# On classification of non-Gorenstein $Q$-Fano 3-folds of Fano index 1 

By Takeshi Sano

(Received Aug. 22, 1993)

## 1. Introduction.

First of all we recall some definitions.
Definition 1.1. A $d$-dimensional normal complex projective variety $X$ is called a $\boldsymbol{Q}$-Fano $d$-fold if it has only terminal singularities and the anti-canonical Weil divisor $-K_{X}$ is ample (cf. [KMM]). The index of singular point $p$ is defined to be the smallest positive integer $i_{p}$ such that $i_{p} K_{X}$ is a Cartier divisor near $p$. A singular point of singularity index one is called Gorenstein singularity. Singularity index $I(X)$ of $X$ is defined to be the smallest positive integer such that $I K_{X}$ is a Cartier divisor. Hence there is a positive integer $r$ and a Cartier divisor $H$ such that $-I K_{X} \sim r H$. Taking the largest number of such $r$, we call $r / I$ the Fano index of $X$.

Q-Fano $d$-folds whose Fano indices are greater than $d-2$ are classified by [ Sa ] under the assumption that they are not Gorenstein, that is, their singular indices are greater than one. In this paper we shall consider Fano 3 -folds of Fano index 1 and not Gorenstein. Classifying these Fano 3-folds also answers the next problem presented by G. Fano, A. Conte and J. P. Murre (cf. [CM]) in the case that they have only terminal singularities.

Problem. Classify the projective 3 -folds having Enriques surfaces as hyperplane sections.

In general case, this problem seems very hard to solve because their singularities may not be $\boldsymbol{Q}$-Gorenstein, that is, $-m K$ is not Cartier for any positive integer $m$.

In this article we shall obtain next result.
Theorem 1.1. Let $X$ be a $\boldsymbol{Q}$-Fano 3 -fold of Fano index 1 having only cyclic quotient singularities. We take a canonical cover:

$$
Y=\operatorname{Spec}_{X_{m=0}} \oplus_{\oplus}^{-1} \mathcal{O}_{X}\left(m\left(K_{X}+H\right)\right) \xrightarrow{I: 1} X .
$$

Then 1 is 2 and $Y$ is one of the following smooth Fano 3-folds.

| No. | $\left(-K_{Y}\right)_{t}$ | $Y$ |
| :---: | :---: | :---: |
| 1 | 4 | $(2,4) \subset \boldsymbol{P}(1,1,1,1,1,2)$ |
| 2 | 8 | $(2,2,2) \subset \boldsymbol{P}^{6}$ |
| 3 | 8 | the blowup of (4) $\subset \boldsymbol{P}(1,1,1,1,2)$ with center an elliptic curve which is an intersection of two member of $\|-(1 / 2) K\|$ |
| 4 | 12 | $\boldsymbol{P}^{1} \times S_{2}$ |
| 5 | 12 | a double cover of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{1}$ whose branch locus is a divisor of tridegree $(2,2,2)$ |
| 6 | 12 | a double cover of $(1,1) \subset \boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ whose branch locus is a member of $\|-K\|$ |
| 7 | 16 | the blow-up of $(2,2) \subset \boldsymbol{P}^{5}$ with center an elliptic curve which is an intersection of two hyperplain sections |
| 8 | 16 | $(4) \subset \boldsymbol{P}(1,1,1,1,2)$ |
| 9 | 20 | the complete intersection of three divisors of bi-degree $(1,1)$ in $\boldsymbol{P}^{3} \times \boldsymbol{P}^{3}$ |
| 10 | 24 | $\boldsymbol{P}^{1} \times S_{4}$ |
| 11 | 24 | $(1,1,1,1) \subset \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ |
| 12 | 32 | $(2,2) \subset \boldsymbol{P}^{5}$ |
| 13 | 36 | $\boldsymbol{P}^{1} \times S_{6}$ |
| 14- | = | $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ |

There is a smooth Fano 3-fold $Y$ among each deformation type, which has an involution $\theta$ such that $Y / \theta$ is a $\boldsymbol{Q}$-Fano 3-fold of Fano index 1.

