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Introduction.

1°. Let X be a complex manifold of dim=n, and, M, a dense subdomain
of X. Denote by dy(p, ¢) be the intrinsic pseudodistance of two points p and
g of M introduced by Kobayashi [5]. In [2], we extended dy onto X as fol-
lows. For p, ¢ of X, we define
dM(p7 Q) = » hm dM(ﬁ,) q,)r p,’ q, S M'

'-D.q'~q

It is clear that 0<dy(p, ¢)< oo and du(p, )<du(h, 9)+dulg, ) for p, q, r
of X.

A point p=X is called a degeneracy point of d, on X, if there exists a
point geX\{p} such that dy(p, ¢)=0. We denote by Sy(X) the set of all
degeneracy points of d, on X and call S,(X) the degeneracy locus of dj in X.

Let S be an analytic subset of X. According to Kiernan-Kobayashi [4],
M is hyperbolically imbedded modulo S in X, if every distinct points p, ¢ of
X such that dy(p, 9)=0 are contained in S. In this case, Sy(X)CS. M is
hyperbolically imbedded in X if Sy(X)=@.

We showed in that S;(X) is a pseudoconcave subset of order 1 in X
and that, if S,(X) is not empty and is contained in an analytic subset of
dimension 1 of X, then Syu(X) is also an analytic subset of dimension 1 of X
composed of irreducible components of genus <1.

2°. Let X be a compact complex manifold of dim=2, and let A be a curve
in X. An irreducible curve C in X will be called a nonhyperbolic curve with
respect to A, if the following condition is satisfied: In case Cd A, the nor-
malization of C\A is isomorphic to either a smooth elliptic curve, P, C or
C*=C~{0}. In case CCA, the normalization of C\A’ is isomorphic to either
a smooth elliptic curve, P, C or C*, where A’ is the union of the components
of A except C. So if we set M =X\A, then CCSy(X) in case CLA.

The main result of this paper is

THEOREM. Let A be a curve in P2 Set X=P? and M=P*»A. If Sy(X)
is a curve in X, then Sy(X) is composed of nonhyperbolic curves with respect to A.
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We obtain

COROLLARY. Let A be a curve with [(1=4) irreducible components in P2
Set X=P* and M=P> A.

(1) If the number of the nonhyperbolic curves in P* with respect to A is
Sinite (respectively zero), Sy(X) consists of at most finite number of nonhyperbolic
curves with respect to A (respectively, Sy(X) is empty).

(2) If the number of the nonhyperbolic curves in P* with respect to A is
infinite, then Sy(X)=X.

1. Regular exhaustion.

Let S be a compact bordered Riemann surface with % real analytic simple
closed curves a, -+, ay(k=1). We set 6S=a,\U--Ua; and S=5\3S. Let ds?
be a conformal metric on S. Consider a sequence of discs 4A(R;) (j=1, 2, ---)

and an open subset D, in each 4(R;) bounded by a finite number of real analytic
arcs and curves. We set

r,- = aD,f\A(Rj), Lj = aD,ﬂaA(RJ).

Suppose that for each j there exists a nonconstant holomorphic mapping
¢;: D,—~5 such that ¢(I";)cdS. We denote by ¢%ds*=h,(z)|dz|* the pull back
of ds® by ¢; on D;. We set

1D =, oy gdzadz, 1L =, VE@dzl.
For each 0<r<R;, set
D;(?’) = Djﬂd(r), Lj(r) = D]f\ad(r),

Dt ={  hgdends, (LI = VEGIdzl.

Dy i
DEFINITION 1. We call the sequence of the pairs (D,, ¢;) a regular ex-

haustion of (S, ds), if lim;..(|L;|/1D;})=0.

We shall say that ¢; converges uniformly to a holomorphic mapping ¢:
4(r)—S, if there exists a positive integer j, such that A(»)cD; for all j=7,
and {¢;};z;, converges uniformly to ¢ on 4(r).

LEMMA 1. Assume that each D; contains the origin 0 and that the following
three conditions are satisfied :

(1) limjuw Rj=00, (ii) {;(0)} converges to a point p of S, (iii) {¢;} has no
subsequence which converges uniformly to the constant p(z2)=p on 4(=4 (1)).

