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0. Introduction.

The strong shape category of metric compacta was introduced in 1973 by
J. B. Quigley [19], although some notions related to strong shape were already
considered by D. Christie [6] and T. Porter [18]. In particular, Christie de-
fined the strong shape groups. In 1976 D.A. Edwards and H. M. Hastings [11],
motivated by work of T.A. Chapman [5], obtained a category isomorphism
between the strong shape category of compacta K in the pseudo-interior of the
Hilbert cube, @, and the proper homotopy category of their complements Q—K.
Strong shape was extended to arbitrary topological spaces by F.W. Bauer [1]
and Edwards and Hastings [11]. General information about the strong shape
category of compacta is contained in the papers [9] by J. Dydak and J. Segal
and [3] by F.W. Cathey. The first of them presents a geometric study of
strong shape based on the notion of contractible telescope. The second one
gives an account of several different approaches. We shall use in this paper
the approach to strong shape given by J. B. Quigley [19] or, in a more general
form, that given by Y. Kodama and J. Ono [14], [15] under the name of fine
shape.

All the existing descriptions of the strong shape category of compacta use
external elements to introduce the basic notion of strong shape. Compacta are
generally assumed to lie in the Hilbert cube or in a convenient ambient space,
like a manifold or a polyhedron, and maps take values in neighborhoods of the
compacta in the ambient space. In other descriptions, compacta are presented
as inverse limits of ANR systems and maps are defined between the systems
and not directly between the compacta themselves.

We present in this paper a new description of strong shape. We eliminate
all the external elements in our approach and obtain an intrinsic description of
the strong shape category of compacta, completing in this way the program
that was started in [20] and [21] for standard shape.

We use in our approach the theory of multivalued maps. Strong shape
morphisms are characterized as homotopy classes of fine multivalued maps and
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a complete description of the category is given in terms of this notion. A
topology is introduced on the set M(X,Y) of fine multivalued maps between
two compacta X and Y. This allows us to identify the shape morphisms
from X to Y with the connected components of M(X,Y) and the strong shape
morphisms with the path components of M(X, Y). By using this representation,
we prove that every shape morphism is the closure of a strong shape morphism.
If (X, x,) is a pointed compactum, we define the Steenrod loop space 2%(X, x,)
as a useful tool to study the strong shape groups I75(X, x,). We have adopted
this terminology since Steenrod’s name has often been associated with strong
shape (see [12]). We prove that IT$(X, xo)=1I1,_,(2°X, x,), *) and, therefore,
the calculation of strong shape groups can be reduced to that of the standard
homotopy groups of the Steenrod loop space.

For information about shape theory we recommend the books [2], [7], [8]
and [17] by K. Borsuk, J.M. Cordier and T. Porter, J. Dydak and J. Segal and
S. Mardesi¢ and J. Segal respectively. We also recommend the collection of
open problems [10] by J. Dydak and J. Segal. For earlier results about the
relationship between shape and multivalued maps see the papers [4], [13] and
[16] by Z. Cerin and T. Watanabe, Y. Kodama and A. Koyama respectively.

1. Fine multivalued maps and strong shape morphisms.

Let X and Y be metric spaces. An upper semicontinuous multivalued func-
tion F:X—Y is a correspondence such that for every x&X, F(x)+ @ is a
closed subset of ¥ and for every neighborhood V of F(x)in Y there is a neigh-
borhood U of x such that F(U)=\U,er F(y) is contained in V. In the sequel,
upper semicontinuous multivalued functions will be called multivalued maps for
short. F is said to be e-small if diameter (F(x))<e for every x&X. Two
multivalued maps F, G: X—Y are e-homotopic if there exists an e-small multi-
valued map H: XX [—-Y such that H(x, 0)=F(x) and H(x, 1)=G(x) for every
xeX.

