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\S 1. Motivation and main results.

It is well known that a complete Riemannian $n$ -manifold $M$ with the Ricci
curvature $Ric(M)\geqq(n-1)k$ and the diameter $d(M)\leqq D$ has the volume bounded
above by the volume $v_{h}(D)$ of a $D$-ball in the simply connected space form $M_{k}^{n}$

with the constant sectional curvature $k$ . In other words, if we rescale and
normalize the metric so that $d(M)=\pi$ and consider the class $M_{k}$ of all closed
Riemannian $n$ -manifold with $Ric(M)\geqq(n-1)k$ and $d(M)=\pi$ , then the volume
defines a function on $M_{k}$ :

$vol:M_{k}arrow R^{+}$

with the range in the interval $(0,\tilde{v}_{k}(\pi)]$ . Note that the Myers theorem implies
that $k$ must be smaller than or equal to 1 since $d(M)=\pi$ .

For $k=1$ , the maximal diameter sphere theorem of Cheng [Ch] implies that
$M_{k}$ contains only one element, the $n$ -sphere with its canonical metric can. Hence
the range of $vol$ on $M_{1}$ contains the single value $\tilde{v}_{1}(\pi)$ . To see that there is
no positive lower bound on the function $vol$ defineded on $M_{k}$ for k$O, one can
consider the flat tori: $S^{1}(\epsilon)\cross T^{n-1},$ $\epsilon>0$ where $S^{1}(\epsilon)$ is the circle with radius $\epsilon$

in $R^{2}$ and $T^{n-1}$ is a flat $(n-1)$-torus. For positive $k<1$ , one can consider the
suspension M. of an $(n-1)$-sphere, $S_{\epsilon}^{n-1}$ , in $R^{n}$ with radius $\epsilon<1$ . Namely, $M_{\epsilon}=$

$S_{\epsilon}^{n-1}x_{\sin}[0, \pi]$ . Note that $M_{\epsilon}$ is the $n$ -sphere $S^{n}$ . Then smooth the two
singular points and rescale the metric to obtain a metric $g_{\epsilon}$ on $M_{\epsilon}$ with $d(g_{\epsilon})$

$=\pi$ and $\min Ric(g_{\text{\’{e}}})\geqq 1-\eta_{1}(\epsilon)$ and $vol(g_{\epsilon})\leqq\eta_{2}(\epsilon)$ where the positive functions
$\eta_{1}(\epsilon)$ and $\eta_{2}(\epsilon)$ approach zero as $\epsilon$ goes to zero. See also [GP] for a similar
construction. This indicates that the lower bound of $vol$ on $M_{k}$ is also zero
for positive $k<1$ .

For the upper bound of $vol$ on $M_{k}$ , one may ask if the upper bound $\tilde{v}_{k}(\pi)$

is obtainable by some Riemannian $n$ -manifold in $M_{k}$ ? The answer is yes only
when $k=1/4$ or 1. They are obtained by $(RP^{n}, 4can)$ and ( $S^{n}$ , can), respectively.
Therefore it is natural to ask the following
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QUESTION. Is the upper bound $\tilde{v}_{k}(\pi)$ optimal for $k\neq 1/4$ or 1?

In other words, can one find an $M\in M_{k}$ with the volume as close to $\tilde{v}_{k}(\pi)$

as possible for $k\neq 1/4$ or 1? If one asks the same question for the sectional
curvature, then the answer is No ! There does exist an upper bound smaller
than $\tilde{v}_{k}(\pi)$ for $k\neq 1/4$ or 1. This was studied by the author in [Wul] for $k>0$

and also independently by Grove and Petersen in [GP] for general $k$ . For the
Ricci curvature case, this is still unknown. However, for the subclass $M_{k}^{\Lambda}=$

$\{M\in M_{k}|Ric(M)\leqq\Lambda\}$ of $M_{k}$ , the answer is again No ! Specifically, we prove

THEOREM 1. Given any $\Lambda\geqq k(n-1)$ , there are a function $\Phi_{\Lambda}$ : $(-\infty, 1)arrow$

$R^{+}$ and a number $\delta_{\Lambda}>0$ dePending only on $\Lambda$ and $n$ with the ProPerties:
(1) $\Phi_{\Lambda}(k)\leqq V_{k}(\pi)$ and equality holds only when $k=1/4$ .
(2) $vol(M)\leqq\Phi_{\Lambda}(k)$ for any $M\in M_{k}^{\Lambda}$ .
(3) In case that $k=1/4$ , then $M\in M_{k}^{\Lambda}$ is diffeomorphic to $RP^{n}$ , provided that

$vol(M)\geqq i1_{k}(\pi)-\delta_{\Lambda}$ .
Properties (1) and (2) together show that $\tilde{v}_{k}(\pi)$ is not an optimal upper

bound for the volume function $vol$ on $M_{k}^{\Lambda}$ with $k\neq 1/4$ or 1. Theorem 1-(3)

was also proved by Anderson [A2] for the case $k=1$ . Note that if a Rieman-
nian $n$ -manifold $M$ in $M_{k}$ has the volume close to $v_{k}(\pi)$ , then the relative volume
comparison theorem implies that every $r$-ball in $M$ has the volume close to
$\tilde{v}_{k}(r)$ for $r\leqq\pi$ . This motivates a notion to measure how the volume of a small
ball is close to that of a small ball in the Euclidean space.

DEFINITION 1. For any $\theta\in(0,1)$ we say that a complete Riemannian n-
manifold $M$ has $\theta$ -volume-radius, $vol-rad_{\theta}(M)\geqq r_{0}$ if for all $p\in M$ and $0<r\leqq r_{0}$ ,

$\frac{vol(B(p,r))}{\partial(r)}\geqq\theta$

where $vol(B(p, r))$ denotes the volume of the $r$-ball, $B(p, r)$ , in $M$ around $P$ and
$i\}(r)$ is the volume of the $r$-ball in the Euclidean $n$ -space.