Then, there exist a subsequence {ji}i=1,... of {j} and a sequence of positive
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numbers r;,<R;, such that the sequence of the pairs (D;(r;)), ¢;,) is a regular
exhaustion of (S, ds).

PrROOF. 1°. Let R>1. We first prove that |D;(R)| is bounded from below
by a positive constant. Take j, such that R,>R for all j=j, and consider
the graph G; in 4(R)XS:

G, = {(z, w) € AR)XS; w=0,z), z€ DAR)}.

Then each G; (j=j,) is a closed analytic subset of dimension 1 in 4(R)XS and
the area |G;| of G; measured by do’=|dz|*+ds® is given by

|Gj|=SD

It follows by the Oka [8]-Nishino [6]-Bishop theorem that, if the sequence
{IDR)|} has a bounded subsequence, then there exists a subsequence {G,,}
which converges uniformly to a closed analytic subset of dimension 1 on each
compact subset of 4(R)xS. Hence, if we assume that lim;,..|D,,(1)|=0, then
we can choose a subsequence of ¢,, which converges uniformly to the constant
¢(z)=p on A(1). This contradicts (iii). Thus 1° is proved, namely there exists
a positive constant A such that |D,(R)|>A for all j=j,.

2°. For >0, set Eje)={r&[R, R;); |Lfr)|=e-|Dyr)i}. Define h,z) to
be zero on 4(R,)ND;. Then by the Schwarz inequality,

(R)(l+hj(z))-% dzAd3 < TR+ |D,R)|.
7

| L) = IS:"«/IT,W‘T)rdo :

dIDn|

< ZKrS:nhj(rew)rdﬁ = 2zr ir

Therefore,

S _‘_if.<g d|Dyr)| _LS d|Dyn)|
Ejo 21y = JEje [ LAN)|® e JEjie | Dy(r)|?

1 1 1 1
<— — <—.
=+ (5 le<Rj>1)” Ac
Let {e;} be a sequence of positive numbers. tending to zero.. By (i), for each

A we can take j; such that

1
Ae"g

Ri; dr
R 2zmr’

so that [R, R;)NE;,(s1)x@. If we choose, for 2=1, 2, -, an r,;,€[R, R;,)
E;,(e2), then

1
< 5-(logR,,~l0gR) = S

. |Lj1(7'j,1)| . __
al_l:l;lom = %1_{1‘181 =0. Q.E.D.
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Now, for each boundary component a; (1=</<k) of S, denote by N,(j) the
number of the closed curves on ¢j'(a;)N4(R;) and by m,(j) the minimum of
the degree of ¢; on these closed curves. If ¢j'(a;)NA(R;) contains no closed
curve, we set m;(j)=co. Thus 1= m(j)<L oo,

DEFINITION 2. Setting
m; = 1ji__mmi(j),
we say that the sequence {(D;, ¢,)} ramifies at least m;-ply along a;.

LEMMA 2. Assume that the sequence {(D;, ¢;)} is a regular exhaustion of
(S, ds) and ramifies at least m;-ply along «; (=1, ---, k). Then we have
k 1
—_— <9
@ Z(1-50)s2-205),

where g(S) is the genus of S. In particular, g(S)<1.

PRrOOF. (Cf. Chap. VI, n°6.) The area and the length with respect
to ds or ¢%ds are denoted by |-|. Let D; have I(j) connected components
D3, ---, D} and let the border of Dy consist of ¢4 contours (1<y=<I(y)). First,
we note that

1) & . .
ygl(q}’-—Z)é ENi(])_[(]) and ¢5—2= —1.

Hence, we have
146>

@ 3 maxig—2,00 = 2N

Next, by Ahlfors’ second covering theorem ([9], p. 141), there exists a positive
constant h;, depending only on (S, ds) such that

1D;]  lp7¥(a)]
S| ]

= hL,l.
This yields

< leiia)] D]
@ NO= o m = TSI -mdd

On the other hand, by Ahlfors’ main theorem ([9], p. 148), there exists a
positive constant £, depending only on (S, ds) such that

(4) max{g;—2, 0} = l@yll

From (2), (3) and (4), it follows that

k | Dy| | D;|
ETS5T-m) = 18]

+h,| L.

(2g(S)+Ek—2)—hs| L}|.

