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Introduction.
$1^{o}$ . Let $X$ be a complex manifold of $\dim=n$ , and, $M$, a dense subdomain

of $X$ . Denote by $d_{r}(p, q)$ be the intrinsic pseudodistance of two points $p$ and
$q$ of $M$ introduced by Kobayashi [5]. In [2], we extended $d_{K}$ onto $X$ as fol-
lows. For $P,$ $q$ of $X$ , we define

$d_{K}(p, q)=\varliminf_{P’arrow p.q’arrow q}d_{K}(p’, q’)$ , $p’,$ $q’\in M$ .
It is clear that $0\leqq d_{H}(p, q)\leqq\infty$ and $d_{K}(p, r)\leqq d_{K}(p, q)+d_{K}(q, r)$ for $p,$ $q,$ $r$

of $X$ .
A point $p\in X$ is called a degeneracy point of $d_{K}$ on $X$, if there exists a

point $q\in X\backslash \{p\}$ such that $d_{H}(p, q)=0$ . We denote by $S_{K}(X)$ the set of all
degeneracy points of $d_{K}$ on $X$ and call $S_{K}(X)$ the degeneracy locus of $d_{H}$ in $X$ .

Let $S$ be an analytic subset of $X$ . According to Kiernan-Kobayashi [41,
$M$ is hyperbolically imbedded modulo $S$ in $X$, if every distinct points $p,$ $q$ of
$X$ such that $d_{K}(p, q)=0$ are contained in $S$ . In this case, $S_{K}(X)\subset S$ . $M$ is
hyperbolically imbedded in $X$ if $S_{H}(X)=\emptyset$ .

We showed in [2] that $S_{H}(X)$ is a pseudoconcave subset of order 1 in $X$

and that, if $S_{H}(X)$ is not empty and is contained in an analytic subset of
dimension 1 of $X$, then $S_{K}(X)$ is also an analytic subset of dimension 1 of $X$

composed of irreducible components of genus $1.
$2^{o}$ . Let $X$ be a compact complex manifold of $\dim=2$, and let $A$ be a curve

in $X$ . An irreducible curve $C$ in $X$ will be called a nonhyperbolic curve with
respect to $A$ , if the following condition is satisfied: In case $C\not\subset A$ , the nor-
malization of $C\backslash A$ is isomorphic to either a smooth elliptic curve, $P,$ $C$ or
$C^{*}=C\backslash \{0\}$ . In case $C\subset A$ , the normalization of $C\backslash A’$ is isomorphic to either
a smooth elliptic curve, $P,$ $C$ or $c*$ , where $A’$ is the union of the components
of $A$ except $C$ . So if we set $M=X\backslash A$ , then $CcS_{M}(X)$ in case $C\not\subset A$ .

The main result of this paper is

THEOREM. Let $A$ be a curve in $P^{2}$ . Set $X=P^{2}$ and $M=P^{g}\backslash A$ . If $S_{H}(X)$

is a curve in $X$, then $S_{K}(X)$ is cOmposed of nonhyperbolic curves with respecf to $A$ .
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We obtain

COROLLARY. Let $A$ be a curve with $l(l\geqq 4)$ irreducible components in $P^{\epsilon}$ .
Set $X=P^{g}$ and $M=P\nwarrow A$ .

(1) If the number of the nonhyPerbolic curves in $P^{g}$ with resPect to $A$ is
fnite ($respecti\nu ely$ zero), $S_{r}(X)$ consists of at most finite number of nonhyperbolic
curves with respect to $A$ (respectively, $S_{Z}(X)$ is empty).

(2) If the number of the nonhyperbolic curves in $P^{f}$ with respect to $A$ is
infinite, then $S_{K}(X)=X$ .

