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Introduction.

Let (X, d) be a complete metric space and let f,, f», -+, f» be contractions
from X to itself, that is,

d(f«(x), f1(y))
xsggx d(x, v) <l

Then it follows that

THEOREM 1.1 (Hutchinson [Hul). There exists a unique non-empty compact
set K such that

N
K= \_Jlfz(K)

K is called a self-similar set with respect to (X, d), {f}¥).

This paper contains two main subjects. First in §2, we will study the
Hausdorff dimension of a self-similar set. For the case that X is an Euclidian
space R" and f,’s are similitudes, there is a well-known result by Moran [M].

THEOREM 1.2. Let X=R" and let f; be an r;-similitude of R™ for i=1, 2,
-+, N; that is, for all x, yeR",

d(f(x), f«(y) =rd(x, y),

where d is the ordinary Euclidean distance on R™. If there exists an open set
OCR™ such that

gf@-(O)CO and f(ONFAO)=@  for i#],

then the Hausdorff dimension of the self-similar set (K, d) with respect to (R*, d),
{f}L) is the unique number a that satisfies

M=

(LD

7ia:1.

i=1

[l
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Furthermore, 0< K *(K)<oo, where 4“ is the a-dimensional Hausdor[f measure.

REMARK. It is not known whether the converse of the above theorem is
true or not. Recently, Bandt and Graf obtained a necessary and sufficient
condition for the consequence of the above theorem.

The condition on the open set O in the above theorem is called the open
set condition by Hutchinson [Hu].

By this result we can calculate the Hausdorff dimensions of typical self-
similar sets, for example, the Sierpinski gasket, the Sierpinski carpet and the
Koch curve.

Recently, however, some metrics on self-similar sets that are different from
the restriction of Euclidean metrics are introduced from the viewpoint of analysis
on self-similar sets such as the interior distance by Bandt et al. [BS, BK] and
the effective resistance metric by Kigami [Ki3]. In [Ki3], the self-similar
sets are not embedded in Euclidean spaces and the contractions are no longer
similitudes under effective resistance metrics in general. In these cases, the
open set condition does not work, because in the proof of [Theorem 1.2, we
should use some special properties of the Euclidean spaces.

In the present paper we will give a result on the Hausdorff dimension of
self-similar sets under general metric. For the simplest case, our result is

COROLLARY 1.3. Let K be a self-similar set with respect to (X, d), {f}¥).
If there exist comstants 0<r<1, 0<c;, ¢, and M >0 such that
) for al w=ww, - w,s{1,2, ---, N}™,

d(Kw) é Clrm ’

where Ky=Fuw(K), fo="Fw,°fw,® " °fw, and d(A)=sup., yes d(x, y) for ACK,
(2) for all x€K and all m=0,

#lw:wel{l, 2, -, N}™, dx, Kp)<cr™ < M,
where d(x, K,)=inf,ex d(x, y), then for a=—Ilog N/log r,
0<HNK) < o0,
where H* is the a-dimensional Hausdorff measure. Especially, the Hausdorff

dimension of the compact metric space (K, d) is —log N/log r.

We will state the complete version of our main theorem in §2. Our main
theorem, is used to calculate Hausdorff dimensions of self-similar
sets under the effective resistance metrics in [Ki3].

Of course, our result covers the case of ordinary self-similar sets with the
Euclidean metrics. In general, it is shown in Proposition 2.8 that our main
result, includes as a special case. Furthermore, it
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is easy to verify directly the conditions (1) and (2) in [Corollary 1.3 for well-

known self-similar sets as the Sierpinski gasket, the Sierpinski carpet and the

Koch curve. Moreover, we can apply the above result to the Lévy curve defined

by Lévy [Le], which is a self-similar set with respect to (C, {fi, f»}) where
1— 144

fi(z) = H_TZ.Z and fi(z) = 72‘1‘ 5

See Figure 1. It is known that 0< %% K)<co and so dimy K=2. In this case,
however, it is quite difficult to find an open set that satisfies the cpen set con-
dition. See the appendix for details.

Figure 1. Lévy curve.

The second subject is shortest path metrics on p. c. f. self-similar sets. The
notion of p.c.f. self-similar sets is a mathematical formulation of finitely
ramified self-similar sets and it includes nested fractals introduced by Lindstrgm
[Li]. (“p.c.f.” is an abbreviation of “post critically finite”.) In §3, we give
the definition of p.c.f. self-similar sets. See also the examples in §4.

DerFINITION 1.4. Let (X, d) be a metric space. Then a continuous injection
g:[0, d(p, ¢9)]—X is called a geodesic between p and ¢ if and only if, for all
0=s=t<d(p, ¢),

d(g(s), gt)) =t—s.

A metric d is called a shortest path metric if and only if, for all p, g= X, there
exists a geodesic between p and gq.

We will study a special kind of shortest path metrics on p.c.f. self-similar
sets where the contraction mappings become similitudes. Precisely let K be a
self-similar sets with respect to (X, p), {f:},), we focus on a metric d on K
that satisfies

(B.1) d is a shortest path metric

and there exist 0<ry, #,, ---, ¥y<1 such that

(B.2) d(fix), fi(¥) =rid(x, y)
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for all /=1, 2, .-, N and for all x, yeK.

