to look at odd dimensional space forms because in even

dimensions the only quotient of the sphere is real projective space which then
is not even orientable, in particular not spin.

Let $M=\Gamma\backslash S^{n}$ be spin, $\Gamma\subset SO(n+1)$ a fixed point free subgroup, the spin
structure of $M$ being specified by $\epsilon$ : $\Gammaarrow Spin(n+1)$ such that $\Theta\circ\epsilon=id_{\Gamma},$ $n=$

$2m-1$ odd. The Dirac eigenvalues of $S^{n}$ are of the form $\pm(n/2+k),$ $k\geqq 0$ .
The same holds for $M$ but the multiplicities for $M$ will in general be smaller
than those for $S^{n}$ . To know the Dirac spectrum of $M$ means to know the
multiplicities $m(\pm(n/2+k), D)$ for $M$. We encode this information into the
following two power series

$F_{+}(z)= \sum_{k=0}^{\infty}m(\frac{n}{2}+k,$ $D)z^{k}$ ,

$F_{-}(z)= \sum_{k=0}^{\infty}m(-(\frac{n}{2}+k),$ $D)z^{k}$

LEMMA 6. $F_{+}(z)$ and $F_{-}(z)$ converge absolutely for $|z|<1$ .

PROOF. According to Theorem 1 $F_{\underline{\dashv}}(z)$ can be majorized by

$2^{[n/2]} \cdot\sum_{k=0}^{\infty}(\begin{array}{ll}k+n -1k \end{array})z^{k}$

This power series has radius of convergence $=1$ because

$(\begin{array}{l}k+n-1k\end{array})$

$\lim_{karrow\infty}\overline{(\begin{array}{l}k+nk+1\end{array})}=1$

. $\square$

The aim of this section is to give formulas for $F_{\pm}(z)$ in terms of $\Gamma$ and $\epsilon$ .
In even dimension $2m$ the complex spinor representation of SPin $(2m)$ on $\Sigma_{2m}$

decomposes into two irreducible half s-ffi $n$ representations

$\rho^{+}:$ Spin $(2m)arrow Aut(\Sigma_{2m}^{+})$ ,

$\rho^{-}:$ Spin $(2m)arrow Aut(\Sigma_{2m}^{-})$ .

Let $x^{\pm}:$ Stnn $(2m)arrow C$ be the character of $\rho^{\pm}$ . The main result of this section is

THEOREM 2. Let $\Gamma\backslash S^{2m-1}$ be a spherical space form with $spn$ structure
given by $\epsilon$ : $\Gammaarrow stnn(2m)$ . Then the eigenvalues of the Dirac operator are
$\pm(n/2+k),$ $k\geqq 0$ , with multiPlicrties determined by

$F_{+}(z)=|^{-} \Gamma|1/\sum_{\in\Gamma},\frac{x^{-(\epsilon(\gamma))-z}\cdot x_{(\epsilon}^{+}}{det1_{2m}-z\cdot\gamma}(\underline{\gamma))})$
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$F_{-}(z)= \frac{1}{|\Gamma|}\sum_{\gamma\in\Gamma}\frac{x^{+}(\epsilon(\gamma))-z\cdot\chi-(\epsilon(\gamma))}{det(1_{2m}-z\cdot\gamma)}$ .

Before we prove the theorem let us draw a few conclusions. The formulas
show that $F_{\pm}$ extend to meromorphic functions on the whole complex plane
with finitely many poles.

Heat kernel asymptotics show that the volume of a closed Riemannian spin
manifold is determined by its Dirac spectrum. The following argument, first
used by Ikeda to study Laplace operators [10, Cor. 2.4], shows that the spherical
space forms we need to know only half the spectrum.

COROLLARY 1. If $\Gamma_{1}\backslash S^{2m-1}$ and $\Gamma_{2}\backslash S$
‘ m-l have the same Positive or the same

negative Dirac sPectrum, then
$|\Gamma_{1}|=|\Gamma_{2}|$ .

