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§0. Introduction.
This paper provides a partial answer to the following question.

QUESTION. Assume that a nonsingular complete algebraic variety X of dimen-
sion n+2 (n=1) contains a nonsingular rational surface S with Ngs,x ample.
Then is X unirational?

In the previous paper [2], we have solved this question affirmatively in the
case where n=1 (i.e., X is three-dimensional) and S is toric. Here we shall
generalize the main theorem of [2] to the higher-dimensional case. The main
result is the following.

MAIN THEOREM. Let n be a positive integer. Let X be a nonsingular com-
plete algebraic variety of dimension n+2. Assume that X contains a nonsingular
projective toric surface S and that the following two conditions (a) and (b) are
satisfied :

(a) Ns;x=@i_ Ay where each A, is an ample line bundle,

(b) HXS, Ns;xQSUNg,x)=0 for each positive integer q.

Then X is unirational.

As is easily seen, this theorem is a generalization of the main theorem of
[2]. The following corollary would be a help to understanding of the state-
ment of Main Theorem.

COROLLARY. Let X be a nonsingular complete algebraic variety of dimension
n+2 and L a line bundle on X. Assume that there exists a sequence

X=X,2X,D0---D2X,=S

of subvarieties of X satisfying the following three conditions:
(1) Xi is a smooth member of the linear system |L|x,_ | on X;_, 1<i<n),
(2) X.=S is a toric surface,
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(3) L|s is ample on S.
Then X is unirational.

The way of proof heavily depends on the paper [2] and we refer to it for
our principle and technique. What we should emphasize here again is that
Hironaka-Matsumura’s theorem ([3] Theorem (3.3)) plays a central role in our
theory. Due to this theorem, we can reduce the problem to the study of
formal neighbourhoods of a toric variety.

In §1 we recall how to construct regular formal neighbourhoods of a given
smooth variety. Such construction is rather well-known and we have stated it
in [2] in the three-dimensional case. Here, in order to fix the notation, we
recall the correspondence between transition functions of the coordinates of
neighbourhoods and certain Cech cochains without proof.

In §2 we state a key lemma (Lemma 2.3) on formal neighbourhoods of a
nonsingular rational curve, which is a slight generalization of Lemma 2.6 of
[2]. This lemma provides a sufficient condition for a neighbourhood of P' to
be rationally dominated (cf. Definition 2.1).

In §3 we discuss a semi-group, which we shall call a scope, associated to
a regular formal neighbourhood (X, S) of a toric variety S such that the normal
bundle Ng,x is a direct sum of equivariant line bundles. The notion of the
scope has been introduced in [2] in the case where X is three-dimensional and
S is a toric surface. Here we shall generalize and refine it. The notion of the
scope is a technical core of our theory, which makes our arguments on formal
neighbourhoods easy to handle.

§'s4, 5 and 6 are devoted to complete the proof according to the way of
proof established in [2]. We estimate the scope of a neighbourhood (X, S) of
S by the induction on p(S), take a nonsingular rational curve C on S and apply
Lemma 2.3 to the neighbourhood (X, C)» of C. By Hironaka-Matsumura’s
theorem (loc. cit.), we obtain Main Theorem.

In §7 we shall state some supplementary propositions and problems. First
we make some remarks on the condition (b) of Main Theorem. We show an
example in which the condition (b) is not satisfied and the scope is so big that
we cannot apply our theory itself (cf. Example 7.2). Next we make a remark
on the algebrizability of formal neighbourhoods, which we do not discuss in the
proof of Main Theorem. We determine all the algebrizable regular formal
neighbourhoods of dimension two of P* with ample normal bundle, according
to the idea of M. Reid (cf. Proposition 7.4, Example 7.5). Finally we discuss
general problems and propose a conjecture (Conjecture 7.8).

The feature of our theory is very similar to that of [2]. The following
two points should be distinguished from [2].

(1) We define the scope in arbitrary dimension, though we shall later
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restrict ourselves to discussing neighbourhoods of a toric surface.
(2) We define the scope more intrinsically than [2]. Let S be a nonsingular
toric surface and N a direct sum of equivariant line bundles on S.
We realize the scope as a semi-group contained in the variety
Spec (Pyz0 SUNT)), which makes our arguments more perspicuous.
Once the theory of the scope is established in the higher-codimensional case,
the remaining problem of generalization of the result of [2] is at most a kind
of technical complexity, though the result is quite improved. It suggests that
our approach is essentially independent on the codimension of subvarieties, which
provides an evidence for Cenjecture 7.8.

ACKNOWLEDGEMENT. The author would like to express his thanks to Pro-
fessors S. litaka and Y. Kawamata for their advices and warm encouragement.
He discussed the results of this paper with Professors I. Nakamura, M. Reid,
I. Shimada, T. Usa and many other people. He also expresses his thanks for
their stimulating advices and discussions.

§1. Construction of neighbourhoods.

In this section, we discuss how to construct regular neighbourhoods of a
given smooth variety with a given vector bundle as the normal bundle. Such
construction is rather well-known (cf. [2], [7]). We briefly survey this general
theory without proof in order to fix the notation. For the proof we refer to
§1 of [2], which is still effective in our case after a slight modification.

Let S be a smooth variety of dimension m and N a vector bundle on S of
rank n. We discuss how to construct a regular neighbourhood (X, S) of S with
Ng,x=N. For simplicity, we restrict ourselves to the case where S is covered
by affine open subsets isomorphic to 4;*, because we shall later assume that S
is a nons'ngular toric variety, which satisfies the above condition. Let U=
(U));e; be an affine open covering of S, and let (X, S) be a regular formal neigh-
bourhood of S with covering U=V, such that Ns,x=N, U,=0,] s+ We assume
that U,=Spsc k[#;] and U,;=Spf k[t][[x:]], where t;=(t}, ---, t7) and x,=(x},
.-, x7) denote the coordinates. On Ijiﬂﬁj (7, 7€1), the coordinates are related
to each other by the following transition relation:

(ti, x0) = fu,t5, x3),

where f;, is a vector-valued formal power series in x; with the coefficients in
ru.nU;, 0s). We put

fij = (gij, hij)

- 1 m 1 n
- (gljv o, il hij: ) hij)»
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that is, ti=git;, x;), xt=h(t, x;), 1<A<m, 1<p<n). We expand gi; and
h%; in the following way:

gﬁj = g%jwo(tj)+g§j|1(tj, X))+ —|—g§,-|q(l‘j, xj)+ ttty
he; = hi56@) Rt x4 - Fhf s, x)+ -,
where gi;, and h,;, are homogeneous polynomials of degree ¢ in x;. Note that
hije=0. We put:
Zijie= (8100 s 8>
hijlq = (h%j\m Tty h?ﬂq) ,
fing= (Gine Mijia)-

We also use the following notation :

gﬁj[q] = g?;»o+g§m+ -I-gé;;q ,
hfjeqr = hin+ - +hiy,,
Zisrqr = (Ghjeqy > &Tita1) »
hijegr = (Rijeqn -5 hiicad) »
fij[q] = (Gujtqn hij[q]) .
The collection {g;;,} of the terms of degree zero is nothing but the transition
functions that determine the variety S, which is already given. The collection
{hi;11} is nothing but the transition functions that determine the vector bundle
N, which is also given.
To construct (X, S), we have to give a collection {f,;;} satisfying the fol-
lowing :
(1) {g:ji0} determines S;
(2) {hi;} determines N;
Q) fis(falte, xe))=Fix(ts, x&) for 4, j, REL
We successively construct the g-th infinitesimal neighbourhoods. We introduce
another notation. For f, gel'(U.NU;, 0s)[[x;]1], we write f=,g if f=
g mod (x;)?*%,
To construct the first infinitesimal neighbourhood, we have to give a collec-
tion {f:;:} and determine {f.;,;} satisfying the following condition (x),:

(ON For(Faecialte, x6)) =1 frecalte, i) for 4, j, kel.

To the vector-valued function g;;,, we attach an element G,;,el"(U.NU,,
OsRQN7) in the following way:
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m 0\
Gijll = X§<3_ﬁ> ®g§jn(g,-uo, hjill) mod (x;)*

m n

= 3 5 (2) @aneoxt moa (x,

A=1p=1
where {(0/0t})’|1<A<m} denote the local basis of the sheaf @s on U, and
{x# mod (x,)?} is the local basis of the sheaf N~ on U,. Since g%# belongs to
r'{U;NU,, ©s), we can consider G;;; to be an element of I"(U;N\U,, OsQN").
We put ¢,=0sQN”. Thus we often identify a collection {g:;i:}s, jer With G,=
(Gijii, jer€Cl(U, G)).

CLamM 1.1. A collection {gq;} determines {g.j.y} satisfying the condition
(%); if and only if the corresponding Cech cochain G, satisfies the cocycle condi-
tion, i.e., G,€ZYU, &,).

CLamM 1.2. Let G, G'€Z'4,). Assume that G'—Ge&BY U, &,). Then the
first infinitesimal neighbourhoods determined by G and G’ are isomorphic to each
other.

Suppose that a description of the (¢—1)-th infinitesimal neighbourhood is
given (¢=2), that is, a collection {f;j,-13} of the transition functions is deter-
mined up to degree ¢g—1 with respect to the coordinates x;’s. We have
fista-13F jrea-10=q-1firrg-12.  We put

Pijrig = (Fijra-11/ jrta-10— Firrg-10raa
= (@ijr19 bijr1o)
= (@ijrie -+ ATjr1g, Dijrig, =+, bljrig) -
To the function ¢y, we attach an element ¥y, (UNU;NU;, Ox|sQ
SIN™)) in the following way :
) 5 9 9al
ijklg = /‘a 'a?‘{@aijqu(gkilo, hein)

0

x4

+ > 3 X1 k10, hrirn) mod (x;)?+!

p=1
- % 5 —(%@aé;zlqm)ﬁ

0

i=1 gz 0x4

®5¢ilzﬁlq<xi>q mod (x;)%**,

where 0/6t] (1=<A<m) and §/0x# (1<p<n) denote in this time the local basis
of the sheaf @y|s on U,, (x,)f mod (x;)?*! (I-G=g¢, §=0) are the local basis of
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the sheaf SYN”) on U, with G=(q, -, qa), 0=(0, -, 0), I=(1, -, 1), (x,)i=
(xh) - (x%)% and 1-§=g¢,+ -+ 4+¢, denoting the usual inner product.

From now on, we use the following notation about vectors unless otherwise
mentioned.

DEFINITION 1.3. Let d=(ay, -+, a,), b=(b;, -+, bs). We denote a>b (resp.
d=b) if a,>b, (resp. a,=b,) for each g with 1<p<n. We denote by 0 the
vector (0, ---, 0). We denote by 1 the vector (1, ---, 1). We denote by &, the
vector of which the p-th coefficient is equal 1 and the others are 0. We define
@-b=abi+ - +a,b, and (@)=(a,) - (a.)"

We put F,=0x|s@SUN™). Thus we often identify a collection {¢;;z1q} 1.5, rer
with wQ:(wijqu)ECZ(w) gq)'

Crawm 14. T .eZ¥U, 7).