The interior distances introduced by Bandt et al. [BK, BS] are metrics that
satisfies (B.1), (B.2) and some additional conditions. We will show in
3.2 that the Hausdorff dimension of a p.c.f. self-similar set under a metric
which satisfies (B.1) and (B.2) is given by the unique positive number a such
that

M=

Zr*=1.
k4
In we will give a necessary and sufficient condition for existence
of a metric on p.c.f. self-similar sets which satisfy (B.1) and (B.2).
In the rest of this section we will recall the definitions of Hausdorff meas-
ures and Hausdorff dimensions.

I
-

DEFINITION 1.5. Let (X, d) be a metric space and A is a subset of X.
Then we define
H§(A) = inf > dUy~,

tU;) is a d-covering of A 1

where d(U)=sup,, ,ey d(x, ¥) is the diameter of the set U and {U;} is a 0-
covering of A if and only if

UU, DA and dU)<3.

Also the a-dimensional Hausdorff measure of A, #%*(A) is defined by
HA) = }sim HE(A).
-0
It is well-known that 4¢ becomes a Borel measure on X. See Rogers [R] or
Falconer [F].

DEFINITION 1.6. For ACX, the Hausdorff dimension of A with respect to
the metric d denoted by dimg (A, d) is defined by

dimgy (A, d) =sup{a: H£%(A)=oo} = inf{a: H£*(A)=0}.
In particular, if 0< A *(A)<co, then dimy (A, d)=a.

§ 2. Hausdorff dimension of self-similar sets.

In this section, we will state and prove our main result on Hausdorff dimen-
sions of self-similar sets.

First, we introduce the notion of self-similar structure, which is a purely
topological formulation of self-similar sets defined by [Ki2].

DEFINITION 2.1. Let K be a compact metrizable topological space and S be
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a finite set'. Also, let F;, for /€S, be a continuous injection from K to itself.
Then, (K, S, {F;}.cs) is called a self-similar structure if there exists a con-
tinuous surjection z: ¥ —K, where =SV is the one-sided shift space, such that
For=m-7 for every i=S, where ;: 3—2 is defined by #(w,w,w; - )=iw,w,w, ---.

NOTATION. W,=S™ is the collection of words with length m. For w=
WWs - W E Wy, we define Fyy 0 K—K by Fyy=F,, oFy,o -+ oF,,  and K, =F,(K).
Also we define

W* = ngowm .

If (K, S, {F;};=s) is a self-similar structure, then it was shown in
that for all w=w,w, --- €%,
M K0)1<”2“'“’m = {TE((U)},
mz1
AndIso, the map z is uniquely determined. Conversely, it is easy to see that

PROPOSITION 2.2. (K, S, {F:}es) is a self-similar structure if and only if K is
a compact metrizable space, F;'s are continuous, K=\, F(K) and Nnz K,
consists of a single point for all w=w,w, --- €X.

199 Om

By the above proposition, a self-similar set in the sense of is
a self-similar structure. A self-similar structure is, however, purely topological
object and so without specifying a metric d on K that is compatible with the
original topology of K, we cannot think about its Hausdorff dimension. For
example, let /% and f4 be contractions from C to itself defined by

f@="0% aa fi =1
where 0=<f8<1, then the corresponding self-similar sets K(j) have different
Hausdorff dimensions under the Euclidean metric on C. Precisely dimy K(8)=
—log 2/log (V1+B%/2). Especially K(0)=[0, 1] and K(+/3/6) is the Koch curve.
Now let ps: K(0)—K(B) be the natural parametrization and let mg: {1, 2} ¥—
K(B) be the natural map defined by

(ms(@} = N Ku(B)

then ps is obviously a homeomorphism and we have pgemy=ms and, for i=1, 2,
flepg=pseft on K(0). In this manner, we can identify (K(B), {1, 2}, {f4, f5})
with (K(0), {1, 2}, {f?, f2}) as a self-similar structure.

Hereafter, we will fix a self-similar structure (K, {1, 2, ---, N}, {F;}{).

DErFINITION 2.3. For r=(r, r;, ---, ry) where 0<r;<1 and for 0<a<1,

! In this paper, S={1, 2, ---, N} except for Appendix.
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Alr, o) = {w: w=w,w, -« W, EWy, Y w wgetw oy > A2V wl,
where 7, =7y 7y, =+ 1y, for v=v,0; - VLEW .
Now the following is our main theorem.

THEOREM 2.4. Let d be a metric on K which is compatible with the original
topology of K. If there exist r=(ry, ¥y, -+, ry) where 0<r; <1 and positive con-
stants ¢, ¢2, ¢x and M such that

(A.1) d(Kw) £ €i7w
for all weW, and
(A.2) #{w:weAlr, a), dlx, K,)Z<cat <M

for any x=K and any a<(0, cx), then, there exist constants 0<cs, ¢, such that
for all weWs,
Cs¥u® < HYKy) < ca¥rp®

where a is the unique positive number that satisfies
N
2 T’io’ =1.
i=1

In particular, 0<H*(K)<co and dimgy (K, d)=a.

REMARK 1. If the conditions (A.1) and (A.2) in hold, then it
is easy to see that, for any x<K,

#@x)N= M.

