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TWO germs of functions $f,$ $g:(R^{n}, 0)arrow(R^{p}, 0)$ are said to have the same
(local) $\nu$-type at $0$ ( $v$ stands for variety), if the germs at $0$ of $f^{-1}(0)$ and $g^{-1}(0)$

are homeomorphic. Let $f:(R^{n}, 0)arrow(R^{p}, 0)$ be a $C^{k}$ -function. A very interest-
ing problem is to determine what terms from the Taylor expansion at $0$ , may
be omitted without changing the v-type determined by $f$ . For a solution of
this problem see $[K_{1}]$ .

In this paper we shall consider the weighted analogue to this problem,
and using a new singular Riemannian metric on $R^{n}$(introduced in [P]) we shall
give a characterization of $v$-sufficiency (Theorem A and Theorem $B$ below).

Moreover we shall give a geometric corollary for functions whose components
are the sum of at most two weighted homogeneous polynomials (generalizing
the case with nondegenerate weighted homogeneous components), and also we
give a generalization of a well-known inequality due to Bochnak and Lojasiewicz.
The use of singular Riemannian metrics seems to be quite useful, see for in-
stance [Y], [P].

The author would like to thank T. C. Kuo, D. Trotman and A. Dimca for
some helpful and encouraging discussions. The author would like also to thank
the referee for several improvements and helpful comments.

\S 1. The results.

Let us denote by $E(n, p)$ the set of all germs of functions $f$ : $(R^{n}, 0)arrow$

$(R^{p}, 0)$ which are $C^{2}$ in a punctured neighbourhood of the origin. From now
on we shall fix a system of positive numbers $w=(w_{1}, \cdots , w_{n})$ , the weights of
variables $x_{i},$ $w(x_{i})=w_{i},$ $1\leqq i\leqq n$ , and a positive number $d$ . For any positive
number $q$ we may introduce (see [P]) the function $\rho=\rho(x)=(\sum_{i=1}^{n}x_{i}^{2q_{i}})^{1/2q}$ , where
$q_{i}=q/w_{i},$ $1\leqq i\leqq n$ . This is a $w$-form of degree one with respect to $w$ , and if
$q_{i}\geqq 1$ , l$i\leqq n, then $\rho\in E(n, 1)$ . We also consider the spheres associated to
this $\rho$

$S_{r}=\{x\in R^{n}|\rho(x)=r\}$ , $r>0$ .
DEFINITION 1. We define a singular Riemannian metric on $R^{n}$ by the fol-
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lowing bilinear form

$\langle\frac{\partial}{\partial x_{l}},$ $\frac{\partial}{\partial x_{i}}\rangle=\rho^{-2w_{t}}$ , $\langle\frac{\partial}{\partial x_{l}},$ $\frac{\partial}{\partial x_{J}}\rangle=0$ , $1\leqq i,$ $j\leqq n$ , $i\neq j$ .

We shall denote by $\nabla_{w},$ $||||_{w}$ , the corresponding gradient and norm associated
to this Riemannian metric (for more details about these see [P]).

In order to state our results (they are similar to those in $[K_{1}]$ ) we need to
introduce the weigbted horn-neighbourhood, of degree $d$ and width $c>0$ , of a
variety $f^{-1}(0),$ $f\in E(n, p)$ . This is by definition

$H_{a}(f, c)=\{x\in R^{n}||f(x)|\leqq c\rho^{d}\}$ .
DEFINITION 2. We say that $f,$ $g\in E(n, p)$ are $w$-weighted $d$ -equivalent or

simply $d$ -equivalent, if there exist $a>0$ and a neighbourhood $U$ of $0$ such that

(1) $|f_{J}(x)-g_{J}(x)|\leqq a\rho^{d}$

(2) $| \frac{\partial f_{J}}{\partial x_{l}}(x)-\frac{\partial g_{f}}{\partial x_{t}}(x)|\leqq ap^{d-w_{\iota}},$ $1\leqq j\leqq p,$ $1\leqq i\leqq n$ and $x\in U$

(these $f_{J},$ $g_{J}$ are the components of $f$ and $g$ respectively).

It is not hard to see that this is an equivalence relation.

DEFINITION 3. A given $f\in E(n, p)$ is said to be $w$-weighted $v$-sufficient at
degree $d$ , or simply $d$-sufficient if for any $P\in E(n, p)$ such that $f$ and $f+P$

are $d$-equivalent then $f$ and $f+P$ have the same $v$-type at $0$ .
REMARK 1. If $f$ is $d$-sufficient then $f$ is $d_{1}$-sufficient for any $d_{1}>d$ .