To construct the g¢-th infinitesimal neighbourhood, we have to add a collec-
tion {fiii4 of the terms of degree ¢ to {f:j,-17} Wwhich is already determined
and determine {f;;q3} satisfying the following condition (x),:

(*)q focadfiecaCe, X6) =q fercqte, xe) for 7, j, k1.

To the function f;;q=(gi1q, fij1e), We attach an element Fi; =" (U.NU; Fy)
in the following way:

m 0
Fijo= Zgl i ®giia(gsi0, hjirn)
S a K q+1
+p2=31 ot ®hijlq(gji|0» hjill) mod (x;)?*'.

Thus we often identify a collection {fi;i}+ jer With F=(Fi;1)i, ;21 ECHU, Fo).

Craim 1.5.

(1) In order to satisfy (x)q, F, must satisfy dFy=—¥,, where d denotes the
coboundary map. In particular, if U,EBXU, F,), there does not exist such a
cochain F.

(2) Assume that Fy and Fg determine two q-th infinitesimal neighbourhoods
and that Fi—F,eBYU, F,). Then these two neighbourhoods are isomorphic to
each other.

§2. RD Lemma.

In this section we state a lemma which plays a key role in this paper and
which is a slight modification of Lemma 2.6 in [2].
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DEeFINITION 2.1. Let (X, C) be a regular formal neighbourhood of a non-
singular rational curve C, that is, X is a regular formal scheme with the re-
duced subscheme C. The neighbourhood (X, C) is said to be rationally dominated
if there exists a dominant morphism ¢ : (P¥, )>—(X, C), where [/ denotes a line
in PV and (PY, /)~ the formal completion of P¥ along /.

PROPOSITION 2.2 (cf. [2] Prop. 2.5). Let X be a nonsingular complete alge-
braic variety. Assume that there exists a nonsingular rational curve C such that
(X, C)" is rationally dominated. Then X is unirational.

ProoF. We refer to [2]. This proposition is an easy corollary of Theorem
(3.3) of [3].

The following is a key lemma in this paper, which we shall call the RD
Lemma, and which we have proved in the three-dimensional case in [2].

LEMMA 2.3 (RD Lemma). Let
(X, C)=Spf (k[to][[x, -+, x&IDUSPE (B[ I[LxE, -+, x¥]1])

be a formal neighbourhood of a nonsingular rational curve C with the following
transition relation of the coordinates:

ty = (t1>—1+ 2 oazxqrnqN(tl)—a(xDql (JC{V)QA,, ,

2ttty 2

= 3 bhgayt)T(xDH (k)W
1,4 N 20
qittgn =zl

(I1=p<N). Assume that there exists a positive integer r satisfying the following
condition: If a<(qi+ - +qun)/7, then Gag..quy=0 and bfq,...y=0 for all p.
Then the neighbourhood (X, C) is rationally dominated.

PrROOF. Let [ be a line in P}"“. Then we have
PN+ 1) = Spf (R[uel[lzs, -+, 28 1DUSPE (RLu (L2, -+, 2F]1])
with u,=(u;)"! and zf=(u,)"'z4 (1=<pu=N). We can explicitly construct a do-
minant morphism ¢ : (PY*!, [)>—(X, C) by the following two homomorphisms ¢,
and ¢, of rings:
¢0: k[t()][[xsr Tty xé\']] i k[uo:l[[Zé, Tty Z(I)V]] ’

to > ()" + 20 Qagyqy (o)™ #7177 7IN (2g)" - (20)0

1l — bﬁql...qN(uo)Ta_q‘_"'_"”(zé)q‘ (2,
and

¢ RIBICLx, -, 401 —> kLwdlle), -, 2],
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§3. Semi-groups associated to neighbourhoods.

This section provides a generalization and refinement of §3 of [2]. We
introduce certain semi-groups, which we shall call scopes, in order to describe
regular formal neighbourhoods of a smooth toric variety whose normal bundle
is isomorphic to a direct sum of equivariant line bundles. We use the same
notation as in § 1. Let S be a nonsingular projective toric variety of dimension
m. Let A,, ---, A, be equivariant line bundles on S and N=@}_; A,. Let
(X, S) be a regular formal neighbourhood of S with Ng,x=N.

We use the following notation for ¢>0 and g§=(gi, -+, ¢») with I.G=¢,+
s +qn:q :

Fo=0x|s®SUNT),
G = 0sQSYN7),
Hq=NRSUNT),
Fy= Ox|sQ(A) 1R - Q(An) I,
1= 0sQ(A) U@+ @A),

H o5 = Ay®(Al)-q1® o Q(Ag) I,
Hig= O Hpq-
p=1
Directly from the definition, we have the following :

_qu: @ gtf:

1.d=q

gq =' @ ga ’
1.g=q

n
o= D ’@ oy
p#=11.4=q

We have the following exact sequences:

‘q Tq
0—G¢,—9F,—> H,—>0,

g 73
0—G3—>F3j—> ;3 —>0.

To construct transition functions of (X, S), we have to give collections {gi;:}
and {(g:jie hijig)} (@=2), or equivalently Cech cochains G,€ZY v, 4,) and F,e
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CY(U, ) (g=2) (cf. §1). We also use the following notation throughout this
paper. We may assume that the top terms {g;;,} and {A;;;} of the transition
functions are monomials and that {h%;,} determines the line bundle A, (I1=p
=n). For 1£A=<m and 1=pu<n, we put

2 i Lvild
8ijio = x‘1:[1@'})“ SEAEIN

m o
higs = (T @pressn s

We define T, j))eM(m+n, m+n: Z) in the following way :

, G@ 5 0
TG, )= o
H(@i, j) E.
with
GG, 7) = (g4, v;i, ].))lslsSm eM@m,m; Z),
lsvsm
H@, j) = (h(y, v;i, j))iSpSn eMn,m;Z).
svsm
We put

g4, 1) =(g(4& 134, ), -+, g& m;i, j),
hpsi, )= (h(g, 14, ), =, h(g, m; 3, ).
It is easy to see the following.

CrLaM 3.1.

1) TG, HeGLm+n, Z) for any i, j1.

@) TG, j)-TG, B)y=TG, k) for any i, j, ke L.
B) (@is10)* O(hin )P O=(t,)FD(x,)BD if

@), B»)) = (@), BENTG, 1),
where &@)=(a'(), -, a™@), BH=(BG), -, B"@), ete..

Let us denote by M the group of the characters of Spec (Pyz0 SUN™)) of
dimension m-+n, which is also toric. We denote the characters in M induced
by the coordinates t and x4 (I, 1<A<m, 1<p<n) of (X, S) by [t{] and
[x4], respectively. We put [t,]=([ti], ---, [t7*]) and [x]=([xi], -, [x7D).
We define the scope of a description f={f;;}={(gi;, h:i;)} of (X, S).

DEFINITION 3.2. The scope of a description f={f;}: jer of (X, S) is the
semi-group contained in M generated by the following elements:

(a) Zv-[t,—]-}—ﬁ-[xj]—[té] with (t,-)a(x,-)'§ appearing in the function g, (1<
Asm);
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(b) Zx-[t,-]-l—ﬁ-[xj]—[xéf] with (t,-)a(xj)ﬁ appearing in the function h# (1<
p=n),
where 7 and ;j run all over the index set I. We denote it by Scope(f).

Since it is convenient to fix an integral basis of M=Zm™*", we make another
definition.

DEFINITION 3.3. Let O=l. The scope of a description f=/{fi;}: jer of
(X, S) with respect to the coordinates (f,, x,) is the semi-group contained in
Z™*" generated by the following elements:

(a) (@a—g;1, 1), B)T(]’, 0) with (tj)"”(xj)'§ appearing in the function g7,
(1£25m);

(b) (@—h(p;i, j), B—2)T(, 0) with (t,)%(x,)? appearing in the function A%
(Isp=sn),
where 7 and ; run all over the index set I. We denote it by Scope (f; 0).

REMARK 3.4. Let 0=l. It is easy to see that Scope(f;0) is the repre-
sentation of Scope (f) in Z™*™ with respect to the integral basis {[t,], [x,]} of
M. Note that the matrix 7T, 7) is nothing but the transition matrix of the
bases {[t:], [x:]} and {[t;], [x,]} and that

Scope(f; J) = Scépe (f; DTG, 7) for 7, j=I.
We also define the scopes of elements or subsets of C?(U, &,), C*(U, &,)

and CP(U, 4p).

Let F:(Fio_‘,ip)eC”(LU, F,) with Fio...ipeF(U F. We write

igipr

m ‘ 0 R
Fio.-.ip = Zgl 2 G%bg-ip(tio)a—t%:(g(xio)q

[]
i§§=q
n " a ; .
+y§1 2 H{‘lé...ip(l‘io>‘a'x'”{',o@(xio) mod (xio> ,
i-4=¢

where 8/0t{,Q(x:)! mod (x;,)?** and 9/0x4,®(x:)) mod (x;)*"* (1=A=m, 1<p=n,
1-G=¢) denote the local basis of &, on Uy,

DEFINITION 3.5. .

(1) The scope of the above element FeCP(U, F,) is the semi-group con-
tained in M generated by the following elements:

@) & [t:i]+q-[x:]—[th,] with (t;,)* appearing in G{i; (1<a<m);
(b) @-[ti]+q-[x:]—[x4] with (t,~0)a appearing in H{-‘(;.i‘.ip (I=sp<sn),
where Z,, -+, i, run all over the set I. We denote it by Scope (F).

(2) Let 0=l. We denote the representation of Scope (F) in Z™" with
respect to the basis {[t,], [x,]} by Scope (F;0) and we call it the scope of F
with respect to the coordinates (f,, x,). More explicitly, we define Scope (F; 0)
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to be the semi-group in Z™*" generated by the following elements :

(@) (a—éa, §)T(,, 0) with (¢;)* appearing in G%;,?..ip 1Z25m);

(b) (d, §—2,)T (G, 0) with (t;))* appearing in H{-‘O',.a.ip (1=p<n).

(3) Since F; is a subsheaf of F,(¢g=1-g), we naturally define the scope of
an element F of CP(U, ;). That is, we define Scope (F) in the above way
regarding F as an element of C?(U, F,).

(4) Let Y be a subset of C?(U, F,) (resp. C*(U, F;). We define Scope (V)
and Scope (Y ; 0) in the following way :

Scope (Y) = > Scope (F),
Fey
Scope (Y ; 0) = 3 Scope (F; 0).
Fey

Let G=(Gry.1,)ECY(V, Gg) With Gypi €Uy, 9. We write

Gigyoi, = lgx 6‘?6 Gébg"ip(ti")(atifo) ®(xio)5 mod (x, )¢ .
i-d=q

DEFINITION 3.6.

(1) The scope of the above element GeC*(vU, 4,) is the semi-group con-
tained in M generated by the following elements:

&-[ti]+G-[x:,]—[t1,] with (¢,)* appearing in G{l., (1=2=m),
where 7, ---, ip run all over set I. We denote it by Scope (G).