1. Regular exhaustion.

Let $\overline{S}$ be a compact bordered Riemann surface with $h$ real analytic simple
closed curves $\alpha_{1},$

$\cdots$ , $a_{k}(k\geqq 1)$ . We set $\partial S=\alpha_{1}\cup\cdots U\alpha_{k}$ and $S=\overline{S}\backslash \partial S$ . Let $ds^{2}$

be a conformal metric on $\overline{S}$ . Consider a sequence of discs $\Delta(R_{j})(j=1, 2, )$

and an open subset $D_{j}$ in each $\Delta(R_{j})$ bounded by a finite number of real analytic
arcs and curves. We set

$\Gamma_{j}=\partial D_{j}\cap\Delta(R_{j})$ , $L_{j}=\partial D_{j}\cap\partial\Delta(R_{j})$ .
Suppose that for each $j$ there exists a nonconstant holomorphic mapping

$\varphi_{J}$ : $E_{j}arrow\overline{s}$ such that $\varphi_{j}(\Gamma_{j})\subset\partial S$ . We denote by $\varphi_{J}^{*}ds=h_{j}(z)|dz|^{t}$ the pull back
of $ds$ by $\varphi_{J}$ on $D_{j}$ . We set

$|D_{j}|= \int_{D_{j}}h_{j}(z)\frac{i}{2}dz\wedge d\overline{z}$,

For each $0<r<R_{j}$ , set

$|L_{j}|= \int_{\iota_{j}}\sqrt{h_{i}(z)}|dz|$ .

$D_{j}(r)=D_{j}\cap\Delta(r)$, $L_{j}(r)=D_{j}\cap\partial\Delta(r)$ ,

$|D_{j}(r)|= \int_{D_{j^{(t)}}}h_{j}(z)\frac{i}{2}dz\wedge d\overline{z}$, $|L_{j}(r)|= \int_{\iota_{j^{(f)}}}\sqrt{h_{j}(z)}|dz|$ .

DEFINITION 1. We call the sequence of the pairs $(D_{j}, \varphi_{j})$ a regular ex-
haustion of $(S, ds)$, if $\varliminf_{jarrow\infty}(|L_{j}|/|D_{j}|)=0$ .

We shall say that $\varphi_{j}$ converges uniformly to a holomorphic mapping $\varphi$ :
$\Delta(r)arrow S$, if there exists a positive integer $j_{0}$ such that $\Delta(r)\subset D_{j}$ for all $j\geqq j_{0}$

and $\{\varphi_{j}\}_{j\approx j_{0}}$ converges uniformly to $\varphi$ on $\Delta(r)$ .
LEMMA 1. Assume that each $D_{j}$ contains the origin $0$ and that the following

three conditions are satisfied:
(i) $\lim_{jarrow\infty}R_{j}=\infty$ , (ii) $\{\varphi_{i}(0)\}$ converges to a Point $p$ of $S$, (iii) $1\varphi_{f}\}$ has no

subsequence which converges uniformly to the constant $\varphi(z)\equiv p$ on $\Delta(=\Delta(1))$ .
Then, there exist a subsequence $\{j_{\lambda}\}_{\lambda-1.2}\ldots$ . of $\{j\}$ and a sequence of Positive
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numbers $r_{j\lambda}<R_{j_{\lambda}}$ such that the sequence of the Pairs $(D_{j_{\lambda}}(r_{j\lambda}), \varphi_{f_{\lambda}})$ is a regular
exhaustion of $(S, ds)$ .

PROOF. $1^{o}$ . Let $R>1$ . We first prove that $|D_{j}(R)|$ is bounded from below
by a positive constant. Take $j_{0}$ such that $R_{j}>R$ for all $j\geqq j_{0}$ , and consider
the graph $G_{j}$ in $\Delta(R)\cross S$ :

$G_{j}=\{(z, w)\in\Delta(R)\cross S_{1}w=\varphi_{J}(z), z\in D_{j}(R)\}$ .
Then each $G_{j}(j\geqq j_{0})$ is a closed analytic subset of dimension 1 in $\Delta(R)\cross S$ and
the area $|G_{f}|$ of $G_{j}$ measured by $d\sigma^{g}=|dz|^{t}+ds^{g}$ is given by

$|G_{j}|= \int_{D_{j^{(R)}}}(1+h_{j}(z))\frac{i}{2}dz\wedge d\overline{z}\leqq\pi R+|D_{j}(R)|$ .
It follows by the Oka [81-Nishino [6]-Bishop [3] theorem that, if the sequence
$\{|D_{j}(R)|\}$ has a bounded subsequence, then there exists a subsequence $\{G_{J\lambda}\}$

which converges uniformly to a closed analytic subset of dimension 1 on each
compact subset of $\Delta(R)\cross S$ . Hence, if we assume that $\lim_{J\lambda^{r}}|D_{j\lambda}(1)|=0$, then
we can choose a subsequence of epn which converges uniformly to the constant
$\varphi(z)\equiv P$ on A(l). This contradicts (iii). Thus 1o is proved, namely there exists
a positive constant $A$ such that $|D_{j}(R)|>A$ for all $j\geqq j_{0}$ .