Remark 1.2. We can easily classify all involutions $\theta$ of each $Y$ such that $Y / \theta$ is a $\boldsymbol{Q}$-Fano 3 -fold of Fano index 1. But this is a very tiresome work, so we will constract only one example for each type.

## Notation.

In this paper we always assume that the ground field is complex number field $\boldsymbol{C}$, and we will follow the notation and the terminology of [KMM]. The following symbols will be frequently used with no mention.
$\sim$ : linear equivalence
$\sim_{Q}: Q$-linear equivalence
$\equiv$ : numerical equivalence
$K_{X}$ : canonical divisor of $X$
$\rho(X)$ : the Picard number of $X$, i. e., rank Pic $X$
$h^{i}(D):=\operatorname{dim}_{C} H^{i}(D)$
$\chi(D):=\sum_{i}(-1)^{i} h^{i}(X, D)$
$c_{i}(X): i$-th Chern class of $X$
$B_{i}(X): i$-th Betti number of $X$.

## 2. Preliminaries.

Let $X$ be a $\boldsymbol{Q}$-Fano 3 -fold of Fano index 1 with only cyclic quotient singularities. We take the canonical cover :

$$
Y=S p e c_{X} \bigoplus_{m=0}^{I-1} O_{X}(m(K+H))
$$

In this section we will obtain bounds of $\left(-K_{Y}\right)^{3}, I$ and the number of singular points. We recall here three fundamental theorems.

THEOREM 2.1 (Riemann-Roch Theorem for singular variety [Ka], [Re]). Let $V$ be a normal projective 3-fold with only terminal singularities, and $D$ be a Weil divisor on $V$. If $\mathcal{O}_{V}(D) \cong \mathcal{O}_{V}\left(K_{V}\right)$ in a neighbourhood of each point of $V$, then

$$
\chi\left(\mathcal{O}_{V}(D)\right)=\chi\left(\mathcal{O}_{V}\right)+\frac{1}{12} D\left(D-K_{V}\right)\left(2 D-K_{V}\right)+\frac{1}{12} D \cdot c_{2}(V)-\frac{1}{12} \sum_{i \backslash I}\left(i-\frac{1}{i}\right) n_{i}
$$

where $n_{i}$ is the number of singular points of index $i$ counted with multiplicites. If $D$ is a Cartier divisor (not requiring $\mathcal{O}_{V}(D) \cong \mathcal{O}_{V}\left(K_{V}\right)$ in a neighbourhood of each point), then the same equality holds but the last term $(1 / 12) \sum_{i \mid I}(i-1 / i) n_{i}$ does not appear.

THEOREM 2.2 (Vanishing Theorem [KMM]). Let $V$ be a normal projective variety with only $\boldsymbol{Q}$-factorial terminal singularities, and $D$ be $a$ Weil divisor on V. If $D-K_{V}$ is ample, then

$$
H^{i}\left(V, \mathcal{O}_{V}(D)\right)=0 \quad \forall i>0
$$

THEOREM 2.3 (Lefschetz fixed point formula. Cf. [GH]). Let $\theta$ be an automorphism of smooth compact complex manifold $M$ which fixes only finite points. Assume that $\theta$ is non-degenerate at each fixed point $p$, i.e., $\operatorname{det}\left(J_{p}(\theta)-I\right) \neq 0$. Then the number of fixed points of $\theta$ is given by next formula.

$$
\left.\sum(-1)^{p+q} \operatorname{trace} \theta^{*}\right|_{H} ^{p, q_{(M)}}
$$

LEMMA 2.4. $n_{2}=8$ or $\left(n_{2}, n_{4}\right)=(3,2)$, and the other $n_{i}=0$. In particular $I(X)=2$ or 4 .