(2) Let 0l. We denote the representation of Scope(G) in Z™*'™ with
respect to the basis {[t,], [x.]} by Scope (G ;0) and we call it the scope of G
with respect to the coordinates (t,, xo). That is, it is the semi-group in Z™*"
generated by the following elements:

(@—&,, §T (G, 0) with (¢,)* appearing in G%;,?’..,-p (1<i<m).

(3) Since &; is a subsheaf of G, (¢=1-3), we naturally define the scope of
an element G of C?(U, g3 by regarding F as an element of CP(€U, &,).

(4) Let V be a subset of CP(U, G,) (resp. C?(U, G;3). We define Scope (V)

and Scope (V ; 0) in the following way :
Scope (V) = 33 Scope (G) ,
Gev

Scope (V ; 0) = GZVScope (G;0).

Let H:_—(Hio.“,-p)eC”(CU, Iy with Hio...ipEF(UioA._ip, Iy). We write
n a0 \ .
_ ¥ ) Yo+
Hipip= 3 ﬁ?b A ON P {,0) Qxi) mod ()",
i-§=¢

where (8/8x£)®(x;,) mod (x;)*** (1<p<n, 1-G=¢) denote the local basis of 4,
on U,
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DEFINITION 3.7.

(1) The scope of the above element HeC?(U, 4,) is the semi-group con-
tained in M generated by the following elements:

- [ti] 4G [x:]—[x%] with (t:)* appearing in Hid  (1<p<n),
where 7y, --+, i, Tun all over the set I. We denote it by Scope (H).

(2) Let 0l. We denote the representation of Scope(H) in Z™*™ with
respect to the basis {[?,], [xo]} by Scope(H;0) and we call it the scope of H
with respect to the coordinates (¢, x,). That is, Scope (F;0) is the semi-group
in Z™*" generated by the following elements:

(&, §—2,)T (o, 0) with (t;,)* appearing in Hﬁ;éip (1=pu<n).

(3) Since ,; is a subsheaf of #, (¢=1-G, 1=pu=<n), we naturally define
the scope of an element H of C?(U, 4,3 by regarding F as an element of
CP(U, 4.

(4) Let W be a subset of CP(U, 4,) (resp. CX(U, H,,3), we define Scope (W)
and Scope (W ; 0) in the following way :

Scope (W) = H%}WSCO'DQ (H),

Scope W ; 0) = >3 Scope (H;0).
Hew

As for cochains of the sheaves ¢, and #,, we can interpret their scopes in
another way. We first remark that the m-dimensional algebraic torus 7T acts
on S and that (m-+mn)-dimensional algebraic torus T acts on the variety
Spec (Bg=0 SUN™)). Then ¢} (9/0t}) and x% (9/0x%)” (iel, 1<A1<m, 1=p<n)are
semi-invariant under the action of 7. In other words, we have [(8/0t})']=
—[t4] and [(@/0x%)"]=—[x#] in M, where [(@/0t2’] and [(8/0x%)"] denote the
characters corresponding to (9/0t)’ and (9/0x%)”, respectively.

DEFINITION 3.8. For any rational function Fek(S), we define the set of
lattice points S(F) of F in the following way :

S(F) = {meM|F,+0},

where F=3nex Fn denotes the expansion of F corresponding to the decomposi-
tion into the eigenspaces associated to the characters, that is, F,, is the mono-
mial part in F corresponding to meM. Since M naturally includes M, we
regard S(F) as a subset of M.

Let G:(GioA.lip)eC”(‘U, G, and H=(Hio.._ip)eC1’(CU, I,). We write:

_ < 2 9
Giyoi, = lgx 6? Gio-&-»ip(tio)ﬂ)(xio)& )
ig=q
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Hipiy= 3 B, 1l ax,,®<x“,>q mod (x;,)*"" -

Then Scope (G) (resp. Scope (H)) is the semi-group in M generated by the fol-
lowing subset :

MYy, Giol>+[(—a—%)']+q~[xi0]),

[
(resp- W, 0, ) (ses D+ (o) T 0x))

1-4=¢
We have the following proposition on the behaviour of the coboundary maps.

PROPOSITION 3.9. The coboundary maps of the Cech complexes C(U, G,)
and C'(U, 4,) preserve the scope as follows: Scope (df)TScope (f), where f is an
element of C'(U, G,) (resp. C(U, I,)) and d denotes the coboundary map.

PROOF. It immediately follows from the fact that t? (9/0t?) and x% (9/0x%)”
(iel, 1<2<m, 1<p<n) are semi-invariant under the action of 7. Or equi-
valently, we can also directly prove it by the following transition relations of
local bases of ©g and N:

t} (6%), % gly, 2;1, ]')ﬁ( 63% )l,

REMARK 3.10. The coboundary maps of the complex C?(U, &,) are not
scope-preserving (cf. Lemma 3.17).

We recall definitions of H?-slice and H?-basis in [2].

DEFINITION 3.11. Let & be any sheaf on S.

(1) A finite-dimensional vector subspace V of Z?(VU, &) is said to be an
HP-slice of the sheaf & if V satisfies =n(V)=H?(S, §), where n:Z°(U, §)—
H?(S, &) denotes the canonical projection.

(2) Let V be an HP”-slice of . We call a basis {vy, -, v} of V an HP?-
basis of the sheaf &.

The following is the main result of this section, which is a generalization
of Theorem 3.8 in [2].

THEOREM 3.12 (FUNDAMENTAL THEOREM ON SCOPES). Let S and N be as be-
fore. Let Vi be an H'-slice of the sheaf G; (1-G=¢=1, §=0) and W,z an H-
slice of H 5. We put
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Q = X Scope (Vq)-}—(PE1 Scope (W)

qz1

= ScoPe(VaHé X Scope (W ,.3).
2 2
=q

<y
=4
=

2

)
9z1

Qe

>
1.

w

1 1.

<

Then any formal neighbourhood (X, S) of S with Ns,x isomorphic to N admits a
description f={f,}: ;=1 by the transition functions such that Scope ()T Q.

COROLLARY 3.13. Under the same situation as in Theorem 3.12, we further
assume that N is ample and that HX(S, %,)=0 for each q=1. Then any formal
neighbourhood (X, S) of S with Ng,x=N admits a description f such that Scope (f)
is finitely gemerated and that

Scope (f) C Z‘__Jl Scope (V) .

PROOF OF COROLLARY 3.13. Straightforward.

We prove Theorem 3.12 in such a way .as the proof of Theorem 3.8 of [2].
First we consider the first infinitesimal neighbourhoods.

LEMMA 3.14. Any first infinitesimal neighbourhood (X, S) of S with Ng,x,
=N has a description friy=1{fi,11}: o1 such that Scope (fi)TScope (V).

PRrOOF. It immediately follows from the definition of the scope, Claims 1.1
and 1.2.

The definition of the scope of C(F,) depends on the description f;;; of the
first infinitesimal neighbourhood. From now on, we always assume that
Scope (fr17)CScope (V,). Next we discuss the scope of the ambiguity ¢, (cf. §1).

LEMMA 3.15. Let ¢g=2. Suppose that some (q—1)-th infinitesimal neighbour-
hood (X,_1, S) of S is described by frg-13={fijeq-11}i.jez. Let To= {ttiserati jorer
€ZXU, F,) corresponds to Po={Pijr1q} with

Disnig = Fija-19(S jreg-1)— firca-12)ean
(cf. §1). Then Scope (¥,)CScope (frg-17)-
We make a preliminary definition before we prove Lemma 3.15.

DEFINITION 3.16. Let 2 be a semi-group contaired in Z™**=Z™xZ". For
t=(, -, t™) and x=(x!, ---, x"), we define subsets P(2;¢, x) and UP(Q;t, x)
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of k((t, x)) in the following way:

P@stx)={ 2 aniwlles ek},
(a, Bl

UP@;t, ») = {Sass®*0PeP@;t, 0)lap=1},
where d=(ai, -, an) and B=(8i, -, Bu).
It is easy to see the following.

Craim 3.17.
(1) P(2;t x)is a subring of k((t, x)).
(2) UP(RQ;t, x) is a group with respect to the natural multiplication.

PrOOF OF LEMMA 3.15. We put 2,=Scope (fr,-17; 1) for ic L. Thén fijta-13

=(gijtq-13, Nije-11) iS written in the following form:

gi]&l—l](t]} x;) = (t; )zd Lh <1+ 5‘ Gz; aé( ha (xj)ﬁ)

@ pre?;

oty x) = (Rl 8 Haa@) )P ),

Be;
Wlth G” af, Hij asEk. If we put glsre-in=(t:)4# ® g1, and hiyegry=(1,)H 9 »
-x{'h%, then g, ]kEUP<Qk ste Xx). We put

fi;[q—l](fjk[q—u) = (gijr, hije)
= (gie, =y 8Tk, Mljr, =+, hijw).
After a similar calculation to that in [2], we have:
(l‘k)_Zd;i'mgén

= @014 T Glapt) PP O@0EwE),

&, )E-Qj

(t) R D) by

= @i (14 o H #3t0F D PD(E ) By,

Bre;
where (&(k), B(k)=(&, B)T(j, k)=Q;. Then
o)y B xb gl () FEE B () Rty € UP(Qy 5 te, X4) -

Next, we consider exact sequences

‘q Tq
00— G, —> Fq—> H,—>0.

We write ¢=¢, and =1, for simplicity. We also denote the morphism
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Cp(qj’ gq) S CP(CZJ’ gq)
(resp. C(U, G —> CP(U, Hy)),

which is induced by ¢: ¢,— %, (resp. 7: F,—I,) by the same symbol ¢ (resp. 7).
The following lemma is a generalization of Sublemma 3.16 of [2]. It enables
us to estimate the scopes of elements appearing in diagram chasing on the above
exact sequences.

LEMMA 3.18.

(1) Scope (e(x))TScope (x)+Scope (V) for x=C?(U, G,).

(2) For an element yeCP(U, 4,), there exists an element z&CP(U, F,) such
that ©(z)=y and that
Scope (z)TScope (y)+Scope (V).

(3) Scope (dw)Scope (w)+Scope (V) for weCP(U, F,).

PrROOF. Let Q]—ZSCOZ)e (Vl;]>. Then fij[l]:(gijtlj; h’ij[l]) is written in the
following form:

ghon = @514 36, v3i, Pay),
hijoy = (t)FwtDxe,

where G(4, v; i, el U.NU; 0s) and G(4, v;i, )x5€P(2,; v, x;). Then we
have the following transition relation between the local basis of Ox|s:

il m 0
A2 Z}
f ot y=lg(y, 4; ])tl oy’

m 0 )
Agax” Z}G(y ¢, )xk “atﬁ”an;'
Let X be a semi-group in Z™*" and P,, -+, P, Qi, -+, Q.€P(X ;t;, x;. Then

we have the following relation :

% Jat§®P1+2xJa #®Qy

= St @(Z e, 44 P+ 360, i, Hr4Qy)

n 0
-i—g}1 x‘i‘m@Q# .

Note that X%, gy, ;4 HPi+320-1 GO, g4, /)x4Q, belongs to the ring
P(Q;+2 ;t; x;). The assertions (1), (2) and (3) immediately follow from the
above relation. Thus Lemma 3.18 is proved.