$2^{o}$ . For $\epsilon>0$, set $E_{j}(\epsilon)=\{r\in[R, R_{j}):|L_{j}(r)|\geqq\epsilon\cdot|D_{l}(r)|\}$ . Define $h_{j}(z)$ to
be zero on $\Delta(R_{j})\backslash D_{j}$ . Then by the Schwarz inequality,

$|L_{j}(r)|=| \int_{0}^{lr_{\sqrt{h_{J}(re^{i\theta})}}}rd\theta|$

$\leqq 2\pi r\int_{0}^{8r}h_{j}(re^{i\theta})rd\theta=2nr\frac{d|D_{j}(r)|}{dr}$ .
Therefore,

$\int_{r_{j^{(6)}}}\frac{dr}{2\pi r}\leqq\int_{g_{j^{(\epsilon)}}}\frac{d|D_{j}(r)|}{|L_{j}(r)|^{l}}<\frac{1}{\epsilon^{l}}\int_{r_{j^{(\iota)}}},\frac{d|D_{j}(r)|}{|D_{j}(r)|^{g}}$

$\leqq\frac{1}{\epsilon^{8}}(\frac{1}{|D_{i}(R)|}-\frac{1}{|D_{j}(R_{j})|})\leqq\frac{1}{A\epsilon^{l}}$ .

Let $\{\epsilon_{\lambda}\}$ be a sequence of positive numbers, tending ‘to zero.. By (i), for each
$\lambda$ we can take $j_{\lambda}$ such that

$\frac{1}{A\epsilon_{\lambda}^{1}}<\frac{1}{2\pi}(\log R_{j\lambda}-\log R)=\int_{R}^{Rr_{\lambda}}\frac{dr}{2\pi r}$ ,

so that $[R, R_{j_{\lambda}})\backslash E_{j\lambda}(\epsilon_{\lambda})\neq\emptyset$ . If we choose, for $\lambda=1,2,$ $\cdots$ , an $r_{j_{\lambda}}\in[R, R_{j_{\lambda}})$

$E_{rz}(\epsilon_{\lambda})$ , then

$\lim_{\lambdaarrow\infty}\frac{|L_{j_{\lambda}}(r_{J_{\lambda}})|}{|D_{J_{\lambda}}(r_{J_{\lambda}})|}\leqq\lim_{\lambdaarrow\infty}\epsilon_{\lambda}=0$ . Q.E.D.
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NOW, for each Mundary component $a_{i}(1\leqq i\leqq k)$ of $S$ , denote by $N_{i}(j)$ the
number of the closed curves on $\varphi_{j}^{-1}(\alpha_{i})\cap\Delta(R_{j})$ and by $m_{i}(j)$ the minimum of
the degree of $\varphi j$ on these closed curves. If $\varphi_{J}^{-1}(\alpha_{t})\cap\Delta(R_{j})$ contains no closed
curve, we set $m_{l}(j)=\infty$ . Thus $1\leqq m_{i}(j)\leqq\infty$ .

DEFINITION 2. Setting

$m_{i}=\varliminf_{jarrow\infty}m_{i}(j)$ ,

we say that the sequence $\{(D_{j}, \varphi_{f})\}$ ramifies at least $m_{i}$-ply along $a_{t}$ .
LEMMA 2. Assume that the sequence $\{(D_{j}, \varphi_{j})\}$ is a regular exhaustion of

$(S, ds)$ and ramifies at least $m_{t^{-}}ply$ along $a_{i}(i=1, \cdots , k)$ . Then we have

(1) $\sum_{i-1}^{\iota}(1-\frac{1}{m_{i}})\leqq 2-2g(S)$ ,

where $g(S)$ is the genus of S. In particular, $g(S)\leqq 1$ .
PROOF. (Cf. [9] Chap. VI, [7] n’6.) The area and the length with resPect

to $ds$ or $\varphi_{j}^{*}ds$ are denoted by $|\cdot|$ . Let $D_{j}$ have $l(f)$ connected components
$D_{j}^{1},$ $\cdots$ , $Dj^{(j)}$ and let the Mrder of $D_{j}^{\nu}$ consist of $q \oint$ contours $(1\leqq\nu\leqq l(j))$ . First,
we note that