REMARK 2. By the proofs of Lemma 2.5 and [Theorem 2.4, we can easily
see that the assumptions of the above theorem, (A.1) and (A.2), can be replaced
by the following weaker assumptions (A.la) and (A.2a). Let ¢ and a be posi-
tive constants less than 1.

(A.la) d(Ky) < ¢,a”

for all =0 and we A(r, ca™),

(A.2a) #{w:wedAlr, ca), dix, K,)<c,a™ <M
for any xe K and n=0.

is the case when r=r;=r,= - =ry and a=r. In several
points, the proof of the above theorem depends on the same ideas as Moran’s
proof of [Theorem 1.2. For convenience of the readers, however, we will give
the whole proof. First we will recall the following well-known lemma about
Hausdorff measures. See Moran [M] and also Hutchinson [Hu].
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LeMMA 2.5. Let (K, d) be a compact metric space. If H*(K)<oco and there
exists a probability measure p on K such that, for a constant ¢>0,

w(B(x, ) < cl*

for all x=K and sufficiently small [>0, where B(x, D)={y:yeK, d(x, y)<l},
then for each Borel set ACK,

#(A) < cae(A).
In particular, 0< H*(K)< oo,

REMARK. According to the discussion of Moran [M], the converse of the
above lemma is true: If 0< 4 *(K)< <o, then there exists a probability measure
¢ on K such that, for some ¢>0,

p(B(x, 1) < cl®
for all x€ K and [>0.

PrOOF OF LEMMA 2.5. For UCK and x< U, note that UC B(x, d(U)).

Let {U,} be a covering of a Borel set ACK, then
%‘, p(B(xq, dU)) < ¢ ELJ aUy*,
where x,€U;. As AC\U; B(x;, d(U,)), we have
A S ¢ DU

Hence by Definition 1.5l u(A)<cH{(A). Letting [—0, it follows that u(4)<
cH*(A).

For the proof of we also need some facts on the one-sided
shift space 2.

DEFINITION 2.6. A subset ACW, is called a partition if and only if

U2,=2 and 2,N2, =0 for w+xved,

wed

where, for w=w,w, «- W, W,
Sy={0:0=0,0, " €Y, 0,0;  On=W W5+ Wn}

LEMMA 2.7. For a,, a,, -+, ay=0 satisfying 33, a;=1, if A be a partition,
then

A, Quw, Ay, = 1.
wWiweWpeEA w1 wm
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The proof of the above lemma is exactly the same as that of Lemma 2.7
of [KL]

PROOF OF THEOREM 2.4. We write 4,=A(r, a) and R=min {r,, s, -+, ¥x}.
First we will show that 4 *(K,)Z(¢c,/R)*r,* for all weWs,.
For w=w,w; --- w,€Wyx, we define

Aw) = {fv=v0, - vyt wvE A},

where wyv=w,;w, - Wuv,ve -+ ;. Then we can see that 4,(w) is a partition for
sufficiently small a. Hence by

2.1 T = 3 Twe®.

As {Kuwobved,wy is @ cia-covering of K,, we have

ﬂgla(Kw)écla > a%.

vEd g (w)
Note that r.,>aR for ved,, it follows

Ha(K) S (ef/R)* 2 7w

ved g (w)

Using (2.1) and letting a—0, we obtain
HYKw) £ (¢i/R)*ru*.

Next we show that rg<Mc;*4*(K,). Let g be the unique probability Borel
measure on X satisfying

M) =71u".
Then we define a probability Borel measure g on K by, for any Borel set
ACK,

u(A) = p(z='(A)).
Now for every x€K,

X (B(x, za)) C U 2y,

wedq, z

where A, ,={w:wed,, d(x, K,)<c,a}. Hence

p(B(x, c.a)) = 2 g(2w).

wedg, z

Note that (3 ,)=rg<a* and #(A4,, .)=M, we have
p(B(x, c,a)) £ Mcy,™*(c.a)* .
Thus using
re = w(Ky) < Mc3*9%(Ky)
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Hence we have completed the proof of

In the rest of this section, we show that the open set condition implies
(A.1) and (A.2) of [Theorem 2.4

PROPOSITION 2.8. Let f,: R*—R* be ri-similitude for i=1,2, -, N. And
let K be the self-similar set with respect to (R*, {f}X,). If the open set condi-
tion holds; there exists an open set OCR* such that

in<0>c0 and fFLONFO)=@  for i+,

then there exist comstants c¢,, ¢, M>0 such that
(A.D) d(Ky) = 17w
for all weWy

(A.2) #{w:weAlr, a), dix, K,)<ca} < M

for all 0<a<l and x=K.

PROOF. We can see that K,CO., where 0,=F,(0). Without loss of
generality, we may assume that d(O)<1. Then obviously, for all weWs,

dKw) < d(0w) <70
Now let m be the k-dimensional Lesbegue measure and let
Ay . ={w:wedlr, a), d(x, Ky)<a}.
Then Uwes, , OwCB(x, 2a). Since O,’s are mutually disjoint, we have

S m(0,) < m(B(x, 2a)).

wedg, ¢
Hence we have
#(Aa, )ro*m(0) £ 2¥Ca®
where C=m (unit ball). Since 7r,=aR where R=min{r,, #s, -, rN},

#(Aa,2) < 2*CR~*m(0)* .