To complete the proof of Theorem 3.12, we prove the following two lemmas.
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LEMMA 3.19. Let ¢g=2. For an element =B U, F,), there exists ¢
Cl U, 9,) such that d¢=¢ and that

Scope (¢p) C Scope (¢)+Scope (Wg)+Scope (V1) .
LEMMA 3.20. Let q=2. There exists an H'-slice Y of &, such that
Scope (V') C Scope (V o)+Scope (W o)+ Scope (V1) .

PrROOF OF LEMMAS 3.19 AND 3.20. We refer to Lemmas 3.12 and 3.13 of
[2]. Once Lemma 3.18 is proved, the same arguments as in [2] are effective.

PROOF OF THEOREM 3.12. We construct neighbourhoods in such a way as
in §1. Theorem 3.12 immediately follows from Lemmas 3.14, 3.15, 3.19 and
3.20.

§4. Further properties on scopes.

From now on, we restrict courselves to the case where S is a nonsingular
toric surface. In this section we estimate the scope of an H'-slice of g; by the
induction on the Picard number p(S) of S. The way of arguments is a slight
modification of §4 of [2], using an interpretation of the edge sequence of the
Leray spectral sequence in terms of Cech cochains (cf. §1.B of [2]). We use
similar notation to that in [2] (cf. [6] for detail). Let S be a nonsingular pro-
jective toric surface, on which the algebraic torus T=G% acts. We denote the
T-invariant prime divisors by D, ---, D, and we put D=D,+ --- +D,. We
denote by Gs the weighted dual graph of D; Gs is a circular graph with s
vertices with weights a,, -+, a;, where a;=(D;)? (=1, ---, s).

Figure A.

We may assume that the weights a,, -+, a; lie counter-clockwise such as in
Figure A. Conventionally, we put D;..=D; and a;,,.;=a; for [&Z. We also
put p,=D;N\D;,,.

Conversely, the weighted dual graph Gs uniquely determines S up to iso-
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morphism. Moreover, we can construct from Gg an affine open covering S=
UiZtU, of S with U,=Spec k[#}, 2], and determine the transition functions
between the coordinates (¢}, t2) (=0, ---, s—1) in such a way that the following
conditions are satisfied: #1=(2,,)"' and 2=t!,,(t2,,)"%+*1. The equation ;=0
determines D, on U,, t2=0 determines D,,, on U,, and #=t?=0 determines p,
on U,. From now on, we always take the coordinates (t,, u,) as above unless
otherwise mentioned.

DEFINITION 4.1. We call the above affine open covering {U,} the canonical
open covering of S determined by the weighted dual graph. We also call the
coordinates (#}, 2) the canonical coordinates on U,.

Let B,=3>}%-.b4D, (p=1, ---, n) be invariant divisors on S, A,=0(B,) and
N=&2_, A,. We put b,=(b}, ---, b}). In this paper, we describe the pair (S, N)
by the multi-weighted circular graph in Figure B.

(by)
Figure B.

The following claim is well-known.

CLAIM 4.2. The vector bundle N is ample if and only if the following in-
equalities are satisfied for i=1, ---, s: b,y +a,b,+b,.,>0.

From the multi-weighted circular graph corresponding to N, we can recover
the coordinates (¢, x,) G({l, ---, s}) and the top terms {g.,i,} and {h,,:} of the
transition functions describing a formal neighbourhood (X, S) of S with Ng,x
=N. We can determine the matrices T(, ))eGL2+n, Z) (i, j{1, ---, s})
which are defined in § 3 in such a way that the following conditions are satisfied :

0 -1 0
TG, i+)=| 1 —a,, 0|,
tﬁ -181&1 En
Where al+1251+a1+15l+1+51+2'
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Suppose that a nonsingular projective toric surface S and a vector bundle
N=F}-, A, are determined by the following multi-weighted circular graph in
Figure C with (D;)*=a; and A,=0(Zb4D,):

(b.)
Figure C.

Let f:S—S be the equlvarlant blowmg -up of S along p,=D,N\D,,;. We
put A =/*A,R0(—c*E) and N= D= 1A,,, where FE denotes the exceptional

d1v1sor of f. We put ¢=(c’ -+, ¢"). Then S and N are determined by the
double-weighted dual graph in Figure D.

(bi+b1,1—70)

CORCN!
Figure D.

Let T(, j) (3, j€{l, ---, s}) be the transition matrices with respect to S
and N. To get an affine open covering of S, we replace U; by U; (i+/) and
U, by U,..J0,. with U;=U, G#i), U,..=Speck[t},, t;.] and U, =
Spec k[t.., t}..], using a symbol . That is, S is covered by open subsets U;
(i=1, ---, l—e, I+¢, -+, s). The transition matrices ’T‘(z’, 7) with respect to S
and N are calculated in the following way: TG, ))=T(, j) if i#{ and j#I,
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TG, 146)=TG, DT, (+¢: &) and TG, [—e)=TG, DT, |—e; &), where

1 0 O
TU (+e;&)=|1 1 0
iz 0 E,
and
1 1 0
TU l—e;&)=0 1 0
W ¢ E,

We put T(l+e, [;8)=T(, [+e; &) and T(—e, [;&)=T(, [—e; ¢)"'. Note that
the matrices T(, [+¢; &) and T(/, [—¢; ¢) do not depend on [. We put pi..=
{ti,e=t}..=0}€U,, . and p,_.={t}_.=t;_.=0}€U,_.. Then we have p,_.=D,NE
and p;..=D;..NE. The following theorem is the aim of this section, which
estimates the scopes of H'slices of G; after blowing-up.

THEOREM 4.3. Let f:5—S be an equivariant blowing-up of S along p.€S
as above, and let A, (resp. A,) line bundles on S (resp. S) with A,=1*A,Q
O(—c"E), where E denotes the exceptional curve of f and ¢=(c, ---, ¢c®)>0. Let
{Ui}ier be the canonical open covering of S determined by the weighted dual
graph. Let N=@ Ay, N=®}, A, 0=05R(A) 9@ - @A), §;=65@
(A" U® - QA% for G=(qi, -, ¢x)=0 with §+0. Let V; be any H'-slice of
Gs. Then there exists an H'-slice V; of &; which satisfies the following condition :

Scope (V) © Scope (V+ 2 Zuolaltil+BI1+G-[x:]).
:fﬁ_:'é}.s;;_—lx
Or equivalently,
Scope (V35 0) < Scope (V5 0)+ S Zula B 9T 0)
as—-1, -1

a+fB+¢-dz-1

for 0N {l}.

REMARK 4.4. Since the group M of the characters is common to both
varieties Spec (Bgz0 SN 7)) and Spec (@qzoSq(ﬁV)), the above inclusion of semi-
groups is reasonable.

We make some preparation before we prove Theorem 4.3. We put:
¢ = Coker (Pg — f*@5s) ,
&y = 2QA)UQ -+ (),
01 = f*OsQA) @ - R(Ay)
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for G=(¢,, -+, ¢»)- Then the exact sequence
0—>G;—> Q0 —> P;—> 0

induces the exact sequence

-1 H'S, @) — H'S, &) — H'E, 0) — HES, @),

On the other hand, we consider the Leray spectral sequence on the sheaf Q,
and the morphism f: §—S. Since ¢>0, we easily see [x0;=G; and R'f.Q;=
G3QR'f+O((¢-§)E). Thus we have the following exact sequence:

4-2)  0—>HYS, G)—>H'S, 0)—>H(S, G;QR f+0((2-§)E))—>HX(S, G3).

We introduce the notion of the scope on the Cech complexes of sheaves appear-
ing in the sequence (4-1) and (4-2).

Suppose i=l. If i#/, then f*(9/0t)Q(x,)? mod (x,)?** (=1, 2) are considered
to be the local basis of the sheaf Q; on U.. On the open set {7, (resp. U,_.),
F¥0/0tHR(x14)t mod (x1,)?*" (resp. f*(@/0tHR(x,-:)t mod (x;-.)**Y) (=1, 2) are
the local basis of Q;. Let U=(U,).er be the canonical open covering of S and
let T=0Dwei=(ODernw, Ui, U,,.) the canonical open covering of §. We
can define the scopes of elements of C?(TU, Q) and CP(U, f«C™(U, Q) as follows.

DEFINITION 4.5.

(1) Let Qerl..(S, Q) be any rational section of Q; and 0=/. We can
write

Q= 3 Qi)f* )

with iel, jel. (f j#/, we usually take i=j. If j=I+eor j=I—e¢, we take
i=1.) We define the scope Scope (Q) of Q to be the semi-group in M generated
by the following subsets: S(Q:)—[t1+3-[x,] (=1, 2).

(2) Let Qerlq.(S, 0;) and 0cl. We define the scope Scope (Q; 0) of Q
with respect to 0/ to be the representation of Scope (Q) in Z2*" with respect
to the integral basis {[#,], [x,]}. It is also explicitly defined in the following
way.

(A) If 0#l—e, [+e, we can write

Q= 3 Qi) f* 2 ®xt mod (xof™.
i=1 £
Then we define Scope (Q;0) to be the semi-group contained in Z?**" generated
by the following elements:

(A-D: (aa—1, as, §) with (#5)“1(#})*2 appearing in Q,(t,),
and

(A-2): (a4, a,—1, §) with (t})*1(t3)*2 appearing in Q,(t,).



406 M. EBIHARA
(B) If 0=l+¢, we write

Q = XZ:}I Ql(the)f*gat?@(xhs)a mod (xl+s)q+1 .

Then we define Scope (Q ; 0)=Scope (Q ; l+¢) to be the semi-group contained in
Z**" generated by the following elements:

(B-1): (ai—1, as, §) with (t}..)*1(¢1.)* appearing in Q,(..),
and

(B-2): (ai—1, a,—1, §) with (t1,.)"1(t{,.)* appearing in Q.(..).

(C) If 0=l—e, we write

Q= 3 Qulti-df* 2 ®Cxi - mod (xi)t™
=1 L

Then we define Scope (Q ; 0)=Scope (Q ; [—e) to be the semi-group contained in
Z?**" generated by the following elements:

(B-1): (ai—1, a,—1, §) with (t}_.)*1(t]_.)** appearing in Q,(-.),
and

(B-2): (ay, a;—1, §) with (t}_.)*1(t7_.)*2 appearing in Q,(t;_.).

(3) Let Q=(Q1«0‘..1p)EC”(‘U, Qs with Q,-O...ipel’(ﬁiou.ip, Qz). We define
Scope (Q) and Scope (Q ; 0) as follows:

Scope (Q) = X Scope (Qiy.i,) »
igiip
Scope (Q;0) = = Scope (Qiy.i,; 0).
ig:nip

(4) Let QeC?(U, f«xCT™(U, Q3). We write Q:(Qio--~ip:fo--vr) with
Qigetpisgeir € I Wigea )N 55,0 Q0
(cf. [2] §1.B). We define Scope (Q) and Scope (Q ; 0) as follows:
Scope (Q) = io,g?pScope (Qigetisgin) »

Jouedf

Scope (Q ; 0) = ‘02 ~Scope (Qio.‘.ip;jou.h ;0).
i ip

Jo. gy

REMARK 4.6. (1) The natural map C?(T, &;)—C?(U, Q;) is scope-preserving.
(2) The differential maps of the double complex C' (U, f«C'(T, Q;) are
scope-preserving.

