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1. Introduction.

This paper is concerned with positive solutions of the singular Emden-
Fowler type equation

(1.1) $x’=p(t)x^{-\lambda}$ , $t$ 1111 $t_{0}>0$ ,

where $\lambda>0$ , and $P$ is a positive continuously differentiable function on $[t_{0}, \infty)$ .
By a positive solution of (1.1) we mean a positive function $x(t)$ of class $C^{2}$

which solves (1.1) for $t\geqq t_{0}$ .
Let $x(t)$ be a positive solution of (1.1). Then, it is easily seen that $x(t)$

has exactly one of the next properties:

(1.2) $x’(t)<0$ for all $t$ , and $\lim_{tarrow\infty}x(t)\in[0, \infty)$ ,

or

(1.3) $x’(t)>0$ for all large $t$ , and $\lim_{tarrow\infty}\frac{x(t)}{t}\in(0, \infty]$ .

A positive solution $x(t)$ of (1.1) is called a positive decaying solution if (1.2) is
satisfied with $\lim_{tarrow\infty}x(t)=0$ , and is called a positive increasing solution if (1.3)

is satisfied.
Singular equations of this kind appear in many branches of mathematical

physics. We refer the reader to the papers [3, 4, 5] for physical aspect of
equation (1.1). Interesting results have been obtained for these equations; see
[1, 7, 8]. Sufficient, or necessary conditions for the existence of positive solu-
tions satisfying (1.2), in particular, positive decaying solutions, were discussed
in $[8, 9]$ . However, it seems that very little is known about the asymptotic
behavior as well as the uniqueness of positive decaying solutions. Our first
objective is to investigate these problems. We discuss in Section 2 the asymptotic
behavior of positive decaying solutions. Uniqueness criteria for positive decay-
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ing solutions are established in Section 3. Another important problem is to
determine the asymptotic behavior of positive increasing solutions. Section 4
is devoted to the study of this topic. The proofs require some transformation
of variables motivated by Bellman [2].

Our results mainly concern the case for which $p(t)$ behaves like a positive
constant multiple of $t^{a},$ $a\in R$ . By employing the results below, we can com-
pletely determine the asymptotic behavior of all positive solutions of the singular
Emden-Fowler equation $x’’=t^{\alpha}x^{-\lambda}$ . (See Example 5.1.1.) Other related results ap-
pear in the papers $[9, 10]$ .

2. Asymptotic behavior of positive decaying solutions.

We will begin with the investigation of asymptotic behavior of positive
decaying solutions of (1.1). Let us consider another equation of the form (1.1):

(2.1) $y’=q(t)y^{-\lambda}$ , $t\geqq t_{0}$ ,

where $q$ is positive and continuously differentiable on $[t_{0}, \infty)$ . Our first result
asserts that, if $p(t)$ and $q(t)$ have the same asymptotic behavior in some sense,
then so do the positive decaying solutions of these equations as $tarrow\infty$ . Notice
that, when (2.1) admits a positive decaying solution,

$q_{0}(t) \equiv\int_{t}^{\infty}(s-t)q(s)ds$

converges for $t\geqq t_{0}$ (see [8, 9]).

THEOREM 2.1. Let $x(t)$ and $y(t)$ be positive decaying solutions of equations
(1.1) and (2.1), respectively. Suppose that

(2.2) $\lim_{tarrow\infty}\frac{p(t)}{q(t)}=1$ ,

(2.3) $\lim_{carrow}\sup_{\infty}[q_{0}(t)]^{-1/(\lambda+1)}\int_{t}^{\infty}/(<\infty$ ,

(2.4) $0< \lim_{tarrow}\inf_{\infty}[(q(t)[y(t)]^{3-\lambda})^{-1/2}]’[y(t)]^{2}$

$\leqq\lim_{tarrow}\sup_{\infty}[(q(t)[y(t)]^{3-\lambda})^{-1/2}]’[y(t)]^{2}<\infty$ ,

and either

(2.5) $\int^{\infty}[q(t)]^{1/2}[y(t)]^{-(1+\lambda)/2}|\frac{p(t)}{q(t)}-1|dt<\infty$

$or$

(2.6) $\int^{\infty}|(\frac{p(t)}{q(t)})’|dt<\infty$
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hold. Then $x(t)\sim y(t)$ as $tarrow\infty$ .
Henceforth the notation “ $f(t)\sim g(t)$ as $tarrow\infty$ means that $\lim_{tarrow\infty}f(t)/g(t)=1$ .

The following simple result due to Bellman [2, p. 155] is often employed in
this paper.

LEMMA 2.1. If $z\in C^{1}[T, \infty)$ satisfies

$\int^{\infty}[z(t)]^{2}dt<\infty$ , and

for some $C>0$ , then $\lim_{tarrow\infty}z(t)=0$ .

$|z’(t)|\leqq C$ , $t\geqq T$ ,

PROOF OF THEOREM 2.1. First we note under our conditions that $x(t)$ and
$y(t)$ satisfy for $t\geqq t_{0}$

$\langle$2.7) $C_{1}[q_{0}(t)]^{1/(\lambda+1)}\leqq x(t),$ $y(t)$

$\leqq C_{2}\int_{t}^{\infty}(s-t)q(s)[q_{0}(s)]^{-\lambda/(\lambda+1)}ds$

for some $C_{i}=C_{i}(\lambda)>0$ . The first inequality of (2.7) is known by [9, Remark].
Then, the second inequality of (2.7) follows immediately from

$y(t)= \int_{t}^{\infty}(\int_{s}^{\infty}q(r)[y(r)]^{-\lambda}dr)ds$ , $t\geqq t_{0}$ .