In the sequel X and Y will always be compact metric spaces. A fine multi-
valued map from X to Y is a multivalued map F: XX R,—Y such that for
every ¢>0 there is a t,R,=[0, o) such that diameter (F(x, t))<e for every
xeX and every t=t,. Two fine multivalued maps F, G: XX R,—Y are said to
be homotopic if there exists a fine multivalued map H: XX[0, 1]XR.—Y such
that H(x, 0, )=F(x, t) and H(x, 1, )=G(x, t) for every (x, )eXXR,. F and
G are said to be weakly homotopic if for every ¢>0 there is a {,& R, such that
F| xxttgo and G| xuiey ) are e-homotopic. Homotopy and weak homotopy of fine
multivalued maps are equivalence relations. The corresponding equivalence
classes of F will be denoted by [F] and [F], respectively. Obviously [F]C
[Flw.
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DEFINITION 1. Let F: XXR.,—Y and G:YXR,—Z be fine multivalued
maps. A function a: R,—R, is said to be a stretching map associated to the
pair (F, G) if it is an increasing continuous function and there exist null se-
quences {e,}, {n,} such that a) diam (G(KX {t}))<e, for every KCY with
diam (K)<7%, and every te[n, n+1] and b) diam (F(x, t))<n. for every xeX
and every t>a(n).

The next proposition shows that stretching maps always exist.

PROPOSITION 1. Let F: XXR,—Y and G:YXR.—Z be fine multivalued
maps. Then, there exists a stretching map a: R,—R., associated to (F, G).

PrOOF. Consider a null sequence {¢,} such that diam (G(y, ))<e, for every
yeY and every t=n and define by induction a null sequence 5, >9,> -+ >9,> -
such that diam (G(KX {t}))<e, for every KCY with diam (K)<7%, and every
te[n, n+1]. Since F is a fine multivalued map there is an unbounded sequence
0=t,<t;<t: < -++ <t,< -+ such that diam (F(x, t))<7, for every xX and every
t>t, with n=1. Consider for every »n the increasing linear homeomorphism
a,:[n, n+1]—-[t,, t,+1]. Then, the obvious piecewise linear homeomorphism
a: R, —R, defined by means of the family {a,} is a stretching map for (F, G).

As we see in the next proposition, stretching maps can be used to define
a notion of composition of the homotopy classes [F] and [G].

PROPOSITION 2. Let [F]: XXR.,—Y and [G]: Y XR.—Z be homotopy classes
of fine multivalued maps and suppose that a: R.—R, is a stretching map for
(F, G). Then the function H: XXR.—Z defined by H(x, )=GF(x, a(®), t) is
a fine multivalued map and its homotopy class [H] does not depend on the repre-
sentatives of the classes [F] and [G] or on the particular stretching map a.

Proor. The first assertion is obvious.

To prove the second one we must show that if we have fine multivalued
maps F’ and G’ homotopic to F and G respectively and if a’ is a stretching
map for (F’, G’), then the map H’': XX R,—Z defined by

H'(x,t)=G'(F'(x, a’(t)), t)
is homotopic to H.
First observe that if B8: R,—R, is an increasing map such that g(t)=a(®)
for every t=R,, then 8 is also a stretching map for (F, G). Moreover the fine
multivalued map J given by the expression

J(x, ) =G(F(x, 1), 1)

is homotopic to H by means of the fine homotopy ¢ : XX R, X [0, 1]—Z defined
by the expression
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o6(x,t,8) = GF(x, a®)1—s)+LD)s), 1).

Consider homotopies F*: XX R, X [0, 1]-Y and G*: Y XR,X[0, 1]-Z con-
necting F with F/ and G with G’ respectively. We denote by

F:XxR,x[0,1]— Y X[0, 1]

the map F(x, t, s)=(F*(x, t, s), s) and select a stretching map a”: R,—R. for
the pair (ﬁ‘, G*) such that a”(f)=max{a(t), a’(t)} for every tR,. Then the
expression H*(x, t, s)=G*(F*(x, a”(t), s), t, s) defines a homotopy H*: X X R, X
[0, 1J—Z whose 0-level H* is homotopic to H and whose 1l-level H* is homo-
topic to H’. This completes the proof of the proposition.

