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§0. Introduction.

By works of Sutherland-Takesaki and Kawahigashi-Sutherland-Takesaki
[3], actions of a discrete amenable group on an approximately finite dimen-
sional factor of type IIl have been classified up to cocycle conjugacy in terms
of four invariants: a certain normal subgroup, the module, the characteristic
invariant and the modular invariant.

For a given action of an abelian group on a von Neumann algebra, since
the dual action on the crossed product algebra is canonically defined, the in-
variants of the dual action should be completely determined by those of the
original action. In this note, we shall compute the invariants of the dual
action of an action of a finite abelian group in two cases, one is that the
module is trivial and the other is that the normal subgroup is trivial. Similar
calculations have been done in Kosaki-Sano [5] for Z,-case. In that case, one
of the above assumptions is automatically satisfied.

The author would like to thank Professor Hideki Kosaki for valuable dis-
cussions.

§ 1. Preliminaries.

We recall the definition of the cocycle conjugacy invariant of an action of
a discrete group of a factor of type Ill. For details, see Sutherland-Takesaki
[7].

Let a: G—Aut M be an action of a discrete group G on a type III factor
M. The cocycle conjugacy invariant of « is then given by (N(a), mod, X, v),
where each of them is defined as follows: Let ¢ be a dominant weight on M
and denote the continuous decomposition of M by M=M,xsR. Note that the
flow of weights (Py, {F¥}.cr) of M is identified with (Z(M,), {0;|zm¢)}t63).
For each automorphism « of M, the Connes-Takesaki module moda in Aut Z(M,),
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which commutes with 4, is given by
(11) mod @ = Ad uoalzw ) .

¢

Here u is a unitary in M satisfying gea~'=¢-Ad u. The normal subgroup N(a)
of G is defined by

(1.2) N(a) = a'({Adu-a¢lucUM), ce Z{R, UZ(M,))}) .

By expressing a,=Ad u,°6¢x,, h&N(a), the characteristic invariant X=[4, z]
in A(G, N(a), U(Z(M,))) is defined by

(1.3) UnGony(Ur) = unept(h, k), h, keN(a),
(1.4) ag(Ug-10)(Dpeaz': Do) mod a,)c(g 7 hg)) = urd(g, h),
g€CG, heN(a),

where we choose u,=1 and c(e)=1 for the unit ¢ of G, and 1 and p satisfy
the following relations:

(L.5) p(f, Wp(fh, k)= plh, B)p(f, hk), f, h, REN(a),

(1.6) Ag, hk)A(g, h)*A(g, k)* = p(h, k)mod a, )¢~ hg, g7 kE)*,
geG, h, keN(a),

(L.7) A(gg’, h) = A(g, h)(mod a,)(4(g’, g7'hg)), &, 8'€G, heN(a),

(1.8) Ah, k)= p(h, K" kR u(k, h)*, h, kEN(a),

(1.9) Ae, h)y =g, e) = ple, h)=p(h,e)=1, g€G, heN(a).

The modular invariant p, which is a homomorphism from N(a) into the first
cohomology group of the flow of weights, is defined by

(1.10) w(h) = [e(h)], heN(a).

Furthermore, these are not independent of each other and satisfy the following
(Sutherland-Takesaki {7; Theorem 5.14]):

(1.11) c(h)c(k) = (Qp(h, k))c(hk), h, keN(a),

(1.12) (mod a,)(c(g™'hg)) = (9A(g, h))c(h), gEG, hEN(a).
Here, for a unitary u in Z(M,), ou means the coboundary given by
(1.13) (Qu)t) = u*0.(u), t=R.

The invariant is independent of the choice of ¢ and depends only on the
cocycle conjugacy class of a.
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§2. Sutherland-Takesaki invariants of dual actions.

Let a@: G—>Aut M be an (outer) action of a discrete group G on a type III
factor M and let ¢ be a dominant weight on M such that

pea, =¢, g<G,
and for the continuous decomposition M=M,x R
(@0)gel: = 0:°(ay),, g<G, tER,
a (ma(x)) = m((an) (%)), xEM,,
{ a (A1) = A1), teR.

Here a, is the action of G on M, induced by a. (See Sutherland-Takesaki [7;
Lemma 5.117.)