These are clearly weighted generalizations of the corresponding homogeneous
notions (see for instance $[K_{1}]$ ). For any $f\in E(n, p)$ we shall consider $N(f,$ $i$,
$w,$ $x)$ , or simply $N(f, i, x)$ , to be the vector $\nabla_{w}f_{\iota}(x)-p_{\iota}(x),$ $1\leqq i\leqq p$, where
$p_{\iota}(x)$ is the projection of $\nabla_{w}f_{\iota}(x)$ , with respect to our metric, onto the subspace
generated by $\nabla_{w}f_{j}(x),$ $1\leqq j\leqq p,$ $j\neq i$ . Then $||N(f, i, x)||_{w}$ will represent the
distance from the end of $\nabla_{w}f_{i}(x)$ to the subspace spanned by $\nabla_{w}f_{J}(x),$ $1\leqq j\leqq p$,
$j\neq i$ . We shall denote by $d_{w}(\nabla_{w}f_{1}(x), \cdots , \nabla.f_{p}(x))$ the minimum $\min_{1\leq\iota\leq p}$

$||N(f, i, x)||_{w}$ .
NOW we can state our results.

THEORBM A. If for any $g\in E(n, p)d$ -equivalent to $f$, there are positive
numbers $c,$ $\epsilon,$

$\delta$ , and a neighbourhood $U$ of $0$ , all dePending on $g$, such that the
following inequality

$d_{w}(\nabla_{w}f_{1}(x), \nabla f_{p}(x))\geqq\epsilon\rho^{a-\delta}$ (A)

holds for $x\in H_{d}(g, c)\cap U$ , then $f$ is d-sufficient.
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COROLLARY 1. A sufficient condition for $f\in E(n, p)$ to be $d$-sufficient is that
there exist $\epsilon>0,$ $c>0,$ $\delta>0$ for which $d_{w}(\nabla_{w}f_{1}(x), \cdots \nabla_{w}f_{p}(x))\geqq\epsilon p^{\dot{a}-\delta}$ is satisfied
for all $x\in H_{d-6}(f, c),$ $x$ near $0$ .

This is an easy consequence of Theorem $A$ , because for any $g\in E(n, p),$ $g$

$d$-equivalent to $f$ , then $H_{d}(g, c)\subseteqq H_{a-\delta}(f, c)$ in a sufficiently small neighbourhood
of $0$ .

REMARK 2. When $P=1$ , this corollary actually represents Theorem A
from [P]. This can be shown using a generalization of an inequality due to
Bochnak-Lojasiewicz [B-L].

PROPOSITION. Let $f$ : $(K^{n}, O)arrow(K, 0)$ be an analytic function ($K=C$ or $R$).

Then for a given $0<c<1$ there exists a neighbourhood $U$ of $0\in K^{n}$ , such that the
following inequality holds

$\sum_{i=1}^{n}|x_{i}||\frac{\partial f}{\partial x_{i}}(x)|\geqq c|f(x)|$ , $x\in U$ .

Indeed if we assume this proposition (it will be proved latter) then one can
see that in order to have an inequality $||\nabla_{w}f(x)||_{w}\geqq cp^{d}$ it is enough to ask it
only for all $x\in H_{d}(f, c)$ . This is because outside this horn-neighbourhood (in a
small neighbourhood of $0$) we have $||\nabla_{w}f||_{w}\geqq(1/n)\Sigma_{i=1}^{n}\rho^{w_{i}}|\partial f/\partial x_{i}|\geqq(1/n)\Sigma_{i=1}^{n}|x_{i}|$

$|\partial f/\partial x_{i}|\geqq L|f(x)|$ so if $|f(x)|\geqq c\rho^{a}$ then automatically $||\nabla_{w}f(x)||_{w}\geqq c_{1}p^{a}$ .
In the case when $f\in E(n, p)$ is analytic we have the following theorem.

THEOREM B. If $f\in E(n, p)$ is an analytic function, and $d \geqq 3\sup\{w_{1}, \cdots, w_{n}\}$ ,

the following are equivalent:
(1) $f$ is d-sufficient.
(2) The hyPothesis of Theorem A hold.
(3) For any $g\in E(n, p),$ $gd$-equivalent to $f$, the variety $g^{-1}(0)$ admits $0$ as

a topologically isolated singularity ($\nabla g_{i}(x),$ $1\leqq i\leqq p,$ $x\in g^{-1}(0)$ , are linearly in-
dependent near $0,$ $x\neq 0$).

REMARK 3. We can also prove a component-wise variant of our Theorem
A. We shall do this considering instead of the positive number $d$ , a positive
$p$-tuple $\underline{d}=(d_{1}, \cdots , d_{p})$ .

DEFINITION 2’. We say that $f,$ $g\in E(n, p)$ are $w$-weighted $\underline{d}$ -equivalent or
simply 4-equivalent if there exists a neighbourhood $U$ of $0$ such that

(1) $f_{j}(x)-gj(x)=0(\rho^{a_{j}})$

(2) $\frac{\partial f_{j}}{\partial x_{k}}(x)-\frac{\partial g_{J}}{\partial x_{k}}(x)=0(\rho^{d_{j}-w_{k}})$ , $1\leqq k\leqq n$ , $1\leqq j\leqq p$ , $x\in U$ .