§3. Shortest path metrics on p.c.f. self-similar sets.

In this section, we will apply to shortest path metrics on
p.c.f. self-similar sets. The notion of p.c.f. self-similar sets introduced by
is a mathematical justification of the “finitely ramified” self-similar sets.
Roughly speaking, a self-similar set K is finitely ramified if #(\U.; (KiNK))
is finite.
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DEFINITION 3.1. Let (K, {1, 2, ---, N}, {F;}X,) be a self-similar structure.
We define the critical set ¢C2 and the post critical set 2CX by

c=n(JENK) and @=U a™(C),

1#] nz1

where ¢ is the shift map from 2 to itself defined by ¢(w,w.w; - -)=w,wsw; .
A self-similar structure is called post critically finite (p.c.f. for short) if and
only if #(®) is finite. Moreover if (K, {1, 2, ---, N}, {F;}X)) is p.c.f., then K
is called a p.c.f. self-similar set.

ExAMPLE (Sierpinski Gasket): Figure 2. Let p,, p,, ps be the vertices of a
regular triangle in C. Then we define, for /=1, 2, 3,

Fi(z)= ’;‘(Z‘Pi)-{-ﬁi .

The Sierpinski gasket K is the self-similar set with respect to (C, {F,, F;, F3}).
The self-similar structure associated with the Sierpinski gasket is post critically
finite. In fact,

c={12,2i,13,31,23 32 and @={i,?2, 3},
where b=FkkEEL ---.
b

gs q:

Dz — D3
A
pr=x(l), po=22), ps=2@3)
q,=7r(23)=7r(32)
g =7(13)=n(31)
g:=r(12)=x(21)

Figure 2.a. Sierpinski Gasket. Figure 2.b. Sierpinski Gasket.

One can find other examples of p.c.f. self-similar sets in §4. Moreover,
~ the nested fractals introduced by Lindstrgm are p.c.f. self-similar sets.
The following is the main result of this section.
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THEOREM 3.2. Let (K, {1,2, ---, N}, {F;}) be a p.c.f. self-similar struc-
ture. If a metric d on K satisfies:
(B.1) d is a shortest path metric.
(B.2) There exist 0<ry, 7a, -+, ¥y<l such that, for all x, yeK,

d(Fi(x)’ Fl(y)) = rid(x’ y) s
then there exists a constant ¢>0 such that
HAKy) = cry”©

for all weWx, where a is the unique constant that satisfies

N

2t =

i=1
In particular, dimy (K, d)=a.

In the next section, we will establish a necessary and sufficient condition
for the existence of metrics satisfying the above assumptions (B.1) and (B.2)
and give some examples.

For the proof of [Theorem 3.2, we will use

LEMMA 3.3. Let ACWy be a partition of 2. Then, for w+vs A,
¢y KuNnKy, = Fu(VoNF(Vo),
where V,=n(P). Also for all we A,
2) #lvivrwed, K,NK,2#@} < #(0)#V,).

PrOOF. (1) is obvious by the definition of ¢ and C. For (2), it is enough
to show that, for all peK,

3.1) #@1(p) = #(0).
Let k=#(C) and suppose w~'(p) contains k-+1 elements, that is,
n-Y(p) D {0, & -, 0**},
where w"=w?w} ---. Then, there exists m=1 such that
WL 0 = @20} @y = - =@t - @b

and i #w), for some 7#;. Let q:F;img.- . (p), then g K;NK; and

Pm-1
- k
T I(Q) D {wi, a)is R ) w*+1})
where wi=whoh . .

On the other hand, =~ (¢)cCC, hence #(x ' (¢))<k. Thus we have a con-
tradiction.
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Proor oF THEOREM 3.2. Obviously by (B.2), we have, for all weW,,
(A.1) d(Ky) = rud(K).

Now for x K, there exists we A(r, a) such that xeK,,. If K,NK,=@, then
for yeK,, a geodesic between x and y must intersect some K; for some s&
A(r, a)N{w, v}. Using Lemma 3.3(1), we have

d(x, y)= min d(p, q).

P#QEF (V)

By (B.2), we have d(x, y)=r:b=aRb, where R=min{r,, 72, -+, ¥y} and b=
min {d(p, q): p#qg<V,}. Hence let c,=Rb/2, then

{t:teAlr, a), d(x, K)Zc.a} C {t:te A(r, a), KiNK,+D}.
Using Lemma 3.3-(2), we have
(A.2) #{t:teAlr, a), d(x, K)Zca} < M,

where M=#(C)#(V,)+1. Thus applying we have 0<H*(K)<co.
By (B.2), we can see that, for all weWy,

KKy =ru,*H*(K).
Thus we have completed the proof of [Theorem 3.2

§4. Existence of shortest path metric.

In this section, we will give a necessary and sufficient condition for exist-
ence of metrics on p.c.f. self-similar sets that satisfy the assumptions of
(B.1) and (B.2). First we introduce several notions.