PROOF. The power series $F_{+}(z)$ has a pole of order $n$ at $z=1$ and

$\lim_{zarrow 1}(1-z)^{n}F_{+}(z)=\frac{2^{m- 1}}{|\Gamma|}$

Thus $|\Gamma|$ is determined by $F_{+}$ , hence by tbe positive Dirac spectrum. The
same argument applies to $F_{-}$ . $\square$

COROLLARY 2. Let $\Gamma_{1}$ and $\Gamma_{2}$ be two finite fixed Pmnt free subgroltps of
$SO(2m)$ , let $\epsilon_{t}$ : $\Gamma_{i}arrow Stnn(2m)$ be two homomorphisms such that $\Theta\circ\epsilon_{i}=id_{\Gamma_{i}}$ . If
there exists a $bi_{J^{eCt}}ive$ maptnng $\Phi$ : $\Gamma_{1}arrow\Gamma_{2}$ such that for every $\gamma\in\Gamma_{1}$ the two
elements $\epsilon_{1}(\gamma)$ and $\epsilon_{2}(\Phi(\gamma))$ are conjugate in Slnn$(2m)$ , then the two space forms
$\Gamma_{1}\backslash S^{2m-1}$ and $\Gamma_{2}\backslash S^{2m-1}$ are Dirac isospectral.

PROOF. The power series $F_{\pm}$ coincide for the two groups because all in-
gredients are invariant under conjugation. $\square$

PROOF OF THEOREM 2. AS in the previous section we first look at the
operators $(D\pm 1/2)^{2}$ . Put

$G_{\pm}(z):= \sum_{k=0}^{\infty}m((\frac{n-1}{2}+k)^{2},$ $(D \pm\frac{1}{2})^{2})z^{k}$

Over $S^{n}$ the eigenspace $E^{k}$ for the eigenvalue $((n-1)/2+k)^{2}$ of $(D+1’2)^{2}$ is
spanned by products $f\cdot\Psi$ where $\Psi$ is a Killing spinor with Killing constant
$\mu=1/2$ and $f\in \mathcal{H}^{k}=\{harmonic$ homogeneous polynomials of degree $k$ on $R^{2m}$ ,

restricted to $S^{2m-1}$ }.

SPin$(2m)$ acts on the spinor fields over $S^{n}$ and leaves invariant the eigen-
spaces $E^{k}$ . We want to determine the dimension of the $\epsilon(\Gamma)$-invariant subspace
of $E^{k}$ because this is exactly the multiplicity $m(((n-1)/2+k)^{2}, (D+1/2)^{2})$ .

HOW does the action of SPin$(2m)$ on the 1/2-Killing spinors look like? As
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mappings $\Psi:Spin(2m)arrow\Sigma_{n}$ the 1/2-Killing spinors are of the form

$\Psi(g)=\rho^{+}(g^{-1})\cdot\sigma$ , $\sigma=\Psi(1)\in\Sigma_{n}$ ,

see [6, Prop. 12]. Hence an element $g_{0}\in Spin(2m)$ acts on $\Psi$ by

$(g_{0}\Psi)(g)=\Psi(g_{0}^{-x}g)$

$=\rho^{+}$ ($g^{-1}$go) . $\sigma$

$=\rho^{+}(g^{-1})\rho^{+}(g_{0})\sigma$ .
By identifying $\Psi$ with a we see that the action of SPin$(2m)$ on the space of
1/2-Killing spinors is equivalent to $\rho^{+}$ .

NOW let $\rho_{k}$ be the representation of $SO(2m)$ on $\mathcal{H}^{k}$ with character $\chi_{k}$ . We
have just seen that the representation of SPin$(2m)$ on $E^{k}$ is equivalent to
$(\rho_{k}\circ\Theta)\otimes\rho^{+}$ . The dimension of the $\epsilon(\Gamma)$-invariant subspace is given by

$dim(E^{k})^{\epsilon(\Gamma)}=\langle\chi_{k}.\chi_{\rho^{+}\circ\epsilon}1\rangle$

1
$= \sum_{\gamma\in\Gamma}\chi_{k}(\gamma)\chi+\overline{|}\Gamma\overline{|}(\epsilon(\gamma))$

. (6)

Ikeda [10, p. 81] calculated

$\sum_{k=0}^{\infty}\chi_{k}(\gamma)_{Z^{h}}=\frac{1-z^{2}}{det(1_{2m}-z\cdot\gamma)}$ (7)

From (6) and (7) we obtain

$G_{+}(z)= \frac{1-z^{2}}{|\Gamma|}\sum_{\gamma\in^{r}}\frac{x^{+}(\epsilon())}{det(1_{2m}-z\cdot\gamma)}$ .