Then we can introduce the corresponding horn-neighbourhood $H_{g}(f, c)=$
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$\{x\in R^{n}/|f_{j}(x)|\leqq c\rho^{a_{i}}, 1\leqq j\leqq\rho\}$ and the corresponding notion of d-sufficiency.
We can state the following theorem.

THEOREM $A’$ . Let $f\in E(n, p)$ be such that there exist positive numbers $\epsilon,$ $c$ ,

such that in a small neighbourhood of $0$ the following inequalities hold:

$||N(f, i, x)||_{w}$ Ill $\epsilon\rho^{a_{i}}$ , $1\leqq i\leqq p$ , $x\in H\underline{a}(f, c)$ .
Then $f$ is d-sufficient.
The proof is similar to the proof of Theorem A and it will be omitted.
For a given $f\in E(n, p)$ such that any component $f_{f}$ has the form $f_{j}=$

$\Sigma_{i=1}^{r_{j}}u_{ij}$ ( $r_{j}$ can be $\infty$ if $f_{j}$ is analytic), where $u_{ij}$ are $w$-forms of degree $d_{ij}$ ,
$d_{ij}<d_{i+1j}$ , l\leqq j$ $p$ , we can write

$\nabla_{w}f_{f}(x)=\sum_{k=1}^{n}(\sum_{l=1}^{r_{j}}\rho^{w_{k}}\frac{\hat{o}u_{ij}}{\partial x_{k}}(x))\rho^{w_{k}}\frac{\partial}{\partial x_{k}}$

$= \rho^{d_{2j}}\sum_{=1}^{n}(\sum_{i=1}^{r_{j}}\frac{1}{\rho^{a_{2j}-a_{ij}}}\frac{\partial u_{ij}}{\partial x_{k}}(\frac{1}{p}\cdot x))p^{w_{k}}\frac{\hat{o}}{\partial x_{k}}$

$= \rho^{a_{2}}!\sum_{k=1}^{n}L_{kj}p^{w_{k\frac{\partial}{\partial x_{k}}}}$ , where

$L_{kj}(x)= \sum_{i=1}^{r_{j}}\frac{1\partial u_{ij}}{p^{a_{2f}-a_{tJ\hat{o}x_{k}}}}(\frac{1}{o}\cdot x)=\frac{1}{\rho^{a_{2j^{-d_{1j}}}}}\frac{\partial u_{1j}}{\partial x_{k}}(\frac{1}{\rho}\cdot x)+\frac{\partial u_{zj}}{\partial x_{k}}(\frac{1}{\rho}\cdot x)+0(\rho)$ .

We denote by $L_{j}=\Sigma_{k=1}^{n}L_{kj}\partial/\partial x_{k}=(1/\rho^{d_{2j}-a_{1j}})\nabla u_{1J}((1/\rho)\cdot x)+\nabla u_{2j}((1/\rho)\cdot x)+$

$0(\rho)$ and one can see that

$\langle\nabla_{w}f_{i}, \nabla_{w}f_{f}\rangle_{w}=\rho^{d_{2i}+a_{2j\langle L_{i}}},$ $L_{j}\rangle$ .

The Gram determinant $\det(\langle\nabla_{w}f_{j}, \nabla_{w}f_{i}\rangle_{w})_{1\leq f.i\leqq p}$ can be computed in terms
of $D_{j}=L_{j}/||L_{j}||$ , namely

$\det(\langle\nabla_{w}f_{j}, \nabla_{w}f_{i}\rangle_{w})=\rho^{2(a_{21}+\cdots+a_{2p})}||L_{1}||^{2}\cdots||L_{p}||^{2}\det(\langle D_{i}, D_{j}\rangle)$

and therefore we have the following formula for $||N(f, i, x)||_{w}$

$||N(f, i, x)||_{w}= \rho^{a_{2i}}||L_{i}||[\frac{\det(\langle D_{j},D_{k}\rangle)_{1\leq j.k\xi p}}{\det(\langle D_{j},D_{k}\rangle)_{1\leqq j.k\leqq p.j\neq i\neq k}}]^{1/2}=p^{a_{2t}}||L_{i}||h_{i}(x)$

$=||\nabla_{w}f_{i}(x)||_{w}h_{i}(x)$ ,

where $h_{i}(x)=[\det(\langle D_{j}, D_{k}\rangle)_{1\leq j.k\leq p}/\det(\langle D_{j}, D_{k}\rangle)_{1\leqq j.k\leq p.j\neq i\neq k}]^{1/2}$ denotes the dis-
tance from $D_{i}(x)$ to the subspace spanned by the other $D_{j}(x)’s$ .

