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1. Introduction.

First of all we recall some definitions.

DEFINITION 1.1. A $d$ -dimensional normal complex projective variety $X$ is
called a $Q$-Fano $d$-fold if it has only terminal singularities and the anti-canonical
Weil divisor $-K_{X}$ is ample (cf. [KMM]). The index of singular point $P$ is
defined to be the smallest positive integer $i_{p}$ such that $i_{p}K_{X}$ is a Cartier divisor
near $p$ . A singular point of singularity index one is called Gorenstein singu-
larity. Singularity index $I(X)$ of $X$ is defined to be the smallest positive integer
such that $IK_{X}$ is a Cartier divisor. Hence there is a positive integer $r$ and a
Cartier divisor $H$ such that $-IK_{X}\sim rH$. Taking the largest number of such $r$ ,

we call $r/I$ the Fano index of $X$ .
$Q$-Fano $d$-folds whose Fano indices are greater than $d-2$ are classified by

[Sa] under the assumption that they are not Gorenstein, that is, their singular
indices are greater than one. In this paper we shall consider Fano 3-folds of
Fano index 1 and not Gorenstein. Classifying these Fano 3-folds also answers
the next problem presented by G. Fano, A. Conte and J. P. Murre (cf. [CM])

in the case that they have only terminaI singularities.

PROBLEM. Classify the projective3-folds having Ennques surfaces as hyPer-
plane sections.

In general case, this problem seems very hard to solve because their singu-
larities may not be $Q$ -Gorenstein, that is, $-mK$ is not Cartier for any positive
integer $m$ .

In this article we shall obtain next result.

THEOREM 1.1. Let $X$ be a $Q$-Fano 3–fold of Fano index 1 having only cyclic
quotient singulanties. We take a canonical cover:

$Y= Spec_{X}\bigoplus_{m=0}^{I-1}\mathcal{O}_{X}(m(K_{X}+H))arrow XI\cdot 1$
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Then 1 is 2 and $Y$ is one of the following smooth Fano 3-folds.
NO. $(-K_{Y})_{t}$ $Y$

1 4 $(2, 4)\subset P(1,1,1,1,1,2)$

2 8 $(2,2,2)\subset P^{6}$

3 8 the blowup of (4) $\subset P(1,1,1,1,2)$ with
center an elliptic curve which is an
intersection of two member of $|-(1/2)K|$

4 12 $P^{1}\cross S_{2}$

5 12 a double cover of $P^{1}\cross P^{1}\cross P^{1}$ whose branch
locus is a divisor of tridegree (2, 2, 2)

6 12 a double cover of $(1, 1)\subset P^{2}\cross P2$ whose
branch locus is a member of $|-K|$

7 16 the blow-up of $(2, 2)\subset P^{5}$ with center
an elliptic curve which is an intersection
of two hyperplain sections

8 16 (4) $\subset P(1,1,1,1,2)$

9 20 the complete intersection of three divisors
of $bi$-degree $(1, 1)$ in $P^{3}\cross P^{3}$

10 24 $P^{1}\cross S_{4}$

11 24 $(1, 1, 1, 1)\subset P^{1}\cross P^{1}\cross P^{1}\cross P^{1}$

12 32 $(2, 2)\subset P^{5}$

13 36 $P^{1}\cross S_{6}$

$14_{-\overline{-\sim R}}^{--}\overline{arrow}\sim-48$ $P^{1}\cross P^{1}\cross P^{1}$

There is a smooth Fano 3-fold $Y$ among each deformation type, which has an
involution $\theta$ such that $Y/\theta$ is a $Q$-Fano 3-fold of Fano index 1.

REMARK 1.2. We can easily classify all involutions $\theta$ of each $Y$ such that
$Y/\theta$ is a $Q$-Fano 3-fold of Fano index 1. But this is a very tiresome work, so
we will constract only one example for each type.

Notation.
In this paper we always assume that the ground field is complex number

field $C$ , and we will follow the notation and the terminology of [KMM]. The
following symbols will be frequently used with no mention.

$\sim$ : linear equivalence
$\sim_{Q}$ : $Q$-linear equivalence
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$\equiv$ : numerical equivalence
$K_{X}$ : canonical divisor of $X$

$\rho(X)$ : the Picard number of $X,$ $i$ . $e.$ , rank Pic $X$

$h^{i}(D):=\dim_{C}H^{i}(D)$

$\chi(D):=\Sigma_{i}(-1)^{i}h^{i}(X, D)$

$c_{t}(X)$ : i-th Chern class of $X$

$B_{t}(X)$ : i-th Betti number of $X$ .

