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1. Introduction.

In [5], a finite presentation of St(2, Z[1/p]) was given for a prime number
p, where two braid relations appeared. The purpose of this paper is to study
the group structures of St(2, Z[1/p]) and K.,(2, Z[1/p]). To do this, first we
will look at the braid groups (cf. [1]). Then we obtain the following.

ZeX Z, if p=3;

IR

M st(2, 2 [ﬂ)’“b

Zpr X (ZXZ) otherwise.

) If p#2,3,5,11, then {p, —1}*+1 in K2, Z[1/p]).
3) If p#2,3,5, 11, then K,(2, Z[1/pNEZXZ ..

It is already known that

(*) K2, Zs) = ZX 1 Zp-s

pes

if S is one of {the first n successive prime numbers} with n=1, {3}, {2, 5},
{2, 3,7}, {2, 3, 11}, {2, 3, 5, 11}, {2, 3,13}, {2, 3, 7, 13}, {2, 3, 17}, and {2, 3, 5, 19},
where Zs=Z[1/p]pes (cf.[4], [6]). One might expect that (*) holds for every
set S of prime numbers. But the above (3) tells us that (*) is not true in
general.

Here, we fix our notation as follows. Let Z be the ring of rational integers,
@ the field of rational numbers, and R the field of real numbers. For elements
x, y in a group, we set xY=yxy~'. For subgroups H,, H, of a group G we
denote by [H,, H,] the subgroup of G generated by [h,, h,1=h,h:h7*h;* for all
h,€H,, h,eH,. Then, put G'=[G, G], G"=[G’, G'], G**=G/G’, G™**=G/G"
and G'**=G’/G”. We use Z,, for the cyclic group of order m, and Z for Z..
If a group H acts on another group K, the semi-direct product of H and K is
denoted by Hx K. And {generators|relations) means a group presentation as
usual.
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2. Braid relations and meta-abelianizations.

The presentation of St(2, Z[1/p]), established in [5], tells us that braid
relations are very important to study St(2, Z[1/p]) and its meta-abelianization.
Therefore, we want to see what happens in braid groups. The n-braid group
B, has the presentation defined by the generators o,, ¢, ---, ¢,_, and the de-
fining relations (n=2):

0i0;410; = 041004,
for 1<i<n—2, and

0,0; = 0,0,
for 1<i, j<n—1 with |i—j|>1 (cf. [1]). Then we obtain the following.

THEOREM 1. (1) B%®=Z.

(@) Bn=[B., Bzl

&)

ZXZ if n=3,4;

Bt = {
1 otherwise.
4)
Bpeb = Bibix Bl

{ZK(ZXZ) if n=3,4;
VA otherwise.

These facts are probably well-known to many people already, but there
seems to be no good reference. Indeed, the above results for n=2, 3 are well-
known or almost trivial, and those for n>5 follow from the fact that

Loio1, 0d[0s, 00 =04, 0411l04, 04] mod B7
implies
[oi, 0.1 =044, 0] mod By
and

Lo, 0in]=[0,, 0:]! mod B} .

Using the natural (folding) homomorphism of B, onto B,, one can easily esta-
blish the results for n=4. Here we pick up some essence which will be used
later.

Let B;=<a, blaba=bab) be the 3-braid group. Then a=b[a, b]. Therefore,
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b*[b%ab® b][a, b] = b[a, blbbla, b]
= aba
= bab
= bb[a, b1b
= b’[b 'abd, b]
and hence [b~'ab, b]=[b"%ab? b][a, b]. As a fact, we know
B% = <(bmod B;) = Z,

B3*®* =<([a, b], [b7ab, b]Jmod B} = Z X Z,
and
B7eb = B Bied

=7ZX(ZXZ).
The action of b on ZXZ (=Z&EZ) is given by the matrix

(L1 o)
(with respect to a basis {u,=[a, b]=( (1) ) ws=[b"ab, b]z((l))})and, then, b*ub~®
=y~! for all ue€ZxZ. In particular,
[a, b]=[b~ab®, b]~* mod BY .

Note that
(aba)? = b’[b~tab, b]-b’[b~'ab, b] = b* mod BY .