Proof. Put $D:=K_{X}+H$. Since $D$ is a torsion divisor and $-K_{X}+D$ is ample, the Vanishing Theorem and Riemann-Roch Theorem gives $0 \doteq \chi(D)=1$ $-(1 / 12) \Sigma(i-1 / i) n_{i}$, hence

$$
\Sigma\left(i-\frac{1}{i}\right) n_{i}=12 .
$$

The assertion can be obtained by solving this equality.
Lemma 2.5. Let $Y$ be a smooth Fano 3 -fold. Assume that $Y$ has an automorphism $\theta$ of index 2 or 4 which fixes just $2 n$ points. Then the parities of $\rho(Y)$ and $B_{3} / 2$ are same when $n$ is odd, and the parities of $\rho(Y)$ and $B_{3} / 2$ are distinct when $n$ is even.

Proof. The following are easily verified.

$$
\begin{gathered}
\operatorname{Pic} Y \cong H^{2}(Y, \boldsymbol{Z}), \quad H^{2}(Y, \boldsymbol{C}) \cong H^{1,1}, \\
H^{3}(Y, \boldsymbol{C}) \cong H^{1,2} \oplus H^{2,1} .
\end{gathered}
$$

Hence $h^{p, q}$ data are as follows.

| $h^{p, q}$ | $q$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $q$ <br> 3 | 0 | 0 | 0 | 1 |
| 1 | 0 | $\frac{1}{2} B_{3}$ | $\rho(Y)$ | 0 |  |
| 0 | $\rho(Y)$ | $\frac{1}{2} B_{3}$ | 0 |  |  |
|  | 1 | 0 | 0 | 0 |  |

By Lefschetz fixed point formula,

$$
2+2 \text { trace }\left.\theta^{*}\right|_{\text {Pic } Y \otimes C}-2 \text { trace }\left.\theta^{*}\right|_{H^{1,2}}=2 n .
$$

Hence the parities of trace $\left.\theta^{*}\right|_{\text {Pic } Y \otimes C}$ and trace $\left.\theta^{*}\right|_{H^{1,2}}$ are same when $n$ is odd, and are distinct when $n$ is even. Note that the action of $\theta$ on $H^{p, q}$ is described by

$$
\theta^{*}=\left(\begin{array}{ccccc} 
\pm 1 & & & & \\
& \ddots & & & \\
& & \pm 1 & & \\
0 & & & \pm \sqrt{-1} & \\
\\
0 & & & & \\
& & & \\
&
\end{array}\right)
$$

Hence the parities of $\rho(Y)$ and $B_{3} / 2$ are same when $n$ is odd, and are distinct when $n$ is even.

Corollary 2.6. The singularity index $I(X)$ is 2 . The parities of $\rho(Y)$ and $B_{3} / 2$ are distinct.

Lemma 2.7.

$$
2 \mid\left(-K_{X}\right)^{3} \text {, hence } 4 \mid\left(-K_{Y}\right)^{3} .
$$

Proof. Recall that there is a Cartier divisor $H$ which is $\boldsymbol{Q}$ linearly equal to $-K_{X}$. Set $D=H$ and by applying Theorem 2.1, we obtain the assertion.

## The way of classification.

We mention here the way of classification roughly. Smooth Fano 3-folds have been classified (cf. [Is], [MM]). We will investigate whether there is an involution which fixes just 8 points for each Fano 3-fold. First we use Corollary 2.6 and Lemma 2.7. Next we consider by its structure whether there exists the involution. If we cannot make decision easily, we take a chain of smooth Fano 3-folds and involutions:

$$
(Y, \theta) \xrightarrow{f_{1}}\left(Y_{1}, \theta_{1}\right) \xrightarrow{f_{2}} \cdots \xrightarrow{f_{s-1}}\left(Y_{s-1}, \theta_{s-1}\right) \xrightarrow{f_{s}}\left(Y_{s}, \theta_{s}\right),
$$

where $f_{i}: Y_{i} \rightarrow Y_{i+1}$ is a contraction of the $\theta_{i}$-invariant extremal face and $\theta_{i}$ is the lift of $\theta_{i+1}$. We take a special assumption that the dimension of each contracted extremal face is one or two, and if it is $2, f_{i}$ is the inverse of a blowup with center two disjoint curves. This chain can be made by investigating the final column of the table in [MM].