2. Preliminaries.

Let $X$ be a $Q$-Fano 3-fold of Fano index 1 with only cyclic quotient singu-
larities. We take the canonical cover:

$Y=Spec_{X} \bigoplus_{\pi\iota=0}^{I-1}\mathcal{O}_{X}(m(K+H))$ .

In this section we will obtain bounds of $(-K_{Y})^{3},$ $I$ and the number of singular
points. We recall here three fundamental theorems.

THEOREM 2.1 (Riemann-Roch Theorem for singular variety [Ka], [Re]).

Let $V$ be a normal projective 3-fold with only terminal singularities, and $D$ be a
Weil divisor on V. If $O_{V}(D)\cong O_{V}(K_{V})$ in a neighbourhood of each point of $V$ ,

then

$\chi(\mathcal{O}_{V}(D))=\chi(O_{V})+\frac{1}{12}D(D-K_{V})(2D-K_{V})+\frac{1}{12}D\cdot c_{2}(V)-\frac{1}{12}\sum_{i|I}(i-\frac{1}{i})n_{t}$

where $n_{i}$ is the number of singular points of index $i$ counted with multiplicites.

If $D$ is a Cartier divisor (not requiring $O_{V}(D)\cong O_{V}(K_{V})$ in a neighbourhood of
each point), then the same equality holds but the last $tem(1/12)\Sigma_{i1I}(i-1/\iota)n_{i}$

does not appear.

THEOREM 2.2 (Vanishing Theorem [KMM]). Let $V$ be a normal projective
variety with only $Q$-factorial terminal singularities, and $D$ be a Weil divisor on
V. If $D-K_{V}$ is ample, then

$H^{i}(V, \mathcal{O}_{V}(D))=0$ $\forall i>0$ .
THEOREM 2.3 (Lefschetz fixed point formula. Cf. [GH]). Let $\theta$ be an auto-

morphism of smooth compact complex manifold $M$ which fixes only finite points.
Assume that $\theta$ is non-degenerate at each fixed point $p,$ $i.e.,$ $\det(J_{p}(\theta)-I)\neq 0$ .
Then the number of fixed points of $\theta$ is given by next formula.

$\Sigma(-1)^{p+q}trace\theta^{*}|_{H}p,q_{(M)}$ .
LEMMA 2.4. $n_{2}=8$ or $(n_{2}, n_{4})=(3,2)$ , and the other $n_{i}=0$ . In particular

$I(X)=2$ or 4.
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PROOF. Put $D:=K_{X}+H$. Since $D$ is a torsion divisor and $-K_{X}+D$ is
ample, the Vanishing Theorem and Riemann-Roch Theorem gives $0=x(D)=1$

$-(1/12)\Sigma(i-1/i)n_{i}$ , hence

$\Sigma(i-\frac{1}{i})n_{i}=12$ .

The assertion can be obtained by solving this equality. $\blacksquare$

LEMMA 2.5. Let $Y$ be a smooth Fano 3-fold. Assume that $Y$ has an auto-
$morpl\dot{u}sm$ $\theta$ of index 2 or 4 which fixes just $2n$ Points. Then the Parities of
$\rho(Y)$ and $B_{3}/2$ are same when $n$ is odd, and the parities of $\rho(Y)$ and $B_{3}/2$ are
distinct when $n$ is even.

PROOF. The following are easily verified.

Pic $Y\cong H^{2}(Y, Z)$ , $H^{2}(Y, C)\cong H^{1,1}$ ,

$H^{3}(Y, C)\cong H^{1.2}\oplus H^{2,1}$ .
Hence $h^{p,q}$ data are as follows.

$h^{p,q}$
$q$

3

2

$0$

$0$

By Lefschetz fixed point formula,

1 2 3 $P$

2+2 $trace\theta^{*}|_{PicY\otimes C}-2trace\theta^{*}|_{H^{1.2}}=2n$ .
Hence the parities of $trace\theta^{*}|_{PicY\otimes C}$ and $trace\theta^{*}|_{H^{1,2}}$ are same when $n$ is odd,
and are distinct when $n$ is even. Note that the action of $\theta$ on $H^{p.q}$ is des-
cribed by

$\theta^{*}=(_{0}^{\pm 1}$ $\pm 1\pm\sqrt{-1}.$ $\pm\sqrt{}\overline{-1}0|$ .
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Hence the parities of $\rho(Y)$ and $B_{3}/2$ are same when $n$ is odd, and are distinct
when $n$ is even.