Define the new function $v(t)$ by $v(t)=x(t)/y(t),$ $t\geqq t_{0}$ . Then we see that $v(t)$

satisfies the equation

(2.8) $v^{n}+ \frac{2y’(t)}{y(t)}v’+q(t)[y(t)]^{-\lambda-1}v=P(t)[y(t)]^{-\lambda-1}v^{-\lambda}$ , $t\geqq i_{0}$ .

By introducing the new independent variable

$\tau=\int_{t_{0}}[y(r)]^{-2}dr$ ,

this equation is transformed into

$\frac{d^{2}v}{d\tau^{2}}+q(t)[y(t)]^{3-\lambda}v=p(t)[y(t)]^{3-\lambda}v^{-\lambda}$ , $\tau\geqq 0$ .

Moreover, since

$\int_{0}^{\infty}(q(t(\tau))[y(t(\tau))]^{3-\lambda})^{1/2}d\tau=\infty$ ,

by (2.4), the change of variable

$s= \int_{0}^{\tau}(q(t(\xi))[y(t(\xi))]^{3-\lambda})^{1/2}d\xi$

transforms this equation lnto
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(2.9) $v-f(s)\dot{v}+v=g(s)v^{-\lambda}$ , $s\geqq 0$ ,

where a dot denotes differentiation with respect to $s$ ,

$f(s)=[(q(t)[y(t)]^{3-\lambda})^{-1/2}]’[y(t)]^{2}$ ,

and $g(s)=P(t)/q(t),$ $s\geqq 0$ . Notice that (2.2), (2.4), (2.5) and (2.6) are equivalent
to the conditions

(2.10) $\lim_{s_{\wedge\infty}}g(s)=1$ ,

(2.11) $0< \lim_{sarrow}\inf_{\infty}f(s)\leqq\lim_{larrow}\sup_{\infty}f(s)<\infty$ ,

(2.12) $\int^{\infty}|g(s)-1|ds<\infty$

and

(2.13) $\int^{\infty}|\dot{g}(s)|ds<\infty$ ,

respectively. It follows from (2.3) and (2.7) that

(2.14) $m$ $ $v(s)\leqq M$ , $s\geqq 0$

for some $m,$ $M>0$ . Condition (2.11) implies that

(2.15) $k_{1}\leqq f(s)$ $ $k_{2}$ , $s\geqq So$

for large $s_{0}$ and some $k_{1},$ $k_{2}>0$ . We suppose $s_{0}=0$ for simplicity. The proof
will be complete if we can show that $v(s)arrow 1$ as $sarrow\infty$ . In the sequel (of this
paper) it will be assumed for simplicity that R#l.

From (2.10) and (2.14) there is $M_{1}>0$ satisfying $|g(s)[v(s)]^{-\lambda}-v(s)|\leqq M_{1}$ ,
$s\geqq 0$ . Let $L$ be a constant satisfying $L>M_{1}/k_{1}$ . We assert that $\dot{v}(s)$ is bounded
in $[0, \infty),$ $i$ . $e.$ ,

(2.16) $|\dot{v}(s)|\leqq L$ , for large $s$ .
TO see this, assume to the contrary that (2.16) fails to hold. Since, clearly
(2.14) implies $\lim\inf_{sarrow\infty}|\dot{v}(s)|=0$ , we can find a sequence of intervals $\{[a_{n}, b_{n}]\}$ ,
$n\in N$, such that

$b_{n}<a_{n+1}$ , $\lim_{n\wedge\infty}a_{n}=\infty$ ,

$|\dot{v}(s)|>L$ , $a_{n}<s<b_{n}$ .
Then, Rolle’s theorem shows that there exists $c_{n}\in(a_{n}, b_{n})$ satisfying $\ddot{v}(c_{n})=0$ ,
$|\dot{v}(c_{n})|>L$ . However by putting $s=c_{n}$ in (2.9) we reach a contradiction for
large $n$ :
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$k_{1}L\leqq f(c_{n})|\dot{v}(c_{n})|=|g(c_{n})[v(c_{n})]^{-\lambda}-v(c_{n})|\leqq M$ .

Hence (2.16) follows. Note that $\ddot{v}(s)$ is also bounded on $[0, \infty)$ from the bounded-
ness of $\dot{v}(s)$ and our conditions.

First suppose that (2.5) holds. By rewriting (2.9) as

$( \frac{\dot{v}^{2}}{2})-f(s)\dot{v}^{2}+(\frac{v^{2}}{2})=g(s)(\frac{v^{1-\lambda}}{1-\lambda})$ , $s\geqq 0$ ,

and integrating over $[0, s]$ , we have

(2.17) $\frac{[\dot{v}(s)]^{2}}{2}-\int_{0}^{s}f(r)[\dot{v}(r)]^{2}dr+(\frac{v(s)]^{2}}{2}-\frac{[v(s)]^{1-\text{\‘{A}}}}{1-\lambda})$