We will frequently use these relations in B, or in Bf**® applying the canonical
homomorphism §; of B, into St(2, Z[1/p]) with a—x;, b—y,; for each i=1, 2
(for example, see Propositions 4, 5, 6).

3. The group St(2, Z[1/pD.

Let G be the Steinberg group, usually denoted by St(2, Z[1/p]), of rank
one over Z[1/p], where p is a prime number. Then G has the following finite
presentation :

(generators)

X1y X2y, Vi, Vo,
(defining relations)

XiYeXs = ¥ixy (=1, 2), X, =y%, Xy

Il
=
-3
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L(x131x1)?, yo] = [(X292%2)% y:1] =1

(cf. [6]). Taking x,=y,=1 and x,=y,=p, we obtain a homomorphism of G
onto Z,.,=Z/(p*—1)Z, and we see that G**=Z,._,. By the definition of the
Steinberg symbol {p, —1} (cf. [2], [3], [5D,

{p, =1} = {p, —1}a
(b,

= ho(—)ha(5) hat= D

p p
= wo(— 5 wa( = 5 )wa

= w.(1)*w_,(p)?
= (X310 (X2 Y2X,) 7% .

The above isomorphism implies that {p, —1} mod G’ is corresponding to 6(1—p)
in Z,,..=Z/(p*—1)Z. Hence, we obtain the following.

ProOPOSITION 2. (1) {p, —1} =G’ if and only if p=2,5.
2) {p, —1}?=G’ if and only if p=2, 3,5, 11.

Next we need compute several relations of commutators.

PROPOSITION 3.
[x1, X1 =[ys y1] mod G” .
ProOF. Since y71lx =[x, ¥:] and y3z'x,=[x,, y.], we see
YUY EXe = yTIXYR

=[xy, y11l%s, Y2l

= [ X3, Y21[ %1, Y1)

= y3iXa TN

= y3'y7'%x, mod G,

and [x;, x3]=[¥, y:] mod G”. O
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PROPOSITION 4. (1)

[xy 3 10yixytt, 301 if p=2;

Lyixiyth, 3PP if p=3;
[xy, x,] = _ mod G”.
Lx1, y1] if p=1 mod6;
[yixiy1?, i) if p=5 mod6;
@
[xe, ¥ollyex2y3t, ¥o] if p=2;
Lyexey3t, ¥21° if p=3;
[X5 %] = ) mod G”.
[x2, ¥2] if p=1 mod6;
L [y3x2027, ¥2] if p=5 mod6;
PrOOF. (1)

l:xlr xZ] = [xb yzl):l
=[xy, Y27 1007 297770, y4]
=[xy, yudlyix1y7h, ¥l - [y 2x9727%, v 02 tx, 91270, 9,7,
Hence, we obtain (1). Similarly (2) can be shown. O

For p=2, 3, we get the following special result.

PROPOSITION 5.

Q) If p=2, then [x,, y11*=[xs, y.1*=1 mod G”.

(2) If p=3, then [y7'x:y:, yi1=[%4, ¥:]1* mod G”, and [x;, y;1°=1 mod G”
for i=1, 2.

PrOOF. Let p=2. Then,
[yixy® 317 Loyt il =[x, 4]
=[98, 5.]
= [55, 31172 [ 32, 1]
=[xy, x21%2-[ x4, x2]
=[xy, 3072 Lyxyth, v1%2-[x, 21 100i%1 97, 91
= [yixy?®, 20 %yt 3d0x, 3 dlyixyth 3]

= [yixy? ndlyixyit, ¥.] mod G”
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and [yix,y7% y:.1°=1 mod G”, hence, [x;, y,1°’=1 mod G”. Similarly, we obtain
[x2, y.1°=1 mod G”.
Next, suppose p=3. Then,

[x1, y11 =38, 1]
= [9s, 3:3°%-[33 9]
= [ 32, 3115 [ye, 3:172:[ 32, 3]
=[xy, %215 [ x5, %2072 [ %1, 2]
= (%17 yl]x%’[ylxxyfl, y11%2-Lyix1 37, 31))°
= [0, 330 Doy, 305 [y, .07
= [y:x:97Y 112 mod G”.
Therefore, [y1'x,y1, y:1=[x;, ¥:J* mod G”, and
[x1, 311 = [y1' %5, 2100, 2117
= [y 20, 1]
=[y1' %y, 1P
=[x, y:]* mod G”.