For an element P=C?(U, ®;), we define Scope (P) and Scope (P;0) in such
a way that the natural map CP(U, Qy)—CP(U, P;) is scope-preserving. Let
e I'(Uise, Q)= Uise, Py) and 7_.: I'(U,_, Q5)—1'(U,_., P3) be the canonical
projections. If we put
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R £ @kt mod (11, ) = Erve
and

P 2@ mod () = 61,

we have the isomorphisms

F(Ul+e, -CPG) = k[ﬁﬁ]'gue,é
and
F(Ul—.s; -Cz)d) = k[t%-e]'gl—-s,& .

The morphism #, and 7_, are determined by the following :
2 0
ﬂg(lgl Fl(tll+s; t%-&-s)f*W@(xl-fE)a mOd (xl+s)q+l>
= {FZ(O, t%+s)’t%+£F1(0, t%+5)}$l+s,§ ’
2 1 2 * a 4 q+1
7o 3 Falthoe, 1107 5 @i mod (e-t?)

= {Fl(t%—s; 0)—t%—eF2(t%—s: 0)} El—s.ﬁ .

Note that the following transition relation are satisfied :

El+s.§ = —(t%—e)l_z'aél—s.é .

DEFINITION 4.7. Let 0<].

(1) For an rational section P=1lq.(E, P;), we define the scope Scope (P)
(resp. Scope (P;0)) in the following two ways which are equivalent to each
other:

(A) If we write P=F(t},)814c.3, Scope (P) (resp. Scope (P;0)) is the semi-
group in M (resp. Z**") generated by Bt ]—[t11+G- [x14e] (resp. (—1, B—1, §)
T(+¢, 0)) with (1,.)? appearing in F(t},.). i

(B) If we write P=G(t}_.)&1-¢,3, Scope (P) (resp. Scope (P;0)) is the semi-
group in M (resp. Z**™) generated by a[ti_.]—[ti]1+G:[xi-.] (resp. (a—1, —1, §)
T(—e, 0)) with (ti_.)* appearing in G(ti_.).

(2) We naturally induce the scope of an element C?(T, 2;) by (1).

Then it is easy to see that the following exact sequence of complexes are
scope-preserving :

0 —> C(T, G5 —> C(T, Q) —> C(U, @3) —> 0.

PROOF OF THEOREM 4.3. The proof is done by the same arguments as the
proof of Theorem 4.2 of [2] after a slight modification as follows. We refer
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to §1.B of [2] for the interpretation of the edge sequence of the Leray spectral
sequence in terms of Cech cochains.

Let A; be a vector subspace of the space CY(U, f«CYU, Q) which repre-
sents H(S, G;QR'f«O((¢-§)E)). Let C; be an H’slice of @;. Then there exists
an H'slice V3 of &; such that Scope (V) Scope (V;)+Scope (Ay)+Scope (Cy).
Let V be the vector subspace of I'(U,,.N\U,_., Q;) generated by the elements
@) £*0/0tHR(x )T mod (x,)0* and ()¢ f*(0/0t3)R(x:)t mod (x,)0**  with
a<0, f<0 and @+pB+¢-G=0. Then we have n(V)=H'{U,,.\JU,-, Q3), where
n: 'U..NU, -, Q))—H'U.,\VU,_, Q;) denotes the canonical projection. In
fact, the above elements are considered to be elements of I"(U,,.N\U;_., Q3) by
the following equations:

() )5f* ®(Xz)iE mod (x)**
= (t14 )“*“”(tﬂ)ﬂf* 2®(x“s) mod (x7,¢)*"!

= (-)"(t1- )‘“qu* ®(Xz S mod (x;-)**.

By the same argument as [2], we can take Ay satisfying Scope (A3)=Scope (V),
whence we have

Scope (A) = . E-l Zo(alti]+ Pl +q-[xd) -
a+;9'+l~§z—1

Next, we calculate Scope (Cy). Since P3=¢Opi(1—¢-§), where ¢: E—S§ de-
notes the natural inclusion, we have H%S, @;)=0 unless the following condition
is satisfied: ¢,=1 for some 1=pu<n, ¢,=0 for v#4 and c,=1. Suppose §=é&,
and c,=1. Then dim H°(§, 2y=1 and we can take as C; the set consisting of
the elements a&;..;=—a&i-..; with ack. Thus we have:

Scope (Cy) = Zzo(—[t1]+[xf4e])
= Zo(—[t]+[xfe])
= Zo(— ][]+ [x4]) .
Thus Theorem 4.3 is proved.

§5. Reduction to scopes.

This section is a modiﬁcatibn of §5 of [2]. First, we fix the notation con-
cerning the Hirzebruch surface X,=Pp:(0PO(—e)). The surface X, is described
by the weighted dual graph with four vertices. Let D=D,+D,+D;+D, be the
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corresponding invariant Cartier divisor with (D,)*=e, (D,)?*=0, (D;)?*=—e¢ and
(Dy)?=0, and let po=D,N\D,, py=D,N\D,, po=D,N\D; and ps;=D,"\D,. Then X,
is covered by four sheets U; (=0, 1, 2, 3) of affine open subsets with U,=
Spec k[t}, t?]. Then the following relations are satisfied: #}=(@%"", t2=t1(#?)¢,
(=09, ti=t}, ti=()7", ti=ti(td)", ti=(t))"' and Hi=ti.

DEFINITION 5.1. Let f: §—S be a proper birational morphism of non-
singular projective surfaces. We define the set Fund (f) of the fundamental
points of f as follows:

Fund (f) = {x € S|f~! is not defined at x}.
Using the above notation, we state the following lemma.

LEMMA 5.2. Let S be a nonsingular projective toric surface. Assume that
S is not isomorphic to P%: Then S is one of the following three types:

(Type 1): There exists a proper birational morphism f: S — X, whichisa
succession of equivariant blowing-ups such that e=2 and that Fund (f)C{ps, Ds}-

(Type WM): There exists a proper birational morphism f: S — X,= P'XP*
which is a succession of equivariant blowing-ups such that Fund (f)C {ps, p2}.

(Type W): There exists a proper birational morphism f: S— X, which is
a succession of equivariant blowing-ups such that Fund (f)C{po, D2 Ds}-

PrOOF. We refer to Lemma 5.2 of [2].

REMARK 5.3. The above three types of surfaces are not exclusive. For
example, there exists a surface S of type I and type Il at once. Precisely
speaking, we consider the pair (S, f) of the surface S and the above morphism
f when we say that S is of type A (A=1, I, ).

DEFINITION 5.4. (1) Let (S, f) be a toric surface of type I. Let D, denote
the invariant curve on X, with (D,)*=e¢ as is stated before, that is, D, is deter-
mined by the equations t?=0 on the open subset U, and t}=0 on U,. We call
the strict transform C of D, with respect to f the reference curve of type I.

(2) Let (S, f) be a toric surface of type . Let I" be the diagonal curve
on P'x P! defined by the equations t1=t} on U, and tj=t; on U;. We call the
strict transform C of I with respect to f the reference curve of type II.

(3) Let (S, f) be a toric surface of type Il. Let D] be a displacement of
the curve D, on X, defined by the equations t(=1 on U, and #{=¢ on U,. We
call the strict transform C of D; with respect to f the reference curve of
type II.

Moreover, we fix the following notation. Let (S, f) be a toric 'surface of
Type A (A=I, O, M). Since Fund (f)?p,, there exists an open subset U of S
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such that f|y: U—U, is an isomorphism. This open set U admits the natural
coordinates which is induced by the coordinate (#}, t¥) on U,. We denote the
open set U by U,. We also denote the coordinates induced by (i, #3) by the
same symbols (], t2). Let (X, S) be a formal neighbourhood of S described by
a collection @ ={®,;}; ;o; of the transition functions. Since X|y, = Spf (k[t],
t?1[[x,]]) for some coordinates x,=(x!, ---, x7), we can define the scope
Scope (@ ; 1) of the description @ with respect to the coordinates (¢,, x,).

DEFINITION 5.5. We define a semi-group Q2zp contained in Z2X(Z.,)" in
the following way :

Qrp = {(a, B, §) € Z°X(Z:o)"|a+B+1-G < 0}.

PROPOSITION 5.6. Let S be a toric surface of type A(A=1, 1T or W) and
C the reference curve of type A on S. Let (X, S) be a formal neighbourhood of
S such that N=Ng,x and that NQosOc is ample on C. Assume that (X, S) is
described by a collection @ of the transition functions such that Scope (@ ; 1) C
Qrp. Then the induced formal neighbourhood (X, C)* of the curve C in X is
rationally dominated. More precisely, (X, C)" admits a description by the transi-
tion functions satisfying the assumption of Lemma 2.3 for r=1.

ProOF. The proof is done by the same arguments as the proof of Proposi-
tion 5.6 of [2] after a slight modification as follows. First, we assume that
(S, f) is a toric surface of type I. Since Fund (f)3 po, p1, f~'(U,) and f~}U,)
are isomorphic to 4% which we denote by U, and U,, respectively. Then we
have

0 —1 0
TO, )= 1 —e 0 |,
t0 —tdg E,

where d=(a,, ---, a,) and A, ® 0;0c = Opi(a,) with a,>0 (1=pu=n). By the
assumption the transition relation between the coordinates (f, x,) on X|y, and
(ti, x1) on X|y, is written in the following way:

th = () A+ SaaptH )P (x )Y,

15 =t (L + Sbagat) P (x)D),

xf = (@) rah(L+Dekpth) )P (1)),
where a,pg basg OF cfs#0 implies a+p+1-G<0. Since the reference curve
C is defined by the equations (=0 on U, and t}=0 on U,, we can consider the

above equations to be a transition relation describing the neighbourhood (X, C)*
of C in X. We apply Lemma 2.3 to this description.
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We now assume that (S, f) is a toric surface of type I. Since p,, p:&
Fund (f), f"'(U,) and f~'(U,) are isomorphic to A2, which we denote by U, and
Us, respectively. Then we have

-1 0 0
TG )= 0 -1 0
—% —'d E,
for some integer d=(a,, ---, a,) and b=(b,, ---, b,). The transition relation

between the coordinates (f;, x;) on X|y, and (¢;, x,) on Xy, is written in the
following way:

1= @D A+Zaqapt) DA (x)Y),
13 = )1+ Dbapath) @) (x )Y,
x8 = ()P () a(x 414+ ek pHe ) (x )Y,

where @,p4 baps O cls;#0 implies a+B+1-G<0. To obtain a transition rela-
tion of (X, C)", we change the coordinates near the curve C in the following
way: We put Ty=t}, X4=x4 (1=p<n) and Y,=t§—t} near CN\U,, and T,=t},
Xe=x4 (1<p<n) and YV ,=t{—t1 near CNU,. Then the curve C is defined by
the equation X,=Y,;=0 and X,=Y,=0. The transition relation between the
new coordinates (T';, X;, Y5) and (T, X,, V,) is easily calculated as follows:

Ty =(T) ' A+HT )Y ) {1+ ZbapaPapat

X = (Ty)y % e(L+(T )Y ) e X5 {14+ Zckpeasal »

Vo= (T) " A+HT )Y ) {1+ Zbapieasit
—(T) ™ {1+ ZaapePasat -

where ¢,p=(T )" P1+(T) 'Y )A(X).. Since N5 x®Oc is ample, we have
G+b>0. We apply Lemma 2.3 to this description.