COROLLARY 2.6. The singularity index $I(X)$ is 2. The parities of $\rho(Y)$ and
$B_{3}/2$ are distinct.

LEMMA 2.7.
2 $|(-K_{X})^{3}$ , hence $4|(-K_{Y})^{3}$

PROOF. Recall that there is a Cartier divisor $H$ which is $Q$ linearly equal
to $-K_{X}$ . Set $D=H$ and by applying Theorem 2.1, we obtain the assertion. $\blacksquare$

The way of classification.
We mention here $t$he- way of classification roughly. Smooth Fano 3-folds

have been classified (cf. [Is], [MM]). We will investigate whether there is an
involution which fixes just 8 points for each Fano 3-fold. First we use Corollary
2.6 and Lemma 2.7. Next we consider by its structure whether there exists
the involution. If we cannot make decision easily, we take a chain of smooth
Fano 3-folds and involutions:

$f_{1}$ $f_{2}$ $f_{s-1}$ $f_{s}$

$(Y, \theta)arrow(Y_{1}, \theta_{1})arrow\cdotsarrow(Y_{s-1}, \theta_{s-1})arrow(Y_{s}, \theta_{s})$ ,

where $f_{i}$ : $Y_{i}arrow Y_{i+1}$ is a contraction of the $\theta_{t}$-invariant extremal face and $\theta_{i}$ is
the lift of $\theta_{i+1}$ . We take a special assumption that the dimension of each con-
tracted extremal face is one or two, and if it is 2, $f_{i}$ is the inverse of a blowup
with center two disjoint curves. This chain can be made by investigating the
final column of the table in [MM].

DEFINITION 2.8. We call above $Y_{i}$ “a former” associated to $Y$ .
The structures of formers are simpler than that of $Y$ , so we investigate

formers instead of $Y$ .

REMARK 2.9. If for some $i$ , the dimension of the fixed locus of $\theta_{i}$ is not
less than 1, then so is that of $\theta$ .

3. Proof of the Theorem.

We will carry out the classification along the way we mentioned in the
last section.

1. Case $\rho(Y)=1$ .
In this case Pic $Y=ZH$, where $H$ is an ample divisor. Hence $\theta^{*}H=H$,

so $trace\theta^{*}|_{H^{1.1}}=trace\theta^{*}|_{H^{2,2}}=1$ . Then $trace\theta^{*}|_{H^{1.2}}=trace\theta^{*}|_{H^{2,1}}=-2$ .
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A smooth Fano 3-fold with $\rho(Y)=1,4|(-K_{Y})^{3},2|(B_{3}/2)$ and $B_{3}/2\geqq 2$ is one of
the following (cf. [Is]).

No.

$1$

$Y$

$(4) \subset P^{4}$

$2$

$3$

$V_{4}, i.e., (2,2)\subset P^{5}$

$(2, 2, 2)\subset P^{6}$

$4$ $V_{2}, i.e., (4) \subset P(1,1,1,1,2)$

$5$ $(2, 4)\subset P(1, 1, 1, 1, 1, 2)$

NO. 1, 2, 3.
Each of these is embedded by $|H|$ . Therefore $\theta$ is a restriction of a pro-

jective transformation to $Y$ , so $\theta$ can be described by

$[x_{0}$ : ... : $x_{l}$ : $x_{l+1}$ : ... : $x_{n}]-[x_{0}$ : ... : $x_{l}$ : $-x_{l+1}$ : ... $:-x_{n}]$

where $X_{0},$ $\cdots$ . $X_{n}$ are homogeneous coordinates. The fixed locus of this involu-
tion consists of

$V_{+}(X_{0}, \cdots , X_{l})$ and $V_{+}(X_{l+1}, X_{n})$ .
NO. 1.

In this case $\theta$ fixes infinitely many points, so this case never occur.