We are now in a position to state and prove the following result, which
gives a new description of the strong shape category of compacta.

THEOREM 1. If we consider the class of compact metric spaces and the homo-
topy classes of fine multivalued maps with the notion of composition previously
defined we get a category, MSh, which is isomorphic to the strong shape category
of compacta.

PrROOF. The identity morphism in MSh(X, X) is the homotopy class of the
map Iy: XXR,—X defined by Ix(x, t)=x, then in order to show that MSh is
a category it is only necessary to prove that if F: XXR,—Y, G:YXR,—Z,
and H: ZXR,—W are fine multivalued maps then [HI([G][F1)=(HI[GD[F].
But [HY([GI[F])=[R] with

R(x, t) = H(G(F (x, a\(ax(®), a=(1)), 1)
and ([HI[G][F]=[S] with
S(x, t) = HG(F(x, B.1)), (1), 1),

where a;, a., B;, 8. are suitable stretching maps, and it is easy to see that R
and S are both homotopic to a common fine multivalued map of the kind

H(G(F(x, 1:(®), 7:(1), ),

where 7, and y. are large enough stretching maps.

To prove that MSh and SSh are isomorphic we shall use the approach to
strong shape given by Quigley [197 or Kodama and Ono [14] where compacta
are assumed to lie in the Hilbert cube @ and strong shape morphisms from X
to Y are homotopy classes of approaching maps (i. e., single-valued maps f: QX
R.—Q such that for every neighborhood V of ¥ in @ there is a neighborhood
U of X in @ and a t,eR, such that f(UX[t,, «)CV).

Suppose that f: QX R,—Q is an approaching map from X to Y. We shall
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prove that there exists a fine multivalued map F: XX R,—Y such that f is
asymptotic to F, i.e., for every ¢>0 there is a f,&R, such that d(f(x, ?),
F(x, £)<e, for every x€X and every t=t, F is constructed in the following
way : consider a null sequence &,> --- >¢,> --- such that f(x, He Bsn(Y) (the
closed ball in @) for every x& X and every {=n, then define F(x, t):BEn(f(x, 1))
NY if te(n, n+1]. It is easy to see that in this way we get a fine multi-
valued map F such that f is asymptotic to F.

Suppose now that g: QX R,—Q is an approaching map homotopic to f and
that G: XX R,—Y is a fine multivalued map with g asymptotic to G. Consider
an approaching homotopy 4 : Q X R, X [0, 1]—@ connecting f and g. If H: XX
R, %[0, 1]-Y is a fine multivalued map asymptotic to h we have

d(F(x, 1), Hy(x, 1)) £ d(F(x, 1), f(x, )+d(f(x, 1), Hy(x, 1))

and from this it follows that F and H, are asymptotic. We can then construct

a fine homotopy ¢:XXR,x[0, 1]-Y connecting F and H, in the following
way

Fx, ) if 0§s<—;~
d(x, t,s) =1 F(x, )\UHy(x, 1) if s:%
Hyx, t) if %—<s§l.

It can be analogously proved that G is homotopic to H,. Hence F and G are
homotopic.
We have proved that there exists a well-defined correspondence

.Q(va) . SSI’L(X, Y) —_—> MSI’I(X, Y)

such that Qx.v,([f])=[F] where f is asymptotic to F.

In order to see that £y y, is surjective consider a fine multivalued map
F: XXR,—Y and select a null sequence &,> --- >¢,> - such that diam (F(x, t))
<e, for every x&X and every t=n. Then for every x€X and every te
[n, n+1), there exists an open neighborhood U¢'" of (x, ¢) contained in XX
(n—1, n+1) such that
e,—diam (F(x, t))

5 .

Hence diam (F(U V))<e,. Now, by using the compactness of XX [1, n+1], we
can define a sequence of open sets U, U, U, --+ and an increasing sequence of
integers k,, ks, ks, --- such that for every =

FU= v C Ba(z.“(F(x, 1)) where 0 0=

Xx[1, n] Cc U, VU, --- VU, C XX, n+1)

and for every k with k,<k<k,,, we have U,CXX(n—1, n+2) and diam (F(U))
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<e&n.