DEFINITION 4.1. Let V be a finite set. A family of #(V)x#(V)-matrices,
D={D,, D,, ---, D,} is called a family of paths on V if and only if, for every
i=1,2, -, n,

(1) D, is symmetric,

(2) Dip, 9)=0 for all p, gV and D,(p, p)=0 for all p=V, where D;=

(D«(p, 9))p, qev-

A sequence {(pr, Prs1:tx)lity where pg, pra€V and i,e{1,2, -, n}
is called a 9-path between p, and pn,, if and only if, for all k=1, 2, ---, m,
D;,(pe, Pr+1)>0. Further a family of paths on V, 9 is said to be irreducible
if there exists a 9-path between p and ¢ for all p, g€ V.

NOTATION. For two D-paths p={(ps, Pesr:te)} ik and q={(gx, gr+1: J&)} 4,
if pm,s1=¢1, We define a D-path between p; and gm,.1, h=1{(he, Rper: L)} a™2
by

’
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D for 1<k<m,
i :{ Qr-m, for m+1<k<m,+m,+1
ie for 1<k<sm,
. :{ Jk-m, for m+1<b<m,+m,
we will denote h=pVq.
The next proposition follows immediately by Definition 4.1.
PROPOSITION 4.2. Let V be a finite set and let @ be a irreducible family

of paths on V, then dg is a metric on V where dg is defined by

m
do(p, @) = min 2 D; (b, Drsr)-
WD Pray: e, s @ P51
9D-path between p and q

A D-path between p and q that attains the minimum of the above definition is
called a minimal D-path between p and q.

Now the main result of this section is

THEOREM 4.3. Let (K, {1,2, ---, N}, {F}L) be a p.c.f. self-similar struc-
ture where K is connected. For given 0<ry, vy, -+, ry<l, there exists a metvric
on K such that

(B.1) -d is a shortest path metric,
(B.2) d(Fy(x), Fi(y)) = rid(x, ¥),

for all x, yeK if and only if there exists a metric dy on V,=n(P) such that,
for all p, q=V,,

(C'l) dQ(p’ Q) = do(pr CI) )
where D={D,, D,, ---, Dy} is a family of paths® on V,=\JiL, F(V,) defined by
rid0<Fi-1(p>y Fi—l((])) lf py qEFI(V0>)

0 otherwise

Di(p, ¢ = {
and
(C.2) do(p, ¢ = Di(p, @,
for all p, g=Fi(V,). ‘

ReMARK 1. In [BS], they studied the existence problem of interior dis-
tances on p.c.f. self-similar sets where the contractions are similitudes of a

2 If K is connected, we can easily see that 9 is irreducible.
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Euclidean space R"™. The interior distances satisfy (B.1) and (B.2). They get
a condition which corresponds to (C.1) of the above theorem. In their restricted
situation, however, the condition (C.2) will not appear. We will give an ex-
ample where (C.2) becomes really a constraint. See Example 2 below.

REMARK 2. By the proof of [Theorem 4.3, we can see that if (C.1) and
(C.2) is satisfied then we can find a set of geodesics {gpq}p ¢er, such that

gpq(t) = gpq(d(ib; Q)_t) .
Moreover let [t,, t,]={t: g,,(t) K;}, then
Fi(gﬁ(}<t>> = gprit+ d(p, p)),

where p,=g,4(t1), []lzgpq(tZ), ﬁ:Fi_l(ﬁO and q:Fi-l(QI)- Hence {gpq}p,qEVO
forms a frame of this self-similar sets. The concept of frames of self-similar
sets was introduced by Kameyama [Ka].

Before proving our theorem, we apply it to several examples.

ExAMPLE 1 (Hata’s tree-like set): Figure 3. This tree-like set was intro-
duced by Hata [Ha]. For B=C that satisfies

1Bl <1, |8—1l <1 and ImB =0,
we define contractions F, and F, from C to itself by
Fi(z)= Bz and Fix(z)=1—|81z+ 18I

The Hata’s tree-like set is the self-similar set associated with (C, {F;, F:}).
The corresponding self-similar structure is independent of S and it is post
critically finite. In fact

c= {112, 21}, ¢==(112) ==2l),
®=11,2,13), pi=nd), p.=7Q2), ps=r(2).

Now let d, be a metric on V,={p,, p:, ps} and let

Figure 3. Hata’s tree-like set.
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a=dopy, ps), b=du(ps, po) and ¢ =do(ps, Ds).
Then the condition (C.1) becomes
4.1 bry=a, ar,+br,=0>b, br+ar,+br,=c.
In this case, (C.2) is satisfied under [4.1). By [4.I)} we have, for 0<r<I,
ri=r, r,=1—r% a=br and c¢=a+b.

Hence by [Theorem 4.3, we can construct a shortest path metric on the Hata’s
tree-like set for each choice of ». By the corresponding Hausdorff
dimension is the unique number a that satisfies

re+(1—r>)*=1.

For the Hata’s tree-like set, the contraction ratio |j3| naturally corresponds to
the ratio of the shortest path metric 7.

ExAMPLE 2: Figure 4. Let {p,, p., ps} be the vertices of a regular triangle
in C and let

1 1 1 1
ps= —2—(102—!-173), bs = 5(171-1—1)3), be= “2‘(?14’1)2), b= —:,)"(P1+p2+173) .
Further, for /=1, 2, ---, 7, let F; be a contraction from C to itself defined by
Fi(z) = ﬁi(z—Pi)+ﬁi ’
where B;=8=8:=8, B:=Bs=B=1—28, B,=1-38 for 1/3<B<1/2.
)i

Q21 Py Gas

Figure 4.a. Figure 4.b.