(2g(S)+k—2)—(khi+hs)| L1,
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namely,
k 1 (Rhi+hy)|S]-|L,l
1— — )< 2—2g(S L.
2 (=) = 22+
On letting j—co in this inequality, we obtain (1). Q.E.D.

2. Application of the regular exhaustion.

Let X be a complex manifold of dim=n and, M, a dense subdomain of X.
In [2], we proved

LEMMA 3. For any point p of Su(X) and any compact subset K of X\Sy(X),
there exists a sequence of holomorphic mappings f;: A(R;—M such that

(1) limjuew Ry=0c0, (ii) limj.e f0)=p, (iil) |f;/O)=1 and (iv) f,(ARHN
K= for all j, where f/(0)=df((d/dz)|.=0) and |*|| is the norm of the vector *
with respect to a fixed hermitian metric on X.

Let A be a curve in P? and set X=P?and M=P> A. Assume that Sy(X)
is a curve in X. We denote by Sing(Sxy(X)) the singular points of Sy(X). Let
3 be any irreducible component of Sy(X). We take a closed subdomain S of
2 such that

1) SNSing(Sx(X)) = @,

2) S is bordered by % real analytic simple closed curves ai, -+, a@: Q1)
-«-, a, where t is determined as follows:

Case I. YT A. We set

EﬂA = {pl} Tty pﬂ‘L} ’
IN(Sing(Su(X)NA) = {Pmss, =+, Pal.

For each p;(1£I<n), we take a small neighborhood U; of p; such that

1) UnNU;=@ fori+j; 1514, < n.

2) If we denote by {X,, ---, Z,Dl} the set of irreducible components of
INU,, then each ¥, (1<7¢<y,) contains p, and is irreducible at p,. On each
2, 1=5i<n; 1=k=<y,) we draw a real analytic simple closed curve a;, around
P:. We remember

all, a12) Y amvm = al) Ty a,

Ami11y, Amerzy *°°y Apyy = i1y 0, Ap

Case II. Y A. Let A’ be the union of the components of A except 2.
We set
2NA = {py, -, Pn};

Zm(sulg(SM(X))\A') = {pmﬂ, Ty pn} .
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For each p,(1<I<n), we take a small neighborhood U, of p, and draw aj, -,
a;, a;.1, -+, & by the same manner as above Case I.

By of Nishino-Suzuki [7], there exists a relatively compact sub-
domain V of X and a holomorphic mapping 7: V—3S such that

1) VnSyX)= S,

2) T ] § = id.,

3) 7V 5 S is topologically a locally trivial fiber bundle with fibers homeo-
morphic to the real 2-dimensional closed disk.

By reading the proof of the lemma carefully, we conclude the following:
for any sufficiently small ¢>0 we can take V such that d(p, ¢)<e for any peS
and any gern~(p), where d is the distance defined from a hermitian metric of
X. So

4) for any peS there exists a neighborhood U(p)CS such that z~(U) is
contained in a local coordinate neighborhood of X,

5 m Y a,)CU,, t X a;)NA=@ in case YT A and 7 ' (a;)NA’=@ in case
JCA.

From for any point pS, there exists a sequence of holomorphic
mappings f;: 4(R;)—M such that

(i) limj.eR;=00, (il) lim.e f50)=p, (iiD) |If,/(O)=1 and (iv) f,(ARNHN
Uges 07~ (9)=0.

Set p,=mof;, D;=f7*V) and I';=0D;N4(R;). Then ¢,I';)CdS and we
may assume that each D, contains the origin 0.

LEMMA 4. {¢;} has no subsequence which converges uniformly to the constant
p(z)=p on 4.

PROOF. Assume ¢;, converges uniformly to ¢ on 4. Then {f,,} is a
normal family since the image f;,(4) is contained in a local coordinate neigh-
borhood of X for every sufficiently large 7;. By renumbering {j;}, we may
assume f;,—f on 4, where f is a holomorphic mapping of 4 to X. Obviously
f(O)=p. Let f(a)=q for any acd* where 4*=4\{0}. Then g=z"1(p).

By distance decreasing property,

du(p, 9) = du(f(0), f(a))
< du(f0), f5,(0N+du(f;,Q0), f;,(a)+du(f;,(a), f(a)
< du(f©0), f1,0)+d a0, a)+du(f;,(a), f(a)
—> 0(j2s —> ).