We consider U,=XX [0, 1) and define for every n=0 a function J,: XX R,
—R such that

d((x, 1), XXR,)=U,)

2ed((x, 1), XXR)=Uy) "’
The sum in the denominator is finite since d((x, 1), (XX R,)—U,)#0 if and only
if (X, t)e Uk.

We now choose for every n a point y,=F(U,) and define f,: XXR,—Q
by the expression

5n(xy t) =

folx, ) = 20u(x, )Yn .

This is again a finite sum and, since 31d,(x, )=1 and Q is convex, f, is
a well-defined continuous function. Moreover, for every (x, )& X X R, consider
the open sets U;, -+, U;, to which (x, t) belongs. Then if yeF(x,t) and te
[n, n+1) with n=2 we have

d(fo(x, 0), ¥) = 12 ds,(x, y:,— 20, (x, Ol
= 2 0:,(x, (i, — )
< 20:,(x, Ollye,— vl
< max{[y,,—yll}
< max{diam (F(U,,))} <en .

In the above expressions we have used the norm || || of the Hilbert space /,
where @ is supposed to lie.

We have proved that for every >0 there exists n= N verifying that
d(fo(x, 1), F(x, t))<e for every xX and every t=n. An obvious consequence
of this is that for every neighborhood V of Y in Q there exists a {,& R, such
that fo(X X [t, o))CV. It is now easy to see, by repeatedly applying the homo-
topy extension theorem, that f, can be extended to an approaching map f: QX
R.—Q. Since f is asymptotic to F, we have that Q. y, is surjective.

Suppose now that F, G: XX R,—Y are homotopic fine multivalued maps and
that f, g: QX R,—Q are approaching maps asymptotic to F and G respectively.
Consider a fine multivalued homotopy

H: XXR,x[0,1] —Y

connecting F and G. It can be seen, by using arguments similar to those used
before, that there is an approaching homotopy A : Q@ X R, %[0, 1]—Q asymptotic
to H. Obviously h, is asymptotic to f and h, is asymptotic to g and this im-
plies that f and g are homotopic. This proves that £ y, is injective.
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In order to prove that SSh and MSh are isomorphic categories, consider
fine multivalued maps F: XXR,—Y and G:YXR,—Z. Let g:QXR,—Q be
an approaching map asymptotic to G. We are going to find an adequate repre-
sentative of Q¢ v ([F1). Let &> - >e,> -+ be a null sequence such that
diam(G(y, t))<e, and d(g(y, D), G(y, 1))<e, for every y€Y and every t=n.
Let 9> - >9,> -+ be another sequence such that diam(G(KX {t}))<e, for
every KCY with diam(K)<7%, and every t=[n, n+1] and such that d(g(y, b,
gy, D)<e, for every y, y'eQ with d(y, y)<%, and every te[n, n+1]. Let
a:R,—R, be a stretching map for the pair (F, G) satisfying the condition
diam (F(x, a(®)))<75. for every t=n. By the argument given at the beginning
of this proof there is an approaching map f such that d(f(x, #), F(x, a@®)<7a
for t=n. Obviously 2. »([f)=[F]. Let us see now that 2 »([gl[f)=
[GILF]. Since for every t=n we have that d(F(x, a(®), f(x, 1))<7%., it follows
that there exists yeF(x, a(?) such that d(y, f(x, t))<7%. and, hence, d(g(», 1),
g(f(x, t), ))<e,. On the other hand d(g(y, t), G(y, t))<e, and this implies that
d(g(y, t), G(F(x, a®)), t))<e,. Hence

d(g(f(x, 1), 1), G(F(x, at)), 1)) < 2&n.

As a consequence

Qx, (gl f)) =[GCI[F] =24 »[g]2x v [f]

and SSh and MSh are isomorphic categories. This completes the proof of the
theorem.