The self-similar structure associated with the self-similar set with respect
to (C, {F;}%-,) is independent of the value of B and it is post critically finite.
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In fact
C= Tk (B+)EVS U (ki mb, mi, 1k},
k=1 Rt

qr = r(7k) = n((k+3)k) for k=1, 2, 3,
Gim = m(ml) = 7(k),  qim = x(kl) = n(mk),
for (%, I, m) such that k</<m and k-+I{+m=9. Also

?=1{1,23} and p,= (k)
for k=1, 2, 3.
In this case, taking symmetries into account, we assume that d,(p;, p;)=1
for all i#j&= {1, 2, 3} where d, is a metric on V,={p,, ps, ps} and that r,=r,
=r,=v, ryi=r;=re=s and r,=t. Then the condition (C.1) and (C.2) becomes

2r+s=1 and 2s+t=7r

respectively. Here the condition (C.2) is really a constraint. For example, for
r=3/7 and s=1/7, we have t=1/7 by (C.2).

EXAMPLE 3 (Pentakun): Figure 5. Let {p,, p., -+, ps} be the vertices of a
regular pentagon in C. Then for i=1, 2, ---, 5, we define a contraction F;
by

Fi(z) = 3‘2\/5 (z—p)+ps.

The pentakun® is the self-similar set with respsct to (C, {F;}i;). The self-
b

Figure 5.a. Pentakun. Figure 5.b. Pentakun.

8 In the same way, we can also define hexakun, heptakun, octakun and so on. ‘kun’
is a Japanese which means ‘Mr.’.
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similar structure that corresponds to the pentakun is post critically finite. In
fact

c= kU ([k—21[k+11, [k+2][k=1]},

qr = n((k—2][k+1]) = n([k+2][k—1]),
@=1{i,2 ,5 and p,=n(k)

for k=1, 2, -+, 5, where [i]e{l, 2, ---, 5} is defined by [/]=¢ mod5.

The pentakun has a strong symmetry and it is a nested fractal. Here we
will focus on shortest path metrics that have the same symmetry as the shape
of the pentakun. Therefore, we assume that a metric d, on Vo={p1, ps, -*-, Ds}
satisfies

a if |i—j]==1 mod5
dﬂ(pit ﬁ]) = . . .
b if |i—j]|=%2 mod5
and also r=r; for i=1, 2, ---, 5. Then the condition (C.1) becomes
4.2) 2br=a and 2br+ar=b.

(C.2) is satisfied if holds. By we have

r:—{Bz;l and a=(+/3-1)0.

Hence by the shortest path metrics with the above symmetry are
essentially unique up to constant multiple. The Hausdorff dimension under this
shortest path metric is —log 5/log 7.

In the rest of this section, we will prove [Theorem 4.3 in several steps.
First we show that (B.1) and (B.2) imply (C.1) and (C.2).

LEMMA 4.4. If (B.1) and (B.2) hold, then we have (C.1) and (C.2).

PrOOF. Let dy=d|vyv,. By virtue of (B.2), d(p, 9)=Di(p, q) if p, g
F,V,). Hence by the triangle inequality, we have (C.2) and, for p, gV,

do(p, ¢ = do(p, @.

By (B.1), there is a geodesic g: [0, d(p, ¢)]—K between p and ¢ for p, g=V,.
Let {ty, ts, -, tat={t: g)cV,} where 0=t,<t,< - <tn.1=d(p, q), then
{(gtr), 8trsr): 11)} sy is a P-path between p and ¢ for some iy, 75, -+, in. AS
g is a geodesic,

d(p, ) = % d(g(ts), gte.r) -
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Hence we have

do(p, @) = do(p, q).

Next we prove the counter direction. From now on, we assume (C.1) and
(C.2).

DEFINITION 4.5. Let Va=Uuwew,, Fu(Vi). Dn={Dw}wew, is a family of
paths on V,, defined by

rwdo(Fw_l(p); Fwﬂl(@) if p, qEFw(VO) ’

0 otherwise.

D.(p, ¢ ={

We write dn=dg,. Note that 9=9,.

As K is connected we can see that 9,, is irreducible. Now, for each pair
(p, )€V,XV,, we fix a minimal 9-path between p and g, p(p, Q)={(p:(p, @),
DPraalD, @ :ix(p, QNP P, Then using (C.2) inductively, we can see that

LEMMA 4.6. For weW,, and p, g F,(V,), we define a Dn.,-path between
b and q, pu(p, q) by

Pu(p, @) = {(Fu(ps(d, D), Fu(prald, D): wir(p, P22,

where p=F,,~(p) and §=F, Y q). Then p,(p, q) is a minimal D, -path between
P and q.

LEMMA 4.7. For p, g€V n, let p={(Ds, Drer: WwE) M, be a minimal D,-
path between p and q. Then

F(p) = Pps(P1, P2V DDz PV Ppymy(Pmy Prmst)
is @ minimal D, ,-path between p and q.
By the above lemma, we can easily see that
dmsi(P, @) = dnlp, @)

for all p, g€V ,. Hence we can define a metric d on Ve=Unzo Vn by d(p, q)
=d.(p, q) for p, g=V,. Next we will extend this metric d to a metric on K.