$\sum_{\nu-1}^{l(j)}(q_{J}^{\nu}-2)\leqq\sum_{i=1}^{\iota}N_{i}(j)-l(j)$ and $q_{j}^{\nu}-2\geqq-1$ .
Hence, we have

(2) $\sum_{\nuarrow 1}^{l(j)}\max\{q_{j}^{\nu}-2,0\}\leqq\sum_{-1}^{l}N_{i}(j)$ .
Next, by Ahlfors’ second covering theorem ([91, p. 141), there exists a positive
constant $h_{1}$ depending only on $(S, ds)$ such that

$| \frac{|D_{j}|}{|S|}-\frac{|\varphi_{j}^{-1}(\alpha_{i})|}{|\alpha_{i}|}|\leqq h_{1}|L_{j}|$ .
This yields

(3) $N_{i}(j) \leqq\frac{|\varphi_{j}^{-1}(\alpha_{i})|}{|a_{i}|\cdot m_{i}(j)}\leqq\frac{|D_{j}|}{|S|\cdot m_{i}(j)}+h_{1}|L_{j}|$ .
On the other hand, by Ahlfors’ main theorem ([91, p. 148), there exists a
positive constant $h_{t}$ depending only on $(S, ds)$ such that

(4) $\max\{q_{j}^{\nu}-2,0\}\geqq\frac{|D_{j}^{\nu}|}{|S|}(2g(S)+k-2)-h_{8}|L_{j}^{\nu}|$ .
From (2), (3) and (4), it follows that

$\sum_{iarrow 1}^{l}\frac{|D_{j}|}{|S|\cdot m_{t}(j)}\geqq\frac{|D_{j}|}{|S|}(2g(S)+k-2)-(kh_{1}+h_{g})|L_{j}|$ ,
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namely,

$\sum_{i\approx 1}^{k}(1-\frac{1}{m_{i}(j)})$ ;$1 $2-2g( S)+\frac{(kh_{1}+h_{g})|S|\cdot|L_{j}|}{|D_{j}|}$ .
On letting $jarrow\infty$ in this inequality, we obtain (1). Q.E.D.

2. Application of the regular exhaustion.

Let $X$ be a complex manifold of $\dim=n$ and, $M$, a dense subdomain of $X$ .
In [2], we Proved

LEMMA 3. For any point $p$ of $S_{K}(X)$ and any comPact subset $K$ of $X\backslash S_{K}(X)$,
there exists a sequence of holomorPhic mappings $f_{j}$ : $\overline{\Delta(R_{j})}arrow M$ such that

(i) $\lim_{jarrow\infty}R_{j}=\infty$ , (ii) $\lim_{farrow\infty}f_{j}(0)=p$, (iii) $||f_{j’}(0)||=1$ and (iv) $f_{j}\overline{(\Delta(R_{j}}))\cap$

$K=\emptyset$ for all $j$, where $f_{j’}(0)=df((d/dz)|_{\iota-0})$ and $||*||$ is the norm of the vector $*$

with respect to a fixed hermitian metric on $X$ .
Let $A$ be a curve in $P^{a}$ and set $X=P^{g}$ and $M=P^{g}\backslash A$ . Assume that $S_{H}(X)$

is a curve in $X$. We denote by Sing$(S_{M}(X))$ the singular points of $S_{K}(X)$ . Let
$\Sigma$ be any irreducible component of $S_{M}(X)$ . We take a closed subdomain $\overline{S}$ of
$\Sigma$ such that

1) $\overline{S}\cap Sing(S_{H}(X))=\emptyset$ ,
2) $S$ is Mrdered by $k$ real analytic simple closed curves $a_{1},$

$\cdots$
$\alpha_{l},$ $\alpha_{t+1}$ ,

. , $a_{I}$ where $t$ is determined as follows:
Case I. $\Sigma\not\subset A$ . We set

$\Sigma\cap A=\{p_{1}, \cdots p_{m}\}$ ;