If X is a closed subset of a compactum X’ and f: X—Y is a (single-valued)
map, we say that f is e-extendable to X’ if there exists an e-small multivalued
map F: X'—Y such that F|y=f. The following result gives a characterization
of the inclusions that induce strong shape isomorphisms. The proof is an-
application of the techniques developed in this section and is left to the reader.

THEOREM 2. Let X be a closed subset of the compactum X’. Then the in-
clusion i: X—X' induces a strong shape equivalence if and only if for any (single-
valued) map f: X—Y, where Y is an arbitrary compactum, there exists for every
e>0 an e-extension F: X'—Y and for any map g: X' X {0, 1}\UX X [0, 1]-Y there
exists an e-extension G: X' %[0, 1]-Y.

2. A topology for the space of fine multivalued maps.

DEFINITION 2. Let X and Y be compact metric spaces and by M(X,Y)
denote the set of all fine multivalued maps from X to Y. If F,GeMX,Y)
and ¢ is a positive number we say that G B.(F) if there exists a sequence
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{e,} such that 3}e*2-*<e and the following holds:

a) For every k=N and for every (x, HeXX[0, k] there exists (x’, t')&
Xx[0, £] such that d((x, 1), (x’, t'))<er and G(x, HT B, (F(x’, t')).

b) For every (x, )& XX R, there exists (x’, t')&XX R, such that d((x, ?),
(x’, t'))<e and diam(G(x, £))<diam (F(x’, t'))+e.

We remark that if G B.(F) then for every %k and for every (x, )& XX
[0, %] there exists (x/, )X X [0, k] such that d((x, t), (x/, t'))<2%¢ and G(x, 1)
C Bt (F(x', t').

In the next proposition we show how to define a topology on the set
MX,Y). If FeM(X,Y) we introduce the notation

B(F) = {B.(F)|e>0}.

PROPOSITION 3. The family {B(F)|FEM(X,Y)} is a neighborhood system
for the set M(X,Y). The corresponding topological space will also be denoted
by M(X,Y) and is a topological invariant of the pair (X, Y).

PROOF. In order to prove the first assertion, the only nontrivial fact is the
following: If G B.(F) then there exists a >0 such that Bs(G)CB.(F). To
see this, consider a sequence {e,} such that 3}¢,2-*<e and such that properties
a) and b) in the definition hold. Let n, be a number such that diam(G(x, t))
<e/2 for every x=X and every t=n, and select a >0 such that d<
min {e/2, e—3}¢;2"*} and such that for every (x, )& XX [0, n,] there exists a
(x’, 1) eXXR, with d((x, t), (x’, t'))<e—0 and

diam (G(x, t)) < diam (F(x’, t'))+¢&—d.

Let He Bs(G), then there exists a sequence {J,} such that 30,2 *<d satis-
fying conditions a) and b) in the definition (with the obvious changes of nota-
tion). Hence X(e,+0:)2 *<e and for every %k and every (x, ) XX [0, k] there
exists (x/, t)eXX[0, k] such that d((x, ©), (x’, '))<d, and

H(x,t) C Bs, (G(x', ).

On the other hand, there exists (x”, ") XX [0, k] with d((x’, '), (x”, t")<e,
and G(x’, t")CB. (F(x”,t”). As a consequence d((x,t), (x”, 1"))<e,+0d, and
H(x, )CBe,.5,(F(x”, t")).

Furthermore, if (x, )&eXXR,, there exists (x’, )&EXXR, such that
d((x, t), (x’, t')<0 and diam(H(x, t))<diam(G(x’, t'))4+0. Then, if (x’, t')e
[0, n,], there exists (x”, ") €XXR; such that d((x’,t), (x”, t"))<e—0d and
diam (G(x’, t/))<diam (F(x”, t”))+¢—0 and, as a consequence, d((x, 1), (x”, t"))<e
and

diam (H(x, 1)) < diam (G(x’, ¢))+0 < diam (F(x”, "))+« .
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If (x7, )= [n,, o), then diam (H(x, t))<diam (G(x’, t'))+0<e/2+0<e. This shows
that {B(F)|FeM (X, Y)} is a neighborhood system for M (X, Y).