NO. 2.
In this case $\theta$ should be

$[x_{0} : x_{1} : x_{2} : x_{3} : x_{4} : x_{\overline{o}}]-[x_{0} : x_{1} : x_{2} : -x_{3} : -x_{4} : -x_{5}]$ .
Let $Y\subset P^{5}$ be the complete intersection defined by 2 quadrics

$Q_{i}(X_{0}, X_{1}, X_{2})+Q_{i}’(X_{3}, X_{4}, X_{6})$ $(i=1,2)$ .
$\theta$ fixes just 8 points of Y. Hence $Y/\theta$ is a $Q$-Fano 3-fold of Fano index is 1
or 1/2. Let $S$ be $Y\cap Q_{3}$ , where $Q_{3}$ is a third quadric of $P^{5}$ defined by

$Q_{3}(X_{0}, X_{1}, X_{2})+Q_{3}’(X_{3}, X_{4}, X_{6})$ .
Thus $S$ is a member of $|-K_{Y}|$ and we can take $S$ such that $\theta$ acts $S$ without
fixed points. So the quotient $Y/\theta$ is a $Q$-Fano 3-fold of Fano index 1. To
check the existence of such $S\in|-K_{Y}|$ is easy like this, so we omit the argu-
ment in what follows.
NO. 3.

$\theta$ should be

$[x_{0} : x_{1} : x_{2} : x_{3} : x_{4} : x_{5} : x_{6}]-[x_{0} : x_{1} : x_{2} : x_{3} : -x_{4} : -x_{\overline{o}} : -x_{6}]$ .
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Let $Y\subset P^{6}$ be complete intersection defined by the 3 quadrics

$Q_{i}(X_{0}, X_{1}, X_{2}, X_{3})+Q_{i}’(X_{4}, X_{5}, X_{6})$ $(i=1,2,3)$ .
Generally, $\theta$ fixes just 8 points.
NO. 4.

Let $X_{0},$ $X_{1},$ $X_{2},$ $X_{3},$ $X_{4}$ be homogeneous coordinates with $\deg X_{i}=1$ (OSi$3),
$\deg X_{4}=2$ . We define the involution

$\theta:[X_{0} : X_{1} : X_{2} : X_{3} : X_{4}]-[X_{0} : X_{1} : -X_{2} : -X_{3} : -X_{4}]$ .
Then the fixed locus of this involution consists of

$V_{+}(X_{0}, X_{1}, X_{4})$ , $V_{+}(X_{2}, X_{3}, X_{4})$ , [0:0:0:0:1].

Let $Y$ be the hypersurface of $P(1,1,1,1,2)$ defined by

$X_{0}^{4}+X_{1}^{4}+X_{2}^{4}+X_{3}^{4}+X_{4}^{2}$ .
Then the fixed locus of $\theta$ on $Y$ consists of 8 points.
NO. 5.

Let $X_{0},$ $X_{1},$ $X_{2},$ $X_{3},$ $X_{4},$ $X_{5}$ be homogeneous with $\deg X_{i}=1(0\leqq i\leqq 4),$ $\deg X_{5}$

$=2$ . We defined the involution

$\theta:[x_{0} : x_{1} : x_{2} : x_{3} : x_{4} : x_{5}]-[x_{0} : x_{1} : x_{2} : -x_{3} : -x_{4} : -x_{5}]$ .
Hence the fixed locus of this involution consists of

$V_{+}(X_{0}, X_{1}, X_{2}, X_{5})$ , $V_{+}(X_{3}, X_{4}, X_{5})$ , [0:0:0:0:0:1].

Let $Y$ be a weighted complete intersection $(2, 4)\subset P(1,1,1,1,1,2)$ , defined by
next two equations:

$f_{1}()+f’(X_{3}. X_{4})+X_{5}$

$f_{2}(X_{0}, X_{1}, X_{2})+f_{2}’(X_{3}, X_{4}, X_{5})$ .

Generally, the fixed locus of $\theta$ on $Y$ consists of 8 points.

2. Case $\rho(Y)=2$ .
In this case $trace\theta^{*}|_{H^{1,1}}=trace\theta^{*}|_{H^{2,2}}=0$ or 2. Thus by Lefschetz fixed

point formula $trace\theta^{*}|_{H^{1.2}}=trace\theta^{*}|_{H^{2.1}}=-3$ or $-1$ . A smooth Fano 3-fold
with $\rho(Y)=2,4|(-K_{Y})^{3}$ and $2f(B_{3}/2),$ $B_{3}/2>0$ is one of the following (cf.
[MM] $)$ .
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Where $Q$ is a quadric in $P^{4},$ $V_{d}$ is a Del Pezzo 3-fold of degree $=d$ and $(*)$

means abbreviation because it is not necessary for the proof. The column “the
formers” is the list of smooth Fano 3-folds which are obtained by contraction
the each extremal ray.
NO. 1.

If an involution of $Y$ fixes only finite points, then they are less than 8
points.
NO. 2.