This new invariant $vol-rad_{\theta}(M)$ will play an important role in our proof
of Theorem 1. It can be estimated in terms of some familiar geometric in-
variants, e.g., curvature, diameter, volume $and/or$ injectivity radius. This can
be seen from the following examples.

EXAMPLE 1. Let $M$ be a compact Riemannian $n$ -manifold with the in-
jectivity radius $i(M)\geqq i_{0}>0$ . According to a result of Croke [C], we have
$vol(B(p, r))\geqq c_{n}\tilde{v}(r)$ for any $p\in M$ and $r$ $ $i_{0}/2$ where the constant $c_{n}\in(0, I)$

depends only on the dimension $n$ . Thus, $vol-rad_{c_{n}}(M)\geqq i_{0}/2$ .
EXAMPLE 2. Let $M$ be a complete Riemannian $n$ -manifold witb the sectional
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curvature $K(M)\leqq k$ and $i(M)\geqq i_{0}>0$ . The Rauch comparison theorem ([CE])
implies that for all $p\in M$ and $r\leqq i_{0},$ $vol(B(p, r))\geqq\tilde{v}_{k}(r)$ . Thus there is a con-
tinuous positive function $r(\theta):(0,1)arrow R^{+}$ depending only on $n$ and $k$ with
$\lim_{\thetaarrow 1}r(\theta)=0$ such that $vol-rad_{\theta}(M)\geqq r(\theta)$ .

EXAMPLE 3. Let $M$ denote the class of closed Riemannian $n$ -manifolds $M$

with $Ric(M)\geqq(n-1)k,$ $d(M)\leqq D$ and $vol(M)\geqq v>0$ . The Bishop-Gromov volume
comparison theorem $([Gr2])$ implies that for any $M\in M$,

$\frac{vol(B(p,r))}{i^{1_{k}}(r)}\geqq\frac{vol(M)}{i)_{k}(D)}\geqq\frac{v}{i1_{k}(D)}$

for all $p\in M$ and $r\leqq D$ . Thus there are continuous functions $\theta$ : $(0,\tilde{v}_{k}(D))arrow$

$(0,1)$ and $r:(0,1)arrow R^{+}$ depending on $k,$ $D$ and $n$ with $\lim_{varrow\overline{v}_{k}(D)}\theta(v)=1$ and
$\lim_{\thetaarrow 1}r(\theta)=0$ such that for $M\in M$ and 0$0(v),

$vol-rad_{\theta}(M)\geqq r(\theta)>0$ .

EXAMPLE 4. In the Euclidean space $R^{3}$ , we consider the open surface $M^{2}$

of revolution $\{(x, e^{-x^{2}}\cos\theta, e^{-x^{2}}\sin\theta):(x, \theta)\in R\cross[0,2\pi]\}$ , with the induced
metric. Hence one has $vol-rad_{\theta}(M^{2})=0$ for any $\theta\in(0,1)$ . For an open com-
plete Riemannian manifold $M$, if $vol-rad_{\theta}(M)>0$ for some $\theta$ , then the volume
of $M$ is not finite.

The technique we shall use to prove Theorem 1 is based on the Gromov-
Hausdorff distance. It is now well known that the class $M_{k}$ is precompact in
the Gromov-Hausdorff topology for all $k$ . In [Gr], Gromov showed that the
Hausdorff convergence and the Lipschitz convergence are equivalent for the
class of closed Riemannian $n$ -manifolds $M$ with $|K(M)|\leqq K,$ $d(M)\leqq D$ and
$vol(M)\geqq v>0$ . In [P], Peters extended this result to the $C^{1.a}$ convergence. To
prove Theorem 1, we need first establish a convergence result for the Ricci
curvature and the $\theta$ -volume-radius.

THEOREM 2. Given $a\in(O, 1)$ , there is a positive number $\theta^{*}<1$ depending
only on $n$ and a such that the class $M$ of closed Riemannian $n$ -manifolds $M$ which
satisfy

$(^{*})$ $|Ric(M)|\leqq(n-1)k$ , $d(M)\leqq D$ , $vol-rad_{\theta*}(M)\geqq r_{0}>0$

is $C$ “-precompact. In particular, $M$ contains at most finitely many diffeomor-
phism types.

REMARK. TO prove this theorem, we shall employ a technique developed
by Anderson in [A2]. For small $\theta\in(0,1)$ , the $C^{1,a}$ conclusion in Theorem 2
is not true. This can be seen from the metrics $g_{i}$ on $S^{2}\cross S^{2}$ , constructed by

Anderson [A1], which satisfy $1\leqq Ric(g_{i})\leqq 10$ and $vol(g_{t})\geqq 1/10$ , but which con-
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verge to an orbifold $C(RP^{3})\#_{\partial}C(RP^{3})$ in the Gromov-Hausdorff topology. Note
that the Myers theorem implies that $d(g_{i})\leqq\sqrt{3}\pi$ . However, the class $M$ may
still contain only finitely many diffeomorphism types. See also [Ga], [A2] and
[AC] for discussions under injectivity radius lower bound $and/or$ the $L^{n/2}$ norm
bound on the curvature tensor.

In view of the $C^{1,a}$ convergence, the cone points in $C(RP^{3})\#_{\partial}C(RP^{3})$ mo-
tivate the following definition.