In order to prove the second assertion, suppose that A:X—X’ is a homeo-
morphism between compacta. There is an induced correspondence

i MX,Y)— M(X,Y) defined by y.(F)(x, )=F(h(x), 1).

We shall show that 7, is continuous. Let FeM(X’,Y) and ¢>0. Select a &,
such that

© A € .
<75 where A>diam(Y)

k=k0+12k 2

and, using the uniform continuity of i-!, take a 9,>0 such that for every pair
of points x’, y’eX’ with d(x’, y)<J, we have that

d(h=}(x"), A" (") < i—

Consider now a >0 such that 2*od<min{e/4, §,}. We define a sequence {e,}
by

S i 1<k<k,

Ep =

A if ko<k.

We obviously have that 3}¢,2-#<e. We shall prove that if GeM(X’, Y) and
G Bs(F) then 7,(G)e B(ya(F)).

Let (x, H)eXX [0, k,], then (h(x), ) eX’'X [0, k,] and there exists (x”, t')=
X %[0, ko] such that d((h(x), t), (x”, t'))<2*0d and

G(h(x), t) C B,uoy(F(x”, 1))

Since d(h(x), x”)<2%3<0,, we have that d(x, x")<e/4 where x'=h"'(x") (ob-

serve that d((x, t), (x’, )<d(x, x")+d(t, t')<e/4+2%0<e/2). Hence, if (x,t)

eXx[0, ko] there exists a (x’, )X X [0, k,] with d((x, ?), (x’, t'))<e/2 and
72G(x, ) = G(h(x), t) C B,roy(F(h(x’), ")) C Beo(yaF(x7, V).

If t>ko, then rhG(x, t)CBA(th(x, t)).
On the other hand, for every (x, )eXXR, there exists (x”, ) eX’'XR,
such that d((h(x), t), (x”, t'))<d and

diam (G(h(x), t)) < diam (F(x”, ¢'))+0.

Let x’=h"'(x"). Since d(h(x), x”)<0<0,, we have that d(x, x)<e/4. Hence
d((x, t), (', ¥))<e and
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diam (y,G(x, 1)) = diam (G(h(x), t))<diam (F(h(x’), t'))+6
< diam (7, F(x’, t'))+e¢.

We conclude from this that y,(G)e B.(y»(F)) and 7, is continuous.

Moreover yys-1=idy(x v, and this implies that 7, is a homeomorphism.

It can be analogously proved that a homeomorphism g:Y—Y’ induces a
homeomorphism 7¢: M(X, Y)—M (X, Y’) and from this readily follows the proof
of the proposition.

REMARK 1. Condition b) in the definition of the topology for M (X, Y) re-
flects the fact that close fine multivalued maps have comparable diameters.
Condition a) is a reminiscence of the compact-open topology on spaces of multi-
valued maps between compacta. This can be made precise in the following
way :

If I'(X,Y) represents the set of all upper semicontinuous multivalued maps
from X to Y and by ¢’ B.(¢) (@, ¢’eI'(X, Y)) we mean that for every x=X
there is a x’€X with d(x, x")<e and ¢’(x)=B.(¢(x")), then the family {B.(¢)]
¢=I'(X,Y) and ¢>0} defines a neighborhood system which induces exactly the
compact-open topology on I'(X, Y).

The next theorem is a key result in this section. It refers to properties of
exponential type in the space M(X, Y) and the main results in this section and
the next one will be derived from it.