There is an example. Let $Z$ denote the manifold $(1, 1)\subset P^{2}\cross P^{2}$ , $\pi$ the
morphism of $Y$ to $Z$ and $B\in|-K_{Z}|$ the branch locus. Let $\lambda$ be the covering
action. We define an involution $\tau$ of $Z$ as

$[x_{0} : x_{1} : x_{2}]\cross[y_{0} : y_{1} : y_{2}]-[y_{0} : y_{1} : y_{2}]\cross[x_{0} : x_{1} : x_{2}]$ .

The fixed locus is just the diagonal set $\Delta$ . We define the involution $\mu$ of $Y$

as extention of $\tau$ to $Y$ :

$Y\cong Z\cross_{Z}YY\underline{\mu}$

$\downarrow$ $\square$ $\downarrow 2-\vee$

$ZZ\underline{\tau}$ .
And define $\theta$ to be the composition of $\lambda$ and $\mu$ . There is natural one to one
correspondence between the fixed locus of $\theta$ and $\Delta\cap B$ . Thus the fixed locus
of $\theta$ consists of just 8 points.
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NO. 3, 4.
There is an example. The curve $C$ which does not through the fixed

points and satisfy $\theta(C)=C$ can be taken as blowing uP center. Indeed $C:=$

$V_{+}(X_{0}, X_{2})$ is enough for No. 3.
NO. 5.

There is an example. Indeed the diagonal involution $\theta$ fixes just 8 points.
NO. 6.

The former of $Y$ is only $V_{5}$ . Hence $\theta$ fixes the extremal ray and is the
lift of an involution $\tau$ of $V_{5}$ . If $\tau$ fixes finite points, they are 4 points by
Lefschetz fixed point formula (use $\rho(V_{s})=1,$ $B_{3}(V_{S})==0$). Since $\tau$ is a restriction
of projective transform of $P^{6}$ , it fixes at least 5 points. This is a contradiction.
NO. 7.

In this case $\theta$ is the lift of an involution of $P^{3}$ , so it fixes infinite points.

3. Case $\rho(Y)=3$ .
The smooth Fano 3-fold with $\rho(Y)=3,4|(-K_{Y})^{3}$ and $2|(B_{3}/2)$ is one of the

following.

NO. 1.
There is an example. We define $\theta$ as
$[X_{0} : X_{1}]\cross[Y_{0} : Y_{1}]\cross[Z_{0} : Z_{1}]-[X_{0} : -X_{1}]\cross[Y_{0} : -Y_{1}]\cross[Z_{0} : -Z_{1}]$ ,

then $\theta$ fixes just 8 points.
NO. 2.

There is an example. We define an involution $\tau$ on $P^{1}\cross P^{1}\cross P^{1}$ as
$[X_{0} : X_{1}]\cross[Y_{0} : Y_{1}]\cross[Z_{0} : Z_{1}]rightarrow[X_{0} : -X_{1}]\cross[Y_{0} : -Y_{1}]\cross[Z_{0} : -Z_{1}]$
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and $\theta$ as the lift of $\tau$ . The fixed locus of $\theta$ fixes just 8 points.
NO. 3.

The $h^{p.q}$ data are as follows.

Thus $\theta$ fixes $PicY$ , so it is the lift of an involution $\tau$ on the cone over a
smooth quadric surface in $P^{3}$ . But $\tau$ fixes infinitely many points, so this case
cannot occur.
NO. 4.

$\theta$ fixes Pic $Y$ by the same reason of the No. 3. Thus $\theta$ must be

$[X_{0} : X_{1}]\cross[Y_{0} : Y_{1}]\cross[Z_{0} : Z_{1} : Z_{2}]-[X_{0} : -X_{1}]\cross[Y_{0} : -Y_{1}]\cross[Z_{0} : Z_{1} : -Z_{2}]$ .
But by considering the form of the defining polynomial, it is easy to check that
this can not fix just 8 points.
NO. 5, 6.

Note that any involution of $P^{1}\cross P^{2}$ or $P^{3}$ fixes infinitely many points.

4. Case $\rho(Y)=4$ .
The smooth Fano 3-fold with $\rho(Y)=4,4|(-K_{Y})^{3}$ and 2 I $(B_{3}/2)$ is one of the

following.