Definition 2.8. We call above $Y_{i}$ "a former" associated to $Y$.
The structures of formers are simpler than that of $Y$, so we investigate formers instead of $Y$.

Remark 2.9. If for some $i$, the dimension of the fixed locus of $\theta_{i}$ is not less than 1 , then so is that of $\theta$.

## 3. Proof of the Theorem.

We will carry out the classification along the way we mentioned in the last section.

1. Case $\rho(Y)=1$.

In this case Pic $Y=\boldsymbol{Z} H$, where $H$ is an ample divisor. Hence $\theta^{*} H=H$, so trace $\left.\theta^{*}\right|_{H^{1,1}}=\left.\operatorname{trace} \theta^{*}\right|_{H^{2,2}}=1$. Then trace $\left.\theta^{*}\right|_{H^{1,2}}=\left.\operatorname{trace} \theta^{*}\right|_{H^{2,1}}=-2$.

A smooth Fano 3-fold with $\rho(Y)=1,4\left|\left(-K_{Y}\right)^{3}, 2\right|\left(B_{3} / 2\right)$ and $B_{3} / 2 \geqq 2$ is one of the following (cf. [Is]).

| No. | $Y$ |
| :---: | :--- |
| 1 | $(4) \subset \boldsymbol{P}^{4}$ |
| 2 | $V_{4}$, i.e., $(2,2) \subset \boldsymbol{P}^{5}$ |
| 3 | $(2,2,2) \subset \boldsymbol{P}^{6}$ |
| 4 | $V_{2}$, i.e., $(4) \subset \boldsymbol{P}(1,1,1,1,2)$ |
| 5 | $(2,4) \subset \boldsymbol{P}(1,1,1,1,1,2)$ |

No. 1, 2, 3.
Each of these is embedded by $|H|$. Therefore $\theta$ is a restriction of a projective transformation to $Y$, so $\theta$ can be described by

$$
\left[x_{0}: \cdots: x_{l}: x_{l+1}: \cdots: x_{n}\right] \longmapsto\left[x_{0}: \cdots: x_{l}:-x_{l+1}: \cdots:-x_{n}\right]
$$

where $X_{0}, \cdots, X_{n}$ are homogeneous coordinates. The fixed locus of this involution consists of

$$
V_{+}\left(X_{0}, \cdots, X_{l}\right) \text { and } V_{+}\left(X_{l+1}, \cdots, X_{n}\right) .
$$

No. 1.
In this case $\theta$ fixes infinitely many points, so this case never occur.
No. 2.
In this case $\theta$ should be

$$
\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right] \longmapsto\left[x_{0}: x_{1}: x_{2}:-x_{3}:-x_{4}:-x_{5}\right] .
$$

Let $Y \subset \boldsymbol{P}^{5}$ be the complete intersection defined by 2 quadrics

$$
Q_{i}\left(X_{0}, X_{1}, X_{2}\right)+Q_{i}^{\prime}\left(X_{3}, X_{4}, X_{5}\right) \quad(i=1,2) .
$$

$\theta$ fixes just 8 points of $Y$. Hence $Y / \theta$ is a $\boldsymbol{Q}$-Fano 3 -fold of Fano index is 1 or $1 / 2$. Let $S$ be $Y \cap Q_{3}$, where $Q_{3}$ is a third quadric of $P^{5}$ defined by

$$
Q_{3}\left(X_{0}, X_{1}, X_{2}\right)+Q_{3}^{\prime}\left(X_{3}, X_{4}, X_{5}\right)
$$

Thus $S$ is a member of $\left|-K_{Y}\right|$ and we can take $S$ such that $\theta$ acts $S$ without fixed points. So the quotient $Y / \theta$ is a $\boldsymbol{Q}$-Fano 3 -fold of Fano index 1 . To check the existence of such $S \in\left|-K_{Y}\right|$ is easy like this, so we omit the argument in what follows.
No. 3.
$\theta$ should be

$$
\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: x_{6}\right] \longmapsto\left[x_{0}: x_{1}: x_{2}: x_{3}:-x_{4}:-x_{5}:-x_{6}\right] .
$$