$= \int_{0}^{s}[g(r)-1][v(r)]^{-\lambda}\dot{v}(r)dr+c_{1}$ , $s\geqq 0$ ,

where $c_{1}\in R$ . Since (2.12), (2.14) and (2.16) show that

$\int_{0}^{\epsilon}|[g(r)-1][v(r)]^{-\lambda}\dot{v}(r)|dr\leqq C\int_{0}^{\infty}|g(s)-1|ds_{4}<\infty$ ,

for some $C>0,$ $(2.17)$ together with (2.14), implies that

$\int^{\infty}f(s)[\dot{v}(s)]^{2}ds<\infty$ ,

and hence,

(2.18) $\int^{\infty}[\dot{v}(s)]^{2}ds<\infty$ ,

by (2.15). From the boundedness of $D(s)$ and (2.18), we find that $\lim_{Sarrow\infty}\dot{v}(s)=0$

by Lemma 2.1. Accordingly it follows from (2.17) that the limit

$\lim_{\epsilonarrow\infty}(\frac{[v(s)]^{2}}{2}-\frac{[v(s)]^{1-\lambda}}{1-\lambda})$

must exist as a finite value, that is, $v(s)$ has a finite limit $l$ as $sarrow\infty$ . Letting
$sarrow\infty$ in (2.9), we have $\lim_{*arrow\infty}\overline{v}(s)=l^{-\lambda}-1$ . If $l^{-\lambda}-l\neq 0$ , then the boundedness
of $\dot{v}(s)$ is violated. Hence $l^{-\lambda}-l=0,$ $i$ . $e.,$ $1=1$ as desired.

Next, Let (2.6) be satisfied. We notice that (2.17) is equivalent to

(2.19) $\frac{[\dot{v}(s)]^{2}}{2}-\int_{0}^{*}f(r)[\dot{v}(r)]^{2}dr+(\frac{[v(s)]^{2}}{2}-\frac{g(s)[v(s)]^{1-\lambda}}{1-\lambda})$

$=- \frac{1}{1-\lambda}\int_{0}^{s}\dot{g}(r)[v(r)]^{1-\lambda}dr+c_{2}$ , $s\geqq 0$ ,

for some $c_{2}\in R$ . Condition (2.13) ensures the convergence of the right hand
side of (2.19). Hence we have (2.18) and $\lim_{\iotaarrow\infty}\dot{v}(s)=0$ , which in turn show
that the limit
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$\lim_{sarrow\infty}(\frac{[v(s)]^{2}}{2}-\frac{g(s)[v(s)]^{1-J}}{1-\lambda})$

exists in $R$ by (2.19). The remainder of the proof can be completed by the
same method as in the preceding discussion. This completes the proof of
Theorem 2.1.

REMARK. Let $0<\lambda<1$ and suppose that there exists a nonincreasing func-
tion $q^{*}\in C[t_{0}, \infty)$ such that q(t)$q*(t), $t\geqq t_{0}$ . Then, (2.3) may be replaced by
the condition

$\lim_{tarrow}\sup_{\infty}[q_{0}(t)]^{-1/2}\int_{t}^{\infty}[q^{*}(s)]^{1/2}ds<\infty$ .

This is a simple consequence of [9, Proof of Theorem 2].

Conslder the case in which $q(t)$ behaves Iike $ct^{a}$ with $c>0$ and $\alpha+2<0$ ,

that is, assume

(2.20) $0< \lim_{tarrow\infty}\inf\frac{q(t)}{t^{\alpha}}\leqq\lim_{tarrow}\sup_{\infty}\frac{q(t)}{t^{\alpha}}<\infty$ ,

$\langle$2.21) $0< \lim_{tarrow\infty}\inf\frac{-q’(t)}{t^{a-1}}\leqq\lim_{tarrow}\sup_{\infty}\frac{-q’(t)}{t^{\alpha-1}}<\infty$ .

Then, for any positive decaying solution $y(t)$ of (2.1), (2.7) shows that

$C_{1}t^{(\alpha+2)/(\lambda+1)}$ :Sl $y(t)\leqq C_{2}t^{(\alpha+2)/(\lambda+1)}$ , $t\geqq t_{0}$

for some $C_{1},$ $C_{2}>0$ . Moreover, the equation

$-y’(t)= \int_{t}^{\infty}q(s)[y(s)]^{-\lambda}ds$ , $t\geqq t_{0}$ ,

gives the estimates

$C_{\theta}t^{(\alpha+2)/(\lambda+1)-1}\leqq-y’(t)\leqq C_{4}t^{(\alpha+2)/(\lambda+1)-1}$ , $t\geqq t_{0}$

for some $C_{3},$ $C_{4}>0$ . Therefore we can see that (2.4) is surely satisfied if $\lambda\leqq 3$ .
The following corollary is derived from this observation.

COROLLARY 2.1. Let $\lambda\leqq 3$ and $\alpha+2<0$ , and let $x(t)$ and $y(t)$ be Positive
decaying solutions of equations (1.1) and (2.1), respectively. Suppose that (2.2),
$\langle$2.20), (2.21) and either

$\int^{\infty}\frac{1}{t}|\frac{p(t)}{q(t)}-1|dt<\infty$

$or$

$\int^{\infty}|(\frac{p(t)}{q(t)})’|dt<\infty$
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hold. Then $x(t)\sim y(t)$ as $tarrow\infty$ .

The next corollary will be employed in proving the uniqueness of positive
decaying solutions in Theorem 3.2.

COROLLARY 2.2. Let $a+2<0$ . Suppose that $p(i)$ is of the form $p(t)=$

$ct^{a}[1+\epsilon(t)]$ , where $c$ is a positive constant, $\epsilon(t)arrow 0$ as $tarrow\infty$ and either

(2.22) $\int^{\infty}\frac{|\epsilon(t)|}{t}dt<\infty$

$or$

(2.23) $\int^{\infty}|\epsilon’(t)|dt<\infty$

holds. Then any positive decaying solution $x(t)$ of (1.1) satisfies

$x(t) \sim[\frac{c(\lambda+1)^{2}}{(\alpha+2)(\alpha-\lambda+1)}]^{1/(\lambda+1)}t^{(\alpha+2)/(\lambda+1)}$ as $tarrow\infty$ .