DEFINITION 2. Let (X, $d$ ) be an inner metric space. A point $p\in X$ is said
to have the one-dimensional injectivity radius $inj_{1}(p)\geqq\epsilon>0$ if there is a geodesic
$\gamma:[-\epsilon, \epsilon]arrow X$ with $\gamma(0)=P$ and $d(\gamma(s), \gamma(t))=|t-s|$ , for all $s,$

$t$ in $[-\epsilon, \epsilon]$ . If
$inj_{1}(p)\geqq\epsilon$ for all $p\in X$ , we shall denote it by $inj_{1}(X)\geqq\epsilon$ .

The cone points do not have the one-dimensional injectivity radius ls for
any $\epsilon>0$ . It is also easy to check that the one-dimensional injectivity radius
is upper semi-continuous with respect to the (pointed) Gromov-Hausdorff distance.
Thus the metrics $g_{j}$ on $S^{2}\cross S^{2}$ , constructed by Anderson, can not have a uni-
formly lower bound on $inj_{1}(g_{j})$ . This also shows that the class $M(k, D, v)$ of
all closed Riemannian $n$ -manifold with $|Ric(M)|$ $(n-- $1$ ) $k,$ $d(M)\leqq D$ and $vol(M)$

$\geqq v>0$ is not $C^{1,a}$ precompact. However, for Riemannian 4-manifolds we do
have a precompactness result about the one-dimensional injectivity radius.

THEOREM 3. Let $M(4)$ be the class of closed Riemannian 4-manifolds $(M, g)$

which satisfy

$|Ric(M)|\leqq(n-1)k$ , $d(M)\leqq D$ , $vol(M)\geqq v>0$ , $inj_{1}(M)\geqq\eta$ .

Then $M(4)$ is $C^{1.a}$-PrecomPact for any $a\in(O, 1)$ .

ACKNOWLEDGEMENT. The author would like to thank K. Grove for the
construction of the metric $g_{\epsilon}$ on $S^{n}$ and M. Anderson, P. Petersen and S. Zhu
for several discussions concerning the $C^{1.a}$ harmonic radius. The author would
also like to thank the referee for his several useful comments about this paper.

\S 2. Lipschitz convergence.

In this section we shall prove Theorems 2 and 3. Our method is a com-
bination of the Gromov convergence theorem, the rescaling technique, and the
splitting theorem of Cheeger and Gromoll. We note that some parts of the
material here are inspired and modelled after Peters [P] and Anderson [A2]

and the results and techniques in [A2] will be used freely in this paper. First,
we recall the definition of the harmonic radius.
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DEFINITION 3. A compact Riemannian $n$ -manifold $(M, g)$ is said to have a
$C^{1.a}$-harmonic $(m, \epsilon)$-net, if there is a covering $\{B(x_{k}, \epsilon)\}_{k=1}^{m}$ of $M$ by $\epsilon$-balls
such that the balls $B(x_{k}, \epsilon/2)$ are disjoint and each $B(x_{k}, 8\epsilon)$ has a harmonic
coordinate chart $\{u_{j}\}_{j=1}^{n}$ such that the metric tensor in these coordinates is
$C^{1.a}$ bounded, i.e., if $g_{ij}=g(\nabla u_{i}, \nabla u_{j})$ on $B(x_{k}, 8s)$ , then

$(+)$ $\{$

$C^{-1}\delta_{ij}\leqq g_{ij}\leqq C\delta_{ij}$ (as bilinear form)

$\epsilon^{1+\alpha}||g_{ij}(y)||_{C^{1.\alpha\leqq}}C$

for some constants $a\in(O, 1)$ and $C\gg 1$ , where the norms are taken with respect
to the coordinates $\{u_{j}\}$ on $B(x_{k}, 8\epsilon)$ . We shall say that the harmonic radius,
$r_{h}(x)$ , at a point $x\in M$ is at least $\epsilon$ if the ball $B(x, 8\epsilon)$ has a coordinate chart
$\{u_{j}\}_{j=1}^{n}$ with the property $(+)$ .

REMARK. According to the Schauder estimates, any harmonic function $u$

defined on the ball $B(x_{h}, 8e)$ has $||u||_{C2,a}\leqq c(C, \epsilon)||u||_{L2}$ . Similarly, we have a
$C^{2,\alpha}$ bound for the transition functions.

A sequence of Riemannian $n$ -manifolds $(M_{j}, g_{j})$ is said to converge, in the
$C^{1.\alpha}$ topology, to a $C^{1.a}$ Riemannian manifold $(M, g)$ if $M$ is a smooth manifold
with a $C^{1,a}$ metric tensor $g$ and there are diffeomorphisms $f_{j}$ : $Marrow M_{j}$ , for $j$

sufficiently large, such that the pull back metric $f_{j}^{*}g_{J}$ converge to $g$ in the $C^{1,\alpha}$

topology on $M$. Here, the $C^{1.\alpha}$ structures are defined with respect to some
fixed $C^{1.\alpha}$ atlas on $M$ , compactible with its smooth structure. The following
fact about the harmonic radius is now well-known (cf. [A2]).

PROPOSITION 1. The harmonic radius is continuous with respect to $C$”

convergence.

The importance of the $C^{1,\alpha}$ harmonic $(m, \epsilon)$-nets lies in the following

PROPOSITION 2. A class of Riemannian $n$ -manifolds, which have $C^{1,a}$ har-
monic $(m, \epsilon)$-nets for some fixed $m,$ $\epsilon$ and $C^{1,\alpha}$ Holder constant $C\gg 1$ is precompact
in the $C^{1.\delta}(\delta<\alpha)$ topology.

REMARK. AS pointed out in [A2], Proposition 2 also holds locally for
pointed complete Riemannian manifolds, provided that one works on compact
subsets.