$\Sigma\cap(Sing(S_{K}(X))\backslash A)=\{p_{m+1}, \cdots , p_{n}\}$ .
For each $p_{\iota}(1\leqq l\leqq n)$, we take a small neighMrhood $U_{l}$ of $p_{\iota}$ such that

1) $U_{i}\cap U_{j}=\emptyset$ for $i\neq j;1\leqq i,$ $j\leqq n$ .
2) $lf$ we denote by $\{\Sigma_{\iota_{1}}, \Sigma_{\iota_{\nu_{\iota}}}\}$ the set of irreducible $com\infty nents$ of

$\Sigma\cap U_{I}$ , then each $\Sigma_{\iota_{\ell}}(1\leqq i\leqq\nu_{l})$ contains $p_{\iota}$ and is irreducible at $p_{\iota}$ . On each
$\Sigma_{\iota_{l}}$ (ISIS $n;1\leqq k\leqq\nu_{\iota}$) we draw a real analytic simple closed curve $a_{l_{i}}$ around
$P\iota$ . We remember

$\alpha_{11},$ $a_{12},$ , $a_{m\nu_{f\hslash}}=a_{1},$
$\cdots$

$\alpha_{\iota}$ ,

$a_{m+11},$ $a_{m+18}$, $\cdot$
.,

$a_{n\nu_{m}}=\alpha_{t+1}$ , $\cdot$ .. $a_{i}$ .
Case II. $\Sigma\subset A$ . Let $A’$ be the union of the components of $A$ except $\Sigma$ .

We set
$\Sigma\cap A^{j}=\{p_{1}, \cdots p_{m}\}$ ;
$\Sigma\cap(Sing(S_{K}(X))\backslash A’)=\{p_{m+1}, \cdots , p_{n}\}$ .
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For each $p_{\iota}$ (l;Sl:$n), we take a small neighborhood $U_{t}$ of $p_{\iota}$ and draw $\alpha_{1},$
$\cdots$ .

$\alpha_{t},$ $\alpha_{t+1},$
$\cdots$ , $\alpha_{\iota}$ by the same manner as above Case I.

By Lemma 1 of Nishino-Suzuki [7], there exists a relatively compact sub-
domain $V$ of $X$ and a holomorphic mapping $\pi:\overline{V}arrow\overline{S}$ such that

1) $\overline{V}\cap S_{K}(X)=\overline{S}$,
2) $\pi|s=id.$ ,

3) $\overline{V}arrow\overline{S}\#$ is topologically a locally trivial fiber bundle with fibers homeo-
morphic to the real 2-dimensional closed disk.

By reading the proof of the lemma carefully, we conclude the following:
for any sufficiently small $\epsilon>0$ we can take $\overline{V}$ such that $d(p, q)\leqq\epsilon$ for any $p\in\overline{S}$

and any $q\in\pi^{-1}(p)$ , where d.is the distance defined from a hermitian metric of
X. So

4) for any $p\in S$ there exists a neighborhood $U(p)cS$ such that $\pi^{-1}(U)$ is
contained in a local coordinate neighborhood of $X$,

5) $\pi^{-1}(a_{i})\subset U_{t},$ $\pi^{-1}(a_{i})\cap A=\emptyset$ in case $\Sigma\not\subset A$ and $\pi^{-1}(\alpha_{\ell})\cap A’=\emptyset$ in case
$\Sigma cA$ .

From Lemma 3, for any point $p\in S$ , there exists a sequence of holomorphic
mappings $f_{j}$ : $\overline{\Delta(R_{j})}arrow M$ such that

(i) $\lim_{jarrow\infty}R_{j}=\infty$ , (ii) $\lim_{jarrow\infty}f_{j}(0)=p$, (iii) $||f_{j’}(0)||=1$ and (iv) $f_{j}(\overline{\Delta(R_{j})})\cap$

$\bigcup_{q\in S}\partial\pi^{-1}(q)=\emptyset$ .
Set $\varphi_{j}=\pi\circ f_{j},$ $D_{j}=f_{j}^{-1}(V)$ and $\Gamma_{j}=\partial D_{j}\cap\Delta(R_{j})$ . Then $\varphi j(\Gamma_{J})\subset\partial S$ and we

may assume that each $D_{j}$ contains the origin $0$ .
LEMMA 4. $\{\varphi_{j}\}$ has no subsequence which converges uniformly to the constant