Let $Y \subset \boldsymbol{P}^{6}$ be complete intersection defined by the 3 quadrics

$$
Q_{i}\left(X_{0}, X_{1}, X_{2}, X_{3}\right)+Q_{i}^{\prime}\left(X_{4}, X_{5}, X_{6}\right) \quad(i=1,2,3) .
$$

Generally, $\theta$ fixes just 8 points.
No. 4.
Let $X_{0}, X_{1}, X_{2}, X_{3}, X_{4}$ be homogeneous coordinates with $\operatorname{deg} X_{i}=1(0 \leqq i \leqq 3)$, $\operatorname{deg} X_{4}=2$. We define the involution

$$
\theta:\left[X_{0}: X_{1}: X_{2}: X_{3}: X_{4}\right] \longmapsto\left[X_{0}: X_{1}:-X_{2}:-X_{3}:-X_{4}\right] .
$$

Then the fixed locus of this involution consists of

$$
V_{+}\left(X_{0}, X_{1}, X_{4}\right), \quad V_{+}\left(X_{2}, X_{3}, X_{4}\right), \quad[0: 0: 0: 0: 1] .
$$

Let $Y$ be the hypersurface of $\boldsymbol{P}(1,1,1,1,2)$ defined by

$$
X_{0}^{4}+X_{1}^{4}+X_{2}^{4}+X_{3}^{4}+X_{4}^{2} .
$$

Then the fixed locus of $\theta$ on $Y$ consists of 8 points.
No. 5.
Let $X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be homogeneous with $\operatorname{deg} X_{i}=1(0 \leqq i \leqq 4), \operatorname{deg} X_{5}$ $=2$. We defined the involution

$$
\theta:\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right] \longmapsto\left[x_{0}: x_{1}: x_{2}:-x_{3}:-x_{4}:-x_{5}\right] .
$$

Hence the fixed locus of this involution consists of

$$
V_{+}\left(X_{0}, X_{1}, X_{2}, X_{5}\right), \quad V_{+}\left(X_{3}, X_{4}, X_{5}\right), \quad[0: 0: 0: 0: 0: 1] .
$$

Let $Y$ be a weighted complete intersection $(2,4) \subset \boldsymbol{P}(1,1,1,1,1,2)$, defined by next two equations:

$$
\begin{aligned}
& f_{1}\left(X_{0}, X_{1}, X_{2}\right)+f_{1}^{\prime}\left(X_{3}, X_{4}\right)+X_{5} \\
& f_{2}\left(X_{0}, X_{1}, X_{2}\right)+f_{2}^{\prime}\left(X_{3}, X_{4}, X_{5}\right) .
\end{aligned}
$$

Generally, the fixed locus of $\theta$ on $Y$ consists of 8 points.
2. Case $\rho(Y)=2$.

In this case trace $\left.\theta^{*}\right|_{H^{1,1}}=\left.\operatorname{trace} \theta^{*}\right|_{H^{2,2}}=0$ or 2 . Thus by Lefschetz fixed point formula trace $\left.\theta^{*}\right|_{H^{1,2}}=\left.\operatorname{trace} \theta *\right|_{H^{2,1}}=-3$ or -1 . A smooth Fano 3 -fold with $\rho(Y)=2,4 \mid\left(-K_{Y}\right)^{3}$ and $2 \nmid\left(B_{3} / 2\right), B_{3} / 2>0$ is one of the following (cf. [MM]).