TO prove theorem 2, we shall need a lemma of Anderson $([A2])$ which
can be rephrased as

THE GAP LEMMA. There exists a $\theta^{*}\in(0,1)$ depending only on the dimension
$n$ such that if $(N, h)$ is a complete Ricci flat $n$-manifold with $vol-rad_{\theta*}(N)=\infty$ ,

then $(N, h)$ is isometric to ($R^{n}$ , can).
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Before we prove Theorem 2, we first show that there is a uniform lower
bound for the harmonic radius of Riemannian $n$-manifolds with the property
$\langle^{*}$) in Theorem 2.

PROPOSITION 3. Given $\alpha\in(0,1)$ and $C\gg 1$ , choose $\theta^{*}$ to be as in the GaP
Lemma, there is a lower bound $\epsilon$ for the harmonic radius of Riemannian n-
manifold $M$ with the property:

$\langle^{*}$) $|Ric(M)|\leqq(n-1)k$ , $d(M)$ $ $D$ , $vol-rad_{\theta*}\geqq r_{0}>0$ .
Namely, $r_{h}(x)\geqq\epsilon$ for all $x\in M$.

PROOF. TO prove this proposition, we shall follow the line of the proof of
Lemma 2.1 in [A2]. We argue this proposition by contradiction. Suppose that
Proposition 3 is not true. Then one can find a sequence of Riemannian n-
manifolds $(M_{l}, g_{l})$ with the property $(^{*})$ ; points $x_{l}\in M_{l}$ with $C^{1}$ ’ “ harmonic
radius $r_{h}(x_{l})=\epsilon_{l}arrow 0$ as $larrow\infty$ and the point $x_{\iota}$ realizes the minimun value of the
harmonic radius function $r_{h}$ on $M_{\iota}$ . Now we rescale the metrics so that $h_{l}=$

$\epsilon_{\overline{l}^{2}}g_{l}$ . Thus, the ball $B(x_{l}, \epsilon)$ is now a ball of radius 1 in the new metric $h_{l}$

and in $(M_{l}, h_{\iota}),$ $x_{l}$ has harmonic radius $r_{h}(x_{l})=1$ . Furthermore,
(1) $|Ric(M_{\iota}, h_{l})|\leqq(n-1)\epsilon_{l}^{2}k$ ;
(2) $vol-rad_{\theta*}(M_{l}, h_{l})\geqq\epsilon_{l^{1}}r_{0}$ , and
(3) $h_{l}$ has the $C^{1.a}$ harmonic radius $\geqq 1$

Hence, by passing to a subsequence of pointed Riemannian n-manifolds,
one can assume, by Proposition 2, that $(M_{\iota}, h_{l}, x_{l})$ converges, in the $C^{1,\delta}(\delta<\alpha)$

topology, to a $C^{1,a}$ Riemannian $n$-manifold $(N, h, x)$ with $x=limx_{l}$ .
The Ricci curvature equation in harmonic coordinates $\{u_{l}^{i}\}_{i=1}^{n}([DK])$ is

given by

(4) $-2Ric(h_{l})_{ij}=(h_{\iota})^{r\} \frac{\partial^{2}(h_{l})_{ij}}{\partial u_{l}^{r}\partial u_{l}^{s}}+\cdots\cdots$

where the dots indicate lower order terms involving at most one derlvative of
the metric. The equation (4) is a uniformly elliptic system of P.D.E. for which
we have locally uniform $C^{1,a}$ bounds on the coefficients $(h_{\iota})^{rS},$ $C^{0.\alpha}$ bounds on
the lower order terms and $C^{0}$ bounds on the left hand side $Ric(h_{l})_{ij}$ by (1).

Hence the elliptic regularity theory (cf. [GT] [Mo]) then gives a uniform $W^{2,p}$

bound on $||h_{l}||$ for all $p<\infty$ .
The Sobolev embedding theorem implies that $W^{2,p}$ is coInpactly embedded

in C’ $\beta(\beta\in(0,1))$ as long as $P>n/(1-\beta)$ . Therefore by passing to a subsequence
we obtain that $h_{l}$ converges to $h$ in the $C^{1,\beta}$ for all $\beta\in(0,1)$ . In particular,
$h_{\iota}$ converges to $h$ in the $C^{1.\alpha}$ topology, not just in the $C^{1,\delta}(\delta<\alpha)$ topology.
Hence, Proposition 1 implies that $r_{h}(x)= \lim\inf r_{h}(x_{l})=1$ . On the other hand,

since $|Ric(h_{l})|arrow 0$ in the $C^{0}$ topology and the harmonic coordinates $\{u_{l}^{i}\}$ of $h_{l}$
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converge to a harmonic coordinates $\{u^{i}\}$ of $h,$ $h$ is a weak $C^{1,\alpha}$ solution to the
Einstein equation:

$Ric(h)_{\ell j}=0=- \frac{1}{2}h^{rs}\frac{\partial^{2}h_{ij}}{\partial u^{r}\partial u^{s}}+\cdots\cdots$

Thus the regularity theory implies that $h$ is a smooth Ricci flat metric on $N$.
Since all closed $r$-balls $\overline{B}(x, r)$ in $N$ are compact, the Hopf-Rinow theorem im-
plies that $N$ is a complete Riemannian manifold.

Since the volume is continuous with respect to the $C^{1}$
$a$ convergence, Prop-

erty (2) then gives that $vol$ $rad_{\theta*}(N)=\circ\circ$ . Thus, $(N, h)$ is a complete Ricci
flat Riemannian $n$ -manifold with $r_{h}(y)\geqq 1$ for all $y\in N$ and satisfies the volume
condition in the Gap Lemma. Therefore, one has that $(N, x, h)$ is isometric
to ($R^{n},$ $0$ , can). Since the usual coordinates of $R^{n}$ are harmonic functions, the
big constant $C\gg 1$ implies that $r_{h}(x)>1$ . This contradicts the fact $r_{h}(x)=1$

and completes the proof of Proposition 3. $\square$

We are now in a position to prove Theorem 2.