For the proof of this result, it is sufficient to notice that the singular Emden-
Fowler equation

$y’=ct^{a}y^{-\lambda}$ , $t\geqq t_{0}$ ,

with $c>0$ and $a+2<0$ , has a positive decaying solution $y(t)$ explicitly given by

$y(t)=[ \frac{c(\lambda+1)^{2}}{(\alpha+2)(\alpha-\lambda+1)}]^{1/(\lambda+1)}t^{(a+2)/(\lambda+1)}$ , $t\geqq t_{9}$ ,

for which (2.4) (with $q(t)=ct^{\alpha}$ ) is satisfied.

3. Uniqueness of positive decaying solutions.

We now turn to the question of the uniqueness of positive decaying solu-
tions of (1.1).

THEOREM 3.1. Let $\lambda\leqq 3$ and $a+2<0$ . Suppose that $p(t)$ satisfies
$0< \lim i\iota 1f\frac{p(t)}{t}tarrow\infty\leqq\lim_{tarrow}\sup_{\infty}\frac{p(t)}{t^{a}}<\infty$ ,

and

$0< \lim_{tarrow\infty}\inf\frac{-p^{J}(t)}{t^{\alpha-1}}\leqq\lim_{tarrow}\sup_{\infty}\frac{-p’(t)}{t^{a-1}}<\infty$ .

Then (1.1) has a unique positive decaying solution.

PROOF. Suppose to the contrary that we have two distinct positive decay-
ing solutions $x(t)$ and $y(t)$ of (1.1). If the difference $x(t)-y(t)$ is of constant
sign for all sufficiently large $t$ , then the simple observation developed in [9,
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Theorem 3] implies that $x(t)\equiv y(t)$ . Therefore we treat the case where $x(t)-$

$y(t)$ changes sign infinitely many times. The proof will be carried out by em-
ploying the same transformations used in the proof of Theorem 2.1.

Define the new functions $v(t)$ and $\tau$ by $v(t)=x(t)/y(t)$ and $\tau=\int_{t_{0}}^{t}[y(r)]^{-2}dr$ ,

$t\geqq t_{0}$ , respectively. Then calculations give

$\frac{d^{2}v}{d\tau^{2}}+p(t)[y(t)]^{3-\lambda}(v-v^{-\lambda})=0$ , $\tau\geqq 0$ .

Moreover the change of variable

$s= \int_{0}^{\tau}(p(t(\xi))[y(t(\xi))]^{3-\lambda})^{1/2}d\xi$

transforms this equation into

(3.1) $\tilde{v}-f(s)\dot{v}+v=v^{-\lambda}$ , $s\geqq 0$ ,

where a dot denotes differentiation with respect to $s$ , and

$f(s)=[(P(t)[y(t)]^{3-\lambda})^{-1/2}]’[y(t)]^{2}$ , $s\geqq 0$ .
Then, the proofs of Theorem 2.1 and Corollary 2.1 show that $\lim_{sarrow\infty}\dot{v}(s)=0$ .
But, we can get a contradiction immediately. To see this, let $s_{n},$ $n\in N$ be
the points at which $v(s)$ cuts the horizontal line $v=1$ and $s_{n}\uparrow\infty$ as $narrow$ oo. The
existence of such points is guaranteed by the fact that $v(s)$ oscillates around
$v=1$ . Then, an integration of (3.1) multiplied by $\dot{v}(s)$ over $[s_{n}, s_{n+1}]$ yields

$[ \dot{v}(s_{n+1})]^{2}-[\dot{v}(s_{n})]^{2}=2\int:_{n}^{n+1}f(s)[\dot{v}(s)]^{2}ds$ ,

which contradicts the fact that $\lim_{sarrow\infty}\dot{v}(s)=0$ unless $v(s)\equiv 1$ . The proof is com-
plete.

THEOREM 3.2. Let $\alpha+2<0$ . SuPPose that $p(t)$ is of the form $P(t)=ct^{a}[1+$

$\epsilon(t)]$ , where $c$ is a Positive constant, $\epsilon(t),$ $t\epsilon’(t)arrow 0$ as $tarrow\infty$ , and either (2.22) or
(2.23) holds. Then (1.1) has a unique positive decaying solution.

PROOF. Let $x(t)$ and $y(t)$ be two positive decaying solutions of (1.1). We
may suppose that $x(t)-y(t)$ changes sign infinitely many times, as before. We
notice from Corollary 2.2 and L’Hospital’s rule that $x(t)$ and $y(t)$ satisfy

(3.2) $x(t),$ $y(t)\sim Dt^{\sigma}$ and $x’(t),$ $y’(t)\sim\sigma Dt^{\sigma-1}$ as $tarrow\infty$ ,

where

$D=[ \frac{c(\lambda+1)^{2}}{(a+2)(a-\lambda+1)}]^{1/(\lambda+1)}$ and $\sigma=\frac{\alpha+2}{\lambda+1}$



Asymptotic behavior of positive solutions 203

Then, as in the proof of Theorem 3.1, we obtain equation (3.1). By taking
account of (3.2), it is easily seen that $\lim_{\iotaarrow\infty}f(s)=c^{-1/2}D^{(\lambda+1)/2}(\lambda-2a-3)(\lambda+1)^{-1}$

$>0$ . Hence, The remainder of the proof can be completed as in that of Theo-
rem 3.1. This completes the proof.