In the same way we get

$G_{-}(z)= \frac{1-z^{2}}{|\Gamma|}\sum_{\gamma\in\Gamma}\frac{\chi-(\epsilon(\gamma))}{det(1_{2m}-z\cdot\gamma)}$ .

AS in the previous section we have

$m( \frac{n}{2}+k,$ $D)+m(- \frac{n}{2}-k+1,$ $D)=m(( \frac{n}{2}+k)^{2},$ $(D- \frac{1}{2})^{2})$

which means for the power series

$F_{+}(z)+z\cdot F_{-}(z)=G_{-}(z)$ . (8)

Similarly,
$z\cdot F_{+}(z)+F_{-}(z)=G_{+}(z)$ . (9)

Solving (8) and (9) for $F_{+}$ and $F_{-}$ finishes the proof. $\square$
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4. Killing spinors.

In the second section we have seen that on a spherical space form of cur-
vature 1 the Killing spinors with Killing constant $\mu=\pm 1/2$ are exactly the
eigenspinors of the Dirac operator for the eigenvalue $-\mu n$ . To get the dimen-
sion of the space of Killing spinors we only need to plug in $z=0$ into the series
$F_{\overline{\succ}}(z)$ .

THEOREM 3. Let $\Gamma\backslash S^{2m-1}$ be a sPherical $sPace$ form with $s\mu n$ structure
given by $\epsilon:\Gammaarrow S1nn(2m)$ . Then the dimenston of the space of Killing sffinors
with Killing constant $\mu=1/2$ is given by

$\frac{1}{|\Gamma|}\sum_{\gamma\in\Gamma}x_{(\epsilon(\gamma))}^{+}$

whereas for the Killing cmstant $\mu=-1/2$ the dimension is

$\frac{1}{|\Gamma|}\sum_{\gamma\in\Gamma}x^{-(\epsilon(\gamma))}$ . $\square$

Killing spinors on 3-dimensional spherical space forms have been studied
by Friedrich in [8] and the 5-dimensional case was done by Sulanke in [18].

EXAMPLE. Let us look at the case $\Gamma=\{\pm 1_{2m}\}$ , i. e., $\Gamma\backslash S^{2m-1}=RP^{2m-1}$ is
real projective space. It is not hard to see that the two preimages $\pm\omega\in$

$Spin(2m)$ of $-1_{2m}\in SO(2m)$ satisfy

$(\pm\omega)^{2}=(-1)^{m}$ .

In fact, if we view SPin$(2m)$ as sitting in the Clifford algebra $Cl(R^{2m})$ , then $\omega$

is just $\omega=e_{1}\cdot e_{2}\cdot\cdots\cdot e_{2m}$ .
If $m$ is odd, then there is no homomorphism $\epsilon:\Gammaarrow Spin(2m)$ with $\Theta\circ\epsilon=id_{\Gamma}$

because we need to have

$1=\epsilon(1_{2m})=\epsilon((-1_{2m})^{2})=\epsilon(-1_{2m})^{2}=(\pm\omega)^{\mathfrak{g}}=(-1)^{m}$

In other words, $RP^{2m-1}$ is not spin if $m$ is odd.
If $m$ is even, then $RP^{2m-1}$ carries two spin structures given by $\epsilon_{\pm}(-1_{2m})$

$=\pm\omega$ . The decomposition $\Sigma_{2m}=\Sigma_{2m}+\oplus\Sigma_{2m}^{-}$ is nothing but the eigenspace de-
composition for $\omega$ [ $15$ , p. 129]. Therefore $x^{\pm}(\omega)=\pm 2^{m-1}$ . For the spin struc-
ture given by $\epsilon_{+}$ we get from Theorem 3 that there are $2^{m-1}$ linearly inde-
pendent Killing spinors with Killing constant $\mu=1/2$ whereas there are no
nontrivial Killing spinors with $\mu=-1/2$ . If we change to $\epsilon_{-}$ then we have to
interchange $\mu$ and $-\mu$ .