Since g&Sy(X), then ¢gS. As =m|s=id., so p=g, and thus f=p. It is a
contradiction to || f’(0)|=1. , Q.E.D.
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From and Lemma 4, we can replace the sequence {(D,, ¢,)} by
its subsequence and shift the values of R,’s so that {(D,, ¢;)} turns into a
regular exhaustion of (S, ds). Then, by if the sequence {(Dj;, ¢;)}
ramifies at least m;-ply along «;, we have

1

m;

2(1---) s 2-2409),

where g(S) is the genus of S. In particular, g(S)<1.

3. Lemma A and B.

Let A be a curve in P? and set X=P? and M=P*A. We assume that
Su(X) is a curve in X. Let 2 be any irreducible component of Sy(X) and S,
a;, p1 and U, are same notations as in the section 2. Let V be a relatively
compact subdomain of X and = be a holomorphic mapping from V to S which
satisfy conditions 1) ~ 5) in the section 2.

LEMMA A. If 0 be a simply connected domain in C, there is no holomorphic
mapping f: 6—M such that f(00)Cn Y a;,)U, and - f(00)=a; for some i(1<i<t).

PROOF. Suppose that there is a holomorphic mapping which satisfies above
condition. Let A, be an irreducible component of A except 2 which passes
through p;. There exists a rational function F of X where the set of zeros
is exactly A, and the set of poles in U, is empty. From Rouché’s theorem

0= _Z%fgaad log(F-f) = _Z—IESnof(amd log(F),
since 77 a;)N\A, = @. And
ool dlogF=  d10g(F13)> 0.
7° 1 (38) i Jnof 0
It is absurd. Q.E.D.

LEMMA B. Let R be a domain of P bounded with ¢ real analytic simple
closed curves (q=1), and S be a compact bordered Riemann surface with k real
analytic simple closed curves. If f: R—S be a nonconstant holomorphic mapping
such that f(GR)CaS, then g(S)=0.

PrROOF. Let n be a degree of f and X be the Euler characteristic. By the
Hurwitz formula,

2—qg=%UR) < n-XUS) = n2—k—2g(S)).
Since ¢<n-k, then g(S)=(n—1)/n<1. Q.E.D.
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4. Proof of Theorem.

Let 2 be any irreducible component of Sy(X) and S, a;, p;, U, V, f;
and ¢, are same notations as in the section 2.
If g(S)=0 we want to show that ¢t<2. This will follow from the estimate

B(-5)= 805 =2

m;

if we can show that m;=oo for 1<:<t if t=2. So, we assume m; 3« for some
i (1<i<t, t=2). Then there exists a closed curve on ¢j;(a)N4(R;,) for infinite
{72}. If for almost all {j;}, such curve surrounds a connected component of
D;, as the outside boundary, there exists a closed curve on gp}}(air)ﬂA(R“)
(7=, 1</ <t) which is not the outside boundary of such connected component
of D;, for an infinite subsequence of {;;} since t=2. By renumbering { 71}, we
may assume that for each j; there exists a closed curve on ¢ (a,)NA(R;,)
which is not the outside boundary of a connected component of D;, for some
i (1<i<t). ltis absurd from So m;=co for every : (1<:i<t) if t=2.

In case g(S)=1, we assume that m;>c for some 7 (1<:<t). Then, there
exists a closed curve on ¢ji(a;)NA(R;,) for infinite {j;}. By Lemma B such
curve does not surround a connected component of D;; as the outside boundary.

It is absurd from Cemma Al Since 3%_,(1—m;1)<0, then ¢=0. Q.E.D.

5. Proof of Corollary.

If the number of the nonhyperbolic curves in P? with respect to A is at
most finite, then S,(X) is contained in some curve from Theorem 3 in [1].
So, Sy(X) is a curve or empty by Theorem 2 in [2] If Sy(X) is a curve,
then S (X) is composed of nonhyperbolic curves with respect to A from
in this paper.

If the number of the nonhyperbolic curves in P? with respect to A is in-
finite, then there exists a regular rational function f on P* A such that all
the irreducible components of the level curves f~i(a) in P>\A(acsP?') are
isomorphic to either C or C* from Theorem 3 in [1]. So, it is easy to see
that SM(X>_—‘X QED
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