Hence, [ x;, y;1°=1 mod G”. Similarly we obtain [ y3'x,y,, vs]=[%,, ¥.]* mod G”,
and [x,;, y.1°’=1 mod G”. O

On the other hand,

p2 -1

Yol = yPty7

il

xEy1!

= (oL X0, 3. D737°

= Y3y P Va8, 320y PV X387, vl o [y e, Y210 %s, Ye]¥7
= 0y P VX987 3l ¥z PP x2yE72, 9,] o [92 X0y, Yel[Xe, Y2137}

{xl[y-z_lxzyz, Yol X2, ¥21y7 if p=2;

XL y3' %2y, Y1297 if p=3;
= . mod G”.
lxl[xg, Vo 17t if p=1 mod6;
L y2i x93, y21y7 if p=5 mod6;

If p=2, then
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il

1= [ y2ixey3, ¥.1y7

= [xg, 32103121377, 1]

x7' [yixey32?, ¥ 10yixiy7%, ¥1dx
= x7'[ X2, X1][ X1, Xa]%y

=[1 mod G”.
If p=3, then

= x1[ Xa, Y2197

.:-doo

= xi[ %y, 1 Py7
= [y y7h, Y1l %7t

= [y, il [yixyi?, 3l

=1 mod G”.
If p=1 mod6, then
Y221 = xy [y, 0 ]y7
= 0 X YT AT YT
= )Xy XTIy
=1 mod G”.

If p=5 mod,6, then
Y2 = piP O K, .1y X1y

=[xy, 3217 Ly1i2197Y, 1]
= y7'[YExep2%, 21793 [yi0097, 91l
= x32°[yi%1y7% 311x3- (161977, 91
= y7°P0yinyt?, 230910 [ixi 7, i
= 37777 P[xy, Y1198 [yxay7h, Y1l
= y7%0xs, 311yt [yaxayi?, il
= yilxy, ]y [yixayt?, 94
=1 mod G”.

Hence, we obtain the following.

PROPOSITION 6. y?*-le(G”.

Summarizing the above results, we obtain the following two theorems.
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THEOREM 7. (1)

st(2, z[%])” = 7ot

)
st (2, Z[é—]) = [St(Z, Z[%]) st (2, Z[%])] .
3)
Z.XZy  if p=2;
st (2, Z[%])"”’ ={ z, if p=3;
ZXZ otherwise.
“)

st (2, Z[-Zl;])m“ = st(2, Z[—H)“" xSt(2 Z[ﬂ)'”
Zox(ZXZ)  if p=2:
= ZxZ, if p=3;
Z p2aX(Z X Z) otherwise.

ProoF. (1) is already discussed (see the part before Proposition 2). To
obtain (2), it is enough to show that St (2, Z[1/p]) is abelian modulo [St (2, Z[1/p]),

St(2, Z[1/p])’], which is easy. We will establish (3), (4) at the same time.
By our meta-abelianization splits, that is, St(2, Z[1/p]) ™’
St(2, Z[1/p]**xSt(2, Z[1/p])’'**. We define the groups M, and the homo-
morphisms a, of St(2, Z[1/p]) onto M, by

M, = <o, 71, | *=ti=1i=[1, 7. ]=1, o707 =117y, 01207 =1,
ax(xy) = 011, ax(y1) = 0, ax(xy) = 0%, ax(y:) = 0’117s,
M, =<0, t|e*=1*=1, oro"'=1%),
as(x;) = 01, ay(y) =0, as(x.) =7°, as(y,) =a’r,
M, =<0, 11, 1.l 0P =[1y, 1.]=1, 01:0 7 '=1,77}, 01207 =1,),
{ ap(x1) = a7y, ap(y1) = 0, ap(xs) = 07, ay(y,) = o?r, if p=1 mod6;
ay(x) = ary, ap(y1) = 0, ay(x;) = 6?, ay(y,) = a?ri't, if p=5 mod6.