4. Asymptotic behavior of positive increasing solutions.

This section concerns asymptotic behavior of positive increasing solutions
of equation (1.1). Recall that a positive increasing solution of (1.1) is defined
to be a positive $C^{2}$-solution $x(t)$ having the asymptotic behavior

(4.1) $\lim_{tarrow\infty}x’(t)=\lim_{tarrow\infty}\frac{x(t)}{t}=const\in(O, \infty]$ .

It is proved in [8] that equation (1.1) always admits positive increasing solu-
tions under our basic assumptions $p\in C[t_{0}, \infty)$ and $p(r)>0,$ $t\geqq t_{0}$ .

Suppose that $p(t)$ is sufficiently small in the sense that

(4.2) $\int^{\infty}t^{-\lambda}p(t)dt<\infty$ .

Then we can show with ease that any positive increasing solution $x(t)$ of (1.1)

satisfies

$\lim_{tarrow\infty}x’(t)=\lim_{tarrow\infty}\frac{x(t)}{t}=$ const $<\infty$ .

In fact, the definition (4.1) shows that $x(t)\geqq kt,$ $t\geqq t_{0}$ for some $k>0$ . Then an
integration of (1.1) gives

$x’(t)=x’(t_{0})+ \int_{t_{0}}^{t}P(s)[x(s)]^{-\lambda}ds$

$\leqq x’(t_{0})+k^{-\lambda}\int_{t_{0}}^{\infty}s^{-\lambda}p(s)ds<\infty$ ,

t@ $t_{0}$ . Since $x’(t)$ is an increasing function, it must have a finite limit $\lim_{tarrow\infty}x’(t)$ .
Thus our assertion follows. From this observation, we can restrict our atten-
tion to the case that (4.2) fails to hold.

The following additional notation will be used:

$P(t)= \int_{c_{0}}^{t}s^{-\lambda}P(s)ds$ , $t\geqq t_{0}$ ;

$R(t)= \int_{\iota_{0}}^{t}[P(s)]^{1/(\lambda+1)}ds$ , $t\geqq t_{0}$ ;

$\rho(t)=\int_{t}^{\infty}[R(s)]^{-2}ds$ , $t\geqq t_{0}$ .
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LEMMA 4.1. Suppose that

(4.3) $\int^{\infty}t^{-\lambda}p(t)dt=\infty$ .

Then, any positive increasing solution $x(t)$ of (1.1) satisfies

$\lim_{arrow\infty}\inf\frac{x(t)}{R(t)}\geqq(\lambda+1)^{1/(\lambda+1)}$ .

PROOF. Let $x(t)$ be a positive increasing solution of (1.1). Since $x’’(t)>0$ ,

we have

$x(t)=x(t_{0})+ \int_{t_{0}}^{t}x’(s)ds\leqq x(t_{0})+(t-t_{0})x’(t)$ , $t\geqq t_{0}$ .

Hence
$[x’(t)]^{\lambda}\geqq i^{-\lambda}[x(t)]^{\lambda}(1+0(1))$ as $tarrow\infty$ ,

which is equivalent to

$[x’(t)]^{\lambda}x^{p}(t)\geqq r^{-\lambda}p(t)(1+o(1))$ as $tarrow\infty$ .
Rewriting this inequality as

$( \frac{[x’(t)]^{\lambda+1}}{\lambda+1})’\geqq t^{-\lambda}p(t)(1+o(1))$ ,

and integrating, we have

$\chi’(t)\geqq(\lambda+1)^{1/(\lambda+1)(\int_{\iota_{0}}^{t}s^{-\lambda}p(S)ds)^{1/(\lambda+1)}(1+o(1))}$ .

Then, one more integration completes the proof.

The next simple lemma is useful in establishing our results.

LEMMA 4.2. Let $f(t)$ and $g(t)$ be continuously differentiable functions defined
near infinity such that $g’(t)\neq 0$ and $\lim_{tarrow\infty}g(t)=\infty$ . Then

$\lim_{tarrow}\inf_{\infty}\frac{f’(t)}{g’(t)}\leqq\lim_{tarrow}\inf_{\infty}\frac{f(t)}{g(t)}$ $ $\lim_{tarrow}\sup_{\infty}\frac{f(t)}{g(t)}\leqq\lim_{tarrow}\sup_{\infty}\frac{f’(t)}{g’(t)}$ .

In the case that (4.3) is satisfied, it is worthwhile noticing that the function

(4.4) $z(t)=CR(t)$ , $t\geqq t_{0}$ ,

is a positive increasing solution of the equation

(4.5) $z’= \frac{C^{\lambda+1}}{\lambda+1}p(t)[\frac{R(t)}{t[P(t)]^{1/(\lambda+1)}}]^{\lambda}z^{-\lambda}$ , $t\geqq t_{1}>t_{0}$ ,

where $C$ is a positive constant. Hence it is natural to expect that the positive
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increasing solutions of (1.1) behave like $z(t)$ (defined by (4.4)) when the co-
efficient function of (4.5) is asymptotic to $p(t)$ . This observation leads to the
theorems below.

THEOREM 4.1. Let $0<\lambda<1$ . Suppose that (4.3) and

(4.6) $\lim_{tarrow\infty}\frac{R(t)}{t[P(t)]^{1/(\lambda+1)}}=a\in(0, \infty)$

hold. Then, any positive increasing solution $x(t)$ of (1.1) satisfies
(4.7) $x(t)\sim(\lambda+1)‘/(\lambda+1)-\lambda/(\lambda+1)aR(t)$ as $tarrow\infty$ .