NOW let a be an analytic arc, $\alpha(0)=0$ and $\alpha(t)\in H_{d}(f, c),$ $t\in[0, \epsilon)$ . Let us
consider the arc $\beta(t)=(1/\rho(\alpha(t)))\cdot\alpha(t),$ $t\geqq 0$ . This arc is analytic because $|x_{i}|\leqq$

$\rho^{w_{i}}(x),$ $1\leqq i\leqq n$ , so it determines a well defined point $\beta(0)\in S_{1}$ (here . means the
weighted action).
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We have $L_{j(\alpha(t))=(1/\rho^{a_{2j}-a_{1j)\nabla u_{1j}(\beta(i))+\nabla u_{2j}(\beta(t))+0(\rho)}}}$ and we can observe
that the possible limits of $D_{j}(\alpha(t))$ as $t$ tends to $0$ are given by $\nabla u_{1j}(\beta(0))/$

$||\nabla u_{1j}(\beta(0))||$ if $\nabla u_{1j}(\beta(0))\neq 0$ and by (a $L_{j}+\nabla u_{2j}(\beta(0))$ ) $/||$ $a$ $L_{j}+\nabla u_{2j}(\beta(0))||$ if $\nabla u_{1j}(\beta(0))$

$=0$ and $L_{j}$ is a limit direction of $\nabla u_{1j}$ at $\beta(0)$ , $a\in R$ , provided that $aL_{j}+$

$\nabla u_{2j}(\beta(0))\neq 0$ . (We shall consider only these cases.)

We shall denote this directions, obtained along $\alpha$ , by $D(j, \alpha),$ $1\leqq j\leqq p$ .
If we ask that any $f_{j},$ $1\leqq j\leqq P$ , is such that $||\nabla_{w}f_{j}||_{w}\geqq c\rho^{d_{j}}$ in a small

horn-neighbourhood $H_{\underline{d}}(f, c)$ , and $D(j, \alpha),$ $1\leqq j\leqq p$ , are linearly independent for
any $\alpha$ as above, then we can apply Theorem $A’$ to conclude that $f$ is d-sufficient
$(\underline{d}-(d_{1}, \cdots , d_{p}))$ . In particular we have the following corollary.

COROLLARY 2. If $f\in E(n, p)$ is such that $f_{j}=u_{1j}+u_{2j}$ , and $D(j, \alpha)$ are
linearly indePendent on $\bigcap_{j=1}^{p}\{u_{1j}=0\}\backslash \{0\}$ , for any $\alpha$ in a horn-neighbourhood
$H_{\underline{d}}(f, c),\underline{d}=(d_{21}, d_{22}, , d_{2p}),$ $d_{2j}$ the weighted degree of $u_{2j},$ $1\leqq j\leqq P$ , then $f$ is
d-sufficient.

Note. If $u_{1j}=0$ , for some $j$ , then we replace $\{u_{1j}=0\}$ by $\{u_{2j}=0\}$ .
COROLLARY 3. If $f\in E(n, p)$ is such that $f_{j}=\Sigma_{i=1}^{r_{j}}u_{ij}$ and $\nabla u_{1j}$ are linearly

indePendent on $\cap p_{=1}\{u_{1j}=0\}\backslash \{0\}$ , then $f$ is $\underline{d}$ -sufficient, where $\underline{d}=(d_{11}, d_{12}, \cdots, d_{1p})$ ,
$d_{1j}$ the degree of $u_{1j},$ $1\leqq j\leqq P$ .

This result can be found in a nice paper of Buchner and Kucharz [Bu-Kuc].
Actually their result is given for slightly different conditions and for $t\in R^{k}$ , but
this does not change the proof.

Examples (see [W]).
1) $f(x, y, z)=(xy+z^{3}, xz+y^{4}),$ $(FW_{13})$ .
If $w(x)=2,$ $w(y)=w(z)=1$ , then $u_{1}=f_{1}=xy+z^{3}$ has the quasihomogeneous

degree 3, and $f_{2}=xz+y^{4}$ can be written as $f_{2}=u_{2}+v_{2}$ where $u_{2}=xz$ and $v_{2}=y^{4}$ ,
$u_{1}$ is nondegenerate and $\{u_{1}=0\}\cap\{u_{2}=0\}=\{x=z=0\}\cup\{y=z=0\}$ .

On the set $\{x=z=0\}$ we have $\nabla u_{1}=(y, 0,0)$ and $\nabla v_{2}=(0,4y^{3},0)$ .
Moreover $\nabla u_{2}(x, y, z)=(z, 0, x)$ and therefore for any limit direction 1 for

$\nabla u_{2}$ at $(0, y, 0)$ we cannot have $al+\nabla v_{2}=0$ , and we can see that $al+\nabla v_{2},$ $\nabla u_{1}$

are linearly independent. The same argument works on the set $\{y=z=0\}$ and
therefore we may conclude that $f$ is $(3, 4)$-sufficient with respect to this system
of weights (see Corollary 2).