PROOF OF THEOREM 2. Choose $\theta^{*}$ to be as in Proposition 3. Suppose that
Theorem 2 is not true, then one can find, by Propositions 2 and 3, a sequence
of Riemannian $n$-manifolds $(M_{j}, g_{j})$ which satisfy the property $(^{*})$ in Theorem
2 and have $C^{1,a}$ harmonic $(m_{j}, \epsilon)$-nets $\{B(x_{(j.l)}, \epsilon)\}_{l=1}^{m_{j}}$ where $\epsilon$ is as in Proposi-
tion 3, and $m_{J}arrow\infty$ as $jarrow\infty$ . Note that for each $j$ , the balls $B(x_{(j.l)}, \epsilon/2)$ are
disjoint. We choose an $l_{j}$ so that $B(x_{(j,l_{j})}, \epsilon/2)is^{-}the$ ball of smallest volume.
By the Bishop-Gromov volume comparison theorem we have

$m_{j} \leqq\frac{vol(M_{f})}{vol(B(x_{(j,l_{j})},\epsilon/2))}\leqq\frac{\tilde{v}_{k}(D)}{i^{)_{k}}(\epsilon/2)}$ .

This is impossible since $m_{j}arrow\infty$ as $jarrow\infty$ and hence Theorem 2 holds. $\square$

Next, we shall study the class $M(4)$ . Before doing so, we first prove a
lemma about the fundamental group of an open manifold with nonnegative
Ricci curvature.

LEMMA. Let $N$ be a complete Riemannian $n$ -manifold with $Ric(N)\geqq 0$ . If
there is a point $p\in N$ with

$\lim\frac{vol(B(p,r))}{i)(r)}=\theta>0$ ,

then the fundamental grouP, $\pi_{1}(N)$ , of $N$ has order $\leqq 1/\theta$ .

REMARK. The relative volume comparison theorem shows that $\lim_{rarrow\infty}$

$vol(B(p, r))/\tilde{v}(r)$ does exist. It is easy to check that for any other point $q\in N$,
$\lim_{rarrow\infty}vol(B(q, r))/\tilde{v}(r)$ is also equal to $\theta$ . In terms of the volume-radius, we
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have $vol-rad_{\theta}(N)=\infty$ . This result was also proved by Anderson in [A4].

The author would like to thank the referee for pointing out this.

PROOF. Suppose that this lemma is not true, then one can find $m$ distinct
elements in $\pi_{1}(N)$ , say $g_{1}=e,$ $g_{2},$ $\cdots$ , $g_{m}$ , where $m$ is the smallest integer greater
than $1/\theta$ . Consider the universal covering $\pi:\tilde{N}arrow N$ with the pull back metric
and hence $Ric(\tilde{N})\geqq 0$ . Then $\pi_{1}(N)$ acts isometrically on $\tilde{N}$ as the deck trans-
formations. Fix a point $\tilde{p}\in\tilde{N}$ with $\pi(\tilde{p})=p$ and let $F$ be the Dirichlet funda-
mental domain associated to $\tilde{p}$ in $\tilde{N}$, i.e.,

$F=$ { $y\in\tilde{N}|d(y,$ $\beta)\leqq d(y,$ $g\tilde{p})$ for all $g\in\pi_{1}(N)$ }.

Since $B(\tilde{p}, r)\cap F$ is mapped under the projection onto $B(p, r),$ $vol(B(\tilde{p}, r)\cap$

‘

$F$ ) $=vol(B(p, r))$ . Let $s= \max\{d(p, gjP)|1\leqq j\leqq m\}$ . Hence we obtain $B(g_{j}\beta, r)\subset$

$B(p, r+s)$ for all $j=1,2,$ $\cdots$ , $m$ . Set $F_{j}(r)=g_{j}(B(\beta, r)\cap F)$ , then $F_{i}(r)\cap F_{j}(r)$

has measure zero when $i\neq j$ and $\bigcup_{j=1}^{m}F_{j}(r)\subset B(\beta, r+s)$ . Therefore, it follows
that

mvol$(B(p, r))\leqq vol(B(p, r+s))$ .

On the other hand, the Bishop volume comparison theorem gives

$vol(B(p, r+s))\leqq\tilde{v}(r+s)$ .
Thus,

$m \leqq\frac{\tilde{v}(r+s)}{vol(B(p,r))}=\frac{i)(r)\tilde{v}(r+s)}{vol(B(p,r))\tilde{v}(r)}$

for all $r>0$ . Letting $rarrow\infty$ , we obtain $m\leqq 1/\theta$ . This contradicts our choice of
the integer $m$ and hence the order of $\pi_{1}(N)$ is at most $1/\theta$ . $\square$

Next, we show that there is a uniform lower bound for the harmonic radius
of Riemannian 4-manifolds in $M(4)$ .

PROPOSITION 4. Let $M(4)$ be as in Theorem 3. Then given any $\alpha\in(0,1)$

and $C\gg 1$ , there is an $\epsilon>0$ such that the harmonic radius of $M\in M(4)$ is at least
$\epsilon$ , i.e., $r_{h}(x)\geqq\epsilon$ for all $x\in M$ .