THEOREM 3. Let X, Y and Z be compact metric spaces and suppose that
F: XXZXR,—Y is a fine multivalued map. Then, the function F': Z—-M(X,Y)
defined by F'(z)(x, t)=F(x, z,t) is continuous. Conversely, if F':Z—-MX,Y)
is a map, then the associated function F: XXZXR,—Y defined by F(x, z, t)=
F'(z)(x,t) is a fine multivalued map. As a consequence, there exists a natural
bijection between the sets C(Z, M(X,Y)) and M(XXZ,Y), where C(Z, M(X,Y))
represents the set of maps from Z to M(X,Y).

PrOOF. Let z,=Z. We shall prove that if F: XXZXR,—Y is a fine
multivalued map then F’ is continuous at z,. For a given >0, select %k, such
that

§ A

k=ro+12% 2’

where A>diam(Y),

and such that diam (F(x, z, t))<e for every =k, For every (x, )X Xx[0, k],
there exists 0z, <e/2 such that F(B;, ,,(x, 2o, )CBp(F(x, z, 1)), and using
the compactness of XX {z,} X[0, £,], we can find a finite family of points
(x5, 1), =+, (x4, t;) and a 6>0 such that
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XX By(z9X[0, k1 C \U Bi,, (0, 20, 1)

and such that for every (x, z, )X X Bs(z,) X [0, 2] with k<k,, there exists
(x4 t)€X X [0, k] such that (x,z t)e Ba(li»ti)(xi’ zo, 1;). Now we define a
sequence {e,}, verifying 3 ¢e,2-*<e, in the following way
3 .
— if 1ISk<k,
e, =1 2

A if ko<k.

Suppose that ze Z and d(z, z,)<0. Then if <k, for every (x, )eXX[0, k]
there exists (x’, )€ B, ,(x, t) such that

F'(z)(x, 1) C Be,(F'(zo)(x", 1)) .

If 2>k, then for every (x, HeXX[0, k], F'(z)(x, )T Ba(F'(zo)(x, t)). It can
also be readily shown that for every (x, )& X X R, there exists (x/, t)&eXXR,
such that d((x, 1), (x’, ’))<e and

diam (F’(z)(x, 1)) < diam (F’(zo)(x’, t'))+¢ .

As a consequence F’(z)e B.(F’(z,)) and this proves the continuity of F’ at z,.

In order to prove the converse statement, consider a map F': Z-M(X,Y)
and let F: XX ZXR,—Y be its associated function. First we shall see that F
is upper semicontinuous. Let (x,, 2o, t)€XXZXR, and let ¢>0. Since F’(z,)
is upper semicontinuous at (x,, ¢,), there exists ;>0 such that

F'(20)(Bs,(x, t)) C Bejo(F(x0, 20, o))

Select now a k, verifying that (t,—d,, t,+0d,)C[0, 2,]. Then there exists 0,<
min {0,/2, ¢} such that for every zeZ with d(z, z,)<d. we have F’'(z)e
B, 1,80+1(F’(2,)). Hence for every (x, )€ XX [0, k,] there exists (x’, ¢')& Bs,»(x, 1)
such that F(x, z, )CB;, 2(F(x’, 25, t')). Consequently, for every (x, z, H)eX X
ZXR, with d((x, 2, 1), (x,, 2o, 1,))<0» there exists (x’, #)€ Bs, »(x, t) such that
F(x, z, DCB; 2(F(x', 20, t')) and, since d((x’, t'), (x,, %,))<0,/2+0,<d;, we have
that F(x’, z,, t')C B¢, o(F(x0, 2o, 1,)). Hence

F(x, 2, 1) C B o(F(x', 20, ') C B j2ses2(F (X0, 20, 1)) C B(F (%, 2o, o))

and F is upper semicontinuous at (x,, zo, o).

Moreover, if ¢>0 then for every z&Z there exists a >0 such that for
every z’e€Z with d(z, 2/)<0 we have that F’/(z’)€ B.,»(F'(z)). By the compact-
ness of Z there exists a finite family of points z,, z,, ---, z,&Z such that for
every z Z there exists i {1, ---, n} with F’(z)&€B.,.(F'(z;)) and from this it
follows that for every (x, )X xR, there exists (x/,)&€XXR, such that