However if we use $w(x)=11/5,$ $w(y)=4/5,$ $w(z)=1$ , then both $f_{1}$ and $f_{2}$ are
nondegenerate quasihomogeneous polynomials of degree 3 and 16/5 respectively,
and therefore $f$ is (3, 16/5)-sufficient with respect to this system of weights.

2) $f(x, y, z)=(xy+z^{3}, x^{2}+z^{3}+y^{5}),$ $(HC_{1S})$ . If $w(x)=w(y)=1$ and $w(z)=2/3$

one can see, using $f_{1}=u_{1}=xy+z^{3},$ $f_{2}=u_{2}+v_{2}$ , where $u_{2}=x^{2}+z^{3}$ and $v_{2}=y^{5}$ , that
$f$ is $(2, 5)$-sufficient with respect to this system of weights.
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3) $f(x, y, z)=(xy+z^{3}, xz+zy^{4}),$ $(FW_{18})$ . If $w(x)=12,$ $w(y)=3,$ $w(z)=5$ , one
can see that $f_{1}$ and $f_{2}$ are quasihomogeneous of degree 15, 17 respectively and
that the limit directions $D(1, \alpha),$ $D(2, \alpha)$ are independent and therefore it comes
out that $f$ is $(15, 17)$-sufficient with respect to this system of weights.

We can also state the following corollary.

COROLLARY 4. Let $f\in E(n, p)$ be an analytic map. If $f^{-1}(0)$ has $0$ as a
topologically isolated singularity then for all large $d,$ $f$ is d-sufficient.

\S 2. Proofs.

PROOF OF THEOREM A.
The proof follows the proof given by Kuo $[K_{1}]$ . Let us consider any $P\in$

$E(n, p)$ with the property that $f$ and $f+P$ are $d$-equivalent. We want to
prove that $f$ and $f+P$ have the same $v$-type at $0$ . In order to prove this we
shall consider a new function $F(x, t)=f(x)+tP(x),$ $F\in E(n+1, p)$ , and in addi-
tion to the bilinear form from Definition 1, we define a new metric by

$\langle\frac{\partial}{\partial x_{i}},$ $\frac{\partial}{\partial t}\rangle=0$ , $1\leqq i\leqq n$ , $\langle\frac{\partial}{\partial t},$ $\frac{\hat{o}}{\partial t}\rangle-1$ .

With respect to this singular Riemannian metric we have

$\nabla_{w}F_{i}(x, t)=\sum_{j\approx 1}^{n}\rho^{w_{j}}(\frac{\partial f_{i}}{\partial x_{j}}(x)+t\frac{\partial P_{i}}{\partial x_{j}}(x))\rho^{w_{j}}\frac{\partial}{\partial x_{j}}+P_{i}(x)\frac{\partial}{\partial t}$

(bere $f_{i},$ $P_{j}$ are the corresponding components of $f,$ $P$ respectively).

We shall show that any $t_{0}\in R$ has a neighbourhood $T$ such that for any
$i_{1},$ $t_{2}\in T$ the germs $F(x, t_{1})=0$ and $F(x, t_{2})=0$ are homeomorphic and due to the
fact that $I=[0,1]$ is compact it will follow that the germs $f(x)=F(x, 0)=0$

and $f(x)+P(x)=F(x, 1)=0$ are homeomorphic, hence $f$ is d-sufficient.
If we denote by $g(x)=f(x)+t_{0}P(x),$ $t_{0}\in R^{n}$ , then $|F_{j}(x, t)-g_{j}(x)|=|t-t_{0}|$

$|P_{j}(x)|,$ $1\leqq j\leqq P$ . Because $f$ and $f+P$ are $d$-equivalent we can choose a neigh-
bourhood $T$ of $t_{0}$ and a neighbourhood $U$ of $0\in R^{n}$ , such that $|F_{j}(x, t)-g_{j}(x)|$

$\leqq c\rho^{d},$ $c$ as small as we want, $(x, t)\in U\cross T,$ $1\leqq j\leqq p$ .
This shows that the variety $F(x, t)=0$ for $(x, t)\in U\cross T$ is contained in

$H_{a}(g, c)\cross T$ . (This is one reason for we are restricting our attention to this
kind of sets.) We have the following lemma.