Finally, we assume that (S, f) is a toric surface of type Il. As was stated
before, the surface X', is covered by four affine open subsets U,, U, U, and Us.
Corresponding to an equivariant blowing-up, we replace an affine open subset
by two sheets of affine open sets. By replacing open covering in such a way
as we stated before, we get an affine open covering {U;}:c4 of S. The curve
D, in ¥, is defined by the equations t4=0 on U, and =0 on U,. There exists
an element 64 such that f(U;)CcU, and that U, intersects with the strict
transform of D, with respect to f. Then the transition matrix 7(g, 1) is writ-
ten in the following way (cf. § 4). First, we formally put 7(d, 1)=T(9, 0)T(0, 1).
Then
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0 -1 0
TO, =1 -1 0
0 —'d E,
for some d=(a,, ---, a,), and T(4, 0) is a product of matrices of the form
1 1 0\ 1 -1 0
0 1 0 =0 1 ©
0 ¢ E, 0 —t¢ E,
Hence T, 0) and T(d, 1) is written in the following form:
1 -1 0©
TG, 0= 0 1 0 |,
0 —‘p Ea
— -1 0
TG, 1) = 1 —1 0
—'p p—a) E.
for some /€Z and p=(pi, ---, p»). The transition relation between the coor-

dinates (t5, x5) on U; and (¢, x,) on U, is written in the following form:
1= )7 14 Da st @A (x)D),
15 = () L+ SbapatD () (x)D),
xt = ) PP e x k(14 Deapg(t) WP (x1)0),
where @.p5 basg OT Capq # 0 implies a+B-+1-G<0. In order to describe the
formal neighbourhood (X, C)* of C in X, we change coordinates near the curve
C. We take coordinates (T';, Xs, Y5) near CN\U; as follows: Ty=t3(t3)!, X5i=
(#3)?ex5 and Y;=t3—1. Note that we can take such coordinates around CNUs;,
since t3+#0 near CN\U,;. We take coordinates (T, X,, Y;) near CNU, as follows:
T,=t? X#=x# and Y,=t!—t2. Then the reference curve C is defined by the
equations X;=Y ;=0 and X,=Y,=0. The transition relation between the coor-
dinates (T';, Xs, Y5) and (T, X,, Y,) is calculated as follows:
To = (T (1+Zaapipap)l+Zbapipas) s
X§ = (T) e Xt +Zbapipaps) #A+ 2k si0apa) »
Y= —1+1A+T )Y )1 +2bapsass) »

where (paﬁ:(Tl)“*fg(l+(T,)‘1Y1)“(X1)5. We apply Lemma 2.3 to this description,
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noting that @>0.
Thus Proposition 5.6 is proved.

As for P2, we fix the covering P*=U,uU,\JU, with U;=Spec k[t}, t}](=
0, 1, 2) such that the following transition relations are satisfied: #$=(%"" and
B=ttH"! on U,NU,, and ti=@3)"" and 2=ti(t)~! on U,NU,.

DEFINITION 5.7. We define a semi-group Qzp contained in Z2*X(Z.)" in
the following way :

Qo= {(@, B, D € Z*x(Z:r |~ = $a+1-3).

PROPOSITION 5.8. Let S=P? and let C a nonsingular rational curve on S
defined by the equations t;=0 on U, and t1=0 on U,. Let (X, S) be a formal
neighbourhood of S with Ng,x=N. Assume that (X, S) is described by a collec-
tion @ of the transition functions such that Scope (D, )T Q%kp. Then the induced
formal meighbourhood (X, C)~ of the curve C in X admits a description by the
transition functions satisfying the assumption of Lemma 2.3 for r=2.

Proor. The transition relation between the coordinates (f,, x,) and (¢;, x.)
is written in the following way :

th = (1) (L4 Da.ptH P (x )Y,
2 = 1) A+ Sbapat)* D (x)D),
xf = (1) ext(1+ Dk ph*@D)P(x )Y,

with a,>0, where a,p3 bapg Or c4s3#0 implies —ﬁg(a«}—i-cj)/Z. We can con-
sider it to be a transition relation describing (X, C)" as it is. We apply Lemma 2.3.

§6. The proof of Main Results.

In this section, we prove Main Theorem. We use the same notation as
in §5.

THEOREM 6.1. Let S be a nonsingular projective toric surface and N =
@®-14, a direct sum of ample line bundles on S.

(1) If S=P?, then, for each G with G=0 and 1-G=q¢=1, there exists an H'-
slice Vi of Gy such that the following condition is satisfied :

Scope (V; 1) C Q%p-

(2) Assume that there exists a morphism f: S—2, such that the pair (S, f)
is of type A (A=1, 11 or M). Then, for each §>0 with §=0 and 1-G=q¢=1,
there exists an H'-slice V of Gy such that the following condition is satisfied :
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Scope Vz; 1) C 2rp.

COROLLARY 6.2. Let S be any nonsingular projective toric surface. Then
there exists a nonsingular rational curve C on S satisfying the following condi-
tion: If N=@p-1A, is a direct sum of ample line bundles on S such that
HY(S, NRQSUN “)=0 for each ¢>0, then, for any formal neighbourhood (X, S) of
S with Ns;x=N, the neighbourhood (X, C)* of C on X is rationally dominated.

COROLLARY 6.3 (MAIN THEOREM). Let n be a positive integer. Let X be a
nonsingular complete algebraic variety of dimension n+2. Assume that X contains
a nonsingular projective toric surface S and that the following two conditions (a)
and (b) are satisfied :

(@ Nsx=@)-1A,, where each A, is an ample line bundle,

(b) HXS, Ng;xQRSUNg,x))=0 for each ¢>0.

Then X is unirational.

REMARK 6.4. (1) If n=1, the condition (b) is always satisfied for an
ample line bundle N.

(2) The condition (b) is equivalent to the following condition (b").

(b'): For any pe{l, ---, n} and any

((]1, cty Quety GQuary (]n) S (Zzo)n_l\ {(0: Tty 0)} ’
we have

HY(S, A,Q(A)™MQ -+ (Apon) 181 Q(Apan) 4 +1Q) -+ Q(An)™)=0.

In fact, we have H!(S, ©s)=0 and H%S, (A)"*)=0 for an ample line bundle A.
(3) In particular, the conditions (a) and (b) are satisfied if N=A®" for an
ample line bundle A.
(4) In the case where S= P?, then the condition (a) implies the condition (b).

COROLLARY 6.5. Let X be a nonsingular complete algebraic variety of di-
mension n+2 and let L be a line bundle on X. Assume that there exists a sequence

X:X()DXlDDXn:S

of subvarieties of X satisfying the following three conditions:
(1) X, is a smooth member of the linear system [Llx;_,] on X;oy (1Si<n),
2) X.=S is a toric surface,
(3) L|s is ample on S.
Then X is unirational.

PROOF OF COROLLARY 6.2. It immediately follows from Theorems 6.1, 3.12,
Propositions 5.6, 5.8, 2.5, Corollaries 3.13 and 6.2.

PROOF OF COROLLARY 6.3. It immediately follows from Corollary 6.2 and
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Proposition 2.2.

PROOF OF COROLLARY 6.5. We put A= L®0Os. Since HYS, 0s) =0, the
following exact sequence splits for 1</<n—1:

0 —> Ns;x; —> Ns/x;., —> Nx,x,. ,Q0s —> 0.

Noting that Ny, x, ,®0s=A, we have Ngs,y=A%". Then Corollary 6.5 follows
from Remark 6.4. (3).

PROOF OF THEOREM 6.1. First, we prove Theorem 6.1 in the case where
S is the projective space P?. As is easily seen, the cohomology group H!(S,
Op:X0Op:(—a)) vanishes unless a=3. We also have dim H'(S, ©pXQ0COp(—3))=1.
After elementary Cech cohomological calculation, we have the element o=(¢i1,)
EZN U, OpR0Op:(—3)) with (/)ioilEF(Uioil, Op:R0p:(—3)) as an H'-basis of the
sheaf O p:RQOp:(—3) as follows:

1\-1 a
. Sbox = —(t) até ®7]0:
2-1_0
Sboz = (8) o1l ®ﬂ0 ,
=L ety
bez = (o o1 7o 0 o Mo

. 0
= _(t%)w Wg@nl)

where 7, denotes the local basis of the sheaf @p:Q0Op(—3) on U;. Thus we
can take an H'-basis of &;in the following way. We put N=@}-,4,, A,=0(a,)
and d=(a,, -+, a,). We easily see H'(P? G3)=0 unless d-§=3. We have the
following element G = (G,:,)€ZX(U, G3) with G eI' (Ui, 93) as an H'-basis
of Gy

igiy

9

G = —(té)-l 6t§

Q(xe)0  mod (x0)2*",
Goz = (t%)—l‘;ﬁ®(xo)a mod (x,)¢**,
0

G = —(t})“—a%(@(x,)& mod (x,2**.

The scope Scope (G ; 1) is generated by (—1, —1, §), which belongs to Q%p,
since g=1-§<d-§=3. Thus Theorem 6.1.(1) is proved.

Next, we prove Theorem 6.1 in the case where S is the Hirzebruch surface
Y.. We make some preparations before we state the proof.

DEFINITION 6.6. Let S=2%, n: S—C=P' the natural projection, F a fiber
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of # and s, the section with si=—e¢. For a, b=Z, we denote the invertible
sheaf ©(aF +bs,) by the symbol ©(a, b).

LEMMA 6.7 (cf. [2] LEMMA 6.6). The cohomology group H'(X. ©(p, r))
vanishes unless one of the following two conditions is satisfied :

(a) p=e(r+1) and r<—2

(b) p=Zer—2 and r=0.

In the case (a), we can take the following elements as an H'-basis of O(p, v):

Tl =(0, p*F, o, o=F, =P, 0)
e I'(Uqy, (b, ¥))XT (Usgs, Op, r))XT (Uys, O(p, 7))
X' (Uss, Op, X T (Uss, Op, ¥))X T (Uss, O(p, 1))

with a=0, B<0, p—a—eB=0 and r—B<0, where o F=(t4)*(t%) 7, and 7, denotes
the local basis of O(p, v) on U,.
In the case (b), we can take the following elements as an H'-basis of O(p, r):

Db = (=B, =B, 0,0, —p™ B, —pB)
€ I'WUoi, Op, XTI Ues, O(p, XTI (Uss, 0P, 7))
XI'(Uss, O(p, )X T (Uss, O(p, ¥)X T (Uss, (P, 7))
with a<0, =0, p—a—ef<0 and r—pB=0.