We have seen that in dimension $n\equiv 3(4)$ there is another manifold, namely
real projective space, besides the sphere having the maximal number of linearly
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independent Killing spinors at least for one of the two possible Killing constants
$\pm 1/2$ . Franc showed in [7, Thm. 2] that there are no further examples in the
class of lens spaces. But there are actually no further such examples at all.

THEOREM 4. Let $M$ be a closed cmnected Riemannian $spn$ manifold of
dimension $n$ having $2^{[n/2]}$ linearly independent Killing spinors with the same Killing
constant $\mu=\pm 1/2$ . Then either $M$ is isometric to the standard sphere $S^{n}$ or $n\equiv$

3(4) and $M$ is isometric to $RP^{n}$ .

PROOF. From the classification of simply connected manifolds with Killing
spinors [3] it follows that the universal covering of $M$ is isometric to $S^{n}$ .
Hence $M$ is a spherical space form, $M=\Gamma\backslash S^{n}$ . If $n$ is even, the only space
form is real projective space which is not spin in this case.

We may therefore assume $n=2m-1$ odd. Let’s say $M$ carries $2^{m-l}$ Killing
spinors with Killing constant $\mu=+1/2$ . For $\gamma\in\Gamma$ the automorphism $\rho^{+}(\epsilon(\gamma))$ is
unitary, thus all eigenvalues have absolute value 1. Triangle inequality applied
to the formula of Theorem 3 shows that the dimension of the space of Killing
spinors with a fixed Killing constant is bounded by $2^{m-1}$ . In our case we have
equality, hence all eigenvalues of all $\rho^{+}(\epsilon(\gamma))$ must be one. In other words, $\Gamma$

acts trivially via $\rho^{+}\circ\epsilon$ .
If $m$ is odd, then the tensor product $\rho^{+}\otimes\rho^{-}$ contains the complexification

of the standard representation on $R^{2m}$ given by $\Theta:Spin(2m)arrow SO(2m)$ , see [5,

p. 280]. The only element of $SO(2m)$ acting trivially on $C^{2m}$ is the neutral
element $1_{2m}$ . Thus $\Gamma$ must be trivial and $M$ is isometric to $S^{n}$ .

If $m$ is even the tensor product $\rho^{+}\otimes\rho^{+}$ contains the complexification of the
representation on $\Lambda^{2}R^{2m}$ , see again [5, p. 280]. The only matrices in $SO(2m)$

acting trivially on $\Lambda^{2}C^{2m}$ are $\pm 1_{2m}$ . Hence $\Gamma=\{\pm 1_{2m}\}$ or $\Gamma$ is trivial. $\square$

5. Isospectral examples

In this section we will construct examples of spherical space forms which
are not isometric but which have the same Dirac spectra. Therefore the Dirac
spectrum does not determine the isometry class of a spherical space form. In
this respect the Dirac operator behaves similarly to the Laplace operator, com-
pare Ikeda’s papers [12] and [13].

One might expect that the simplest class to look for isospectral examples
are lens spaces but we want to use Corollary 2 to Theorem 2 and we need two
fixed point free subgroups of $Spin(2m)$ such tbat there is a bijection between
them under which the corresponding elements are conjugate in SPin$(2m)$ . If the
groups in question are cyclic, then this implies that the two groups are con-
jugate (conjugation by the element in SPin$(2m)$ which sends a generator of the
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first group to something in the second) and hence the corresponding space
forms are isometric. Therefore we have to deal with more complicated funda-
mental groups. This does not mean that isospectral lens spaces are isometric
but the argument would have to be different.

Let $a$ and $b$ be two positive odd integers, let $r$ be a positive integer such
that $r^{b}\equiv 1(a)$ and $((r-1)b, a)=1$ . We denote by $\Gamma(a, b, r)$ the group generated
by the two elements $A$ and $B$ satisfying the relations $A^{a}=B^{b}=1$ and $BAB^{-1}$

$=A^{r}$ . Such groups are called metacyclic.