The homomorphism «, induces a homomorphism &, of St(2, Z[1/p])™*® onto
M,. On the other hand, we find the homomorphism 5, of M, onto
St(2, Z{1/p™e® defined by
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f,(6) =y, mod St(2, Z[%])”,

Bo(e) = Bu(r) = [x1, 3] mod St(Z, Z[i})
and

5;0(72) =[»7'%1y1, ¥:] mod St(z, Z[—I—:DN,

€S

Then, we can see easily that a,5,=id. and f,a,=id.. Now the fact
LX) (ZyX Zy) if p=2;
M,={ Z;x Z, if p=3;
ZpraX(ZXZ) otherwise
implies the theorem. O

THEOREM 8. (1) {2, —1}=1n St(2, Z[1/2]).

(2) {3, —1}*=14in St(2, Z[1/3].

3) {5, —1}=St(2, Z[1/5])”.

4) {11, —1}teSt(2, Z[1/11)).

B) If p+2,3,5, 11, then {p, —1}°&St(2, Z[1/p]), hence, in particular,
{p, —11%#1 in K,(2, Z[1/p]).

ProOOF. (1) is well-known. (2) is given in [56]. (3), 4) and (5) are directly

obtained from [Proposition 2. 0O

The author is very grateful to Prof. A. Munemasa, who obtained the struc-
ture of St(2, Z[1/p])’*® in case of p=2, 3, 5, 11 using a computer (workstation)
with the “Cayley” system. The machine quickly gave the answer for p=2, 3, 5,
but it took a while for p=11. This output was very helpful.

4. The group K,(2, Z[1/p).

For every n>1 and every commutative ring A with 1, we can define
K,(n, A) in general. It is an important problem to determine the group struc-
ture of K,(n, A), which is much interesting when A is a Dedekind domain. As
an example, we take a finite set, called S, of prime numbers, and define Zs=
Z[1/pJpes. Then, it is well-known that

Kin, Zs) = Z,X 11 Z -1
pesS

for every n>2 and every S (cf. [2], [3], [7). In case of n=2, not so many
results are known. A set of generators of K,(2, Z[1/p]) for »<29 has been



140 J. MoriTA

studied in [2].
For several S, we have confirmed

*) K2, Zs) = ZX Tl Zp-s
pes

(cf. [4], [6]. Therefore, one might imagine that (*) holds for every S. How-
ever, we present a counter result below. Here, we will study K.(2, Z[1/p))
using the same method as in Section 3.

The group K,(2, Z[1/p]) is the kernel of the homomorphism ¢ of
St(2, Z[1/p]) onto SL(2, Z[1/p]) with

s =5 1) son=(_1 )

and
sar=(_, )» $09=( 7).

Then, the symbol {p, —1} belongs to K.(2, Z[1/p]) and is corresponding to
6(1—p) in Z e =Z/(p*—1)Z. Now suppose Ky(2, Z[1/p)=ZXZ,.,. Then we
choose generators g, t=K,(2, Z[1/p]), which generate Z and Z,_, respectively.
We write {—1, —1}=¢%z/. Let & be the image of ¢ in the quotient group
K,2, @)/l Z -1, whose generator is also denoted by {—1, —1} (cf. [4]. Put
d={—1, —1}* for some k. Then &7 '={—1, —1}F P V=gt ®-1D  and hence
i=k=+1. Therefore we can choose {—1, —1} instead of the above ¢. Now
we have {p, —1}?7'={—1, —1}™ for some m. Taking the images of both sides
under the canonical homomorphism of St(2, Z[1/p]) into St(2, R), we get 1=
{—1, —1}™ in St(2, R) and m=0, hence {p, —1}?'=1 in St(2, Z[1/p]). In
particular, {p, —1}*'=1 mod St(2, Z[1/p])’. Therefore

6(1—p)(p—1) =0 mod p>—1,

and there is a positive integer k such that 6(p—1)=*k(p+1). Then, this implies
(R, P)=(, 2), (3, 3), 4,5), (5, 11). Hence, we obtain the following.

THEOREM 9. (1) K,(2, Z)=Z.

2 K,2, Z[1/2])=Z.

(3) K,2, Z[1/3)=Z X Z,.

4) If p+2,3,5, 11, then K,2, Z[1/pNEZXZ,_..

COROLLARY 10. If p+#2, 3,5, 11, then {p, —1}?*=1 in K,(2, Z[1/p]).

REMARK. Recently in we established that K,(2, Z[1/p)#ZXZ,_, even
if p=>5, 11.
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