PROOF. We proceed as in the proof of Proposition 3. Suppose that Prop-
osition 4 is not true, then one can find a subsequence of Riemannian 4-
manifolds $(M_{j}, g_{j})$ in $M(4)$ and points $x_{j}\in M_{j}$ with harmonic radius $r_{h}(x_{j})=\epsilon_{j}arrow 0$

as $jarrow\infty$ and the points $x_{j}$ realize the minimum value of the harmonic radius
function $r_{h}$ on $M_{j}$ . Once again, we rescale the metrics so tbat $h_{j}=\epsilon_{j}^{-2}g_{j}$ .
Hence the ball $B(x_{j}, \epsilon_{j})$ is now a ball of radius 1 in the metric $h_{j}$ . Moreover,

(1) $|Ric(M_{j}, h_{j})|\leqq(n-1)\epsilon_{j}^{2}k$ ,
(2) $h_{j}$ has the $C^{1.a}$ harmonic radius) 1.
(3) $inj_{1}(M_{f}, h_{j})\geqq\epsilon_{j}^{-1}\eta$ and
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(4) by Example 3 in \S 1, there is a $\theta=\theta(k, D, v, \eta, n)>0$ such that $vol-$

$rad_{\theta}(M_{j}, h_{j})\geqq\epsilon_{j}^{-1}\eta$

By passing to a subsequence of pointed Riemannian manifolds, one can
assume that $(M_{j}, x_{j}, h_{j})$ converges, in the $C^{1,\delta}(\delta<\alpha)$ topology, to a $C^{1.a}$ Rie-
mannian $n$ -manifold $(N, x, h)$ with $x= \lim x_{j}$ . Now use the Ricci curvature
equation in the harmonic coordinates and proceed the same argument as in the
proof of Proposition 3 to obtain that $(N, x, h)$ is actually a smooth complete
Ricci flat Riemannian $n$ -manifold and $(M_{j}, x_{j}, h_{j})$ also converges to $(N, x, h)$ in
the $C^{1,\alpha}$ topology. Thus, Proposition 1 implies that $r_{h}(x)= \lim\inf r_{h}(x_{j})=1$ .

TO obtain a contradiction, it suffices to show that $(N, h)$ is isometric to
($R^{4}$ , can) and hence $r_{h}(x)>1$ . According to Property (3) and the upper semi-
continuity of the one-dimensional injectivity radius with respect to the pointed
Hausdorff topology, we have $inj_{1}(x)=\infty$ . Namely, there is a line 7: $Rarrow N$ with
$\gamma(0)=x$ . The splitting theorem of Cheeger and Gromoll $([CG])$ implies that $N$

is isometric to a product space $N_{1}\cross R$ where $N_{1}$ is a codimension one totally
geodesic submanifold of $N$. Thus, $N_{1}$ is a complete Ricci-flat 3-manifold. The
Schouten-Struik theorem $([SS])$ then gives that $N_{1}$ is flat. In turn, $N$ is a flat
4-manifold.

Since the volume is continuous with respect to the $C^{1.\alpha}$ convergence, Prop-
erty (4) implies that $vol-rad_{\theta}(N)=\infty$ . The above lemma then asserts that
$\pi_{1}(N)$ is a finite group and has order $1/0. That is, $N$ is a flat manifold with
a finite fundamental group. Therefore, $N$ must be simply connected (cf. [Mi]

Cor. 19.3). Thus the Cartan-Ambrose-Hicks theorem ([CE]) implies that $(N, h)$

is isometric to ( $R^{4}$ , can) and this completes the proof of Proposition 4. $\square$

Proposition 4 and the argument in the proof of Theorem 2 show that $M(4)$

is a class of Riemannian 4-manifolds with $C^{1,a}$ harmonic $(m, \epsilon)$-nets for some
fixed $m,$ $\epsilon$ and $C^{1,a}$ H\"older constant $C\gg 1$ . Thus Proposition 2 implies that
$M(4)$ is $C^{1,\delta}$-precompact for any $\delta<\alpha$ . Since $\alpha\in(0,1)$ is arbitrary, $M(4)$ is
$C^{1,a}$ precompact for any $\alpha\in(0,1)$ and Theorem 3 holds. $\square$

Our first application of Theorem 2 is a diameter pinching sphere theorem.

THEOREM 4. Let $\theta^{*}$ be as in Theorem 2 for $C=10^{n}$ and $\alpha=1/2$ . There
exists a Posrtive number $d^{*}<\pi$ depending only on the constants $k\geqq 1,$ $r_{0}>0$ and
$n$ such that if $M$ is a complete Riemannian $n$-manifold with $n-1\leqq Ric(M)\leqq$

$(n-1)k$ and $vol-rad_{\theta*}\geqq r_{0}$ , then $M$ is diffeomorphic to the unit sphere, $S^{n}$ , in
$R^{n+1}$ , Provided that $d(M)\geqq d^{*}$ .

PROOF. Suppose that this is not true, then there is a sequence of Rieman-
nian $n$ -manifolds $(M_{j}, g_{j})$ with $n-1\leqq Ric(M_{j})\leqq(n-1)k,$ $vol-rad_{\theta_{n}}\geqq r_{0}$ and $d(M_{j})$

$arrow\pi$ as $J^{arrow\infty}$ such that $M_{j}$ is not diffeomorphic to $S^{n}$ for all $j$ . Since the class
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of Riemannian manifolds $\{(M_{j}, g_{j})\}$ satisfies the conditions in Theorem 2, there
is a subsequence $(M_{J_{i}}, g_{j_{i}})$ which converges to a $C^{1.a}$ Riemannian n-manifold
(X, $h$ ). It is easy to check that the Bishop-Gromov volume comparison theorem
still holds for (X, $h$ ) and $d(X)=\pi$ . Thus one can use Shiohama’s proof $([Sh])$

of the maximal diameter sphere theorem to conclude that $vol(X)=vol(S^{n})$ and
hence $vol(M_{j})$ is close to $vol(S^{n})$ for large $j$ . Finally, Anderson’s volume pinch-
ing sphere theorem [A2] implies that $M_{j}$ is diffeomorphic to $S^{n}$ for large $j$ .
This leads to a contradiction and completes the proof of Theorem 4. $\square$

REMARK. In general, a Riemannian $n$ -manifold $M$ with $Ric(M)\geqq n-1$ and
$d(M)$ close to $\pi$ is not necessarily homeomorphic to $S^{n}$ ; see [A3] and $[0]$ for
examples in dimensions $n\geqq 4$ . For dimension 3, under an extra assumption on
the lower bound of volume, the author $([Wu2])$ shows that this is true.