$\varphi(z)\equiv p$ on $\Delta$ .
PROOF. Assume $\varphi_{j\lambda}$ converges uniformly to $\varphi$ on a. Then $\{f_{J_{\lambda}}\}$ is a

normal family since the image $f_{j\lambda}(\Delta)$ is contained in a local coordinate neigh-
Mrhood of $X$ for every sufficiently large $j_{\lambda}$ . By renumbering $\{j_{\lambda}\}$ , we may
assume $f_{j_{\lambda}}arrow f$ on a, where $f$ is a holomorphic mapping of a to $X$ . Obviously
$f(O)=P$ . Let $f(a)=q$ for any $a\in\Delta*$ where $\Delta^{*}=\Delta\backslash \{0\}$ . Then $q\in\pi^{-1}(p)$ .

By distance decreasing property,

$d_{r}(p, q)=d_{K}(f(0), f(a))$

$\leqq d_{K}(f(0), f_{j_{\lambda}}(0))+d_{r}(f_{j_{\lambda}}(0), f_{j_{\lambda}}(a))+d_{H}(f_{j_{\lambda}}(a), f(a))$

$\leqq d_{K}(f(0), f_{j_{\lambda}}(0))+d_{A(R_{j_{\lambda}})}(0, a)+d_{p}(f_{J_{\lambda}}(a), f(a))$

$arrow 0$ ($j_{\lambda}arrow$ oo).

Since $q\in S_{K}(X)$, then $q\in\overline{S}$ . As $\pi|s=id.$ , so $p-\sim$ , and thus $f\equiv p$ . It is a
contradiction to $||f’(0)||=1$ . Q.E.D.
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From Lemma 1 and Lemma 4, we can replace the sequence $\{(D_{j}, \varphi_{j})\}$ by
its subsequence and shift the values of $R_{j}’ s$ so that $\{(D_{j}, \varphi_{j})\}$ turns into a
regular exhaustion of $(S, ds)$ . Then, by Lemma 2, if the sequence $\{(D_{j}, \varphi_{j})\}$

ramifies at least $m_{i}$-ply along $a_{i}$ , we have

$\sum_{i=1}^{\iota}(1-\frac{1}{m_{i}})\leqq 2-2g(S)$ ,

where $g(S)$ is the genus of $S$ . In Particular, $g(S)\leqq 1$ .

3. Lemma A and B.

Let $A$ be a curve in $P^{a}$ and set $X=P^{t}$ and $M=P^{2}\backslash A$ . We assume that
$S_{K}(X)$ is a curve in $X$ . Let $\Sigma$ be any irreducible component of $S_{p}(X)$ and $S$ ,
$\alpha_{i},$

$p_{\iota}$ and $U_{t}$ are same notations as in the section 2. Let $V$ be a relatively
compact subdomain of $X$ and $\pi$ be a holomorphic mapping from $\overline{V}$ to $\overline{S}$ which
satisfy conditions $1$) $\sim 5$) in the section 2.

LEMMA A. If 6 be a simply connected domain in $C$ , there is no holomorPhic
maPPing $f:\deltaarrow M$ such that $f(\partial\delta)\subset n^{-1}(\alpha_{i})\subset U_{l}$ and $\pi\circ f(\partial\delta)=\alpha_{i}$ for some i(l$i\leqq t).

PROOF. Suppose that there is a holomorphic mapping which satisfies above
condition. Let $A_{0}$ be an irreducible component of $A$ except $\Sigma$ which passes
through $p_{\iota}$ . There exists a rational function $F$ of $X$ where the set of zeros
is exactly $A_{0}$ and the set of poles in $U_{\iota}$ is empty. From Rouch\’e’s theorem

$0 \geqq\frac{1}{2\pi i}\int_{\partial\delta}0$

since $\pi^{-1}(\alpha)\cap A_{0}=\emptyset$ . And

$\frac{1}{2\pi i}\int_{n^{\circ}f(\partial\delta)}d\log F=\frac{1}{2\pi i}\int_{n^{Q}f(\partial\delta)}d\log(F|\Sigma)>0$ .
It is absurd. Q.E.D.