| No. | $Y$ | one of the <br> formers |
| :---: | :--- | :---: |
| 1 | $(2,2) \subset \boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ | none |
| 2 | a double cover of $(1,1) \subset \boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ whose branch locus <br> is a member of $\|-K\|$ | none |
| 3 | the blowup of $V_{2}$ with center an elliptic curve which <br> is $V_{2}$ an intersection of two member of $\|-(1 / 2) K\|$ | $V_{2}$ |
| 4 | the blowup of $V_{4}=(2,2) \subset \boldsymbol{P}^{5}$ with center an elliptic <br> curve which is an intersection of two hyperplane sections | $V_{4}$ |
| 5 | (1, 1$)^{3} \subset \boldsymbol{P}^{3} \times \boldsymbol{P}^{3}$ | $*$ |
| 6 | the blowup of $V_{5}=G r(1,4) \cdot L_{1} \cdot L_{2} \cdot L_{3} \subset \boldsymbol{P}^{6}$ with center <br> an elliptic curve which is an intersection of two <br> hyperplane sections | $V_{5}$ |
| 7 | $*$ | $\boldsymbol{P}^{3}$ |

Where $Q$ is a quadric in $\boldsymbol{P}^{4}, V_{d}$ is a Del Pezzo 3 -fold of degree $=d$ and (*) means abbreviation because it is not necessary for the proof. The column "the formers" is the list of smooth Fano 3 -folds which are obtained by contraction the each extremal ray.
No. 1.
If an involution of $Y$ fixes only finite points, then they are less than 8 points.
No. 2.
There is an example. Let $Z$ denote the manifold $(1,1) \subset \boldsymbol{P}^{2} \times \boldsymbol{P}^{2}, \pi$ the morphism of $Y$ to $Z$ and $B \in\left|-K_{z}\right|$ the branch locus. Let $\lambda$ be the covering action. We define an involution $\tau$ of $Z$ as

$$
\left[x_{0}: x_{1}: x_{2}\right] \times\left[y_{0}: y_{1}: y_{2}\right] \longmapsto\left[y_{0}: y_{1}: y_{2}\right] \times\left[x_{0}: x_{1}: x_{2}\right] .
$$

The fixed locus is just the diagonal set $\Delta$. We define the involution $\mu$ of $Y$ as extention of $\tau$ to $Y$ :


And define $\theta$ to be the composition of $\lambda$ and $\mu$. There is natural one to one correspondence between the fixed locus of $\theta$ and $\Delta \cap B$. Thus the fixed locus of $\theta$ consists of just 8 points.

No. 3, 4.
There is an example. The curve $C$ which does not through the fixed points and satisfy $\theta(C)=C$ can be taken as blowing up center. Indeed $C:=$ $V_{+}\left(X_{0}, X_{2}\right)$ is enough for No. 3.
No. 5.
There is an example. Indeed the diagonal involution $\theta$ fixes just 8 points. No. 6.

The former of $Y$ is only $V_{5}$. Hence $\theta$ fixes the extremal ray and is the lift of an involution $\tau$ of $V_{5}$. If $\tau$ fixes finite points, they are 4 points by Lefschetz fixed point formula (use $\rho\left(V_{5}\right)=1, B_{3}\left(V_{5}\right)=0$ ). Since $\tau$ is a restriction of projective transform of $\boldsymbol{P}^{6}$, it fixes at least 5 points. This is a contradiction. No. 7.

In this case $\theta$ is the lift of an involution of $\boldsymbol{P}^{3}$, so it fixes infinite points.
3. Case $\rho(Y)=3$.

The smooth Fano 3 -fold with $\rho(Y)=3,4 \mid\left(-K_{Y}\right)^{3}$ and $2 \mid\left(B_{3} / 2\right)$ is one of the following.

| No. | $\frac{1}{2} B_{3}$ | $Y$ | one of the <br> formers |
| :---: | :---: | :--- | :--- |
| 1 | $*$ | $\boldsymbol{P}^{1} \times \boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{\mathbf{1}}$ | none |
| 2 | $*$ | a double cover of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{1}$ whose branch <br> locus is a divisor of tridegree $(2,2,2)$ | none |
| 3 | 0 | the blowup of the cone over a smooth quadric <br> surface in $\boldsymbol{P}^{3}$ with center the vertex | none |
| 4 | $*$ | a smooth divisor on $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{\mathbf{2}}$ of tridegree <br> $(1,1,1)$ | none |
| 5 | $*$ | $*$ | $\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ |
| 6 | $*$ | $*$ | $\boldsymbol{P}^{3}$ |