LEMMA 1. $||N(F, i, (x, t))||_{w}\geqq(\epsilon/2)\rho^{d-\delta},$ $(x, t)\in H_{a}(g, c)\cross T,$ $x$ near $0,1\leqq i$

$\leqq p$ .
PROOF.
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$||\nabla_{w}F_{\ell}(x, t)-\nabla_{w}f_{i}(x)||_{w}=||\nabla_{w}(tP_{i}(x))||_{w}$

$=||t \sum_{j=1}^{n}\rho^{w_{j}}\frac{\partial P_{i}}{\partial x_{j}}(x)\rho^{w_{j}}\frac{\partial}{ox_{j}\neg}+P_{i}(x)\frac{\partial}{\partial t}||_{w}=(t^{2}\sum_{j=1}^{n}\rho^{2w_{j}}(\frac{\partial P_{i}}{\partial x_{j}}(x))^{2}+P_{i}^{2}(x))^{1/2}$

$\leqq|t|\sum_{j=1}^{n}\rho^{w_{j}}|\frac{\partial P_{i}}{\partial x_{j}}(x)|+|P_{i}|\leqq c_{1}\rho^{a}$ ,

for some constant $c_{1}>0$ and $x$ in a small neighbourhood of $0,$ $t\in I$.
NOW let us consider the following inequality

$|| \sum_{i=1}^{p}\lambda_{i}\nabla_{w}F_{i}||_{w}\geqq||\sum_{i=1}^{p}\lambda_{i}\nabla_{w}f_{i}||w -|| \sum_{i=1}^{p}\lambda_{i}(\nabla_{w}F_{i}-\nabla_{w}f_{i})||_{w}$ .

If for example $\lambda_{k}\neq 0$ then

$\frac{||\lambda_{k}(\nabla_{w}F_{k}-\nabla_{w}f_{k})||_{w}}{||\Sigma_{i\approx 1}^{p}\lambda_{i}(\nabla_{w}f_{i})||_{w}}=\frac{||\nabla_{w}F_{k}-\nabla_{w}f_{k}||_{w}}{||\nabla_{w}f_{k}+\sum 8_{=1.i\neq k}(\lambda_{i}/\lambda_{k})\nabla_{w}f_{i}||_{w}}$

$\leqq\frac{c_{1}\rho^{a}}{||N(f,k,x)||_{w}}\leqq\frac{c_{1}\rho^{d}}{\epsilon\rho^{d-\delta}}=\frac{c_{1}}{\epsilon}\rho^{\delta}$ ,

where $t\in I$ and $xeH_{d}(g, c)$ near $0$ .
Let $\lambda_{k}=1$ and $\lambda_{j}(j\neq k)$ be numbers which satisfy

$N(F, k, (x, t))= \sum_{i=1}^{p}\lambda_{i}\nabla_{w}F_{i}$ .

Then we have

$||N$ ( $F$, le, $(x,$ $t)$ ) $||_{w}=|| \sum_{i=1}^{p}\lambda_{i}\nabla_{w}F_{i}||_{w}\geqq\frac{1}{2}||\sum_{i=1}^{p}\lambda_{i}\nabla_{w}f_{i||_{w}}$

$\geqq\frac{1}{2}||N(f, k, x)||_{w}\geqq\frac{1}{2}d_{w}(\nabla_{w}f_{1}(x), \nabla_{w}f_{p}(x))$

and this implies the required inequality.
NOW we can introduce the Kuo vector field (see [Y], $[K_{1}],$ $[P]$ ) determined

by $N(F, i, (x, t)),$ $1\leqq i\leqq p$, (we shall use a shorter notation $N_{i}$ for $N(F,$ $i,$ $(x,$ $t))$):

$K(x, t)= \frac{\partial}{\partial t}-\sum_{i\Rightarrow 1}^{p}\frac{P_{i}(x)}{||N_{i}||_{w}^{2}}N_{i}$ if $x\neq 0$ and $K( O, t)=\frac{\partial}{\partial t}$ .

By construction $K(x, t)$ satisfies the following
1) $K$ is $C^{1}$ outside $x=0$ and continuous everywhere in $H_{d}(g, c)\cross T$

2) At any $(x, t),$ $x\neq 0,$ $K(x, t)$ is tangent to the level $F=0(F$ is singular
only along the $t$-axis in $H_{\dot{a}}(g, c)\cross T)$ .

One can write $N_{i}=\Sigma_{j\approx 1}^{n}\rho^{w_{iC_{ji}(X}},$ $t$) $\rho^{w_{j}}(\partial/\partial x_{j})+L_{i}(x, t)(\partial/\partial t)$ , where $C_{ji},$ $L_{i}$

are $C^{1}$ functions in a punctured horn-neighbourhood of $0$ and then $K$ can be
written as



352 L. PAUNESCU

$K(x, t)=(1- \sum_{i=1}^{p}\frac{L_{t}P_{i}}{||N_{i}||_{w}^{2}})\frac{\partial}{\partial t}-\sum_{j=1}^{n}(\sum_{\ell=1}^{p}\frac{P_{i}C_{ji}}{||N_{i}||_{w}^{2}})\rho^{2w_{j\frac{\partial}{\partial x_{j}}}}$

$=X \frac{\partial}{\partial t}-\sum_{j=1}^{n}X_{J}\frac{\partial}{\partial x_{j}}$ .