THEOREM 4.2. Suppose that (4.3) and (4.6) hold. Suppose moreover that

(4.8) $\lim_{tarrow\infty}p(t)[R(t)]^{3-\lambda}[\rho(t)]^{2}=b\in(0, \infty)$ ,

$\int^{\infty}|(t^{-\lambda}p(t)[P(t)]^{-\lambda/(\lambda+1)}[R(t)]^{3}[\rho(t)]^{2})’|dt<\infty$

and either

(4.9) $\int^{\infty}[\rho(t)]^{-1}[R(t)]^{-2}|\frac{R(t)}{t[P(t)]^{1/(\lambda+1)}}-a|dt<\infty$

$or$

$\int^{\infty}|[\frac{R(t)}{t[P(t)]^{1/(\lambda+1)}}]’|dt<\infty$

hold. Then any positive increasing solution $x(t)$ of (1.1) has the asymptotic form
(4.7).

THEOREM 4.3. Suppose that (4.3) and (4.6) hold. Suppose moreover that (4.8),
(4.9) and

$\int^{\infty}[\rho(t)]^{-1}[R(t)]^{-2}|p(t)[R(t)]^{3-\lambda}[\rho(t)]^{2}-b|dt<\infty$

hold. Then any positive increas $ing$ solution $x(t)$ of (1.1) has the $asy$mptotic form
(4.7).

Lemma 4.1 shows under assumption (4.3) that any positive increasing solu-
tion $x(t)$ of (1.1) satisfies $x(t)\geqq mR(t),$ $t\geqq t_{0}$ , for some $m>0$ . Therefore, to prove
these theorems, it suffices to show the next theorems.

THEOREM 4.4. Let $0<\lambda<1$ and $x(t)$ and $y(t)$ be positive increasing solutions
of equations (1.1) and (2.1), respectively, such that

(4.10) $x(t)\geqq my(t)$ , $t\geqq t_{0}$ , for some $m>0$ .

Suppose that (4.3) and

(4.11) $\lim_{tarrow\infty}\frac{p(t)}{q(t)}=1$ ,
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hold. Then $x(t)\sim y(t)$ as $tarrow\infty$ .
THEOREM 4.5. Let $x(t)$ and $y(t)$ be positive increasing solutions of equations

$\langle$ 1.1) and (2.1), respectively, satisfying (4.10). Suppose that (4.3), (4.11),

$\langle$4.12) $\lim_{tarrow\infty}q(t)[y(t)]^{3-\lambda}(\int_{t}^{\infty}[y(s)]^{-2}ds)^{2}=l\in(0, \infty)$ ,

$\langle$4.13) $\int^{\infty}|[q(t)[y(t)]3-\lambda(\int_{t}^{\infty}[y(s)]^{-z}ds)^{2}]’|dt<\infty$ ,

and either

$\langle$4.14) $\int^{\infty}(\int_{t}^{\infty}[y(s)]^{-2}ds)^{-1}[y(t)]^{-2}|\frac{p(t)}{q(t)}-1|dt<\infty$

$or$

(4.15) $\int^{\infty}|(\frac{p(t)}{q(t)})’|dt<\infty$

hold. Then $x(t)\sim y(t)$ as $tarrow\infty$ .

THEOREM 4.6. Let $x(t)$ and $y(t)$ be positive increasing solutions of equations
(1.1) and (2.1), respectively, satisfying (4.10). Suppose that (4.3), (4.11), (4.12),

$\int^{\infty}(\int_{t}^{\infty}[y(s)]^{-2}ds)^{-1}[y(t)]^{-2}|q(t)[y(t)]^{3-\lambda}(\int_{t}^{\infty}[y(s)]^{-2}ds)^{2}-l|dt<\infty$ ,

and either (4.14) or (4.15) hold. Then $x(t)\sim y(t)$ as $tarrow\infty$ .

PROOF OF THEOREM 4.4. Put

$\underline{L}=\lim_{tarrow}\inf_{\infty}\frac{x(t)}{y(t)}$ , $\overline{L}=\lim_{tarrow}\sup_{\infty}\frac{x(t)}{y(t)}$ .

By our assumptions we know that $\underline{L}\geqq m$ . Then, Lemma 4.2 yields

$\overline{L}\leqq\lim_{tarrow}\sup_{\infty}\frac{x’(t)}{y’(t)}\leqq\lim_{tarrow}\sup_{\infty}\frac{p(t)}{q(t)}(\frac{y(t)}{x(t)})^{\lambda}\leqq m^{-\lambda}$

This, in turn, implies that

$\underline{L}\geqq\lim_{tarrow}\inf_{\infty}\frac{x’(t)}{y(t)}\geqq\lim_{tarrow}\inf_{\infty}\frac{p(t)}{q(t)}(\frac{y(t)}{x(t)})^{\lambda}\geqq m^{\lambda^{2}}$

from Lemma 4.2, again. By continuing the above procedure, we obtain induc-
tively two sequences $\{\underline{a}_{n}\}$ and $\{\overline{a}_{n}\}$ which satisfy

$\langle$4.16) $\underline{a}_{n}\leqq\underline{L}\leqq\overline{L}\leqq\overline{a}_{n}$ ,

$\underline{a}_{n+1}=\overline{a}_{n}^{-\lambda}$ , $\overline{a}_{n}=\underline{a}_{n}^{-\lambda}$ ,

for all $n\in N$, with $\underline{a}_{1}=m$ and $\overline{a}_{1}=m^{-\lambda}$ .
tion shows that

Since $0<\lambda<1$ , an elementary computa-
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$\lim_{narrow\infty}\underline{a}_{n}=\lim_{narrow\infty}\overline{a}_{n}=1$ .

Thus (4.16) proves the validity of our theorem by letting $narrow\infty$ . The proof is
complete.