We put L=Ker (@s—n*L;). Then we have the exact sequence

0— L — Qs —> *6; —> 0.

Then L=0O(e, 2) and n*O.=0(2, 0) (cf. [2]). We denote LR(A,) 1R R(A,)
by L; and 7*O.R(A) 1 & - ® (4,)"% by M;. Then we have the following
exact sequence

0— Ly —> G5 —> M; — 0.

Since L; is a subsheaf of ¢;, we can naturally define the scope of an element
of C(U, Ly so that the natural map C'(U, L3)—C'(U, &;) is scope-preserving.
We can also define the scope of an element of the group C (U, M;) so that the
natural map C(U, G5)—C (U, M;) is scope-preserving. Thus we have only to
calculate the scopes of H'slices of L; and M; in order to calculate the scope
of an H'slice of g;.

If we put A,=0(a,, b,), d=(a,, -+, a,) and b=(b,, -, by), then we obtain
the isomorphisms Lg = Oe—j-d, 2—q-b) and My=0(2—g-d, —g-b). Since N is
ample, the following inequalities are satisfied: @>eb, 5>0. Since
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0 —1 0
TO, )= 1 —e 0
0 —g E,

in this case, a vector (a, B, §) belongs to 2#pT(1, 0) if and only if a+(e—1)8
+(@—1)-3=0.

First, we calculate the scope of an H'slice of L;. We put p=e—g-d and
r=2—g-b. Since d>eb, we obtain the inequality p—e(r+1)<0. Thus the case
(a) in Lemma 6.7 does not occur. Hence we have §-6<2 if H'(S, L;)#0. Noting
that 9/0t3RQ(x,)? mod (x,)?** is the local basis of L; on U,, we can take an H'-
slice V3 of L; such that Scope (V4; 0) is generated by the vectors (a, f—1, §)
with a<0, =20, p—a—ef<0 and r—p=0.

Suppose §-b=2. Then B=0 and r—pB=2—G-b—B=0 imply B=0. Thus
Scope (V3; 0) is generated by (a, —1, §) with e—gG-d+1<a<—1. Then we have

c7 i+l1gas
at+e—1)-(—D+@-1)-g=2-1.4=0

-

g
whence Scope (Vy; 1)CR2zp. Note that 1. g b 2 since 521.
Suppose §-b=1. Then B=0 and r—f= —p=0 imply B=0or 1. Thus
Scope (V; 0) is generated by (a, —1, §) with e-—(j-Zz’-{-lgag—l and (a, 0, §)
with —G-d+1<a<-—1. For (a, B) with e—§-d+1=<a<—1 and =0, we have

a+(e—1)(B-)+(@—1)-g=2-1.=0
For (a, B) with —j-d+1<a<-—1 and =1, we have
a+(e—D(B-D+@—1)-§=1-1-§21-b-G=0.

Hence we have Scope (V3; 1)C Qzp.

Next, we calculate the scope of an H'-slice of M;. We now put p=2—g-d
and »=—g-b. Since »<0, the case (b) in Lemma 6.7 does not occur. Noting
that the image of 0/0t}Q(x,)¥ mod (x,)¢*! is the local basis of M; on U,, we
can take an H'-sslice W; of M; such that Scope (Wy; 0) is contained in the semi-
group generated by the vectors (a—1, 8, §) with =0, 8<0, p—a—ef=2—G-d
—a—ef=0 and »—B=—3-b—B<0. Since

0< p—elr+1)=2—e—G-(Gd—eb) £ 2—e—j-1 < 1—e,
we have ¢<1. For such vectors (a—1, §8, §) as above, we have
a—1+—Dp+(@E—1)G= —1+(1—e)+eb-G2 0,

whence such vectors belong to Qrp-7T(1, 0). Thus Theorem 6.1.(2) is partially
proved in the case where S=2,.
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Suppose p(S)=5. Then the morphism f: S—2%, is written as the composi-

fm fm-1 f1 . .
tion S=S,, — Sp_.1 —> Sp_s— -+ — S, —> S,=2, of equivariant blowing-ups.

Let Ay, = (fye10 - o fa)xAp)”” for 0<7<m—1 and Ay n = A, (1Sp<n). Let
Fund (f,)=q,€S,., and E,=f;%¢,)CS,(1=j<m). Then, for each ;j with 1=;
<m, there exists a positive vector ¢, = (¢}, -, ¢}) such that A, ,=f*A,,..®
O(—c#E,). We construct an affine open covering UV = {U,},er(,y of S, in the
following way. We take the open covering U ={U,}.c; Of Sq=2, with I(0)=
{0, 1, 2, 3} as before. Suppose that the open covering U’ ={U,}.cr,-1y of S,
with U,=Spec k[t}, t?] is determined. For /< I(j—1), we denote by p, the
point on S, , determined by the equation #}=¢?=0. Using this notation, we
can write ¢,=p;, for some s(j)el(j—1). Then we put

1) = JG=IN{s(HDHU {s(N+e, s(i)—e},

with e the symbol as is used in §4. For ;el(j—1)\{s(y)}, we denote f;'U,)
the same symbol U, and we use the same coordinates (¢}, t2). We have f;'(Us,)
=U;;»+:JUs(,y-. with the coordinates satisfying the following: ti¢y.e=ti0),
Bee=Ws ) 2, thy-e=thn(ti,y) ™ and t2,_.=t%,,. By the induction on p(S)
and Theorem 4.3, it is enough to show

{a, B, Pla= —1, B=< —1, a+B+G-¢n = —1}-T(s(m), 1) C Qrp.

By the same argument as in the proof of Theorem 6.1 of [2], we may assume
that f is a succession of equivariant blowing-ups along successive infinitely
near points, that is, s(j+1)=s(j)+e& or s(j+1)—s(j)—e for 1<j<m—1. We
put A,,,=0(a,, b,), d=(a,, -, a,) and b=(by, -, b,). Then we have d>eb
and 5>0. We also put

[

" an(y) as(J)
as(J) @s5(J) 0 -
T(s(), =] au)) an(;) 1 -

o o O

a2+n,1(.7.) az+n,2(].) 0 -1

We divide the proof into three cases.

Case I: s(1)=0. In this case, (S, f) is of type I or type Il. Thus ¢<1.
We put () = —an())—a1()), 7:(J) = aa())+a2(j) and 75, 4(j) = —@arp1(j)—
Aoy p,o(j)—1 for 1ISp<n and 1<j7<m.

CLAIM 6.8. 7,(/)=0 for i=1, 2.

PrRoOOF. We have
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0 —1 0
T(s(), D=T0O, )= 1 —e 0
‘0 —'a E,
Thus »,(1)=1, ry(1)=1—e=0. If s(j+1)=s(j)+¢, we have
T(s(j+1), 1) = T(s(j)+¢, s(7); ¢)T(s(j), 1)

1 0 0
= =1 1 0 |TG@G),D.
—t¢, 0 E,

Thus we have r,(j+1) = r.()), 7.(J+1) = () +7.()) and 7., (J+1) = —ctri())+
Toru()), IS p<n).
If s(j+1)=s(j)—e, then we have

T(s(j+1), 1) = T(s(j)—e, s(7); ¢)T(s(5), 1)

1 -1 0
=0 1 0 |TGG),D.
0 —t¢, E.,

Thus we have r,(j+1)=r,(j)+7:()), 7:(j+1)=r:7) and s, ,(F+1)=c*7o(})+72. u(}).
Thus Claim 6.8 is proved.

CLAIM 6.9. 73, u())—c#7r(/)=0 for 1Spu<n and 1<7<m.

ProOF. First, we assume that s(j+1)=s(j)+e¢ for all 7. Since N is ample,
the following inequalities are satisfied: G@>¢,+és+ - +Cn, ¢n>0, Emo1>0Cm,
&1>8, b>¢, @>eb. Then we have

’

1 —(j—1) 0
T(s(), H=| 0 1 0 |70, 1
0 e+ +é) En
—(j—1) o(j—1)—1 0
= 1 —e 0

—Y eyt en) et (@4 +eE)—d E,
Thus

72+;1<].)—c‘§'lrl(].)
= a,—cf—1+1—e){ci++cf_,—(G—Dci} 2 0.

Assume that 7,,,(j)—c#r (/)20 for some ;. Moreover, we assume that the
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morphisms f;, f;.1, -+, f;+:(¢=1) are chosen such that the following are satisfied :
s(7+1) =s(f)—e, s(G+A) =s(G+Ai—1)+e for 2<1<t. Note that ¢ may be equal
to one. Since N is ample, the following inequalities are satisfied: &;>¢;.14-
F&500 65000, E000>8541, -+, E01>8,.2.  Then we have:

n(j+1) =r()+r0),

ro(7+1) =7s(7),

Forp(J+1) = chro(f)+ran()) ;

ri(J+t) =7+,

roj+t) = t—Dri(G+D+7r+1),

Porn(JH) = —(chirt -+t DG+ +re(J+1).
We obtain:

Toru(JHE)—chri(J+1)

= rou(DN—chri(f)F(ct—cth— - —ct,or(+1)

=0.

Thus Claim 6.9 is proved.
Let (a, B, HEZ*X(Zo)" with a<—1, f<—1 and a+p+¢n-G=—1. Putting

(a, B, T (s(m), 1) = (A, B, 7,
we have:

—A—B—1-G = r\(mya—ry(m)p+ é Taepn(M)Gp
p=1
= —(nm)Frm)Bri(m)at B+ 3 reculma,

= ry(m)+ é]l(rw(m)-—c;ah(m))qp =0.

Case IO : s(1)=2. In this case, we put r(/)=au(J)+a()), r:(j)=—a(j)—
a2()) and rospy(J)=—0a2.p ()= Qasp.o(7)—1. We have

0 1 0
Ts), )=TE, H=| -1 0 0
—t% 0 E,

If s(j+1)=s(j)+e¢, we have r,(j+1)=r()), r:J+D=r(j)+7r(j) and 7., ,(j+1)=
chri(N+re,(n). I s(G+1)=s(j)—e, we have »,(j+1)=ri())+r)), ro(J+1D=r;)
and 7., (j+1)=—c#r(f)+72 (7). It is easy to see that r,(;)=0 for /=1, 2.
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CLAIM 6.10. 74, 4(5)—ctrs(5)=0.

ProOF. First, we assume that s(j+1)=s(j)—e for all ;. Since N is ample,
the following inequalities are satisfied: @>eb+é;, &,>8, -, Cmo1>8m, En>0,
and b>2¢,+&+--+&,. Then we have Town(J)—cir(j)=bp—1—(ci+---+c4)=0.

Assume that 75, ,(j)—c4ry(j)=0 for some j and that, for ¢=1, the following
are satisfied: s(J+1)=s()+e, s(G+A)=s(j+A—1)—e for 2<A<t. Since N is
ample, the following inequalities are satisfied: &;,1>¢j12, *+, Cjat-1>Chaty Cjns>
0, ;>¢;,1++2&;,.. Then we have

7’2+y(].+t)—6§+ﬂ'2(].+t) = 7’2+‘u<].)_'Cé'lr2<j)+(c€_C‘_Lj'+1_"‘—c/;+t)r2(].+1)
=0.
Thus Claim 6.10 is proved.
Let (a, B, )€ Z*X(Z.0)* with a=—1, B<—1and a+p+¢n-§=—1. Putting
(a, B, )T (s(m), 1) = (A, B, 3),

we have:

—A—B—1-§ = —ri(m)a+r(m)B+ é)lrw(m)qy
= —(ri(m)-ram)atrimyat B+ 3 rau(m,

= rim)+ 35 (raspm)—chira(m))g = 0.