LEMMA 4.8. Define d(p, q) for p, q=K by
d(p, )= lim d(pn, 42),

where P, ¢.€Vs and p,—p, ga—q as n—oo. Then d is well-defined and it is a
metric on K that satisfies (B.2).

REMARK. The notion of the convergence of a sequence in K is equivalent
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to the following. A sequence in K, {p,}5-,, converges to p= K if and only if,
for each m, there exists n(m) such that, for all n>n(m), p,€U, , where

Um,p: U Kw-

WPEK 1y, WEW 1

PROOF OF LEMMA 4.8. Let p,—p, pa—p as n—oo where {p.}, {pa} V.
Note that, for weW,,

dK,)= max d(x,y)< R"M
x,yeK ynVx*
where R=max{r,, 7., -, ry} and M=max, v, do(p, g). Hence by we
have, for sufficient large n,
d(pn, P) S 2 d(Ky) £ #(CO)R™M.

welm, p

Therefore d(p,, pp)—0 as n—co.
Now by the triangle inequality,

Wd(Pn, qn)—'d(pm, (]m>l g d(pn, pm)'*'d(Qn, (]m) .

By the above fact, we have d(pn, pn), d(gn, gu)—0 as m, n—oo. Hence there
exists a limit of d(p., ¢g.) as n—oo. We can show that this d is a well-defined
on K by the same discussion. It is obvious that 4 is a metric on K and it
satisfies (B.2).

The final step of the proof of is to construct geodesics for d.
First we construct a geodesic between p and ¢ for p, g€V« For p, ¢&Vy,
there is some m such that p, g=V,. Let p be a minimal 9,-path between p
and g. We define p"=%"(p), then by p" is a minimal 9,,,-path
between p and ¢. Let

p" = {(pE, Pk w(RDIE®,

then define T,={t}, 13, -+, th+:} CLO, d(p, )] by ti=dn.n(p, P}), where t71=
and %1 =d(p, ¢). We can see that T,CT,,; and Tx=\U,2o T is a dense sub-
set of [0, d(p, ¢)]. Now define g,,: T«—[0, d(p, )] by, for (€T ,, gp(tk)=0%,
then this is well-defined and we can extend g,, to a continuous function
gpq: [0, d(p, ¢)J—K. 1t is obvious by the method of construction that g,, is a
geodesic between p and g.

Next, we construct a geodesic between peV,and g K\Vy. Let n=#(V,),
7 Q)=w,0,0; -+ and Fovy.0,(V)=12gT, g7, -+, g7'}. By Lemma 3.3(1), every
geodesic between p and ¢ intersects Fy u,.0,.,(Vo). Hence we can choose a
family of geodesics g(p, ¢*: -) such that g(p, ¢f*: -) is a geodesic between p
and ¢7* and, for some j, g(p, ¢i*: )=g(p, ¢7*~*: 1) on [0, d(p, ¢7" " )].
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LEMMA 4.9. There exists a sequence {in}m=1s. .. where 1<i,<n such that
gp, g, ) =g8(p, ¢, : D)
on [0, d(p, ¢i,)] for all m>k.

Proor. We can choose 7, such that for all k£>1, there exists j, that
satisfies

g, ¢, =28, gi,: 1)

on [0, d(p, ¢i,)]. Now suppose that we can choose 7,, i, -+, i, such that for
all 2>m, there exists s, satisfying

g, g5, =g, ¢, 1)
on [0, d(p, ¢¢)] for {=1,2,---, m. Then let
U= {k:kzm+1, g(p, ¢§,: d(p, ¢F"N=4¢T""}.
Choosing in.; so that #(U;,, )=co, we can find jh.,s, /., - satisfying

g(p, g5 D=8, qi,: 1)

on [0, d(p, ¢})] for (=1, 2, .-, m+1. Hence we can inductively construct a °
sequence {im}moy s .. that satisfies Lemma 4.9.

Since ¢7},—¢ as m—oco, we can define g,,: [0, d(p, ¢)]—K by
8(p, g, 1) on [0, d(p, q7,,)]
q for t=d(p, ).

Then g, , is a geodesic between p and q.

Finally we construct a geodesic between p and ¢ for p, g=K. For suffici-
ently large m, we can choose w+veW,, so that p= K, and g=K,. Then there
exist p,eF,(V,) and g,=Fy(V,) such that

Zpo() = {

d(p) Q) = d(p) pl)+d(p1) f]1)+d(01, Q)-

Let p=F;'(p), b=Fu'(py), §=F; (¢ and §,=Fy'(q) and let g5 5, gp, and
g4,q be geodesics constructed in the previous steps. We define

g5, 5((d(p, p0)—1)/rw)  on [0, d(p, py)]
gpdl) = gplql(t"d(p, b)) on [d(p, p), d(p, g1)]
2a,((t—d(p, q1))/ 1) on [d(p, qv), d(p, 9)].

It follows easily that g,, is a geodesic between p and q. Thus we have shown
that d is a shortest path metric.
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Appendix. The Hausdorff dimension of the Lévy curve.