PROOF OF THEOREM 4.5. It is evident from the proof of Theorem 4.4 that

(4.17) my $(t)\leqq x(t)\leqq My(t)$ , $t\geqq t_{0}$ ,

for some $M>0$ . Set $v(t)=x(t)/y(t),$ $t\geqq t_{0}$ . Since $v(t)$ satisfies (2.8), the change
of variable

$\tau=(\int_{t}^{\infty}[y(r)]^{-2}dr)^{-1}$

implies that $v(\tau)$ satisfies

$\frac{d^{2}v}{d\tau^{2}}+\frac{2}{\tau}\frac{dv}{d\tau}+q(t)[y(t)]^{3-\lambda}\tau^{-4}v=p(t)[y(t)]^{s-\lambda}\tau^{-4}v^{-\lambda}$ , $\tau\geqq\tau_{0}$ ,

for some $\tau_{0}>0$ . Furthermore, by introducing the new independent variable $s=$

$\log\tau$ , this equation is reduced to

(4.18) $\overline{v}+\dot{v}+\overline{q}(s)v=\overline{p}(s)v^{-\lambda}$ , $s\geqq s_{0}=\log\tau_{0}$ ,

where a dot denotes differentiation with respect to $s$ , and

$\overline{q}(s)=q(t)[y(t)]^{8-\lambda}\tau^{-2}$ ,

$\overline{p}(s)=p(t)[y(t)]^{s-\lambda}\tau^{-2}$

for $s\geqq s_{0}$ . Our conditions (4.11), (4.12), (4.13), (4.14) and (4.15) become

(4.19) $\lim_{sarrow\infty}\frac{\overline{p}(s)}{\overline{q}(s)}=1$ ,

(4.20) $|imq(s)=l$ ,

(4.21) $\int^{\infty}|\overline{q}(s)|ds<\infty$ ,

(4.22) $\int^{\infty}|\frac{\overline{p}(s)}{\overline{q}(s)}-1|ds<\infty$ ,

and

$\int^{\infty}|(\frac{\overline{p}(s)}{\overline{q}(s)})|ds<\infty$ ,

respecti ely. By (4.17) we have

(4.23) $m\leqq v(s)\leqq M$ , $s\geqq s_{0}$ .
Since (4.19) and (4.20) prove that $\lim_{sarrow\infty}\overline{p}(s)=l$ , the argument used in the proof
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of Theorem 2.1 shows that $\dot{v}(s)$ is bounded on $[s_{0}, \infty)$ . Therefore it follows
from equation (4.18) that $\dot{v}(s)$ is also bounded on $[s_{0}, \infty)$ by our conditions.
Multiplying (4.18) by $\dot{v}(s)$ , we get

(4.24) $( \frac{\dot{v}^{2}}{2})+\dot{v}^{2}+\overline{q}(s)(\frac{U^{2}}{2}-\frac{v^{1-\lambda}}{1-\lambda})=\overline{q}(s)(\frac{\overline{p}(s)}{\overline{q}(s)}-1)v^{-\lambda}$ ab , $s\geqq s_{0}$ .

TO complete the proof that $\lim_{sarrow\infty}v(s)=1$ in the case of hypothesis (4.14),

we integrate (4.24) over $[s_{0}, s]$ to obtain

(4.25) $\frac{[\dot{v}(s)]^{2}}{2}+\int_{s_{0}}^{s}[\dot{v}(r)]^{2}dr+\overline{q}(s)(\frac{[v(s)]^{2}}{2}-\frac{[v(s)]^{1-\text{\‘{A}}}}{1-\lambda})$

$- \int_{s_{0}}^{s}\overline{q}(r)(\frac{[v(r)]^{2}}{2}-\frac{[v(r)]^{1-\lambda}}{1-\lambda})dr$

$=c_{1}+ \int_{s_{0}}^{s}\overline{q}(r)(\frac{\overline{p}(r)}{\overline{q}(r)}-1)[v(r)]^{-\lambda}\dot{v}(r)dr$ , $s\geqq s_{0}$ ,

where $c_{1}\in R$ . Conditions (4.21) and (4.23) ensure the convergence of the second
integral on the left hand side of (4.25) as $Sarrow\circ\circ$ . Similarly, (4.20), (4.22), and
the boundedness of $\dot{v}(s)$ imply the convergence of the integral on the right hand
side, from which we have

$\int^{\infty}[\dot{v}(s)]^{2}ds<\infty$ .

Hence $\dot{v}(s)arrow 0$ as $sarrow\infty$ by Lemma 2.1. The remainder of the proof is com-
pleted in the same way as that of Theorem 2.1.

The proof under hypothesis (4.15) is the same as above. Therefore the
detailed verification is left to the reader. The proof is finished.

Theorem 4.6 can be proved similarly, and hence the verification will be left
to the reader.

Since the function
$z(t)=(\lambda+1)^{1/(\lambda+1)}R(t)$ , $t\geqq t_{0}$ ,

solves the equation

$z’=p(t)[ \frac{R(t)}{t[P(t)]^{1/(\lambda+1)}}]^{\lambda}z^{-\lambda}$ $t\geqq t_{1}>t_{0}$ ,

Lemma 4.1 and the proof of Theorem 4.4 show that the assumption $0<\lambda<1$ of
Theorem 4.1 is superfluous if $a=1$ in (4.6). Therefore, we get the following
result.

COROLLARY 4.1. If (4.3) and (4.6) with $a=1$ hold, then any positive increas-
ing solution $x(t)$ of (1.1) satisfies

$x(t)\sim(\lambda+1)^{1/(\lambda+1)}R(t)$ as $tarrow\infty$ .