\S 3. Volume functions $\Phi_{\Lambda}$ .
In this section we shall prove our Theorem 1. First, we recall the class

$M_{k}^{\Lambda}$ . We normalize the metric of a compact Riemannian $n$ -manifold $M$ so that
$d(M)=\pi$ . Hence the Myers theorem implies that $\min Ric(M)\leqq n-1$ . Then we
consider the class $M_{k}^{\Lambda}$ of all closed Riemannian $n$ -manifolds $M$ with $(n-1)k\leqq$

Ric(M)$A and $d(M)=\pi$ . In what follows, we shall show that $vol(M)$ can not
be arbitrarily close to $\tilde{v}_{k}(\pi)$ for $M\in M_{k}^{\Lambda}$ with $k<1$ unless $M$ is diffeomorphic
to $RP^{n}$ .

PROOF OF THEOREM 1. Suppose that there is a sequence of Riemannian
$n$-manifolds $(M_{i}, g_{i})$ in $M_{k}^{\Lambda},$ $k<1$ , with $vol(M_{i})arrow\tilde{v}_{k}(\pi)$ as $iarrow\infty$ . Fix $C\gg 1$ and
$a\in(O, 1)$ . Then there is an $r_{0}>0$ such that $vol-rad_{\theta*}(M_{j}, g_{j})\geqq r_{0}$ when $vol(M_{i})$

$\geqq\theta^{*}\tilde{v}_{k}(\pi)$ where $\theta^{*}\in(0,1)$ is as in Theorem 2. Then Theorem 2 implies that
there is a subsequence, still denoted by $(M_{i}, g_{i})$ , converging to a $C^{1.a}$ Rieman-
nian $n$ -manifold $(M, g)$ . In particular, $d(M)=\pi$ and $\iota\prime ol(M)=\tilde{v}_{k}(\pi)$ . Since $M_{i}$

are diffeomorphic to $M$ for large $i$ , we may assume that the metrics $g_{i}$ are
defined on $M$.

Our next aim is to show that $g$ is actually a smooth Einstein metric. To
see this we shall follow closely the proof of the sphere theorem in [A2] and
first show that $|Ric(g_{i})-(n-1)kg_{i}|arrow 0$ almost everywhere on $M$. Indeed, since
$vol(B_{g_{i}}(x, \pi))/\tilde{v}_{k}(\pi)arrow 1$ as $iarrow\infty$ for all $x\in M$, for almost all unit vector $w\in T_{i.x}$

$=T(M, g_{l})_{x}$ the unit speed geodesics $\gamma_{w}(s)$ in the direction $w$ are length mini-
mizing for a distance $\pi-E_{i}$ with $\epsilon_{i}arrow 0$ as $iarrow$ oo. In other words, the set $D_{i}$ of
such $w$ has measure $\geqq vol(S^{n-1})-\epsilon_{i}$ .

Let the point $\gamma_{w}(r)$ be inside the cut locus of $x$ , and let $\theta_{i}(w, r)dw$ and
$H_{i}(w, r)$ be the volume form and the mean curvature of the geodesic sphere
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$S_{x}(r)=\{y\in(M, g_{i})|d(x, y)=r\}$ at $\gamma_{w}(r)$ in $(M, g_{i})$ , respectively. Then we have
$H_{i}(w, r)=\theta_{i}’(w, r)/\theta_{i}(w, r)$ and the second variation formula $([BZ])$ gives

$\frac{\theta_{i}’(w,r)}{\theta_{i}(w,r)}=\sum_{j=1}^{n-1}\int_{0}^{r}|Y_{j}’(s)|^{2}-<R_{i}(Y_{j}(s), \gamma_{w}’(s))\gamma_{w}’(s),$ $Y_{j}(s)>\text{\’{a}} s$

where $Y_{j}(s)$ are Jacobi fields along $\gamma_{w}$ with $Y_{j}(0)=0$ such that $\{Y_{j}(r)\}_{j=1}^{n-1}\cup\{\gamma_{w}’(r)\}$

forms an orthonormal basis for $TM_{\gamma_{w^{(r)}}}$ . Define a function $h_{k}$ : $[0, r]arrow R$ by

$h_{k}(s)=\{\begin{array}{l}\frac{sin(\sqrt{k}s)}{\sqrt{k}}s,\frac{sinh(\sqrt{-k}s)}{\sqrt{-k}}\end{array}$ $k>0k<0$

.