LEMMA B. Let $R$ be a domain of $P$ bounded with $q$ real analytic simple
closed curves $(q\geqq 1)$ , and $S$ be a compact bordered Riemann surface with $k$ real
analytic simple closed curves. If $f:\overline{R}arrow\overline{S}$ be a nonconstant holomorphic mapping
such that $f(\partial R)c\partial S$ , then $g(S)=0$ .

PROOF. Let $n$ be a degree of $f$ and $\chi$ be the Euler characteristic. By the
Hurwitz formula,

$2-q=\chi(R)\leqq n\cdot\chi(S)=n(2-k-2g(S))$ .
Since $q\leqq n\cdot k$ , then $g(S)\leqq(n-1)/n<1$ . Q.E.D.
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4. Proof of Theorem.

Let $\Sigma$ be any irreducible component of $S_{H}(X)$ and $S,$ $\alpha_{i},$ $p_{t},$ $U_{l},$ $V,$ $f_{j}$

and $\varphi_{j}$ are same notations as in the section 2.
If $g(S)=0$ we want to show that t$2. This will follow from the estimate

$\sum_{i=1}^{t}(1-\frac{1}{m_{i}})$ $ $\sum_{\ell=1}^{k}(1-\frac{1}{m_{i}})$ $ 2

if we can show that $m_{i}=\infty$ for $1\leqq i\leqq f$ if $t\geqq 2$ . So, we assume $m_{i}\neq\infty$ for some
$i$ (l$i\leqq t, $t\geqq 2$). Then there exists a closed curve on $\varphi_{J_{\lambda}}^{-1}(\alpha_{i})\cap\Delta(R_{J\lambda})$ for infinite
$\{j_{\lambda}\}$ . If for almost all $\{j_{\lambda}\}$ , such curve surrounds a connected component of

$D_{j_{\lambda}}$ as the outside Mundary, there exists a closed curve on $\varphi_{J_{\lambda}}^{-1}(\alpha:’)\cap\Delta(R_{J_{\lambda}})$

($i’\neq i$, l$i’ $\leqq t$) which is not the outside boundary of such connected component
of $D_{J_{\lambda}}$ for an infinite subsequence of $\{j_{\lambda}\}$ since $t\geqq 2$ . By renumbering $\{j_{\lambda}\}$ , we
may assume that for each $j_{\lambda}$ there exists a closed curve on $\varphi_{j_{\lambda}}^{-1}(\alpha_{i})\cap\Delta(R_{j_{\lambda}})$

which is not the outside boundary of a connected component of $D_{j_{\lambda}}$ for some
$i(1\leqq i\leqq t)$ . It is absurd from Lemma A. So $m_{i}=\infty$ for every $i(1\leqq i\leqq t)$ if $t\geqq 2$ .

In case $g(S)=1$ , we assume that $m_{i}\neq\infty$ for some $i(1\leqq i\leqq f)$ . Then, there
exists a closed curve on $\varphi_{J_{\lambda}}^{-1}(\alpha_{l})\cap\Delta(R_{j_{\lambda}})$ for infinite $\{j_{\lambda}\}$ . By Lemma $B$ such
curve does not surround a connected component of $D_{j_{\lambda}}$ as the outside boundary.

It is absurd from Lemma A. Since $\Sigma_{t=1}^{\iota}(1-m_{i}^{-1})\leqq 0$ , then $t=0$ . Q.E.D.

5. Proof of Corollary.

If the number of the nonhyperbolic curves in $P^{2}$ with respect to $A$ is at
most finite, then $S_{K}(X)$ is contained in some curve from Theorem 3 in [1].
So, $S_{K}(X)$ is a curve or empty by Theorem 2 in [2]. If $S_{H}(X)$ is a curve,
then $S_{H}(X)$ is composed of nonhyperbolic curves with respect to $A$ from Theorem
in this paper.

If the number of the nonhyperbolic curves in $P^{2}$ with respect to $A$ is in-
finite, then there exists a regular rational function $f$ on $P^{2}\backslash A$ such that all
the irreducible components of the level curves $f^{-1}(a)$ in $P^{2}\backslash A(a\in P^{1})$ are
isomorphic to either $C$ or $c*$ from Theorem 3 in [1]. So, it is easy to see
that $S_{H}(X)=X$ . Q.E.D.
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