No. 1.
There is an example. We define $\theta$ as
$\left[X_{0}: X_{1}\right] \times\left[Y_{0}: Y_{1}\right] \times\left[Z_{0}: Z_{1}\right] \longmapsto\left[X_{0}:-X_{1}\right] \times\left[Y_{0}:-Y_{1}\right] \times\left[Z_{0}:-Z_{1}\right]$,
then $\theta$ fixes just 8 points.
No. 2.
There is an example. We define an involution $\tau$ on $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ as

$$
\left[X_{0}: X_{1}\right] \times\left[Y_{0}: Y_{1}\right] \times\left[Z_{0}: Z_{1}\right] \longmapsto\left[X_{0}:-X_{1}\right] \times\left[Y_{0}:-Y_{1}\right] \times\left[Z_{0}:-Z_{1}\right]
$$

and $\theta$ as the lift of $\tau$. The fixed locus of $\theta$ fixes just 8 points.
No. 3.
The $h^{p, q}$ data are as follows.

| 0 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 3 | 0 |
| 0 | 3 | 0 | 0 |
| 1 | 0 | 0 | 0 |

Thus $\theta$ fixes Pic $Y$, so it is the lift of an involution $\tau$ on the cone over a smooth quadric surface in $\boldsymbol{P}^{3}$. But $\tau$ fixes infinitely many points, so this case cannot occur.
No. 4.
$\theta$ fixes Pic $Y$ by the same reason of the No. 3. Thus $\theta$ must be

$$
\left[X_{0}: X_{1}\right] \times\left[Y_{0}: Y_{1}\right] \times\left[Z_{0}: Z_{1}: Z_{2}\right] \longmapsto\left[X_{0}:-X_{1}\right] \times\left[Y_{0}:-Y_{1}\right] \times\left[Z_{0}: Z_{1}:-Z_{2}\right] .
$$

But by considering the form of the defining polynomial, it is easy to check that this can not fix just 8 points.
No. 5, 6.
Note that any involution of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ or $\boldsymbol{P}^{3}$ fixes infinitely many points.
4. Case $\rho(Y)=4$.

The smooth Fano 3 -fold with $\rho(Y)=4,4 \mid\left(-K_{Y}\right)^{3}$ and $2 \nmid\left(B_{3} / 2\right)$ is one of the following.

| No. | $\frac{1}{2} B_{3}$ | $Y$ |
| :---: | :---: | :---: |
| 1 | $*$ | a smooth divisor on $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{\mathbf{1}}$ of tridegree $(1,1,1,1)$ |
| 2 | 1 | the blowup of the cone over a smooth quadric surface $S$ <br> in $\boldsymbol{P}^{\mathbf{3}}$ with center a disjoint union of the vertex and an <br> elliptic curve on $S$ |

No. 1.
There is an example. We define an involution $\theta$ as type $(-1) \times(-1) \times(-1)$ $\times(-1)$ and set $Y=V\left(\sum_{\substack{i+j+k+l=\\ 0 \text { or } 2 \text { or } 4}} a_{I} X_{i} Y_{j} Z_{k} W_{l}\right), a_{I} \neq 0$. Then $\theta$ fixes just 8 points.