Moreover because $|L_{i}|\leqq||N_{i}||_{w}$ and $P_{i}/||N_{i}||_{w}$ tends to zero (uniformly for
$t\in T$ , see Lemma 1) it follows that $X$ tends to 1 as $x$ tends to $0$ and $X_{j}$ tends
to $0$ as $x$ tends to $0$ . Actually we have the following inequalities

$\frac{|P_{i}|}{||N_{i}||_{w}}$ $ $\frac{ap^{a}}{\epsilon\rho^{a-6}/2}$ and $|X_{j}| \leqq\sum_{i=1}^{p}\frac{|P_{i}||C_{ji}\rho^{w_{j}}|}{||N_{i}||_{w}||N_{i}||_{w}}\rho^{w}!\leqq c_{j}\rho^{w_{j}}$

in a small horn-neighbourhood of $0,$ $c_{j}>0,1\leqq j\leqq n,$ $1\leqq i\leqq p$ .
In order to show that the integration of this vector field gives us the

homeomorphism we need we are going to use two Liapunov functions

$U(x, t)=e^{2Lt}p^{2}$ and $V(x, t)=e^{-2Lt}\rho^{2}$ .

The computation shows that

$\nabla U(x, t)\cdot K(x, t)=2e^{Lt}\rho(L\rho X+\sum_{iarrow 1}^{n}\frac{\partial\rho}{\partial x_{i}}X_{i})$

$\geqq 2e^{Lt}\rho(L\rho X-\sum_{i=1}^{n}|\frac{\partial p}{\partial x_{i}}||X_{i}|)\geqq 2e^{Lt}\rho(L\rho X-\sum_{i\approx 1}^{n}|\frac{\partial\rho}{\partial x_{i}}|c_{i}\rho^{w_{i}})$ .

Because $c_{i}\rho^{w_{i}}|\partial p/\partial x_{i}|\leqq M\rho/n$ , some $M>0$ , we can find $L$ big enough such
that $\nabla U(x, t)\cdot K(x, t)>0,$ $x\neq 0$ . In a similar way we can show that there exists
$L>0$ such that $\nabla V(x, t)\cdot K(x, t)<0$ . The rest of the proof is as for the homo-
geneous case (see $[K_{1}]$ ).

PROOF OF THEOREM B.
$2)arrow 1)$ is just Theorem A. We shall prove that $2$ ) $rightarrow 3$) and $1$ ) $arrow 2$). In

order to prove $2$) $arrow 3$ ) we observe that if $f$ and $g$ are $d$-equivalent then
$|\partial g_{j}/\partial x_{i}-\partial f_{f}/\partial x_{i}|\leqq a\rho^{a-w_{i}},$ $1\leqq i\leqq n,$ $1\leqq j\leqq p$ , in a small neighbourhood of $0$

and this implies that $||\nabla_{w}g_{j}(x)-\nabla_{w}f_{j}(x)||_{w}\leqq a\rho^{a},$ $1\leqq j\leqq P$ , and therefore

$|| \sum_{j=1}^{p}\lambda_{j}\nabla_{w}g_{j}(x)||_{w}\geqq||\sum_{j=1}^{p}\lambda_{j}\nabla_{w}f_{j}(x)||w -|| \sum_{j=1}^{p}\lambda_{j}(\nabla_{w}f_{j}(x)-\nabla_{w}g_{j}(x))||_{w}\geqq\epsilon_{1}\rho^{a-6}$

any $(\lambda_{1}$ , $\cdot$ .. , $\lambda_{n})\neq(0$ , $\cdot$ .. , $0)$ , for $x\in H_{d}(g, c),$ $x$ near $0$ , and this implies that
$\nabla_{w}g_{j}(x)$ are linearly independent (same for $\nabla g_{i}(x),$ $1\leqq i\leqq p$), on $g^{-1}(0)\subseteqq H_{a}(g, c)$ ,
$x\neq 0$ , (for this implication we do not need the fact $f$ is analytic). In order to
prove $3$ ) $arrow 2$) we are going to assume 2) false and then to construct a function
$\tilde{f}\in E(n, p)$ such that $f$ and $\tilde{f}$ are $d$ -equivalent but $\nabla\tilde{f}_{j},$ $1\leqq j\leqq p$ , are linearly
dependent along an analytic arc in $\tilde{f}^{-1}(0)$ .

We can replace “any $g\in E(n, p)d$ -equivalent to $f$
’ by “any analytic $ge$

$E(n, p)d$-equivalent to $f$
’ in Theorem A.
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Therefore let $g\in E(n, p)$ be an analytic map $d$-equivalent with $f$ and such
that for any positive numbers $c,$ $\epsilon,$

$\delta$ and any neighbourhood $U$ of $0$ , the ine-
quality (A) fails. Let $E$ be the following sub-analytic set

$E= \{x\in H_{d}(g, 1)|d_{w}(\nabla_{w}f_{1}(x), \cdots, \nabla_{w}f_{p}(x))=\min_{a\nu\in H(g1)}.d_{w}(\nabla_{w}f_{1}(y)\rho(x)=\rho(y)\ldots, \nabla_{w}f_{p}(y))\}$
.