$k=0$

Let $X_{j}(s)=f(s)E_{j}(s)$ where $E_{j}(s)$ is the parallel vector field along $\gamma_{w}(s)$ with
$E_{j}(r)=Y_{j}(r)$ and $f(s)=h_{h}(s)/h_{k}(r)$ . It follows from the basic index lemma that

$\frac{\theta_{i}’(w,r)}{\theta_{i}(w,r)}=\sum_{j=1}^{n-1}\int_{0}^{r}|Y_{j}(s)|^{2}-\langle R_{i}(Y_{j}(s), \gamma_{w}’(s))\gamma_{w}’(s), Y_{j}(s)\rangle ds$

$\leqq\sum_{j=1}^{n-1}\int_{0}^{r}|X_{j}’(s)|^{2}-\langle R_{i}(X_{j}(s), \gamma_{w}’(s))\gamma_{w}’(s), X_{j}(s)\rangle ds$

$= \int_{0}^{r}(n-1)|f’(s)|^{2}-f^{2}(s)Ric_{i}(\gamma_{w}’(s), \gamma_{w}’(s))ds$

$= \int_{0}^{r}(n-1)[|f’(s)|^{2}-kf^{2}(s)]ds-\int_{0}^{r}[Ric_{i}(\gamma_{w}’(s), \gamma_{w}’(s))-(n-1)k]f^{2}(s)ds$ .

An easy calculation yields

$\frac{\theta_{i}’(w,r)}{\theta_{i}(w,r)}\leqq\frac{d}{ds}[\ln h_{k}^{n-1}(s)]_{s\Rightarrow r}$

- $\frac{1}{h_{k}^{2}(r)}\int_{0}^{r}[Ric_{i}(\gamma_{w}’(s), \gamma_{w}’(s))-(n-1)k]h_{k}^{2}(s)ds$ .

This gives

(1) $\frac{d}{ds}[\ln\frac{\theta_{i}(w,s)}{h_{k}^{n-1}(s)}]_{s\Rightarrow r}\leqq-\frac{1}{h_{k}^{2}(r)}\int_{0}^{r}[Ric_{i}(\gamma_{w}’(s), \gamma_{w}’(s))-(n-1)k]h_{k}^{2}(s)ds\leqq 0$ .

Since the volume form of geodesic spheres in $(M, g_{i})$ are close, on $D_{i}$ , to
the volume form $h_{k}^{n-1}(r)dw$ of the geodesic spheres in the simply connected
space $n$ -form $M_{k}^{n}$ . It follows that for $w\in D_{i}$ ,

(2) $\frac{d}{ds}[\ln\frac{\theta_{i}(w,s)}{h_{k}^{n-1}(s)}]_{s\Rightarrow r}\geqq-\delta_{i}$

with $\delta_{i}arrow 0$ as $iarrow\infty$ . Since $0\leqq|Ric(g_{i})-(n-1)kg_{i}|\leqq\Lambda+|(n-1)k|$ , inequalities
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(1) and (2) imply that $|Ric(g_{i})-(n-1)kg_{i}|arrow 0$ a. e. on $M$ and for any $p\geqq 1$ ,

$\int_{M}|Ric(g_{i})-(n-1)kg_{i}|^{p}dvol(g_{i})arrow 0$ .

Since $g_{i}$ also converges to $g$ in the $C^{1,a}$ topology, $g$ is a weak $C^{1,\alpha}\cap W^{2}p$

solution of the Einstein equation in the harmonic coordinates $\{u_{l}\}_{\iota=1}^{n}$ :

$Ric(g)_{ij}=- \frac{1}{2}g^{r}s\frac{\partial_{2}g_{\ell j}}{\partial u^{r}\partial u^{s}}+\cdots=(n-1)kg_{ij}$ .

The regularity theory of elliptic systems again implies that $g$ is a smooth
Einstein metric on $M$. On the other hand, the Hopf-Rinow theorem guarantees
that $g$ is complete. Since $vol(M, g)=\tilde{v}_{k}(\pi)$ , we have $i(M, g)=d(M, g)=\pi$ and
$K(M, g)\equiv 1$ . From here there are several ways to obtain the results. We shall
go with the Blaschke conjecture. We have that $(M, g)$ is a compact Blaschke
$n$ -manifold with an Einstein metric $g$ . By examining the proof of the Bishop
volume comparison theorem $([BC])$ , one has the following three cases.

Case I. $k\leqq 0$ . $(M, g)$ has no conjugate points. Hence the Blaschke con-
jecture ([B] [We] [Yg]) implies that $(M, g)$ must be isometric to ( $RP^{n}$ , can)

up to a constant factor. This is impossible, since $Ric(RP^{n}, can)>0$ .
Case II. $k>0$ and $(M, g)$ has no conjugate points. Again, the Blaschke

conjecture gives that $(M, g)$ is isometric to $(RP^{n}, 4can)$ and $k=1/4$ since
$d(M, g)=\pi$ .

Case III. $k>0$ and $(M, g)$ has conjugates points of index $(n-1)$ . Namely,
$(M, g)$ is a Wiedersehen manifold. Thus the Blaschke conjecture implies, in
this case, that $(M, g)$ is isometric to ( $S^{n}$ , can) and $k=1$ since $d(M, g)=\pi$ . This
is again impossible since $k<1$ .

These three cases together show that one can have a sequence of Rieman-
nian $n$ -manifolds $(M_{i}, g_{j})$ in $M_{k}^{\Lambda},$ $k<1$ , with $vol(M_{i})arrow\tilde{v}_{k}(\pi)$ only when $k=1/4$ .
In this case $M_{i}$ is diffeomorphic to $RP^{n}$ for large $i$ . Thus the function $\Phi_{\Lambda}$

and the number $\delta_{\Lambda}$ do exist and this completes the proof of Theorem 1. $\square$

REMARK. Our present proof does not yield estimates on $\Phi_{\Lambda}$ and $\delta_{\Lambda}$ . If
one can find an explicit estimate for $\Phi_{\Lambda}$ , then one may be able to determine
whether the upper bound $\tilde{v}_{k}(\pi)$ is optimal for the volume function $vol$ on $M_{k}$ .
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