LEMMA 2.1. Let & be the dual weight of ¢ on Mx,G. Then & is a dom-
inant weight and the continuous decomposition of MX G is given by

Mx .G =(Myx,G)XrR,
where F is the action of R on M, %, G defined by
FiTay(%)) = Tai(0u(%)), xEM,,
{Ea@»=ﬂm,g60

PrROOF. By Connes-Takesaki [I], ¢ is a dominant weight. The rest follows
from Haagerup-Stgrmer [2] or Sekine [6]. g.e.d.

LEMMA 2.2. Assume that G is abelian and let & be the dual action of a on
anGz(M¢>4aoG)>4FR. Then we have

god,=¢, peG,
(@o)peF. = Fio(a0)p, pEG, tER,
ap(mp(x)) = mp((@o)p(x)), *EM,Xa,G,
{ ap(At) = A(t), teR.
Here &, means the dual action of a, on M,x,G.

PROOF. We notice that the action on M, X .G induced by & is exactly the
dual action of a, (Haagerup-Stgrmer [2] or Sekine [6]). The conclusions fol-
low from direct computations. q.e.d.

In what follows let «: G—Aut M be an (outer) action of a finite abelian
group G on a factor M of type IIl. We choose and fix a dominant weight ¢
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on M with the above properties and denote by (N(a), mod, [4, g], v) the in-
variant of @ given by using ¢.
2.1. The case of ker (mod)=G.

Throughout this subsection, we assume

moda, =1, ge&G.

The relation says

c(h) = (0A(g, h))c(h), geG, heN(a).
This means

From the ergodicity of 6, we have
Ag,hyeT={cel]|c|=1}.

The condition (1.7) means

Agg', h)= g, MAg’, h), g, g'€G, heN(a.
hence, for a fixed heN(a), the map
geG—Ag, heT
defines a character of G. We get a map = from N(a) into G such that
Ag, h)=<g, n(h)>, g&€GCG, heNa),
where <g, m(h)> denotes the value of n(h)eG at g&G. Furthermore, by
and 7 is a homomorphism.

THEOREM 2.3. The normal subgroup N(&) arising from the dual action & is
given by

N(a) = n(N(a)).

PrOOF. Let p==n(h), h&N(a). By definition, there exist a unitary u, in
M, (because of the invariance ¢e.a,=¢) and a unitary one-cocycle c(h) such
that a,=Ad u,°5¢s,, in particular, (ao)r=Adu,. Let {4(g)},;e¢ denote the
usual generator of M,x, G coming from G. Then unA(h)* is a unitary in
M,x,G and it is trivial that

urA(h)*x = xu,A(h)*, xeM

o
Since



Sutherland-Takesaki invariants of dual actions 527

UnACRY*A(g)(und(h)*)* = unA(g)un*
= unay (un)*A(g)
= A(g, Murur*Ag)
= (g, a(h)A(g),

we get
(d0)p = Ad uyA(h)*.

Hence we have n(N(a))CN(a).
Conversely, let peN(a). Then there exists a unitary V=3],c¢ v, 4(g) in
M, x,,G such that (4,),=Ad V. By the definition of the dual action, we know

xV=Vx, xe&M

o

A standard computation says that V must be of the form

V= 3 crudlh)*

heN(a)

for some c,€Z(M,). Moreover, we know

(@0)p(4(g)) = <g, PA(8), gE€G,

that is,
VA(g)=<g, AV, geG.
Since |
VAg)= X caurAh™'g)
heEN (a)
and
g, DAV = 3 Lg, pAg, Menund(h™g),
heN (a)
we have

cn =4g, prAg, h)cn, g€G, heN(a).

Because V is a unitary, there exists an element h& N(a) such that”c¢,#0. Hence
we have ‘

g, h)=<g, p>, g<G,
and N(a)Cr(N(a)). q.e.d.

We set
Ny(a) = ker # (CN(a)),
namely,
Ny@) = {heNa) g, h)=1, gG}.
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LEMMA 2.4. The center Z(M,XoG) of M X, G is isomorphic to Z(M,)
M iq, uNo(@).