$N_{0}.$

$1$

$\frac{1}{2}B_{s}$

$*$

$2$ $1$

$Y$

a smooth divisor on $P^{1}\cross P^{1}\cross P^{1}\cross P^{1}$ of tridegree (1, 1, 1, 1)

the blowup of the cone over a smooth quadric surface $S$

in $P^{a}$ with center a disjoint union of the vertex and an
elliptic curve on $S$

NO. 1.
There is an example. We define an involution $\theta$ as type $(-1)\cross(-1)\cross(-1)$

$\cross(-1)$ and set $Y=V( \Sigma a_{I}X_{i}Y_{j}Z_{k}W_{l}),$ $a_{I}\neq 0$ . Then $\theta$ fixes just 8 points.
$0or2or4t+j+k+l=$
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NO. 2.
Let $D_{1}$ be a smooth quadric in $P^{3}$ and $Y_{2}\subset P^{4}$ the cone over $D_{1}$ . Let $Y_{1}$

be the blowup of $Y_{2}$ with center the vertex and $D_{2}$ the exceptional divisor.
Let $D_{3}$ be the strict transform of the cone over an elliptic curve on $D_{1},$ $Y$ the
blowup of $Y_{1}$ with center $C$ and $D_{4}$ the exceptional divisor. We denote $R_{i}$

$(i=1,2,3,4)$ the extremal ray associated with $D_{i}$ . The $h^{p,q}$ data are as follows.

Case $trace\theta^{*}|_{H^{1.2}}=1$ .
In this case $\theta$ is the lift of an involution $\theta_{1}$ of $Y_{1}$ since $\theta$ fixes Pic $Y$ . The

$h^{p,q}$ data of $Y_{1}$ are as follows.

Hence $\theta_{1}$ fixes $PicY_{1}$ and $\theta_{1}$ is the lift of an involution $\theta_{2}$ of $Y_{2}$ . The dimen-
sion of the fixed locus of $\theta_{2}$ is not less than 1, so this case never occur.
Case $trace\theta^{*}|_{H^{1,2}}=-1$ .

In this case $trace\theta^{*}|_{PicY\otimes C}=2$ . $\theta$ desides a permutation of the extremal
rays, but it fixes the each type. The type of $R_{1}$ and $R_{2},$ $R_{3}$ and $R_{4}$ are the
same. It is easy to show that the case $trace\theta^{*}|_{PicY\otimes C}=2$ cannot occur by
considering the configulation of $D_{i}’ s$ .

5. Case $\rho(Y)\geqq 5$ .
The smooth Fano 3-fold with $\rho(Y)\geqq 5,4|(-K_{Y})^{3}$ is one of the following.
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NO. 1, 2.
This case cannot occur.

NO. 3, 4, 5.
Recall that $S_{tl}(d=2,4,6)$ can be obtained by blowing up of $P^{1}\cross P^{1}$ . It is

easy to check that $Y$ has the involution fixing just 8 points as lift of the
involution of $P^{1}\cross P^{1}\cross P^{1}$ of type $(-1)\cross(-1)\cross(-1)$ . $\blacksquare$

ACKNOWLEDGEMENT. The author would like to thank Professors S. Mukai
and S. Kondo for their advices. The referee informed the author that L. Bayle
had got related results (thesis, Orsay University).

References

[CM] A. Conte and J. P. Murre, Algebraic varieties of dimension three whose hyper-
plane sections are Enriques surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),
12 (1985), 43-80.

[GH] P. Griffiths and J. Harris, Principle of Algebraic Geometry, Wiley-interscience
publication.

[IS] V. A. Iskovskih, Fano 3-folds I, II, Math. USSR-Izv., 11 (1977), 485-527, ibid., 12
(1978), 469-506.

[Ka] Y. Kawamata, On Plurigenera of minimal algebraic 3-folds with $K\equiv 0$ , Math.
Ann., 275 (1986), 539-546.

[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model
problem, Adv. Stud. Pure Math., 10 (1987), 283-360.

[MM] S. Mori and S. Mukai, Classification of Fano 3-fold with $B_{2}\geqq 2$ , Manuscripta Math.,
36 (1981), 147-162.

[Re] M. Reid, Young person’s guide to canonical singularities, In Algebraic geometry
Bowdoin 1985, part I, Proc. Sympos. Pure Math., 46 (1987), 345-414.

[Sa] T. Sano, Classification of non-Gorenstein $Q$-Fano $d$-folds of Fano index greater
than d-2, preprint, (1991).

Takeshi SANO
Department of Mathematics
Nagoya University
Nagoya 464
Japan


	1. Introduction.
	THEOREM 1.1. ...

	Notation.
	2. Preliminaries.
	THEOREM 2.1 ...
	THEOREM 2.2 ...
	THEOREM 2.3 ...

	3. Proof of the Theorem.
	4. Case $\rho(Y)=4$ .
	References