Case M: s(1)=3. In this case, (S, f) is of type I or type . Thus e>1.
We now put r:1(/)=an(7)+aw(s), 7:(j)=—au()—as(j) and 7, ,(J)=—as.p(j)—
@s4p.2(j)—1 as in Case I. We have

-1 e 0
T(s(), )=T@A3, 1)=| 0 -1 0
—th eth—td E,
By the same argument as before, we see that r;(j)=0 for /=1, 2. To prove
Theorem 6.1.(2) in this case, it is sufficient to show that 7,,,(j)—c47x(7)=0 for
Isp=n.

First, we assume that s(j+1)=s(j)—e for all j. Then the following ine-
qualities are satisfied: b>&,, &, >¢s, =, Eno1>Cm, En>0, A>eb+2 424 +2n.
Then we have

Toru(1)—C475()) = Taup(L)—(ch+ - +c4_Dra(f)—chra())
= o p()—(ch+ - +ciry(1)
=ap—(e—1)by—1—(ct+ - +c4) = 0.
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Assume that 7,,,(j)—c%r,(7)=0 for some ; and that, for t=1, the following are
satisfied: s(J4+1)=s()+e, s(G+)=s(j+2—1)—e for 2<1<t. Then we obtain
Forp(JHE)—chro(j+1)=0 by the same argument as in Case II.

Thus Theorem 6.1.(2) is proved.

§7. Supplements.

A. A note on the assumption of Main Theorem.

In the statement of Main Theorem (Corollary 6.3) we have assumed the
two conditions (a) and (b). But the condition (b) seems to be superfluous for
the conclusion that X is unirational. We shall later conjecture a more general
statement (cf. Corollary 7.8). But, so far as we insist on our technique of
scopes and RD Lemma, which does not seem sharp enough, these assumptions
(a) and (b) are necessary for our calculation.

First, we state the following proposition which suggests what the condition
(b) means.

PROPOSITION 7.1. Let S be a nonsingular algebraic variety and A, -, An
line bundles on S. Let N=@}-1A,. Assume that H(S, NQSUN))=0 for each
q>0. Let (X, S) be any regular formal neighbourhood of dimension m-+n with
Ns;x=N. Then there exist regular formal subschemes X, ---, X, of X of codi-
mension one such that Ns/XﬂEQBH,,A; ond that X,N---NX,=S.

ProOOF. Let S=\.c;U; be an open covering of S by the open sets U; with
the coordinates (¢}, ---, t™). Let (&, -, t™, xi, -+, x%) be the coordinates on
Xy, such that x# mod (x,)* is the local basis of A; on U;. By the assumption
we have

HYS, A,Q(A) 1R - Q(Ap-1) 11 Q(Ap 1) 11 -+ Q(An)™7) =0
for each p with 1=p<n and each (g1, -, Gu-1, Qu+1, =+, o) E(Z20)"N{(0, -+, 0)},
which implies the following: We can take the transition relation
(ts, x0) = fut;, x) = (gt -+, &%, hiy -, By

on U,NU; (i, jI) such that a term (x))?.- (x4 )2e-1(x&*)u+1...(x7)% does not
appear in the function A%, It follows that the equations x4=0(:=I) patch
together and define a regular formal subscheme of X, which we denote by X,.
Then X,, ---, X, satisfy the required property.

Next, we show an example in which the scope is too big to satisfy the
assumption of RD Lemma (Lemma 2.3).

EXAMPLE 7.2. Let S_—_Zg, AIZO(].O’ 1), AZZO(S, 2) and N:AX@Ag. Then
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HY(S, H1;0.0) = HY(S, Ai®(A4)7*) # 0.
We have an H'-slice Wy, ¢,» with

Scope Wi,0.»; D)= ?_2Z;0(a’ ‘3, -1, 2).

a==1,
0sfs—2a

Take the reference curve of type I on S, apply Lemma 2.3. Then the descrip-
tion of the second infinitesimal neighbourhood determined by a general element
of the above H'slice Wi, fails to satisfy the assumption of Lemma 2.3 for
any covering index >0 of P

This example suggests that our arguments on scopes and RD Lemma are
not sharp enough. The following two points are the weak points of our theory.

(1) RD Lemma provides a sufficient condition for a neighbourhood of P!
to be rationally dominated, which is not a necessary one at all. We have
started a special type of cyclic covering of P!, which seems too easy, though
it is not easy to prove another RD Lemma which is useful for our later argu-
ments and which comes from a more general covering of P

(2) If we are given transition functions of a neighbourhood of a toric
variety, we can calculate the scope of this description. But the scope does not
recover the transition relation as it is. In particular, we neglect the discussion
of coefficients of monomial terms and obstructions in the second cohomologies
when we discuss scopes.

PROBLEM 7.3. Remove the assumption (b) from the statement of Main
Theorem. More generally, develop similar arguments in the case where the
normal bundle is an ample equivariant vector bundle which does not a direct sum
of line bundles and generalize our results.

B. A remark on algebrizability.

A formal neighbourhood (X, S) of S is said to be algebrizable if there exists
an algebraic variety Y containing S such that the completion Y~ of Y along S
is isomorphic to (X, S). In Corollary 6.2, we discuss all the regular formal
neighbourhood (X, S) of S with Ng,x=N which might not be algebrizable,
though we have only to discuss algebrizable neighbourhoods in order to prove
Main Theorem. How many algebrizable neighbourhoods are there among all
the neighbourhoods? We have few answers to this question. As for two-
dimensional neighbourhood of P!, we have the following proposition, which
suggests that the algebrizability would be a somewhat strong condition. This
proposition is essentially due to the idea of M. Reid, who informed the author
of its prototype.

PROPOSITION 7.4. Let (X, C) be a two-dimensional regular neighbourhood of
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C=P' with ample normal bundle. Assume that (X, C) is algebrizable. Then
(X, C) is rationally dominated.

PROOF. Suppose that a nonsingular projective surface Y contains C=P!
with ample normal bundle. Since (Ky+C)C = —2, the divisor Ky+C is not
nef, whence there exists a curve R with (Ky+C)R<O0 (cf. [4] for terminology).
Since (C)$>0, C is nef and big. Thus we have Ky-R<0, which implies that
R determines an extremal ray. If R is an exceptional curve of the first kind,
then we have C-R=0, because (Ky+C)R<0, C-R=0 and Ky-R=—1. Let f:
Y—Y’ be the contraction of R. In this case (Y, C)" is isomorphic to (Y’, C)"
via f. In the case where Y=P? then C is a line or a conic. If C is a line,
then we have:

Y, C)" = Spf (k[t:J[[xo]D)\/Spf (k[ ][[*.]])

with t,=(@,)""! and x,=(t,)"'x,.
If C is a conic, then we have the following transition relation of (Y, C)"
after elementary calculation :

to = ()M A+GE) X )T,
xo = (t) 7 x (L4 (t)2xy) 72,

If the contraction of R determines a P-bundle over a curve, then we have
C-R=1. In fact, Ky-R=-2, (Ky+C)R<0 and C-R=0 imply C-R=0 or 1.
If C-R=0, then C is a fiber of the contraction morphism, a contradiction.
Thus C is a section of a P-bundle over P'. In this case we have the follow-
ing transition relation of (¥, C)":

ty = ()71,
Xo = (tl)_pxl(l+<P((t1)_1)x1)_1 ’

where p>0 and ¢ is a polynomial with deg(¢)<p—1 and ¢(0)=0.
All the above neighbourhoods turn out to be rationally dominated. Thus
Proposition 7.4 is proved.

By the above proposition we can also construct examples of neighbourhoods
which are not algebrizable as follows.

EXAMPLE 7.5. Let (X, C) be a regular formal neighbourhood of C=P!

with Ng,x=0(1). Assume that (X, C) is not isomorphic to the neighbourhood

- of the zero section of the normal bundle. Then (X, C) is not algebrizable.

Note that such neighbourhoods do exist and that they are not isomorphic to
neighbourhoods appearing above (cf. [2] Proposition 2.7).
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C. Problems.
The origin of Main Theorem is the following theorem due to M. Noether.

THEOREM 7.6 (M. NOETHER). Let X be a nonsingular projective surface.
Assume that X contains a nonsingular rational curve C with (C)3>0. Then X
s a rational surface.

We consider the following questions which are generalizations of Theorem
7.6.

QUESTION R(n, m) (resp. UR(n, m), RC(n, m)). Let n>m>0. Let X be a
nonsingular projective algebraic variety of dimension n and Y a nonsingular
subvariety of dimension m. Assume that Ny,x is an ample vector bundle and
that Y is rational (resp. unirational, connected). Then so is X?

An algebraic variety X is said to be rationally connected if the following
is satisfied: For general points x and y of X, there exists a rational curve C
passing through both x and y. As is easily seen, a rational variety is unira-
tional and one is rationally connected. But a unirational variety is not rational
in general. It is an open problem whether any rationally connected variety is
unirational or not.

Since any nonsingular rational surface contains a nonsingular rational curve
with ample normal bundle, R(n, 1) (resp. UR(n, 1), RC(n, 1)) implies R(n, 2)
(resp. UR(n, 2), RC(n, 2)). As for the question R(3, 2), we have a counter-
example due to [1] as follows. Let X be a nonsingular cubic hypersurface in
P* and Y=XNH, where H denotes a general hyperplane. Then Y is a rational
surface, Ny,x is ample and X is unirational, but X is not rational. This ex-
ample also provides a counter-example against R(3, 1).

On the other hand, RC(n, 1) holds true for any n=2, which is proved by
applying the following theorem due to [5] for the inclusion morphism Y <, X.

THEOREM 7.7 (KOLLAR-MIYAOKA-MORI). For a nonsingular algebraic variety
X, the following are equivalent to each other.

(1) X is rationally connected;

(2) There exists a morphism f: P'—X such that f*@x is ample.

RC(n, m) is also true for any n>m.

Our Main Theorem tells that UR(n, 2) holds true under certain assumption.
Whether UR(n, 1) holds true or not is as much doubtful as whether any ra-
tionally connected variety is unirational or not. There seems to be essential
difference between the problems UR(n, m) with m=2 and the problem UR(n, 1).
We shall end this paper with the following conjecture.

CONJECTURE 7.8. UR(n, m) holds true for n>m=2.
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As we have mentioned in §0 of [2], we need essentially finite parameters

to describe neighbourhoods of a variety of dimension greater than or equal to
two, which is essentially different from neighbourhoods of a curve. Such fini-
teness seems to be deeply related to the unirationality of algebraic varieties.

(1]
[2]
(3]
[4]
[5]
[6]
L7]
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