At the beginning, we recall the definition of the Lévy curve.
Let F, and F; be contractions* from C to itself defined by, for b=(1+:)/2,

Fy(z)= Bz and Fy(z)= fz+8,

The Lévy curve K is the self-similar set with respect to (C, {F,, Fi}).

First, we explain the difficulty in applying (the open set con-
dition) to the Lévy curve. The following fact was pointed out by Hata in a
private communication.

PROPOSITION A.l. If there is an open set O that satisfies the open set con-
dition for the Lévy curve K, then OCK.

This means that if we try to find an open set that satisfies the open set
condition, then we should prove that the Lévy curve K contains an open ball
of C. However, if we could find an open ball which contained in K, it proved
that 0<J*(K)<oo, because K is a bounded subset of C. As a consequence, it
seems quite difficult to show the open set condition before proving that
dimyz K=2. In fact, we can show that the Lévy curve contains an open ball

of C and then int(K) is the unique open set that satisfies the open set condi-
tion. :

Now we will show that can be applied to the Lévy curve.
PROPOSITION A.2. For the Lévy curve K, let r=|8|=+/1/2, then
1) d(Kv) < r™d(K)
for all m=1 and all weW.,,. Also there exists a positive constant M such that
2) #lw:weWn,, dix, Kp)Sr"dK)}) <M
for all m=1 and xK.
By the above proposition implies

0< HH(K)< o0
and so dimy K=2.
We will prove Proposition A.2 hereafter. (1) is obvious because d(K,)=
r™d(K) for all we{0, 1}™. For (2), we will construct a series of broken lines
which approximates the Lévy curve as in [Kil].

DEFINITION. For 7n>0, a,={a.()}%, is defined inductively by

4 We change the notation of contractions for convenience of the following discussion.
In §1, we used f; and f, where f1=F, and f,=F,.
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an1(2R—1) = ﬁan(k)
Qnii(2k) = Ban(k).

We think of a, as a broken line whose turning points are z,={z,(k)}iZ,
where z(k)’s are defined inductively by

a,l)=1 and {

z00=0 and z.(k)=z,(k—1)+a,lk).

See Figure 6. It is easy to see that

LEMMA A.3.
(a) Zn1(2R) = z,(R). In particular, z,(2")=1.
(b) Zn = Fo(za)UF\(20).
(©) 2, C B"Z*.
z2,(2k—1)

T T T T T Y T T

an+1(2k"—1) an+1(2k)

e oo 4

Zn(k—l) an(k) zn(k)
=2n+1(2k—2) =zn+l(2k)

Figure 6.a. Figure 6.b. Z,,.

By (b) of the above lemma, it follows that the Lévy curve is the closure of
Unso 2n. For each (z,(k), z,(k+1)), there exists we {0, 1}™ such that F,(0)=
z.(k) and F,(1)=z,(k+1). We denote this w by w(n, k). Precisely, w(n, k)=
ww, - wre {0, 1}™ where

b= w2t
i=1

LEMMA A4, If R+l then (z(k), z,(R+1))#(2,4(), z,(I+1)).

PrOOF., For n=0, Lemma A.4 holds obviously. Now let’s suppose that
Lemma A.4 is true for n. Let x, y&f""'Z? satisfy |x—y|=[B]|""". Then we
define (x, y)'=(X, Y) where X, Y€8"Z*? and |X—Y|=|B|" by

(x, x+B W (y—x) if x€p”Z?,
(y—Fx—y), 3 if yeprZ®.
For (za,1(k), za.1(k+1)), there exists m such that (z,.1(k), Zn.(F+1))"1=(z,(m),

X, Y)={
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zn(m+1)). Precisely, m=+~k/2 if k is even and m=(k—1)/2 if k is odd. Now
if (zai(R), Znas(R+1)=(2041(D), Zasa(l+1)), then (zx.1(k), za(B+1)'=(z4. (D),
Zn({+1))7t. This is impossible because Lemma A.4 holds for n. Hence we
have shown that Lemma A.4 is true for n+1. This completes the proof of
Lemma A.4.

NOTATION. For x, yep"Z® satisfying |x—y|=[8|", we define the edge
of the square lattice 8"Z*® whose vertices are x and y by

e(x, y) = {x+t{y—x): 05t}
Further we denote the collection of the edges of the square lattice 8*Z? by E,.

PROOF OF (2) OF PROPOSITION A.2. As d(K,)=r"d(K) for weW,, we
have

Am,r C ATI’L, x s
where A, .={w:weW,, dlx, K,)<d(K)r™} and
An = {wlm, k): B(x, 2d(K)r™Ne(z.(k), zo(k+1)+ D}.

By Lemma A.4, each edge e(x, y) of 8"Z* corresponds at most two w(m, k)'s
such as (x, y)=(za(k), zn(k+1)) and (v, x)=(z.(l), z({+1)). Hence we have

#(Am,2) S 2#({e: e€En, B(x, 2d(K)r™)Ne+@})
< 2#({e:e<sE,, B(f~™x, 2d(K)Ne+ @}).

Obviously there exists M >0 such that the last value of the above inequality is
not larger than M for all x and m. Hence we have

#Un ) =M

for all xeK and all m=1.
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