PrROOF. By Kawahigashi-Takesaki or Sekine [6], we know that the
anti-isomorphism @ from (M,)'N\(M,x,,G) onto Z(M,)¥ :a, ,N(a) defined by

Q: X cpurdlh)* — X cnzp, CILEZ(M@)

hREN (@) heN (a)
induces the isomorphism between Z(M,x,,G) and (Z(M,)X 4, ,N(a))". Here ¢
is the action of G on Z(M,)X 4 ,N(a) given by

el 2 Crza)= 2 Ag, h)cnzn, g<G.

heN(a) hEN (a)

So we have the assertion. q.e.d.

PROPOSITION 2.5. The characteristic invariant X=[1, p] arising from N(&)
is given by

f(p, @ = plk, h), p=mn(h), g=n(k)=N(a),
ir, p)y=<h, >, reG, p=n(h)eN@).

PROOF. Let p==n(h), g=n(k)=N(a), h, keN(a). From the proof of Prop-
osition 2.3, we may assume

(a’o)p = Ad ﬁp, ﬁp == uh/'((h)*,
(a'o)q = Ad ﬁq, ﬁq = ukl(k)*,
(a’o)pq = Ad Z’qu, ﬁpq = uhkl(hk)*.

Then the conclusions follow from simple calculations. q.e.d.

PROPOSITION 2.6. The module mod &, (rG) in Aut (Z(My) %4, uNo(@)) is
given by
(mOd dr)( 2 chzh> = E <h; r>ChZh,

heNg(a) RENg(a)

where {zn}nren o i the generator coming from Ny(a).

ProOOF. The assertion follows from and its proof. q.e.d.

Rl

REMARK 2.7. By [Proposition 2.6,

Ker (mod &) = {r&G | <h, r>=1, heNJa)}.

PROPOSITION 2.8. Let p=n(h)eN(&) (heN(a)). Then the unitary one-cocycle
&(p) arising from &, is given by

ép) = c(h).
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PROOF. Expressing (&o),=Ad @t,, #,=u,A(h)*, we compute
&p, t) = a,*F(@ip) ([7; Lemma 5.12. (5.28)7)
= (und(R)*)*Fi(und(h)*)
= Ah)un*6(un)A(h)*
= A(h)e(h, H)ACh)* ([7; Lemma 5.12. (5.28)])
=c(h, t), teR.

2.2. The case of N(a)={0}.
Throughout this subsection, we assume

N(a) = {0}.

Therefore, the characteristic invariant X={[4, ¢] and the modular invariant v
arising from N(a) are trivial. We notice

(MY N (M, %o G) = Z(M,)
and
Z(M,x . G) = Z(M,ymd«: fixed point subalgebra under
the module action of a,
in particular,
mod &, =1, reG.

The argument in 2.1 shows that
Ar,)eT, reG, peNa)
and there exists a homomorphism # from N(&) into G such that
Ar, p)=<2(p), r>, reG, peNa),
N(&) = #(N(a)).
On the other hand, the Takesaki duality says

N(&) = N(a).
Hence we conclude

Ar, p)=1, red, peN).

For each p=G, we define an eigen-operator space (P,)™°d “(p) of the flow
of weights for a to be

{xePy | (mod a,)(x) =g, px, g € G}.
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PROPOSITION 2.9. Let pG. Then the following conditions are equivalent.
(i) peN(a).

(i) The eigen-operator space (Py)™°34%(p) contains a unitary operator.

ProOOF. (i)—(ii): If p belongs to N(a&), then there exists a unitary V=
Deec VA8)EM, X 4G such that (@,),=AdV. By definition, since

xV=Vx, xeM,

it follows from the assumption that v,=0 (g+0), that is, V is a unitary in
Z(M,). Furthermore,

(@0)p(A(g)) = <g-prA(g), g€G,

means that V must be an element in (Py)™°d%(p).
(ii)—(i): If a unitary u is in (Py)™°¢%(p), then it is trivial that (a,),=Ad u
from the above argument. g.e.d.

PROPOSITION 2.10. Let p&N(a). Then the unitary one-cocycle é(p) of the
flow of weights of Mx,G arising from a, is calculated by

&p, t)=u*0.(u), t<R,

where u is a unitary in (Py)™°d4%(p).

PrROOF. The assertion follows from the proof of [Proposition 2.9 and
Sutherland-Takesaki [7; Lemma 5.12. (5.28)]. g.e.d.

REMARK 2.11.

Ker (mod @) = {geG | g, p>=1, p=N(a)}.
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