Asymptotic behavior of positive solutions 209

Consider the case in which $p(t)$ behaves like a positive constant multiple of
$t^{a},$ $\alpha-\lambda+1>0$ . Lemma 4.1 shows that, for any positive increasing solution $x(t)$

of (1.1), $x(t)\geqq mt^{(\alpha+2)/(\lambda+1)},$ $t\geqq t_{0}$ , for some $m>0$ . On the other hand, it is easily
seen that the singular Emden-Fowler equation

$y’’=ct^{\alpha}y^{-\lambda}$ , $t\geqq t_{0}$ ,

with $c>0$ , admits a positive increasing solution $y(t)$ explicitly given by

$y(t)=[ \frac{c(\lambda+1)^{2}}{(a+2)(a-\lambda+1)}]^{1/(\lambda+1)}t^{(a+2)/(\lambda+1)}$ , $t\geqq t_{0}$ .

Clearly this $y(t)$ and $q(t)=ct^{\alpha},$ $t\geqq t_{0}$ , satisfy (4.12). Therefore Theorems 4.4 and
4.5 give the next result, which can be regarded as an analogue to Corollary 2.2.

COROLLARY 4.2. Let $a>\lambda-1$ . Suppose that $p(t)$ has the form $p(t)=$

$ct^{a}[1+\epsilon(t)]$ , with $c$ a positive constant, $\epsilon(t)arrow 0$ as $tarrow\infty$ .
(i) Let $0<\lambda<1$ . Then any $pos$itive increasing solution $x(t)$ of (1.1) satisfies

(4.26) $x(t) \sim[\frac{c(\lambda+1)^{2}}{(a+2)(\alpha-\lambda+1)}]^{1/(\lambda+1)}t^{(\alpha+2)/(\lambda+1)}$ as $tarrow\infty$ .

(ii) Let $\lambda$ be arbitrary. Suppose moreover that either (2.22) or (2.23) holds.
Then any positive increasing solution $x(t)$ of (1.1) behaves like (4.26).

5. Examples.

Finally we present some examples illustrating the results obtained in the
paper.

EXAMPLE 5.1. The results developed here and the known results due to
Kusano and Swanson [8] enable us to classify all the positive solutions of the
singular Emden-Fowler equation

$x’’=t^{a}x^{-\lambda}$ , $t\geqq 1$ , $a\in R$ ,

by means of their asymptotic behavior.
(i) Let $\alpha-\lambda+1<0$ and $\alpha+2<0$ . Then each positive solution $x(t)$ has the

asymptotic form either
$x(t)\sim c$ ,

or

(5.1) $x(t)\sim ct$

as $tarrow\infty$ , for some $c>0$ , or is given explicitly by

$x(t)=[ \frac{(\lambda+1)^{2}}{(\alpha+2)(a-\lambda+1)}]^{1/(\lambda+1)}t^{(a+2)/(\lambda+1)}$ .
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(ii) Let $\alpha-\lambda+1<0$ and $a+2\geqq 0$ . Then any positive solution $x(t)$ has tbe
asymptotic form (5.1) for some $c>0$ .

(iii) Let $\alpha-\lambda+1=0$ and $a+2>0$ . Then any positive solution $x(t)$ has the
asymptotic form

$x(t)\sim(\lambda+1)^{1/(\lambda+1)}t(\log t)^{1/(\lambda+1)}$ as $tarrow\infty$ .
(This directly follows from Corollary 4.1.)

(iv) Let $a-\lambda+1>0$ and $a+2>0$ . Then any positive solution $x(t)$ has the
asymptotic form

$x(t) \sim[\frac{(\lambda+1)^{2}}{(\alpha+2)(a-\lambda+1)}]^{1/(\lambda+1)}t^{(a+2)/(\lambda+1)}$ as $tarrow\infty$ .

EXAMPLE 5.2. This example is related to [6, Theorem 7] and [7].

Let $0<\lambda<1$ and $T\in(t_{0}, \infty)$ be fixed arbitrarily. We say that a positive
function $x\in C^{2}[t_{0}, T)$ is a positive singular solution of (1.1) at $T$ if it solves
(1.1) on $[t_{0}, T)$ and satisfies

(5.2)
$\lim_{tarrow T-}x(t)=\lim_{tarrow T-}x’(t)=0$ .

It is proved in [7] that, under our basic conditions, for each $T>t_{0}(1.1)$ has a
positive singular solution at $T$ . We shall study the asymptotic representation
of positive singular solutions near $T$ with the help of the results in Section 2.
In fact, we can show that the positive singular solution $x(t)$ at $T$ satisfies

(5.3) $x(t) \sim[\frac{p(T)(\lambda+1)^{2}}{2(1-\lambda)}]^{1/(\lambda+1)}(T-t)^{2/(\lambda+1)}$ as $tarrow T-$ .

TO see this we set

$s=(T-t)^{-1}$ and $x(t)=sv(s)$ .

Then (1.1) and the boundary condition (5.2) reduce to

(5.4) $\ddot{v}=s^{\lambda-3}p(t)v^{-\lambda}$ for large $s$

and
$\lim_{sarrow\infty}v(s)=\lim_{sarrow\infty}\dot{v}(s)=0$ ,

respectively, where $.=d/ds$ . Since the coefficient function of (5.4) can be
rewritten as

$p(T)s^{\lambda-3}(1+ \frac{p(t)-p(T)}{p(T)})$ ,

our desired conclusion immediately follows from Corollary 2.1. It is to be noted
that the above transformation is motivated by [6].
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