No. 2.
Let $D_{1}$ be a smooth quadric in $\boldsymbol{P}^{3}$ and $Y_{2} \subset \boldsymbol{P}^{4}$ the cone over $D_{1}$. Let $Y_{1}$ be the blowup of $Y_{2}$ with center the vertex and $D_{2}$ the exceptional divisor. Let $D_{3}$ be the strict transform of the cone over an elliptic curve on $D_{1}, Y$ the blowup of $Y_{1}$ with center $C$ and $D_{4}$ the exceptional divisor. We denote $R_{i}$ ( $i=1,2,3,4$ ) the extremal ray associated with $D_{i}$. The $h^{p, q}$ data are as follows.

| 0 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 4 | 0 |
| 0 | 4 | 1 | 0 |
| 1 | 0 | 0 | 0 |

Case trace $\left.\theta^{*}\right|_{H^{1,2}}=1$.
In this case $\theta$ is the lift of an involution $\theta_{1}$ of $Y_{1}$ since $\theta$ fixes Pic $Y$. The $h^{p, q}$ data of $Y_{1}$ are as follows.

| 0 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 3 | 0 |
| 0 | 3 | 0 | 0 |
| 1 | 0 | 0 | 0 |

Hence $\theta_{1}$ fixes Pic $Y_{1}$ and $\theta_{1}$ is the lift of an involution $\theta_{2}$ of $Y_{2}$. The dimension of the fixed locus of $\theta_{2}$ is not less than 1 , so this case never occur.
Case trace $\left.\theta^{*}\right|_{H^{1,2}}=-1$.
In this case trace $\left.\theta^{*}\right|_{\text {Pic } Y \otimes C}=2 . \quad \theta$ desides a permutation of the extremal rays, but it fixes the each type. The type of $R_{1}$ and $R_{2}, R_{3}$ and $R_{4}$ are the same. It is easy to show that the case trace $\left.\theta^{*}\right|_{\text {Pic } Y \otimes C}=2$ cannot occur by considering the configulation of $D_{i}$ 's.
5. Case $\rho(Y) \geqq 5$.

The smooth Fano 3-fold with $\rho(Y) \geqq 5,4 \mid\left(-K_{Y}\right)^{3}$ is one of the following.

| No. | $\rho(Y)$ | $Y$ | one of the formers |
| :---: | :---: | :---: | :---: |
| 1 | 5 | $*$ | $\boldsymbol{Q}$ |
| 2 | 5 | $*$ | $\boldsymbol{P}^{3}$ |
| 3 | 5 | $\boldsymbol{P}^{1} \times S_{6}$ | $*$ |
| 4 | 7 | $\boldsymbol{P}^{1} \times S_{4}$ | $*$ |
| 5 | 9 | $\boldsymbol{P}^{1} \times S_{2}$ | $*$ |

No. 1, 2.
This case cannot occur.
No. 3, 4, 5.
Recall that $S_{d}(d=2,4,6)$ can be obtained by blowing up of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. It is easy to check that $Y$ has the involution fixing just 8 points as lift of the involution of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ of type $(-1) \times(-1) \times(-1)$.

Acknowledgement. The author would like to thank Professors S. Mukai and S. Kondo for their advices. The referee informed the author that L. Bayle had got related results (thesis, Orsay University).

## References

[CM] A. Conte and J.P. Murre, Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), 43-80.
[GH] P. Griffiths and J. Harris, Principle of Algebraic Geometry, Wiley-interscience publication.
[Is] V.A. Iskovskih, Fano 3-folds I, II, Math. USSR-Izv., 11 (1977), 485-527, ibid., 12 (1978), 469-506.
[Ka] Y. Kawamata, On Plurigenera of minimal algebraic 3-folds with $K \equiv 0$, Math. Ann., 275 (1986), 539-546.
[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Adv. Stud. Pure Math., 10 (1987), 283-360.
[MM] S. Mori and S. Mukai, Classification of Fano 3-fold with $B_{2} \geqq 2$, Manuscripta Math., 36 (1981), 147-162.
[Re] M. Reid, Young person's guide to canonical singularities, In Algebraic geometry Bowdoin 1985, part I, Proc. Sympos. Pure Math., 46 (1987), 345-414.
[Sa] T. Sano, Classification of non-Gorenstein $\boldsymbol{Q}$-Fano $d$-folds of Fano index greater than $d-2$, preprint, (1991).

Takeshi Sano
Department of Mathematics
Nagoya University
Nagoya 464
Japan