LEMMA 7. A sPhencal space form with fundamental grmp isomorphic to
$\Gamma(a, b, r)$ as above has exactly one stnn structure.

PROOF. Let $\pm A,$ $\pm\tilde{B}\in Spin(2m)$ be the preimages of $A,$ $B\in\Gamma(a, b, r)\subset$

$SO(2m)$ . For the spin structure corresponding to $\epsilon:\Gamma(a, b, r)arrow spin(2m)$ we
need to have

$\tilde{A}^{a}=\epsilon(A^{a})=1$ . (10)

Since $a$ is odd we can arrange (10) by passing from $\tilde{A}$ to $-\tilde{A}$ if necessary.
Similarly, by choosing the correct preimage $\tilde{B}$ of $B$ we bave $\tilde{B}^{b}=1$ and we can
put $\epsilon(B)=\tilde{B}$ .

We have already seen uniqueness of the spin structure. It remains to check
$\tilde{B}\tilde{A}\tilde{B}^{-1}=\tilde{A}^{r}$ (11)

We know
$\tilde{B}\tilde{A}\tilde{B}^{-1}=\delta\tilde{A}^{r}$ $\delta=\pm 1$ . (12)

By taking (12) to the power $a$ we get $1-\delta^{a}$ , hence $\delta=1$ which is (11). $\square$

LEMMA 8. Let $\Gamma_{1}$ and $\Gamma_{2}$ be two fixed $p\alpha nt$ free subgroups of $SO(2m)$ iso-
morphic to $\Gamma(a, b, r)$ . Let $\epsilon_{i}$ : $\Gamma_{i}arrow\tilde{\Gamma}_{\ell}\subset spn(2m)$ be the $spn$ structures from
Lemma 7. If $X\in\Gamma_{1}$ and $Y\in\Gamma_{2}$ are conjugate in $SO(2m)$ , then $\epsilon_{1}(X)$ and $\epsilon_{2}(Y)$

are conjugate in Sffin$(2m)$ .

PROOF. Let $S\in SO(2m)$ such that SXS $=Y$ . Choose a preimage $\tilde{S}$ of $S$

in $Spn(2m)$ . Then we know

$\tilde{S}\epsilon_{1}(X)\tilde{S}^{-1}=\delta\epsilon_{2}(Y)$ , $\delta=\pm 1$ . (13)

Taking (13) to the power $ab$ yields $1=\delta^{ab}=\delta$ . $\square$

NOW we construct two different embeddings $\Gamma(a, b, r)arrow SO(2m)$ . Let $d$ be
the smallest positive integer such that $r^{a}\equiv 1(a)$ . Hence $d$ divides $b,$ $i$ . $e.,$ $b=db’$

for some integer $b’$ . Put

$R(\theta)=(\begin{array}{ll}cos(2\pi\theta) sin(2\pi\theta)-sin(2\pi\theta) cos(2\pi\theta)\end{array})\in SO(2)$
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and define

$\pi_{1}(A)=\pi_{2}(A)=(\begin{array}{llll}R(\frac{1}{a}) R(\frac{r}{a}) \ddots R(\frac{r^{a- 1}}{a})\end{array}\}\in SO(2d)$ ,

$\pi_{1}(B)=[_{R(\frac{1}{b’})}^{0}0$ $01|||01]\in SO(2d)$ .

For a positive integer 1 with $(l, b)=1$ we set

$\pi_{2}(B)=[_{R(\frac{l}{b’})}^{0}0$
$01|.$

.
$01]\in SO(2d)$ .

LEMMA 9. For any integers $s$ and $t$ the matrices $\pi_{1}(A^{s}B^{lt})$ and $\pi_{2}(A^{s}B^{t})$ are
conjugate in $O(2d)$ .