We can select an analytic arc $\beta:[0, \eta]arrow E$ (see [H]) such that $\beta(0)=0$ ,
$\beta(t)\neq 0$ for $t>0$ .

Moreover modulo a permutation, we can choose this arc such that along $\beta$ ,

$d_{w}(\nabla_{w}f_{1}(\beta(t)), \cdots \nabla_{w}f_{p}(\beta(t)))=||N(f, 1, \beta(t))||_{w}$

$=|| \nabla_{w}f_{1}(\beta(t))-\sum_{k=2}^{p}\lambda_{k}(t)\nabla_{w}f_{k}(\beta(t))||_{w}$ ,

where $\lambda_{k}$ are analytic and $|\lambda_{k}(t)|\leqq 1,2\leqq k\leqq P$ .
By the notation $A(t)\sim B(t)$ we shall understand that $A/B$ lies between two

positive constants for $t>0$ and $t$ small.
If $\rho(\beta(t))\sim t^{r}$ then $r= \min_{1\leq iSn}s_{i}/w_{i}$ where $\beta_{i}(t)\sim t^{s_{i}}$ , l\leqq i$n, and modulo a

permutation we may assume that $r=s_{1}/w_{1}\leqq s_{i}/w_{i},$ $1\leqq i\leqq n$ , and $\beta_{1}(t)=t^{s_{1}}$ .
Moreover if $||N(f, 1, \beta(t))||_{w}\sim t^{\mu}$ then due to the fact that (A) fails we have

that $\mu/r\geqq d$ .
Since $||N(f, 1, \beta(t))||_{w}=\Sigma_{i=1}^{n}p^{w_{i}}|\partial f_{1}/\partial x_{i}-\Sigma_{k=z}^{p}\lambda_{k}\partial f_{k}/\lambda x_{i}|$ then necessarily

the order of any $\rho^{w_{1}}|\partial f_{1}/\partial x_{i^{-}}$ :ii $k=2p\lambda_{k}\partial f_{k}/\partial x_{i}|$ (along $\beta$ ) is at least $\mu$ .
If we consider also $f_{i}(\beta(t))\sim t^{l_{t}},$ $l\leqq i\leqq p$ , we can say using the fact that

$|f_{i}-g_{i}|\leqq a\rho^{a},$ $1$ $ $i\leqq p$, that $l_{i}\geqq rd$ for any $i$, lSi$P (this is because along
$\beta,$ $|g_{i}(\beta(t))|\leqq c\rho^{d}$ so $g_{i}(\beta(t))\sim t^{r_{i}}$ with $r_{i}\geqq rd$ ).

We can introduce the following function

$P(x)=f_{1}( \beta(|x_{1}|^{1/s_{1}}))+\sum_{i=2}^{n}(\frac{\partial f_{1}}{\partial x_{i}}(\beta(|x_{1}|^{1/s_{1}}))$

$- \sum_{l=2}^{p}\lambda_{k}(|x_{1}|^{1/s_{1}})\frac{\partial f_{k}}{\partial x_{\ell}}(\beta(|x_{1}|^{1/s_{1}})))(x_{i}-\beta_{i}(|x_{1}|^{1/s_{1}}))$

and then we define 7: $(R^{n}, 0)arrow(R^{p}, 0)$ by

$f_{1}(x)=f_{1}(x)-P(x)$

$f_{k}(x)=f_{k}(x)-f_{k}(\beta(|x_{1}|^{1/s_{1}}))$ , $2\leqq k\leqq P$ .

One can check that $f\in E(n, p)$ and the weighted order of $f-f$ is greater
than $d$ which shows, due to the particular form of 1 and the fact that $f$ is
analytic, that $f$ and $f$ are d-equivalent.

Moreover on $\beta(t),$ $f(\beta(t))=0$ , and a simple computation shows that $\nabla\tilde{f}_{1}(\beta(t))$

$-\Sigma_{k=2}^{p}\lambda_{k}(t)\nabla f_{k}(\beta(t))=0$ . The rest of the proof is just as in $[K_{1}]$ . Using this
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7 one can prove (just as in $[K_{1}]$ ) that non $2$) $arrow non1$ ), and therefore the proof
of Theorem $B$ is complete.

PROOF OF PROPOSITION.
A similar inequality has been obtained by S. Koike [Ko] and the proof,

using the curve selection lemma [M], is similar to Koike’s one and therefore
we shall omit it.

REMARK 5. Actually the proof shows that actually one can take $c=1$ if
there exists at least one $i$ such that $\partial f(0)/\partial x_{i}=0$ .
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