PROOF. Elementary calculation [13, p. 443] shows that $\pi_{1}(A^{s}B^{\iota c})$ and
$\pi_{2}(A^{s}B^{t})$ have the same characteristic polynomial. Since two matrices in
$SO(2d)$ have the same characteristic polynomial if and only if they are con-
jugate in $O(2d)$ the Lemma is proved. $\square$

NOW we set $m=2d$ and define two embeddings $i_{1},$ $i_{2}$ : $\Gamma(a, b, r)arrow SO(2m)$ by

$i_{1}(X)=(\pi_{1}\oplus\pi_{1})(X)=(\begin{array}{ll}\pi_{1}(X) 00 \pi_{1}(X)\end{array})$ ,

$i_{2}(X)=(\pi_{2}\oplus\pi_{2})(X)=(\begin{array}{ll}\pi_{2}(X) 00 \pi_{2}(X)\end{array})$ ,

$\Gamma_{1}=i_{1}(\Gamma(a, b, r))$ , $\Gamma_{2}=i_{2}(\Gamma(a, b, r))$ .

LEMMA 10. The two space forms $\Gamma_{1}\backslash S^{2m-1}$ and $\Gamma_{2}\backslash S^{2m-1}$ are Dirac iso-
spectral.

PROOF. Define a bijective map $\Phi:\Gamma_{1}arrow\Gamma_{2}$ by

$\Phi(i_{1}(A^{s}B^{lt}))=i_{2}(A^{s}B^{t})$ .
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From Lemma 9 we know that for each $s$ and $t$ there is an $S\in O(2d)$ such that
$\pi_{2}(A^{s}B^{t})=S\pi_{1}(A^{s}B^{lt})S^{-1}$ . Thus

$\Phi(i_{1}(A^{s}B^{lt}))=(\begin{array}{ll}S 00 S\end{array})\cdot i_{1}(A^{s}B^{it})\cdot(\begin{array}{ll}S 00 S\end{array})$

Since $(\begin{array}{ll}S 00 S\end{array})\in SO(2m)$ Lemma 8 says that $\epsilon(i_{1}(A^{s}B^{lt}))$ and $\epsilon(\Phi(i_{1}(A^{s}B^{lt})))$ are

conjugate in $Spin(2m)$ and the Lemma follows from Corollary 2 in Section 3. $\square$

It remains to find conditions under which $\Gamma_{1}\backslash S^{2m-1}$ and $\Gamma_{2}\backslash S^{2m-1}$ are not
isometric. Let us recall the conditions on the positive integers $a,$ $b,$ $b’,$ $r,$

$d$ and
$l.$ $a$ and $b$ are odd, $r$ satisfies $r^{b}\equiv 1(a)$ and $((r-1)b, a)=1$ . $d$ is the smallest
number such that $r^{a}\equiv 1(a)$ and $b=db’$ . Finally, $(l, b)=1$ and $m=2d$ .

From the classification of spherical space forms [19, p. 171] it is known
that if the two space forms $\Gamma_{1}\backslash S^{2m-1}$ and $\Gamma_{2}\backslash S^{2m-1}$ are isometric, then there
is an integer $t$ such that

$(t, b)=1$ , $t=1(d)$ and $1\equiv\pm t(b’)$ .

NOW we need to arrange everything so that the latter is not possible.
We start with a positive odd number $d\geqq 5$ . By Dirichlet’s prime number

theorem [16, p. 73, Thm. 2] we can choose a prime number $a$ of the form $a=$

$1+kd,$ $k\geqq 1$ . We put $b=d^{2},$ $b’=d$ and $m=2d$ . From $(d, a)=1$ we obtain $(b, a)$

$=1$ . The multiplicative group $(Z/aZ)^{*}$ of the field $Z/aZ$ is cyclic of order $kd$

[ $16$ , p. 4, Thm. 2]. Hence there is an element $r\in(Z/aZ)^{*}$ of order $d$ . Finally,
we set $l=2$ . Now all necessary conditions are fulfilled.

Assume there is a $t$ as above. Then we get $2=l\equiv\pm t\equiv\pm 1(d)$ which implies
$1\equiv 0(d)$ or $3\equiv 0(d)$ , a contradiction in either case. We summari $ze$

THEOREM 5. Let $d\geqq 5$ be odd. Then there exist two non-isometnc sPhencal
space forms of dimenston $4d-1$ hamng the same Dirac spectrum. Their funda-
mental grouPs are isomorphic to $\Gamma(a, b, r)$ where a, $b$ , and $r$ are chosen as above.
$\square$
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